
Component Broker for Windows NT and AIX

Problem Determination Guide
Release 2.0

IBM

Component Broker for Windows NT and AIX

Problem Determination Guide
Release 2.0

IBM

First Edition (December 1998)

This edition applies to Release 2.0 of IBM Component Broker and to all subsequent releases and modifications until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 1997, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the
general information under “Notices” on page vii.

Contents

Notices . vii
Trademarks and Service Marks viii

About This Book . xi

Chapter 1. Problem Determination Information 1

Chapter 2. Activity Log for Problem Determination 3
Reading the Activity Log . 6

Activity Log Sample 1: Server Does Not Start 8
Activity Log Sample 2: Client Application Receives an Expected Error . . . 8
Activity Log Sample 3: Client Application Receives an Error And Server Dies 9
Activity Log Sample 4: Client Application Receives an Error 10
Activity Log Sample 5: Client Application Receives an Error 10

HandleSignal - General Page Fault (GPF) Exception 11

Chapter 3. Error Log for Problem Determination 15

Chapter 4. Event Log for Problem Determination 17

Chapter 5. Agent Trace Log for Problem Determination 19

Chapter 6. Object Level Trace for Problem Determination 23

Chapter 7. Transaction Service Log and Problem Determination 25

Chapter 8. Query Service Trace 27

Chapter 9. Cache Service Trace 33

Chapter 10. ORB Request Trace 39

Chapter 11. ORB Communication Trace 41
General Inter-ORB Protocol (GIOP) Packets. 43

Chapter 12. Tracing Function Calls in the Generated Code: XYZ Trace . . 51

Chapter 13. Security Service Trace 55

Chapter 14. APPC Communications Trace 61

Chapter 15. Problem Determination Tools 65
Sherlock Tool . 65

Sample Input Activity Log to Sherlock 65
Sherlock Output Sample . 67

showlog Utility . 68
bgtrfmt Utility . 69
Model Consistency Checker. 70

Chapter 16. Troubleshooting Component Broker Run-Time Problems . . . 71
Troubleshooting Component Broker Service Start Up 71
Troubleshooting Server Activation Problems 71
Troubleshooting Unexpected Application Error or Bad Data Problems 72

© Copyright IBM Corp. 1997, 1998 iii

Troubleshooting Cache Related Problems 74
Troubleshooting Security Problems 74
Troubleshooting APPC Problems 77

Example: APPC Messages in the Activity Log 81
Investigating Communications Server Problems 88
Tracing Calls to the Communications Server. 89
Checking the Status and Configuration of the SNA Network 91
Viewing Communications Server Messages 95
Displaying Explanations of SNA Sense Data. 96
Checking the States of Resources in a CICS Region 97

Troubleshooting Dr. Watson Errors 101

Chapter 17. Problem Determination Hints and Tips 103
Hints and Tips: Activity Log . 103
Merge cout Trace and ORB Communication Trace 104
Use Standalone Servers . 105
Run-Time Environment Settings 105
Preparation Before Each Test Run 108
Running the Test . 109

Chapter 18. Report a Problem to IBM 111

Appendix A. Activity Log Samples 115
Activity Log Sample 1 . 115
Activity Log Sample 2 . 141
Activity Log Sample 3 . 145
Activity Log Sample 4 . 149
Activity Log Sample 5 . 156

Appendix B. HandleSignal Log Entry and Map File 161
Activity Log Showing General Page Fault Exception 161
HandleSignal - Compilation Map File Example 164

Appendix C. IBM Communication Server Trace Samples 167
APPC Verb Trace Samples . 167
APPC I-Frames Trace Samples 178

Appendix D. Appendix D. IBM Communication Server APPC Interface . . 185
IBM Communication Server APPC Interface: Operation Codes 185
IBM Communication Server APPC Interface: Verb Parameters 194
IBM Communication Server APPC Interface: Return Codes 195

Appendix E. Transaction Service Exceptions 203

Appendix F. SNA Data Formats 207
Transmission Headers (TH) and Request/Response Headers (RH) 207
Attach FMH-5 . 209
Logical Unit of Work Identifier (LUWId) 210
GDS Records and Data Mapping 210
Presentation Services (PS) Header 10 212
Function Management Header 7 (FMH-7). 213
Exchange Log Names (XLN) GDS Record 214
Compare States GDS Record 215
Conversation Correlator (CC) and Session Id 216

Appendix G. System Exceptions and Minor Codes 217

iv Problem Determination Guide

Appendix H. APPC Messages 263

Appendix I. Security Messages 279

Appendix J. Session Service Messages 289

Appendix K. Transaction Service Messages 291

Appendix L. Workload Management Messages 295

Appendix M. XA Messages 305

Contents v

vi Problem Determination Guide

Notices

This publication was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this
publication. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OR CONDITIONS OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
or implied warranties in certain transactions, therefore, this statement may not apply
to you.

This publication could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the document. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this document at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

© Copyright IBM Corp. 1997, 1998 vii

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This document may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks and Service Marks

The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
CICS
DB2
IBM
IMS
MVS/ESA
OS/2
PowerPC
VisualAge

AFS and DFS are trademarks of Transarc Corporation in the United States, or other
countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

viii Problem Determination Guide

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

Oracle and Oracle8 are registered trademarks of the Oracle Corporation in the
United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

Notices ix

x Problem Determination Guide

About This Book

IBM Component Broker is a middleware product that can be used to design,
develop, and deploy distributed object-oriented applications.

This book is intended for AIX and Windows NT Component Broker application
developers and administrators who are responsible for diagnosing run-time
problems. It provides information to help you resolve problems and, when required,
report problems to IBM.

To use this book, you should be familiar with system and application programming,
and the Component Broker’s System Management tasks. You should also be
familiar with the other systems used with the Component Broker at your site, for
example, AIX, Windows NT, DCE, DB2, Oracle, CICS, and IMS.

Related Information
For AIX and Windows NT Component Broker installation problem determination
information, refer to the Planning, Performance, and Installation Guide.

For OS/390 Component Broker run-time problem determination information, refer to
the OS/390 Component Broker Messages and Diagnosis Guide.

How This Book Is Organized
The information in this book is organized into the following chapters:

Chapters 2 - 15 describe Component Broker logs, traces, and tools that you can
use for run-time problem determination.

v “Chapter 2. Activity Log for Problem Determination” on page 3

v “Chapter 3. Error Log for Problem Determination” on page 15

v “Chapter 4. Event Log for Problem Determination” on page 17

v “Chapter 5. Agent Trace Log for Problem Determination” on page 19

v “Chapter 6. Object Level Trace for Problem Determination” on page 23

v “Chapter 7. Transaction Service Log and Problem Determination” on page 25

v “Chapter 8. Query Service Trace” on page 27

v “Chapter 9. Cache Service Trace” on page 33

v “Chapter 10. ORB Request Trace” on page 39

v “Chapter 11. ORB Communication Trace” on page 41

v “Chapter 12. Tracing Function Calls in the Generated Code: XYZ Trace” on
page 51

v “Chapter 13. Security Service Trace” on page 55

v “Chapter 14. APPC Communications Trace” on page 61

v “Chapter 15. Problem Determination Tools” on page 65

– “Sherlock Tool” on page 65

– “showlog Utility” on page 68

– “bgtrfmt Utility” on page 69

– “Model Consistency Checker” on page 70

© Copyright IBM Corp. 1997, 1998 xi

Chapters 16 - 18 provide information to help you diagnose Component Broker
run-time problems and report problems to IBM

v “Chapter 16. Troubleshooting Component Broker Run-Time Problems” on
page 71

– “Troubleshooting Component Broker Service Start Up” on page 71

– “Troubleshooting Server Activation Problems” on page 71

– “Troubleshooting Unexpected Application Error or Bad Data Problems” on
page 72

– “Troubleshooting Cache Related Problems” on page 74

– “Troubleshooting Security Problems” on page 74

– “Troubleshooting APPC Problems” on page 77

– “Troubleshooting Dr. Watson Errors” on page 101

v “Chapter 17. Problem Determination Hints and Tips” on page 103

– “Hints and Tips: Activity Log” on page 103

– “Merge cout Trace and ORB Communication Trace” on page 104

– “Use Standalone Servers” on page 105

– “Run-Time Environment Settings” on page 105

– “Preparation Before Each Test Run” on page 108

– “Running the Test” on page 109

v “Chapter 18. Report a Problem to IBM” on page 111

The Appendices provide sample logs, communications reference data, minor codes
and error messages.

v “Appendix A. Activity Log Samples” on page 115

– “Activity Log Sample 1” on page 115

– “Activity Log Sample 2” on page 141

– “Activity Log Sample 3” on page 145

– “Activity Log Sample 4” on page 149

– “Activity Log Sample 5” on page 156

v “Appendix B. HandleSignal Log Entry and Map File” on page 161

– “Activity Log Showing General Page Fault Exception” on page 161

– “HandleSignal - Compilation Map File Example” on page 164

v “Appendix C. IBM Communication Server Trace Samples” on page 167

v “Appendix D. Appendix D. IBM Communication Server APPC Interface” on
page 185

v “Appendix E. Transaction Service Exceptions” on page 203

v “Appendix F. SNA Data Formats” on page 207

v “Appendix G. System Exceptions and Minor Codes” on page 217

v “Appendix H. APPC Messages” on page 263

v “Appendix I. Security Messages” on page 279

xii Problem Determination Guide

v “Appendix J. Session Service Messages” on page 289

v “Appendix K. Transaction Service Messages” on page 291

v “Appendix L. Workload Management Messages” on page 295

v “Appendix M. XA Messages” on page 305

About This Book xiii

xiv Problem Determination Guide

Chapter 1. Problem Determination Information

IBM Component Broker provides many run-time information sources to help you
perform problem determination. These information sources primarily consist of error
logs and trace logs. Depending on where you are in the application development’s
life cycle, you may choose to use some of the information sources and not others.
This book describes some of the error logs and trace data so that you can use
them to diagnose run-time errors and speed up the problem determination process.

The following information sources and traces may help you diagnose errors and
failures:

v “Chapter 2. Activity Log for Problem Determination” on page 3

v “Chapter 3. Error Log for Problem Determination” on page 15

v “Chapter 4. Event Log for Problem Determination” on page 17

v “Chapter 5. Agent Trace Log for Problem Determination” on page 19

v “Chapter 6. Object Level Trace for Problem Determination” on page 23

v “Chapter 7. Transaction Service Log and Problem Determination” on page 25

v “Chapter 8. Query Service Trace” on page 27

v “Chapter 9. Cache Service Trace” on page 33

v “Chapter 10. ORB Request Trace” on page 39

v “Chapter 11. ORB Communication Trace” on page 41

v “Chapter 12. Tracing Function Calls in the Generated Code: XYZ Trace” on
page 51

v “Chapter 13. Security Service Trace” on page 55

v “Chapter 14. APPC Communications Trace” on page 61

Some of these trace logs are automatically generated, while others require you to
stop the server to set the trace and then restart the server to enable the capturing
of trace data. Depending on where you are in the application’s life cycle, you may
be able to set or use some of these traces and not others. The following table
depicts four stages of the Component Broker application’s life cycle when you may
encounter run-time problems: unit test, integration, deployment, and operation, and
it summarizes the type of information sources you would use to help you diagnose
these problems at each stage.

Information
Sources:
Traces/Trace Logs

Component Broker Application

Unit Test Integration Deployment Operation

Activity Log Yes Yes Yes Yes

Error Log Yes Yes Yes Yes

Event Log Yes Yes Yes Yes

Agent Trace Log Yes Yes Yes Yes

OLT Yes Yes No No

Transaction Trace
Log

No No No No

© Copyright IBM Corp. 1997, 1998 1

Query Service
Trace

Yes Yes No No

Cache Service
Trace

Yes Yes No No

ORB Request
Trace

Yes Yes No No

ORB
Communication
Trace

Yes Yes No No

XYZ Trace Yes Yes No No

Security Service
Trace

Yes Yes No No

APPC
Communications
Trace

No Yes No No

Problem Determination (Planning, Performance, and Installation Guide)

2 Problem Determination Guide

Chapter 2. Activity Log for Problem Determination

The activity log captures events that show a history of Component Broker
Connector services’ activities. Some of the entries in the log are informational, while
others report on system exceptions, such as returned CORBA exceptions.

When you encounter Component Broker run-time errors, you will often find it useful
to read the activity log and try to diagnose the problem yourself. When you require
assistance from IBM to help you diagnose Component Broker problems, you will be
asked to provide the formatted activity log output to IBM.

Location of the Activity Log
There is one activity log for each host machine. The activity.log file resides in the
Component Broker’s service subdirectory. If the file does not exist, Component
Broker automatically creates the file for you.

Formatting the Activity Log for Reading
The log in the service directory must be formatted before you can read its contents.
To format the file, you can use either of the following interfaces:

v The System Manager user interface to browse the log’s entries. (Expand the host
image under Host Images to find Activity Log Images and then Latest . Right
click on Latest and select Browse .)

v The showlog utility to pipe the formatted output to a file which you edit or browse,
for example,
showlog activity.log -debug > showlog.out

Note : Run the showlog utility on the host that had the error to get the optimum
substitution values in the formatted output file.

In most situations, rather than using the System Manager user interface, you would
probably use the showlog utility to format the activity.log file into a readable output
file for browsing.

Description of the Activity Log Entry
Each entry in the activity log has the following fields:

v ComponentId
A numeric value assigned to each component in Component Broker. For
example,
ComponentId: 131175

v ProcessId
The process number under which the server is running; this is the ID by which
the operating system knows the process. For example,
ProcessId: 491

v ThreadId
The thread ID under which the object placed the event in the activity log. This is
the thread ID by which the operating system knows the thread. For example,
ThreadId: 601

v FunctionName
The name of the function that placed the information in the activity log. This may
not be very useful for you. For example,
FunctionName:
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&)

© Copyright IBM Corp. 1997, 1998 3

v ProbeId
This is typically the line number in the source file that has the function that
placed the entry in the event log. However, some components may use this field
as a probe ID and assign it some other value. For example,
ProbeId: 4024

v SourceId
The first number identifies the version of code that is running; the second entry is
the location of the source code in the library system from which the code was
built. This information may not be very useful to you. For example,
SourceId: 1.3 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp

v Manufacturer
IBM

v Product
Component Broker

v Version
The Component Broker version

v SOMProcessType
The type of process that placed this event in the activity log:

– 1 for client process

– 2 for ORB daemon

– 5 for server process
Individual types of servers (name and different application servers) are not
distinguished.

v ServerName
If this is a server process, the name of the server, for example,
ServerName: gordian Name Server

v clientHostName
The host name of the client if security is enabled for the server process.

v clientUserId
The client user ID if security is enabled for the server process.

v TimeStamp
Date and time when the event was placed in the activity log. The TimeStamp
entry is unique, for example,

TimeStamp: 12/5/97 14:08:25.784411745

v UnitOfWork
The field contains the identification for the original request. The name is in the
format, nnnnn:hhhhh, where:

– nnnnn : is a random number

– hhhhh : is the name of the host where the original request originated.

For example,
UnitOfWork: 12455:fred

If a request is forwarded to another server as part of the original request, the unit
of work from the original request is used. This enables the clients to track the
work that is done as part of an original request. Note : You may find the
UnitOfWork information useful when you are trying to find related entries in the
activity log or when you are debugging problems across multiple machines.

v Severity
The severity of the problem. The possible values are:

– 1 Error

4 Problem Determination Guide

– 2 Warning

– 3 Informational

v Category
The category of the failure. The possible values are:

– 1 Error

– 2 Activity

– 3 Trace

– 4 Trace Data

– 5 Performance

v FormatWarning
A numeric value indicating that the replacement text of the message was not in
the correct form. This will be a non-zero value when an attempt to place the
replacement text in the Primary or Extended Message was not correct.

v PrimaryMessage
In the case that the entry was placed in the activity log as part of an exception,
the PrimaryMessage field contains the objectName::methodName(parameter
list):lineNumber and the type of the exception (this should always be
CORBA::exception) and the specific exception that was raised.

This field contains essential information for problem determination. The field
indicates one of the following:

– Throw of exception
The entry indicates that the listed function determined that an exception
should be thrown. Look at the ExtendedMessage information to help you
identify the cause of the problem. This is a category 1 (Error) entry.
PrimaryMessage: The function
IBOIMLocalToServer_ICDSDataObjectImpl::getStringByName(const char*):1011
raised CORBA exception
IBOIMLocalToServer::ICDSDataObject::IAttributeNotFound, error code is
0x0 0.

– Reraised Exception
The entry indicates that an exception was received and reraised. This entry
allows you to trace related entries in the activity log. This is a category 1
(Error) entry. For example,
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const
ByteString&):4054 reraised CORBA exception CORBA::INTERNAL.

– Mapping of Exception
The entry shows the exception that was received and the new exception that
was raised. This is useful when tracking a specific exception through the
activity log. This is a category 1 (Error) entry. For example,
PrimaryMessage: The function
IBOIMExtLocalToServer_IDataObjectBase_Impl::retrieveFromDataStore():450
received CORBA exception IBOIMException::IDataObjectFailed and raised
CORBA exception CORBA::PERSIST_STORE.

– Activity Entry
An activity entry provides information. If the entry appears during an exception
path, it contains information to help determine the cause of the problem for
which the exception is being raised. If the entry is not on an exception path,
the entry simply provides information as to the state of the server. This is a
category 2 (Activity) entry. For example,
PrimaryMessage: The function IPTransport::connect():936 reported an
activity.

Chapter 2. Activity Log for Problem Determination 5

Note : If you see a minor code of this format, 0x4942xxxx, where xxxx are
hexadecimal numbers, look in the “Appendix G. System Exceptions and Minor
Codes” on page 217 for more information on the message.

v ExtendedMessage
The extended message often provides additional information to pinpoint the exact
cause of the failure.

v RawDataLen
When raw data is provided as part of this log entry, the length of the raw data is
shown in hexadecimal format. The raw data follows this entry and is shown in a
16-byte dump with the ASCII format of the data at the right of the dump. For
example,
RawDataLen: 93
RawData:
0000 01 00 00 01 B5 01 00 00 - 00 01 4F 00 00 00 03 32O....2
0010 03 48 6F 73 74 49 04 67 - 6F 72 64 69 61 6E 03 53 .HostI.gordian.S
0020 6F 6D 53 65 72 76 49 04 - 67 6F 72 64 69 61 6E 20 omServI.gordian
0030 4E 61 6D 65 20 53 65 72 - 76 65 72 03 53 6F 6D 48 Name Server.SomH
0040 6F 6D 65 49 04 69 48 6F - 6D 65 4F 66 45 76 65 6E omeI.iHomeOfEven
0050 74 43 68 61 6E 6E 65 6C - 48 6F 6D 65 00 tChannelHome.

If the ORB communications trace is turned on, the trace data from GIOP packets is
displayed in the RawData field.

Activity Log (System Administration Guide)

“Reading the Activity Log”
“HandleSignal - General Page Fault (GPF) Exception” on page 11
“Hints and Tips: Activity Log” on page 103
“showlog Utility” on page 68
“Chapter 11. ORB Communication Trace” on page 41

Display the Activity Log (System Administration Guide)

Reading the Activity Log

Since the activity log is an accumulation of information, it always contains
extraneous information. In most instances, lower level components decide to throw
an exception and to place an entry in the activity log. The caller of the lower level
component may be prepared to handle the exception and to absorb it and continue
processing on a normal code path. The entry that the lower level component placed
in the activity log remains in the log.

In some situations, components place warnings in the activity log to warn you of
potentially dangerous situations. Sometimes these entries can help you determine
the exact cause of the problem.

The first step in reading the activity log is to isolate the original exception that
caused the failure. This is essential in identifying the cause of the problem.

The entries in the formatted activity log are listed from the oldest entry to newest.
The oldest entries in the log probably do not pertain to the failure. Refer to the
“Hints and Tips: Activity Log” on page 103 for suggested ways to reduce the

6 Problem Determination Guide

information in the activity log. When reading the formatted activity log, you need to
identify the group of entries that are related to the problem or error that you are
diagnosing. This group of entries form a bracket, as follows:

v The start of the bracket
Initial failure, which is a single entry in the log

v Results of the initial failure
A number of entries in the log

v The end of the bracket
Last result of the failure, which is a single entry in the log

When reading the formatted activity log, start with its last entry and then work
backwards, reading the previous entry and then the one before. The last entries of
the log may not be related to the failure, for example, there may be entries made by
the ORB, by the name server, by the client, or by other requests on application
servers. Follow these steps to find the bracket of entries in the activity log that
pertains to the error that you are diagnosing:

1. Identify the end of the bracket
Reading backwards entry by entry, try to determine if the entry is related to the
problem that is being investigated. A description of the first entry to look for in
the activity log is dependent on the symptoms of the failure, and they are
described in the activity log samples. (Hint: When reading backwards, you can
look for the first non-error message. Back up to the last entry that you have
read and that error entry may be the end of bracket entry for the problem that
you are diagnosing.) Once the entry related to the failure has been identified,
you have identified the end of the bracket.

2. Find relevant entries
The next step is to examine each previous entry to see if it is related to the
failure.

3. Find the initial failure
Entries which are listed previous to the bottom of the bracket will need to be
examined to determine which is the initial failure.

To describe the technique, review sample logs of these five basic failures that can
occur:

v “Activity Log Sample 1: Server Does Not Start” on page 8

v “Activity Log Sample 2: Client Application Receives an Expected Error” on page 8

v “Activity Log Sample 3: Client Application Receives an Error And Server Dies” on
page 9

v “Activity Log Sample 4: Client Application Receives an Error” on page 10

v “Activity Log Sample 5: Client Application Receives an Error” on page 10

If the ORB communication trace is turned on, the trace data is displayed in the Raw
Data field.

Smaller activity logs may speed up your problem determination process. Refer to
“Hints and Tips: Activity Log” on page 103 for more information on formatting the
activity log before deleting it and rerunning your application.

“Chapter 2. Activity Log for Problem Determination” on page 3
“HandleSignal - General Page Fault (GPF) Exception” on page 11
“Chapter 11. ORB Communication Trace” on page 41

Chapter 2. Activity Log for Problem Determination 7

Activity Log Sample 1: Server Does Not Start

Symptom: The application server (this includes the name server) does not start.

Finding the End of the Bracket
In this case, the activity log will contain an entry from server startup indicating that
the server failed to start. Locate this entry in the activity log:
ExtendedMessage: Server myServer failed

myServer is the name of the server which was attempting to start. Remember to
start from the bottom of the activity log and work backwards.

Activity Log Sample 1
Refer to the “Activity Log Sample 1” on page 115. From the bottom of the activity
log, work backwards and look for the first entry indicating that the server, fred, did
not start. This is the end of the bracket.

Each entry in the activity log prior to the end of bracket entry must be examined to
determine if it is the initial failure or if it is the result of the initial failure. Note that
the related entries are for the same server. The initial error should be a Severity 1
error. The entries that form the start and end of the bracket are highlighted in bold
in the sample.

Recovery
If you refer to “Troubleshooting Server Activation Problems” on page 71, you can
find possible causes for this problem. In this example, the failure is a result of not
starting the ORB daemon. Use the System Manager user interface to start the
daemon.

“Reading the Activity Log” on page 6

Activity Log Sample 2: Client Application Receives an Expected Error

Symptom
The client application receives the exception, IManagedClient::INoObjectWKey.
The client application may be coded to recover from this situation. Specifically in
this case, the application can either display an error message stating that the
requested information could not be located, or the application can create the object
associated with the information.

Finding the End of the Bracket
The end of bracket entry should be the one that corresponds to the exception,
IManagedClient::INoObjectWKey.

Activity Log Sample 2
Refer to the “Activity Log Sample 2” on page 141. This example is a common
expected exception (IManagedClient::INoObjectWithKey) that you would handle in
your client application. The recovery is to either create such an object, or to have
the client application report back to the user that the object does not exist.

This sample activity log shows an expected exception when findByPrimaryKeyString
is run against the home. Find the log entry dealing with the findByPrimaryKeyString
method on the home.

8 Problem Determination Guide

The run time can log information. This is what the home does in the second to last
entry in the log. Note that the home logs most of its internal state when a failure
occurs. This can help you in the event that the findByPrimaryKeyString method fails
when you expect it to succeed. Another important piece of data the home gives you
in the log is the key that was passed in.

Some log entries do not list method names that are a part of the IDL interface for
the framework. Because of the way logging works, the name of the method or
function is reported in the log. If you see a method that does not have a name from
the IDL interface that is described in the programming model, it is likely that a
private implementation method was used by the run time.

Some activity log entries will simply reraise exceptions that they received from lower
level calls. The fact that these reraised exceptions occur suggests that these entries
are not the source of the problem. Sometimes, the run time remaps the exception it
receives from a lower call to another exception which is defined on its interface.
This is what happens when the run time receives an
IBOIMException::IDataKeyNotFound exception from a user data object (first entry in
the log). The run time converts this exception to INoObject withKey, which is the
expected exception for the interface findByPrimaryKeyString (second entry in the
log).

Recovery
The recovery for the problem is to determine if the nonexistence of the object is
alright; in which case, the error can be ignored. If the nonexistence of the object is
not alright, you must determine if the object should exist in the data base, and if the
correct exception is being returned from the data object.

“Reading the Activity Log” on page 6

Activity Log Sample 3: Client Application Receives an Error And
Server Dies

Symptom
The server starts. The client application is run, the client application hangs (if
timeout is set to infinite) or ends with a CORBA::COMM_FAILURE. The application
server is not running.

You can also receive unrecoverable exceptions in this situation. In this case, the
server dies while running a client application. The client application deleted the
same storage twice in the method, addBeneficiary, on the Policy object. There is no
way the client application can recover from this error, because the server will abort.

Activity Log Sample 3
Refer to the “Activity Log Sample 3” on page 145. Whenever you see a handle
signal in the log you have a serious problem (first entry in the log). See the
description on “HandleSignal - General Page Fault (GPF) Exception” on page 11 for
more information on this log entry. However, in this sample, because the
addBeneficiary method was called remotely, the server caught the error and a
dumpTargetInfo call is done. Note that the dumpTargetInfo entry indicates that the
addBeneficiary method is the method that was being called on the Policy object.
This provides a strong hint to look at the addBeneficiary code.

Chapter 2. Activity Log for Problem Determination 9

Recovery
The client application’s code will have to be changed to fix the problem. Review
addBeneficiary code and make necessary code changes.

“Reading the Activity Log” on page 6

Activity Log Sample 4: Client Application Receives an Error

Symptom
Sometimes an unexpected exception can be caught and handled without having to
change your code. Often, this is the case when a configuration error occurs. The
server starts. The client application is run, and the client application ends with a
CORBA::UNKNOWN exception. The application server is still running.

Activity Log Sample 4
Refer to the “Activity Log Sample 4” on page 149. At the bottom of the log find an
entry for a findByPrimaryKeyString call on a home returning a CORBA::UNKNOWN
exception (last entry). Look at the previous entries to determine the source of the
failure. Note that most of the log entries are simply reraising CORBA::UNKNOWN.
This is an indication that these log entries are not the source of the failure, but
merely the reporting chain from the failure to the outermost interface call, which, in
this case, is findByPrimaryKeyString on the home.

You should then find a call to
IRDBIMExtLocalToServer_IDataObject_Impl::retrieveFromDataStore (in the middle
of the log marked in bold) which indicates that the data object is involved in the
failure. If you continue to look in the previous entries, you will see an entry where it
is apparent that a database connection to the Policy2 database cannot be made.
You could then check to see if DB/2 is started.

Recovery
In this case, DB/2 was not started. When you start it and restart the application
server, the application will run.

“Reading the Activity Log” on page 6

Activity Log Sample 5: Client Application Receives an Error

Symptom
The server starts. The client application is run, and the client application hangs (if
timeout is set to infinite) or ends with a CORBA::NOTRANSACTION exception. The
application server is still running.

Activity Log Sample 5
Refer to the “Activity Log Sample 5” on page 156. Another example of a recoverable
unexpected exception occurs in this log. Note that the findByPrimaryKeyString call
on the home failed (second last entry). Since CORBA::NOTRANSACTION is the
exception, why is the transaction not available? Scanning upwards in the log also
confirms that the transaction is not started (first entry in the log).

Recovery
Check your client application to verify that no transaction was started. If
this is the case, the client application has to be changed and rebuilt.

10 Problem Determination Guide

“Reading the Activity Log” on page 6

HandleSignal - General Page Fault (GPF) Exception

In some instances, the activity log captures data as a result of receiving a hardware
error. Component Broker has a signal handler registered with the operating system.
The signal handler allows the failure to be trapped, and information about the
process is captured. The failure is then turned into a C++ exception and raised in
the handleSignal method.

A signal or hardware error can occur for a number of reasons, such as:

v Division by zero

v Dereferencing a null pointer

v Accessing memory which has already been freed

Activity Log Entry That Has A General Page Fault Exception
When this error occurs, the signal handler first writes an entry in the activity log.
Refer to the “Activity Log Showing General Page Fault Exception” on page 161. The
entry shows:

v Usual Activity Log Entry Information
ComponentId:131175
ProcessId:475
.
.
.
FormatWarning: 0
PrimaryMessage:The function handleSignal(int,int,CONTEXT*):608 reported
an error.

ExtendedMessage: A system error was detected - 40 SEG-VIOLATION (OS
signal nbr: 2).

v Type of Error Which Was Received
Intel context flags:
i386/486 CONTROL INTEGER SEGMENT FULL FLOAT-POINT DEBUG-REG

v Register Information for the Process
Intel segment registers:
Gs:00000000 Fs:0000003b Es:00000023 Ds:00000023 Ss:00000023 Cs:0000001b
Intel GP registers:
Edi:068250f0 Esi:0225240f Ebx:068250f0 Edx:000009a4 Ecx:00000000
Eax:00000000 Ebp:02dbf42c Eip:064d61fa Esp:02dbf3fc

v Current Instruction Pointer
Error occurred at (Eip) :064d61fa, in source file: PolicyS.dll

v Call Stack
02dbf42c (062C9120 - PolicyDB2.dll)
02dbf48c (06399054 - PolicyC.dll)
02dbf4c4 (0639998A - PolicyC.dll)
02dbf584 (06485190 - PolicyS.dll)
02dbf5d0 (6B6859E7 - somorori.dll)
02dbf828 (6B6857F8 - somorori.dll)
02dbfc0c (6EACDCE5 - somsrsai.dll)
02dbfd80 (6EACFB5D - somsrsai.dll)
02dbff54 (504419F7 - cppobi36.dll)
02dbffa4 (5043F663 - cppobi36.dll)
02dbffb8 (77F04F2C - KERNEL32.dll)

v Module List, and DLL Load Points

Chapter 2. Activity Log for Problem Determination 11

Module list: size (load address) date-linked-GMT => DLL/EXE name
512000 (00240000) 1998/04/18 04:27:22 GMT => c:\IBMCPPW\BIN\CPPWM35I.dll
19456 (00360000) 1998/09/09 10:46:19 GMT => e:\e9836.01.lite\lib.nt\teceifi.dll
289280 (00400000) 1998/09/09 11:22:59 GMT => e:\e9836.01.lite\bin.nt\somsrsm.exe
4605952 (004C0000) 1998/09/22 19:17:03 GMT => e:\e9836.01.lite\lib.nt\somibe1i.dll
.
.
.
355088 (77F60000) 1997/04/11 20:38:50 GMT => C:\WINNT\System32\ntdll.dll
149264 (77FD0000) 1996/07/17 18:15:07 GMT => C:\WINNT\System32\WINMM.dll
271632 (78000000) 1997/01/23 07:07:13 GMT => C:\WINNT\system32\MSVCRT.dll
70656 (780A0000) 1997/01/23 05:27:47 GMT => C:\WINNT\System32\MSVCIRT.dll

v Dump of the Storage
Storage dump:Storage dump:
02DBF40C AA AA AA AA 40 AD 58 06 - AA AA AA AA AA AA AA AA@.X.........
02DBF41C 00 00 00 00 DC FF FF FF - 84 F4 DB 02 90 D0 53 06S.
.
.
.
02DBF50C A0 D8 23 06 78 D1 23 06 - 20 F8 DB 02 00 B0 CC 04 ..#.x.#........
02DBF51C 6B 16 41 50 40 00 00 00 - 34 72 52 50 00 00 00 00 k.AP@...4rRP....

After the entry has been placed in the activity log, the handleSignal method raises
an exception, SOMRASOperatingSystemException (a subclass of an IException).
The exception is caught in the nearest catch block, and error processing occurs on
the code path.

Determining Where the Failure Occurred in a handleSignal Dump
When a handleSignal dump appears in the activity log, it is very important to
determine where the failure occurred. In most instances the statement causing the
failure is :

v The caller of the method (PolicyDB2.dll in the sample dump)

v The method where the signal occurred (PolicyS.dll in the sample dump)

There are two ways to determine the method that caused the failure:

v Use the Debugger
If the caller or the DLL listed at the top of the stack is compiled with debug, it is
possible to attach the debugger to the server and run the application that caused
the failure. When the signal occurs, the debug will break (assuming that the
options are set correctly), and the call stack can be examined to determine the
statement that caused the error.

v Translate the Stack
If the DLLs at the top of the stack are your DLLs, rather than using the debugger,
you can translate the stack to identify the method that caused the failure. To do
this, you will need the map files that were generated when you built the DLL. If
the DLLs listed near the top of the stack are owned by Component Broker, you
will not be able to use the debugger to help you diagnose the problem, and you
will also require an IBM Representative to access the information that is required
to process the stack. Unfortunately, by translating the stack, you cannot identify
the exact statement that caused the failure in the DLL; you can only identify the
method where the failure occurred.

Calculating the Call Stack
The map files for the DLLs that appear in the call stack are needed to calculate the
method where the failure occurred. The map files for the somxxxx.dll modules are
only available to IBM Support staff.

12 Problem Determination Guide

Each entry in the stack must be calculated. This sample only shows how to
calculate the top entry in the stack. The process must be repeated for each entry.
Refer to the “Activity Log Showing General Page Fault Exception” on page 161
when following these steps to calculate the call stack:

1. Identify the address you want to convert. Look at the Error occurred statement
to find out the address where the error occurred.

Error occurred at (Eip):064d61fa, in source file:PolicyS.dll

In this example, the address is 064d61fa.

2. Identify the DLL. The DLL name is given by the source file statement. In this
example, it is PolicyS.dll. Use this name when locating the map file.

3. Locate the DLL in the module list. Note the load point. The following is the load
point information for PolicyS.dll:
2835456 (06430000) 1998/09/28 15:20:32 GMT =>

e:\e9836.01.lite\lib.nt\PolicyS.dll

The load point is 06430000. It will be used in a later calculation.

4. Perform the first calculation. To determine the offset in the PolicyS.dll where the
failure occurred, the offset from the load point of the DLL will need to be
calculated. The formula is:

offset = instruction pointer - load point
offset = 064d61fa - 06430000
offset = A61FA

The offset will be used to determine the location in the map file.

5. Locate the map file that corresponds to the DLL. These are located in the
source tree on development drivers. Component Broker .map files are not
available to you. For user DLLs, the link option must be specified at build time.
See an example of the map file in the “HandleSignal - Compilation Map File
Example” on page 164.

6. Find the offset. Find the line, Image based at , in the .map file. The offset
addresses in the map file are located there. Note the value which the image is
loaded. In most DLLs, the offset will be 400000.

7. Perform the second calculation. The offset from the previous calculation should
be added to the value specified by the map file’s Image based at address.

address = offset + image based at
address = A61FA + 400000
address = 4A61FA

8. Locate the address in the map file. Locate the method in the map file that
contains the calculated address. Note that the map file only contains the starting
address of the methods, so the exact address that you have calculated does not
appear in the map file. In the example, the corresponding method in the map
file is :

004A6170 ?addBeneficiary__13PolicyBO_ImplFv

9. The name is in a mangled format. CPPFILT or a similar tool can be used to
demangle the name.

Interpreting the Handle Signal Activity Log for Your Code
Use the following tips to help you determine if your code caused the exception:

1. Your DLL is given as the address where the error occurred, then your code
caused the exception, for example:
Error occurred at (Eip):064d61fa, in source file:PolicyS.dll

Chapter 2. Activity Log for Problem Determination 13

2. If your DLL is in the call stack and there are no Component Broker DLLs
between the error point and your DLL in the call stack, then your code caused
the exception. Component Broker DLLs all have the prefix "som". For example,
the following information shows that the user code caused the error:
Error occurred at (Eip):014c61fa, in source file:msvcrt.dll

Notice that a system DLL is identified as the module that caused the error. The
Call Stack shows your DLL at the top of the stack, as follows:
01b9e824 PolicyS.dll
03004a0300 somibs1i.dll
03804a0300 somibe1i.dll

“Chapter 2. Activity Log for Problem Determination” on page 3

14 Problem Determination Guide

Chapter 3. Error Log for Problem Determination

The error log is a binary file that contains single entries for a failure. The log is
automatically created for you. It is a subset of entries that are in the activity log. You
can use the activity log instead of the error log for problem determination purposes.

Location of the Error Log
The implementation of the error log is platform-specific:

v On Windows NT, the error log is implemented using the NT event log.

v On other platforms, the error log is located in the same place as the activity log.

Browse the Error Log
For Windows NT, use the Administration facility to view its event log.

For other platforms, you can format the error log for browsing using the showlog
command, as follows:
showlog error.log -debug > error.out

Use an editor to browse the contents of the error.out file.

Interpreting the Error Log
The error log entries are identical to activity log entries. Refer to the “Reading the
Activity Log” on page 6 for more information on how to interpret the entries.

“Chapter 2. Activity Log for Problem Determination” on page 3

© Copyright IBM Corp. 1997, 1998 15

16 Problem Determination Guide

Chapter 4. Event Log for Problem Determination

The event log only exists for Windows NT Component Broker installations. You
seldom have to look at the Windows Event Log for problem determination purposes,
although some system exceptions (for example, lifecycle or RAS minor error codes)
would ask you to look at the event log (for example, to see if you have DCE errors
besides Component Broker errors). To view the Windows NT event log you can use
the Event Viewer , which is one of the Administration Tools (Common) for
Windows NT. You can browse the event log without interrupting other processes on
the host. All messages stored by the Component Broker product can be
distinguished by the string, CBConnector , in the Source column in the Windows
NT event log.

Display Component Broker Events Using the Tivoli Event Manager (System
Administration Guide)
Display Component Broker Messages in the Windows NT Event Log (System
Administration Guide)

“Appendix G. System Exceptions and Minor Codes” on page 217

© Copyright IBM Corp. 1997, 1998 17

18 Problem Determination Guide

Chapter 5. Agent Trace Log for Problem Determination

The Component Broker System Management code uses its own tracing functions.
Much of the System Management code has trace points at each function entry and
exit points, and many System Management modules trace other execution details.
By default, all exceptions are traced. When reporting problems to IBM, you may be
instructed to customize this trace activity.

This topic provides the following information:

v Locating the Agent Trace Log (page 19)

v Formatting the Agent Trace Log (page 19)

v Browsing Agent Trace Log from the System Manager User Interface (page 19)

v Agent Trace Log Example 1 (page 20)

v Agent Trace Log Example 2 (page 20)

Locating the Agent Trace Log
The agent trace log consists of several files with the following names:

v executableName_systemName.dct
This is the trace "dictionary".

v executableName_systemName.tr1
This is trace file 1.

v executableName_systemName.tr2
This is trace file 2.

For example, for bgmain running on machine bumppo.austin.ibm.com, you will get:

v bgmain_bumppo.austin.ibm.com.dct

v bgmain_bumppo.austin.ibm.com.tr1

v bgmain_bumppo.austin.ibm.com.tr2

On a Component Broker install image, these files are in the data subdirectory,
/var/CBConnector/data on AIX, and d:\CBroker\data on Windows NT.
Trace records are collected in the xxx.tr1 file until it reaches the default maximum
size of 100KB; then records are collected in the xxx.tr2 until it also reaches 100KB.
These two files are swapped back and forth as they fill up. Control information is
collected in the xxx.dct file.

Note : The agent trace logs are erased each time you stop and then restart the
Component Broker Connector service. If the agent trace logs are required, you
should not stop and restart the Component Broker Connector service until you have
formatted these logs.

Formatting the Agent Trace Log
To format the agent trace log, you use the bgtrfmt utility. If you have trace files,
say, bgmain_mySystem.dct, bgmain_mySystem.tr1, and bgmain_mySystem.tr2, you
would invoke:
bgtrfmt bgmain_mySystem > bgtrace.output

When running on Windows NT, you will not be able to run bgtrfmt if the trace
files are still open by the System Management executable that created them. You
will have to either stop the executable or create a temporary directory and copy the
three trace files to that directory. You may find the latter approach to be simpler.

© Copyright IBM Corp. 1997, 1998 19

Browsing Agent Trace Log from the System Manager User Interface
Some messages in somsmmsg.msg instruct you to look at the agent trace log for
details. You can also browse the agent trace log as follows:

1. Find the trace log under Host Images...Agent Images...Trace Log
Images...Latest .

2. Right click on Latest and select Browse .

Interpreting the Agent Trace Log
The agent trace log is most useful when you need to understand the sequence of
events leading up to a failure, for example, if you are diagnosing System
Management problems. Once you understand a little bit about a problem from the
activity log, you can look at the agent trace log and see what events led to the
failure. The trace output is tied to the source code and some of the output will not
be very informative without the source. Here are two examples of agent trace logs.
The notation, //..., means that text has been removed from the sample.

Agent Trace Log Example 1
This example is the trace produced for a re-activation of a small sample
configuration. Here is an explanation of the fields:

Here is the trace log for example 1:

The most interesting records in this output sample are the two at the end, reporting
the starting of the two servers.

Agent Trace Log Example 2
Example 2 is a similar activation, but this time somsmsoi.dll has been removed. You
can see that an exception is reported from bgloadc.cpp.

20 Problem Determination Guide

“Chapter 1. Problem Determination Information” on page 1
“bgtrfmt Utility” on page 69

Chapter 5. Agent Trace Log for Problem Determination 21

22 Problem Determination Guide

Chapter 6. Object Level Trace for Problem Determination

Object Level Trace (OLT) allows you to debug both client and server code as if they
were resident on a single machine. With OLT, you can debug from the client
machine, the server, your development workstation, or any other machine on which
you have installed the Component Broker Toolkit. You may find OLT useful when
diagnosing some run-time problems.

However, you have to recompile your application for OLT debugging. If you want a
quick simple method trace, you can run the ORB request trace. Also OLT’s
debugger ignores Managed Object Framework (MOFW) functions and steps over
"glue code". To debug the "glue code", you should consider doing the XYZ trace
that is described in “Chapter 12. Tracing Function Calls in the Generated Code:
XYZ Trace” on page 51.

Object Level Trace Overview (Application Development Tools)

“Chapter 10. ORB Request Trace” on page 39
“Troubleshooting Unexpected Application Error or Bad Data Problems” on page 72

© Copyright IBM Corp. 1997, 1998 23

24 Problem Determination Guide

Chapter 7. Transaction Service Log and Problem
Determination

The Transaction Service creates a log for every server. It records information about
in-flight transactions. When restarting an application after a failure, these logs are
used to roll back transactions. Warning : Do not erase these logs because they are
required for recovery. You would not read these logs for problem determination
purposes.

Transaction Service Log Files
The name of a server’s transaction service log is assigned by the Transaction
Service the first time the server is started, and the name appears in one of the
messages written to the Component Broker’s activity log when the server starts up.
The name has the format, somtrnnnn, for example, somtr0000. The log consists of
several files that have the file extensions .ctl, .csh, and .nnn where n is a number.

Transaction Service Log (System Administration Guide)
“Chapter 14. APPC Communications Trace” on page 61

© Copyright IBM Corp. 1997, 1998 25

26 Problem Determination Guide

Chapter 8. Query Service Trace

When you get OO-SQL errors in the activity log, use the query service trace to help
you diagnose these problems. This topic describes how to turn on the query service
trace and interpret the trace output:

v Setting the Query Service Trace Level (page 27)

v Interpreting the Query Service Trace (page 27)

v Examples of Query Service Trace Records (page 29)

Setting the Query Service Trace Level
To set the query service trace level, complete the following steps:

1. Display the System Manager user interface, and set the user-level to Expert .

2. Expand the Host Images folder.

3. From the pop-up menu of the Server Image for the application server that you
are interested in, click Edit . This displays the Object Editor for the Server
Image. Note : You do not have to stop and start the server to set this trace.

4. In the Object Editor window, click the Object Services Trace tab.

5. Set the query service trace level attribute value to advanced , to enable trace
information to be recorded for SQL queries.

6. Optionally, if you want to see a trace of actual data flows from the datastore,
you must also set on the cache service trace, by completing the following steps:

a. Click the Component Trace tab.

b. Set the caching component trace level attribute value to advanced (same
as the query service trace level attribute).

This enables trace information to be collected over a period of time into files in the
subdirectory service/server/ServerName. Refer to “showlog Utility” on page 68 for
more information on formatting trace logs.

Interpreting the Query Service Trace
To be able to work through query service trace information, you need to understand
the processing flow within query service.

The Flow of Control for a Pushdown Query
The following figure shows the flow of control for a pushdown query. This is a query
over a queryable home or view collection that is translated into a database query.
The flow of control is described after the figure.

© Copyright IBM Corp. 1997, 1998 27

1. A query statement is entered either via the queryable collection or query
evaluator interface.

2. A pointer to the home collection is obtained either via the parameter list that is
passed to the query evaluator or via the Name Service. The query is rewritten
from OO-SQL to SQL. The Application Family configuration information is
accessed via mapping information that describes how BusinessObject attributes
map to tables and columns in the database.

3. The rewritten SQL query is executed against the database, and the database
returns the result set. For certain types of queries, the iterator returned to the
caller is an object wrapper for an SQL cursor. In this case data is fetched from
the database as required by the iterator. For other iterators, the entire result set
is fetched into memory during this step.

4. If the query involves returning object references, executing object methods, or
accessing structs, then the result set must be transformed into a set of
ManagedObjects. This is accomplished by calling the internalizeData() method
on the DataObject interface of the DataObject contained within a
ManagedObject.

5. Any residual predicates, sorting or aggregation is performed and an iterator to
the final result set is returned to the caller.

The Flow of Control for Query over a Reference Collection of a Managed
Object
The following figure shows the flow for a query over a reference collection of a
managed object. The flow of control is described after the figure.

28 Problem Determination Guide

1. A query statement is entered via the query evaluator.

2. A pointer to the ReferenceCollection is obtained either via the parameter list that
has passed to the query evaluator or via the Name Service.

3. An iterator and the interface name of objects contained in the collection is
obtained from the reference collection. The InterfaceRepository is used to
access a description of the interface Name and the query statement is
validated.

4. For each MO in the collection, callMethodByName is used to dynamically call
methods and access attributes on the MO.

5. A result set is constructed as a subset of the reference collection, and an
iterator over the result set is returned to the caller.

Examples of Query Service Trace Records
A formatted trace file generated by the showlog utility contains entries similar to the
following examples.

Example 1: Query Service Trace
The following trace record shows the query statement (Query =) and the query plan
(Plan =) which contains the select statement executed against the database shown
in bold. The keyword _lazy_for indicates that this is a demand driven iterator, and
rows are fetched from the database as they are required by the iterator.
PrimaryMessage: The function
osql::osql_exec_lazy(char*):1072 reported trace message.

ExtendedMessage: Query = "select ref a from orgMOHome a where
a."dept"..id=2;"
Plan = "_begin _plan
_qes_tuple* _q1;
_begin
_i1 = _qes_tuple* _SQL DB2CS fksample [: select q1."ID", q1."A",
q1."B", q1."C", q1."DEPT", q1."DTYPE" from org q1,
org q2 where (q2."DTYPE" = 'DEPARTMENT') and (q2."ID" = 2) and (
q2."ID" = q1."DEPT") and (q1."DEPT" = 2) :]'org',
'department';
_lazy_for _all _q1 _in _i1 _do _begin
_print _s2 ("1" _make_bo ("orgMOHome", _make_do
("orgDOImplDO_DAO", _make_dao ("orgPODAO_Table(orgPO_Alias)",
"org", ((_qes_tuple*) _q1)->_c1(%_integer%), ((_qes_tuple*)

Chapter 8. Query Service Trace 29

_q1)->_c2(%_integer%), ((_qes_tuple*) _q1)->_c3(%_integer%), ((_qes_tuple*)
_q1)->_c4(%_integer%), ((_qes_tuple*) _q1)->_c5(%_integer%), ((_qes_tuple*)
_q1)->_c6(%_character%)))));
_end
_s0 = _all _s2 ;
_end
_end _plan

Query Service Trace: Example Two
This trace record shows the call to buildFromData on the home collection. The
home collection creates the MO and calls internalizeData on the DataObject
passing to the DataObject the data values shown in the trace record. The value ’-’
is the SQLNULL value. Processing exceptions that occur after this point, may
indicate a problem in the internalizeData() method of the DataObject.
PrimaryMessage: The function
qes_eval_expr(qes_ptex*,osql_tsd*):3031 reported trace message.

ExtendedMessage: buildFromData arguments = "orgDOImplDO_DAO (char*: orgDOImplDO_DAO,
dao (long: 6, long: 2, long: 6, - , long: 2, char*: PERSON)) "

Query Service Trace: Example Three
This entry in the following trace example shows the rewritten SQL as:
_SQL DB2NT fksample [: select q1."ID", q1."X",

q2."ID", q2."Y" from person1 q1, person2 q2
where (q1."ID" = q2."ID") :]

DB2NT fksample means that the target database is a DB2 for Windows NT
database whose dbname is fksample .

The actual SQL statement is:
select q1."ID", q1."X", q2."ID", q2."Y" from

person1 q1, person2 q2 where (q1."ID" = q2."ID")

The original OO-SQL statement is:
select x from thisCollection x;

More than one DB2NT select statements may appear for complex OO-SQLl
queries, for example:
ComponentId: 262251
ProcessId: 365
ThreadId: 458
FunctionName: osql::osql_exec_lazy(char*)
ProbeId: 1071
SourceId: 1.16 src/objsvcs/query/impl/osql.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 10/14/98 15:58:05.732631343
UnitOfWork: 29721:wisneski
Severity: 3
Category: 3
FormatWarning: 0
PrimaryMessage: The function osql::osql_exec_lazy(char*):1071 reported trace message.
ExtendedMessage: Query = "select x from thisCollection x;"
Plan = "_begin _plan
_qes_tuple* _q1;
_begin
_i1 = _qes_tuple* _SQL DB2NT fksample [: select q1."ID", q1."X",

30 Problem Determination Guide

q2."ID", q2."Y" from person1 q1, person2
q2 where (q1."ID" = q2."ID") :]'person', 'person';
_lazy_for _all _q1 _in _i1 _do _begin
_print _s2 ("1" _make_bo ("thisCollection", _make_do
("personDOImplDO_DAO", _make_dao
("person1PODAO_Table", "person", ((_qes_tuple*)
_q1)->_c1(%_integer%), ((_qes_tuple*) _q1)->_c2(%_integer%)),
_make_dao ("person2PODAO_Table", "person", ((_qes_tuple*)
_q1)->_c3(%_integer%), ((_qes_tuple*)
_q1)->_c4(%_integer%)))));
_end
_s0 = _all _s2 ;
_end
_end _plan
"

RawDataLen: 0

“Chapter 9. Cache Service Trace” on page 33
“Troubleshooting Unexpected Application Error or Bad Data Problems” on page 72
“Troubleshooting Cache Related Problems” on page 74

Chapter 8. Query Service Trace 31

32 Problem Determination Guide

Chapter 9. Cache Service Trace

The cache service trace records requests to the cache, data exchanges between
the transaction cache and the global cache, and SQL operations made to the
database. This topic describes how to turn on cache service trace and interpret the
trace output:

v Set the Cache Service Trace Level (page 33)

v Interpreting the Cache Service Trace (page 33)

v Examples of Cache Service Trace Records (page 35)

Setting the Cache ServiceTrace Level
To set the cache service trace level, complete the following steps:

1. Display the System Manager user interface, and set the user-level to Expert .

2. Expand the Host Images folder.

3. From the pop-up menu of the Server Image for the application server that you
are interested in, click Edit . This displays the Object Editor for the Server
Image. Note : You do not have to stop and start the server to set this trace.

4. In the Object Editor window, click the Component Trace tab.

5. Set the caching component trace level attribute value to advanced , to enable
trace information to be recorded.

This enables trace information to be collected over a period of time into files in the
subdirectory service/server/ServerName. Refer to “showlog Utility” on page 68 for
more information on the formatting of trace logs.

Interpreting the Cache Service Trace
To work through cache component trace information, you need to understand the
flow of processing within the cache service.

The Flow of Control for the Cache Service
The following figure shows the flow within the cache service. Descriptions are
provided after the figure.

© Copyright IBM Corp. 1997, 1998 33

1. A request for data is made. This typically comes from a DataObject and is made
using the DAO (Data Access Object) interface. Often this is a request to read or
update data values, or to retrieve, create or delete a database record.

2. For each transaction, the cache service maintains a transaction cache
containing data for that transaction. If the data requested is already in the
transaction cache, the data is returned or updated. When data is updated, the
database may be updated immediately or the update may be deferred until
commit is done.

3. If the data is not contained in the transaction cache, and if the ManagedObject
was configured for optimistic caching, then a lookup is done on the Global
Server Cache. If the data is found there and the data is not older than the time
period indicated by the refreshInterval specified by the configuration, the data is
copied into the transaction cache and returned to the caller.

4. If the data is found neither in the transaction nor in the global cache, then the
data is retrieved from the database. For optimistic caching, the database lock is
released after retrieval. For pessimistic caching, the database lock is retained
for the duration of the transaction.

Flow of Control at Transaction Termination
The following figure shows the flow within the cache service when a transaction
terminates. The flow of control is described after the figure.

At transaction termination, if the transaction abended, then the transaction cache is
destroyed and any updates made to the database are rolled back. The global cache
is not updated. If the transaction was committed then the following events occur:

1. Updated data is written to the database during the beforeCompletion phase of
commit processing.

2. During the afterCompletion phase of commit processing, data that is
optimistically cached is copied to the global cache, provided the refreshInterval
is not zero and the global cache does not already contain a more recent copy of
the data.

34 Problem Determination Guide

3. If the global cache becomes full, any data contained in the global cache beyond
the refreshInterval is purged and then other data is purged as needed to keep
the size of the Global Cache less than the maximum value specified in the
System Management Profile object.

Examples of Cache Service Trace Records
A formatted cache trace file contains entries similar to the following examples.

Example 1: Cache Service Trace
The following trace record shows an example of a retrieve request made to the
cache service. The mapExpr and keyStr refer to metadata in the Application system
management object that indicates the table and primary key of the database record.
PrimaryMessage: The function
ICache_RDBDao_Impl::retrieve():987 reported trace data.
ExtendedMessage: mapExpr = "rolePODAO_Table(rolePO_Alias)"
keyStr = "64000000"

Example 2: Cache Service Trace
The following trace record is an example of a request to retrieve the value of an
attribute of a cache entry. The attribute is number 2. The datatype of the attribute is
long and the value is 3.
ICache_RDBDao_Impl::getValueById(ICache::AttrId,ICache::AttrValue&):482
reported trace message.
ExtendedMessage: value of attrNum:2 = "(long, 3)"

Example 3: Cache Service Trace
The following trace records show data records being found in the global cache and
copied to the transaction cache.
PrimaryMessage: The function
GlobalCacheSpace::address(vtable*,RDBKey*,int):702 reported trace message.

ExtendedMessage: GlobalCache Address: requested entry = "vtbl->id = 2, key =
05000000"

PrimaryMessage: The function GlobalCacheSpace::address(vtable*,RDBKey*,int):795
reported trace message.

ExtendedMessage: GlobalCache Address: entry found = "num_entries = 1, ri = 60,
vtbl->id = 2, key = 05000000, current ts = 1998-09-25-12.36.26.000000, entry
ts + ri = 1998-09-25-12.37.11.000000"

PrimaryMessage: The function CacheEntry::dump() const:475 reported trace message.
ExtendedMessage: CacheEntry Flags = "nelem = 6, maxElems = 6, isUpdateDefer = 1,
isLockOptimistic = 1, isNewEntry = 0, isDirty = 0, isDelete = 0, isDBComm = 1,
isGCMove =0, isWrite = 37411192, ts = 1998-09-25-12.36.11.000000,
fkAssocsSet = 0, fkUpdated =0"

PrimaryMessage: The function CacheEntry::dump() const:494 reported trace message.
ExtendedMessage: CacheEntry Attributes = "attr[0]: name = ID type = integer
old_value = 5 old_len = 4
attr[1]: name = A type = integer old_value = 6 old_len = 4
attr[2]: name = B type = integer old_value = 6 old_len = 4
attr[3]: name = C type = integer old_value = NULL old_len = -1
attr[4]: name = DEPT type = integer old_value = 2 old_len = 4
attr[5]: name = DTYPE type = string old_value = PERSON old_len = 6

Example 4: Cache Service Trace
The following trace records show an example of the cache service being called at
transaction termination. For commit, there is a beforeCompletion and an
afterCompletion call.
PrimaryMessage: The function
ICacheMgr_beforeCompletion(const OMGtid_ptr):121 reported a message.

PrimaryMessage: The function ICacheMgr_afterCompletion(const OMGtid_ptr,const
CosTransactions::Status):137 reported a message.

Chapter 9. Cache Service Trace 35

Example 5: Cache Service Trace
The following trace records show an SQL statement being executed against the
database, the input and output data variables, and the sqlcode.
PrimaryMessage: The function
db2emb_access::sql_debug():1581 reported trace message.

ExtendedMessage: exec = " prepare stmt :: select q0.ID, q0.A, q0.B, q0.C, q0.DEPT,
q0.DTYPE from org q0 where q0.ID = ?, cursor: 1"

PrimaryMessage: The function db2emb_access::sql_exec(RDBaccess::eExecSql):487
reported trace message.

ExtendedMessage: sqlcode = 0
PrimaryMessage: The function db2emb_access::sql_debug():1581 reported trace message.
ExtendedMessage: exec = " sql open cursor: 1"
PrimaryMessage: The function db2emb_access::dump_sqlda(sqlda*):1423 reported trace
message.

ExtendedMessage: sqldaparm = "
sqlvar[0](4,0) ID = 4, 05
"

PrimaryMessage: The function db2emb_access::sql_exec(RDBaccess::eExecSql):487
reported trace message.

ExtendedMessage: sqlcode = 0
PrimaryMessage: The function db2emb_access::sql_debug():1581 reported trace message.
ExtendedMessage: exec = " sql fetch called, cursor: 1"
PrimaryMessage: The function db2emb_access::dump_sqlda(sqlda*):1419 reported trace
message.

ExtendedMessage: dbsqlda = "
sqlvar[0](4,0) ID = 4, 05
sqlvar[1](4,0) A = 4, 011
sqlvar[2](4,0) B = 4, 06
sqlvar[3](4,-1) C = 4, -1 NULL
sqlvar[4](4,0) DEPT = 4, 02
sqlvar[5](20,0) DTYPE = 20, 0PERSON
"

PrimaryMessage: The function db2emb_access::sql_exec(RDBaccess::eExecSql):487
reported trace message.

ExtendedMessage: sqlcode = 0
PrimaryMessage: The function db2emb_access::sql_debug():1581 reported trace
message.

ExtendedMessage: exec = " sql close cursor: 1"
PrimaryMessage: The function db2emb_access::sql_exec(RDBaccess::eExecSql):487
reported trace message.

ExtendedMessage: sqlcode = 0

Example 6: Cache Service Trace
The following series of trace records show an update to the database being
performed. lockmode=1 indicates pessimistic cache option (lockmode=2 indicates
optimistic). The contents of the SQL variables are dumped. Column A has value 12
and column ID has value 5. The update statement is prepared and executed, and
the sqlcode is zero.
PrimaryMessage: The function
db2emb_access::db2emb_access
(vtable*,RDBaccess::_SQL_operator_type,aPolicy*,RDBKey*,FKRel*):296
reported trace message.

ExtendedMessage: lockmode = 1
accessmode = 2
sql_operation = 3
dbname = "fksample"

PrimaryMessage: The function db2emb_access::dump_sqlda(sqlda*):1419 reported trace
message.

ExtendedMessage: dbsqlda = "
sqlvar[0](4,0) A = 4, 012
sqlvar[1](4,0) ID = 4, 05
"

PrimaryMessage: The function db2emb_access::sql_debug():1581 reported trace message.
ExtendedMessage: exec = " prepare stmt :: update org q0 set A = ? where q0.ID = ?,

36 Problem Determination Guide

cursor: 65"
PrimaryMessage: The function db2emb_access::sql_exec(RDBaccess::eExecSql):487
reported trace message.

ExtendedMessage: sqlcode = 0
PrimaryMessage: The function db2emb_access::sql_debug():1581 reported trace message.
ExtendedMessage: exec = " sql execute called"
PrimaryMessage: The function db2emb_access::sql_exec(RDBaccess::eExecSql):487
reported trace message.

ExtendedMessage: sqlcode = 0

Example Seven: Cache Service Trace
These records show data records being copied into the global cache.
PrimaryMessage: The function
GlobalCacheSpace::replace(vtable*,CacheEntry*,RDBKey*):509 reported trace message.

ExtendedMessage: GlobalCache Replace: entry sizes are equal, hence original entry is
replaced and the new entry = ""

PrimaryMessage: The function CacheEntry::dump() const:475 reported trace message.
ExtendedMessage: CacheEntry Flags = "nelem = 6, maxElems = 6, isUpdateDefer = 1,
isLockOptimistic = 1, isNewEntry = 0, isDirty = 0, isDelete = 0, isDBComm = 1,
isGCMove =0, isWrite = 39843584, ts = 1998-09-25-12.36.11.000000,
fkAssocsSet = 0, fkUpdated =0"

PrimaryMessage: The function CacheEntry::dump() const:494 reported trace message.
ExtendedMessage: CacheEntry Attributes = "attr[0]: name = ID type = integer
old_value = 5 old_len = 4
attr[1]: name = A type = integer old_value = 7 old_len = 4
attr[2]: name = B type = integer old_value = 6 old_len = 4
attr[3]: name = C type = integer old_value = NULL old_len = -1
attr[4]: name = DEPT type = integer old_value = 2 old_len = 4
attr[5]: name = DTYPE type = string old_value = PERSON old_len = 6

Data Cache Considerations (System Administration Guide)

“Chapter 8. Query Service Trace” on page 27
“Troubleshooting Cache Related Problems” on page 74
“Troubleshooting Unexpected Application Error or Bad Data Problems” on page 72

Configure DB2 to use the CBConnector Data Cache (System Administration Guide)
Configure a Cache for SQL data (System Administration Guide)

Chapter 9. Cache Service Trace 37

38 Problem Determination Guide

Chapter 10. ORB Request Trace

ORB request trace can be enabled on the server to display the target object
type/class and the function name. ORB request tracing is a fast way to let you view
function call flow and understand how objects work with each other. After doing an
ORB request trace, if you still require more information to help you diagnose the
problem, you can run the XYZ trace that is described in “Chapter 12. Tracing
Function Calls in the Generated Code: XYZ Trace” on page 51. The XYZ trace
shows the Managed Object Framework (MOFW) function calls. If more details, such
as input and output parameters, are required then ORB communication tracing may
be more appropriate.

This topic describes how to turn on the ORB request trace and interpret the trace
output:

v Setting the ORB Request Trace (page 39)

v Sample: Formatted ORB Request Trace Output (page 39)

Setting the ORB Request Trace
To set the ORB request trace, perform these steps:

1. Display the System Manager user interface, and set the user level to Expert .

2. Expand your Host Images .

3. Expand the Server Images folder.

4. Left click on your server image to see if it is running. The status bar at the
bottom of the System Manager user interface application displays the state (and
health) of the selected server. Note : You do not have to stop the server to set
this trace.

5. Right click on your server image and select Edit . This displays the Object Editor
for the Server Image.

6. In the Object Editor window, click the Component Trace tab.

7. Set the ORB request trace level attribute value to Advanced . Click Apply and
then OK to enable the trace.

This enables trace information to be collected over a period of time into files in the
subdirectory service/server/ServerName. Refer to “showlog Utility” on page 68 for
more information on the formatting of trace logs.

Sample: Formatted ORB Request Trace Output
The formatted output file looks like the formatted activity log. Function calls are
recorded in the activity log. The function name can be seen in the functionName or
PrimaryMessage fields. Here is an example of the contents of a formatted output
file:
–––––––––––––––––––––––––––––––-
ComponentId: 393319
ProcessId: 567
ThreadId: 534
FunctionName: CORBA::BOA::local_object_to_object_key(CORBA::Object_ORBProxy_ptr)
ProbeId: 2990
SourceId: 1.66 src/orb/src/somd/boa.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: PersonServer
clientHostName:

© Copyright IBM Corp. 1997, 1998 39

clientUserId:
TimeStamp: 10/6/98 9:54:14.343609431
UnitOfWork:
Severity: 3
Category: 3
FormatWarning: 0
PrimaryMessage: The function
CORBA::BOA::local_object_to_object_key(CORBA::Object_ORBProxy_ptr):2990
reported data.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393319
ProcessId: 567
ThreadId: 534
FunctionName: CORBA::Request::send_deferred()
ProbeId: 1405
SourceId: 1.57.1.2 src/orb/src/request/request.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: PersonServer
clientHostName:
clientUserId:
TimeStamp: 10/6/98 9:54:14.371803789
UnitOfWork:
Severity: 3
Category: 3
FormatWarning: 0
PrimaryMessage: The function CORBA::Request::send_deferred():1405 reported data.
ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393319
ProcessId: 567
ThreadId: 534
FunctionName: CORBA::Request::invoke()
ProbeId: 1338
SourceId: 1.57.1.2 src/orb/src/request/request.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: PersonServer
clientHostName:
clientUserId:
TimeStamp: 10/6/98 9:54:16.488164076
UnitOfWork:
Severity: 3
Category: 3
FormatWarning: 0
PrimaryMessage: The function CORBA::Request::invoke():1338 reported data.
ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
.
.
.

“Troubleshooting Unexpected Application Error or Bad Data Problems” on page 72
“Chapter 2. Activity Log for Problem Determination” on page 3
“Chapter 11. ORB Communication Trace” on page 41

40 Problem Determination Guide

Chapter 11. ORB Communication Trace

ORB communication trace provides ORB packet dumps. If you want to do low level
debugging and look at ORB packets, set the ORB communication trace to capture
this information.

This topic describes how to turn on the ORB communication trace and interpret the
trace output (GIOP packets):

v Setting the ORB Communication Trace (page 41)

v Sample ORB Communication Trace (page 41)

v General Inter-ORB Protocol (GIOP) Packets (page 43)

Setting the ORB Communication Trace
To set the ORB communication trace, perform these steps:

1. Display the System Manager user interface, and set the user level to Expert .

2. Expand your Host Images .

3. Expand the Server Images folder

4. Left click on your server image to see if it is running. The status bar at the
bottom of the System Manager user interface application displays the state (and
health) of the selected server. Note : You do not have to stop the server set this
trace.

5. Right click on your server image and select Edit . This displays the Object
Editor for the Server Image.

6. In the Object Editor window, click the Component Trace tab.

7. Set the ORB communication trace level attribute value to Advanced . Click
Apply and then OK to enable the trace.

This enables trace information to be collected over a period of time into files in the
subdirectory service/server/ServerName. Refer to “showlog Utility” on page 68 for
more information on the formatting of trace logs.

Sample ORB Communication Trace
The formatted output file looks like the formatted activity log. The ORB packet
dumps are shown as RawData , as follows:
.
.
.
–––––––––––––––––––––––––––––––-
ComponentId: 393317
ProcessId: 647
ThreadId: 157
FunctionName: IPTransport::send_message(Encapsulation*)
ProbeId: 1135
SourceId: 1.26 src/orb/src/trans/transip.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: PersonServer
clientHostName:
clientUserId:
TimeStamp: 10/6/98 10:03:57.132667914
UnitOfWork:
Severity: 3
Category: 3

© Copyright IBM Corp. 1997, 1998 41

FormatWarning: 0
PrimaryMessage:
The function IPTransport::send_message(Encapsulation*):1135 reported trace message.
ExtendedMessage:
RawDataLen: 57
RawData:
0000 47 49 4F 50 01 01 01 03 - 2D 00 00 00 02 00 00 00 GIOP....-.......
0010 25 00 00 00 2F 2F 4C 49 - 42 4D 44 3A 2F 2F 4C 49 %...//LIBMD://LI
0020 42 4D 44 3A 2F 2F 4C 49 - 42 4D 44 3A 2F 2F 4C 49 BMD://LIBMD://LI
0030 42 4D 44 3A 46 41 4B 45 - 00 BMD:FAKE.
–––––––––––––––––––––––––––––––-
ComponentId: 393317
ProcessId: 647
ThreadId: 524
FunctionName: IPTransportHandler::handle_event(void*)
ProbeId: 775
SourceId: 1.26 src/orb/src/trans/transip.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: PersonServer
clientHostName:
clientUserId:
TimeStamp: 10/6/98 10:03:57.134744714
UnitOfWork:
Severity: 3
Category: 3
FormatWarning: 0
PrimaryMessage:
The function IPTransportHandler::handle_event(void*):775 reported trace data.
ExtendedMessage: tstring = "
Message arrived Src:9.53.167.28/900 Dst:babe.austin.ibm.com/3734"
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393317
ProcessId: 647
ThreadId: 524
FunctionName: IPTransportHandler::handle_event(void*)
ProbeId: 872
SourceId: 1.26 src/orb/src/trans/transip.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: PersonServer
clientHostName:
clientUserId:
TimeStamp: 10/6/98 10:03:57.135980904
UnitOfWork:
Severity: 3
Category: 3
FormatWarning: 0
PrimaryMessage:
The function IPTransportHandler::handle_event(void*):872 reported trace message.
ExtendedMessage:
RawDataLen: 20
RawData:
0000 47 49 4F 50 01 01 01 04 - 08 00 00 00 02 00 00 00 GIOP............
0010 01 00 00 00
–––––––––––––––––––––––––––––––-
.
.
.

“Chapter 12. Tracing Function Calls in the Generated Code: XYZ Trace” on page 51

42 Problem Determination Guide

“Troubleshooting Unexpected Application Error or Bad Data Problems” on page 72
“Chapter 2. Activity Log for Problem Determination” on page 3

General Inter-ORB Protocol (GIOP) Packets

To interpret the dump in the ORB communications trace, you have to understand
the format of the data in the ORB GIOP packets. This section describes the format
of the GIOP packet:

v GIOP Packet Header (00-11) (page 43)

v Op Code (07) (page 43)

– Op Code 0 - Request (page 43)

– Op Code 1 - Response (page 44)

– Op Code 3 - Locate (page 45)

– Op Code 4 - Locate Response (page 46)

v Example 1: ORB Communications Trace - Op Code 3 (page 46)

v Example 2: ORB Communications Trace - Op Code 0 (page 47)

v Example 3: ORB Communications Trace - Op Code 1 (page 48)

GIOP Packet Header (00-11)
Each packet begins with a twelve-byte header (bytes 00 through 11). The header
identifies the type of General Inter-ORB Protocol (GIOP) packet (which is the Op
Code in byte 07) that is being sent and the length of the packet. The most
important piece of information in the header is the Op Code which tells you how to
interpret the rest of the information in the packet. Here is the layout of the header or
first twelve bytes of the GIOP packet:

Op Code (07)
There are four possible Op codes: 0, 1, 3, and 4. Each Op code has a different
layout of information in the rest of the packet.

Op Code 0 - Request
When the Op Code is 0 (Request), this is typically a method invocation. Starting
with the thirteenth byte, interpret the packet as follows:

1. Sequence Service Contexts (for RAS, Security, Transaction)

v Service Tag Sequence (long, 4 bytes)
Specifies the number of Service Tags.

Chapter 11. ORB Communication Trace 43

– Service Tag (long, 4 bytes)

– Service Data:

- Length (long, 4 bytes)

- Data (octets specified by Length)

2. Request-ID (long, 4 bytes)

3. Response Expected (Boolean, sent as octet)

v 0 No response expected (one way method)

v 1 Response expected

4. Object Key

v Object Key Length (long, 4 bytes). Start at the next 4-byte boundary.

v Object Key Data (octets specified by Object Key Length)

5. Method Name (string)

v String Length (long, 4 bytes)

v String Data (specified by String Length)
The NULL terminator is included.

6. Principal

v Principal Length (long, 4 bytes)

v Principal Data (octets specified by Principal Length)

7. Method parameters (See .idl file.)
The method parameters follow the principal data and ends with the last byte in
the packet.

See ORB communication trace example 2 (page 47) for more information on how to
interpret an Op code 0 GIOP packet.

Op Code 1 - Response
When the Op Code is 1 (Response), this is typically a response to a method
invocation. Starting with the thirteenth byte, interpret the packet as follows:

1. Sequence Service Contexts (for RAS, Security, Transaction)

v Service Sequence (long, 4 bytes)
The number of Service Tags.

– Service Tag (long, 4 bytes)

– Service Data:

- Length (long, 4 bytes)

- Data (octets specified by Length)

2. Request ID (long, 4 bytes)
This matches the Request ID of an Op Code 0 request.

3. Status (long, 4 bytes)

v 0 No Exception
RETURNVALUE/INOUT/OUT Parameters follows Status.

v 1 User Exception
Exception follows Status.

v 2 System Exception
Exception follows Status.

v 3 Forward
IOR follows Status.

4. Depending on the Status, one of the following items appears after the Status
information:

44 Problem Determination Guide

v RETURNVALUE/INOUT/OUT Parameters (See .idl file.)
The return value can also be an object which is returned as an IOR.

v Exception

– String Length (long, 4 bytes)

– String Data (specified by String Length)
This is the exception. The NULL terminator is included.

v Interoperable Object Reference (IOR)
Depending on the IIOP version, the IOR can have slightly different formats.
Refer to the CORBA: Architecture and Specification for more information.

– Type ID (string)

- String Length (long, 4 bytes)

- String Data (specified by String Length)
The NULL terminator is included.

– Profile Sequence Length (long, 4 bytes)
Specifies the number of Profile Tags.

- Profile Tag
Each Profile Tag consists of the following information:

v Tag (4 bytes)

– 0 TCP/IP

v Profile Length (long, 4 bytes)

v Profile Data (specified by Profile Length)

– Version (2 bytes)

– TCP/IP Address String

- String Length (long, 4 bytes)

- String Data (specified by String Length)

– Port (short, 2 bytes)
It is the TCP/IP listening port.

– Object Key

- Object Key Length (long, 4 bytes)

- Object Key (octets specified by Object Key Length)

– Component Tag Sequence
Specifies the number of Component Tags.

- Component
Each Component Tag consists of the following information:

v Tag (4 bytes)

v Component Data Length (long, 4 bytes)

v Component Data (specified by Component Length)

See ORB Communications Trace example 3 (page 48) for more information on how
to interpret an Op code 1 GIOP packet.

Op Code 3 - Locate
When the Op Code is 3 (Locate), this is a request to locate an object. Starting with
the thirteenth byte, interpret the packet as follows:

1. Request ID (long, 4 bytes)
This is the Packet Serial Number (correlation ID).

2. Object Key

v Object Key Length (long, 4 bytes). Start at the next 4-byte boundary.

Chapter 11. ORB Communication Trace 45

v Object Key Data (octets specified by Object Key Length)

See ORB Communications Trace example 1 (page 46) for more information on how
to interpret an Op code 3 GIOP packet.

Op Code 4 - Locate Response
When the Op Code is 4 (Locate Response), this is a response to a Locate Object
request. Starting with the thirteenth byte, interpret the packet as follows:

1. Request ID (long, 4 bytes)
This matches the Request ID of the Locate request.

2. Response Code (long, 4 bytes)

v 0 Unknown object

v 1 Object Here

v 2 Object Forward
New IOR follows.

3. Interoperable Object Reference (IOR)
Depending on the IIOP version, the IOR can have slightly different formats.
Refer to the CORBA: Architecture and Specification for more information.

v Type ID (string)

– String Length (long, 4 bytes)

– String Data (specified by String Length)
The NULL terminator is included.

v Profile Sequence Length (long, 4 bytes)
Specifies the number of Profile Tags.

– Profile Tag
Each Profile Tag consists of the following info.

- Tag (4 bytes)

v 0 TCP/IP

- Profile Length (long, 4 bytes)

- Profile Data (specified by Profile Length)

v Version (2 bytes)

v TCP/IP Address String

– String Length (long, 4 bytes)

– String Data (specified by String Length)

v Port (short, 2 bytes)
It is the TCP/IP listening port.

v Object Key

– Object Key Length (long, 4 bytes)

– Object Key (octets specified by Object Key Length)

v Component Tag Sequence
Specifies the number of Component Tags.

– Component
Each Component Tag consists of the following info.

- Tag (4 bytes)

- Component Data Length (long, 4 bytes)

- Component Data (specified by Component Length)

Example 1: ORB Communications Trace (Op Code 3)

46 Problem Determination Guide

0000 47 49 4f 50 01 01 01 03 b0 00 00 00 04 00 00 00 GIOP....ª.......
0010 a8 00 00 00 04 32 33 34 38 36 41 41 31 2d 44 32 ┐....23486AA1-D2
0020 33 32 2d 31 35 45 36 2d 46 31 45 33 2d 30 32 31 32-15E6-F1E3-021
0030 32 30 39 33 35 41 36 33 41 00 02 00 00 52 03 00 20935A63A....R..
0040 00 35 00 0f 00 69 42 4f 49 4d 43 6f 6e 74 61 69 .5...iBOIMContai
0050 6e 65 72 00 03 00 10 00 69 43 44 53 43 61 63 68 ner.....iCDSCach
0060 65 64 48 6f 6d 65 73 00 0e 00 53 6f 6d 43 6f 6e edHomes...SomCon
0070 74 61 69 6e 65 72 49 00 42 00 14 00 69 42 4f 49 tainerI.B...iBOI
0080 4d 48 6f 6d 65 4f 66 52 65 67 48 6f 6d 65 73 00 MHomeOfRegHomes.
0090 03 00 1d 00 43 6c 61 69 6d 41 70 70 5f 43 6c 61ClaimApp_Cla
00a0 69 6d 4d 4f 5f 43 6c 61 69 6d 44 4f 49 6d 70 6c imMO_ClaimDOImpl
00b0 00 09 00 53 6f 6d 48 6f 6d 65 49 00 ...SomHomeI.

Interpret this ORB communication trace example as follows:

1. Find out the Op code.
The header, 47 49 4f 50 01 01 01 03 b0 00 00 00, shows "03" Locate for Op
code. Use the Op code 3 pattern to interpret the subsequent information in the
dump.

2. Packet serial number is 04 00 00 00

3. Object Key Length is a8 00 00 00 (hex a8 is 168 in decimal).

4. Object Key is the next 168 bytes.

Example 2: ORB Communications Trace (Op Code 0)
0000 47 49 4f 50 01 01 01 00 a3 01 00 00 01 00 00 00 GIOP....·.......
0010 02 4d 42 49 28 00 00 00 01 00 00 00 1b 00 00 00 .MBI(...........
0020 39 31 34 36 3a 61 73 64 61 73 64 2e 61 75 73 74 9146:asdasd.aust
0030 69 6e 2e 69 62 6d 2e 63 6f 6d 00 00 00 00 00 00 in.ibm.com......
0040 05 00 00 00 01 00 00 00 b7 00 00 00 04 33 42 37+....3B7
0050 36 32 41 39 34 2d 44 32 32 42 2d 31 35 45 36 2d 62A94-D22B-15E6-
0060 46 31 45 33 2d 30 32 31 32 30 39 33 35 41 36 33 F1E3-02120935A63
0070 41 00 02 00 00 52 03 00 00 33 00 0f 00 69 42 4f A....R...3...iBO
0080 49 4d 43 6f 6e 74 61 69 6e 65 72 00 03 00 0e 00 IMContainer.....
0090 69 54 72 61 6e 73 53 79 73 4f 62 6a 73 00 0e 00 iTransSysObjs...
00a0 53 6f 6d 43 6f 6e 74 61 69 6e 65 72 49 00 53 00 SomContainerI.S.
00b0 16 00 69 43 44 53 4e 61 6d 69 6e 67 43 6f 6e 74 ..iCDSNamingCont
00c0 65 78 74 48 6f 6d 65 00 39 00 2f 2e 3a 2f 43 42 extHome.9./.:/CB
00d0 43 2d 6c 6f 63 61 6c 2d 72 6f 6f 74 73 2f 31 41 C-local-roots/1A
00e0 32 38 32 34 33 32 2d 44 33 34 39 2d 31 35 45 36 282432-D349-15E6
00f0 2d 45 37 45 35 2d 30 32 30 38 30 39 33 35 41 36 -E7E5-02080935A6
0100 33 41 00 00 14 00 00 00 72 65 73 6f 6c 76 65 5f 3A......resolve_
0110 77 69 74 68 5f 73 74 72 69 6e 67 00 22 00 00 00 with_string."...
0120 01 49 42 4d 44 3a 00 00 16 00 00 00 61 73 64 61 .IBMD:......asda
0130 73 64 2e 61 75 73 74 69 6e 2e 69 62 6d 2e 63 6f sd.austin.ibm.co
0140 6d 00 00 00 67 00 00 00 68 6f 73 74 2f 72 65 73 m...g...host/res
0150 6f 75 72 63 65 73 2f 66 61 63 74 6f 72 69 65 73 ources/factories
0160 2f 73 6f 6d 6c 63 52 65 70 6f 73 69 74 6f 72 79 /somlcRepository
0170 2f 66 61 63 74 6f 72 79 42 72 61 6e 63 68 2f 43 /factoryBranch/C
0180 6c 61 69 6d 2f 4d 79 53 65 72 76 65 72 2a 63 6f laim/MyServer*co
0190 6e 74 61 69 6e 65 72 4f 66 43 6c 61 69 6d 73 2a ntainerOfClaims*
01a0 43 6c 61 69 6d 4d 4f 46 61 63 74 6f 72 79 00 ClaimMOFactory.

Interpret this ORB communication trace example as follows:

1. Find out the Op code.
The header, 47 49 4f 50 01 01 01 00 a3 01 00 00, shows "00" Request for Op
code. Use the Op code 0 pattern to interpret the subsequent information in the
dump.

2. Sequence Service Contexts:

a. Sequence (long) is 01 00 00 00 so there is one set of Service Tags.

b. Service Tag

v Tag (long) is 02 4d 42 49 28.

Chapter 11. ORB Communication Trace 47

v Service Data: Length (long) is 28 00 00 00 (hex 28 is 40 in decimal), and
data is the next 40 bytes.

3. Request ID (long) is 05 00 00 00.

4. Request Expected is 01 which is "Response expected".

5. Start at the next 4-byte boundary for "long". Object key length is long (4 bytes).
The length is b7 00 00 00 (hex b7 is 183 in decimal). The object key data is in
the next 183 bytes.

6. Method Name:

a. After lining up to next four bytes, method name’s length is 14 00 00 00 (hex
14 is 20 in decimal).

b. The method name is the next 20 bytes which is 72 65 69 6e 67 00
(resolve_with_string.).

7. Principal:

a. Principal length (long) is 22 00 00 00 (hex 22 is 34 in decimal).

b. Principal data is the next 34 bytes.

8. After lining up to next four bytes, method parameters start with 64 00 00 00 ...
and continues to the end of the dump
(g......./Claim/MyServer*containerOfClaims*ClaimMOFactory.).

Example 3: ORB Communications Trace (Op Code 1)
0000 47 49 4F 50 01 01 01 01 - 78 01 00 00 00 00 00 00 GIOP....x.......
0010 EB 00 00 00 00 00 00 00 - 35 00 00 00 49 44 4C 3A5...IDL:
0020 49 42 4F 49 4D 45 78 74 - 4D 61 6E 61 67 65 64 4F IBOIMExtManagedO
0030 62 6A 65 63 74 2F 49 51 - 75 65 72 79 61 62 6C 65 bject/IQueryable
0040 49 74 65 72 61 62 6C 65 - 48 6F 6D 65 3A 31 2E 30 IterableHome:1.0
0050 00 00 00 00 01 00 00 00 - 00 00 00 00 24 01 00 00$...
0060 01 01 01 00 0C 00 00 00 - 39 2E 35 33 2E 31 36 379.53.167
0070 2E 32 38 00 95 0E 00 00 - C9 00 00 00 04 32 43 46 .28..........2CF
0080 31 43 42 42 37 2D 43 45 - 44 41 2D 31 36 31 38 2D 1CBB7-CEDA-1618-
0090 45 41 45 32 2D 30 30 35 - 44 30 39 33 35 41 37 31 EAE2-005D0935A71
00A0 43 00 02 00 00 52 03 00 - 00 35 00 0F 00 69 42 4F C....R...5...iBO
00B0 49 4D 43 6F 6E 74 61 69 - 6E 65 72 00 03 00 10 00 IMContainer.....
00C0 69 43 44 53 43 61 63 68 - 65 64 48 6F 6D 65 73 00 iCDSCachedHomes.
00D0 0E 00 53 6F 6D 43 6F 6E - 74 61 69 6E 65 72 49 00 ..SomContainerI.
00E0 63 00 16 00 69 42 4F 49 - 4D 48 6F 6D 65 4F 66 52 c...iBOIMHomeOfR
00F0 65 67 51 49 48 6F 6D 65 - 73 00 03 00 3C 00 50 65 egQIHomes...<.Pe
0100 72 73 6F 6E 41 70 70 5F - 50 65 72 73 6F 6E 4D 6F rsonApp_PersonMo
0110 64 4D 4F 5F 50 65 72 73 - 6F 6E 4D 4F 5F 50 65 72 dMO_PersonMO_Per
0120 73 6F 6E 4D 6F 64 44 4F - 49 6D 70 6C 5F 50 65 72 sonModDOImpl_Per
0130 73 6F 6E 44 4F 49 6D 70 - 6C 00 09 00 53 6F 6D 48 sonDOImpl...SomH
0140 6F 6D 65 49 00 00 00 00 - 02 00 00 00 09 03 00 00 omeI............
0150 1D 00 00 00 01 0C 00 00 - 00 50 65 72 73 6F 6E 53PersonS
0160 65 72 76 65 72 47 53 53 - 5F 44 43 45 00 43 00 6D erverGSS_DCE.C.m
0170 69 00 00 00 14 00 00 00 - 08 00 00 00 01 00 7E 00 i.............x.
0180 7E 00 BC 0B x...

The above example is a response to a request to find a factory of persons. Interpret
this ORB communication trace example as follows:

1. Find out the Op code.
The header, 47 49 4F 50 01 01 01 01 78 01 00 00, shows "01" Request for Op
code. Use the Op code 1 pattern to interpret the subsequent information in the
dump. Note the Little Endian setting (01) in the seventh byte.

2. Sequence Service Contexts:

a. Length of Sequence (4 bytes) is 00 00 00 00. There are no Sequence
Service Tags.

3. Request-ID is EB 00 00 00.

48 Problem Determination Guide

4. Status is 00 00 00 00 (No Exception).

When there is no exception, the return value of the method can be an object, as
shown in this example. The object is returned as an IOR, and the sender of the
request converts this IOR into an object.

5. Interoperable Object Reference (IOR)

v Type ID

– String Length (4 bytes) is 35 (which is 53 in decimal).

– String Data is 49 44 4C 3A...3A 31 3E 30 00 (IDL:..:1.0.).

v Profile Tag Sequence
Start at the next 4-byte boundary, the sequence count is 01 00 00 00 so
there is only one set of Profile Tags.

– Profile Tag contains the following:

- Tag (4 bytes) is 00 00 00 00 which is a TCP/IP profile.

- Profile Length (4 bytes) is 24 01 00 00 (Little Endian).
There are 124 (or 292 in decimal) bytes of profile data which takes you
to the end of the dump.

- Profile Data

v Version (2 bytes) is 01 01.

v TCP/IP Address String

– String Length (4 bytes) is 0C 00 00 00 which is 12 bytes.

– String Data is 39 2E...2E 32 38 00 (9.53.167.28.).

v TCP/IP listening port (2 bytes) is 95 0E.

v Object Key

– Start at the next 4-byte boundary, Object Key Length (4 bytes) is
C9 00 00 00 (or 201 in decimal).

– Object Key is 04 32 43 46... 6F 6D 65 49 00.

v Component Tags
This is a 1.1 style IOR which contains a Sequence of tagged
components after the object key.

– Component Tag Sequence
Start at the next 4-byte boundary, the Sequence count is 02 00 00
00 so there are two sets of Component Tags.

- First Component

v Tag (4 bytes) is 09 03 00 00.

v Component Tag Length (4 bytes) is 1D 00 00 00.
There are 1D (or 29 in decimal) bytes of Component data.

v Component data is 01 0C 00 00 ...00 43 00 6D 69.

- Second Component

v Align to the next 4 bytes, Tag (4 bytes) is 14 00 00 00.

v Component Tag Length (4 bytes) is 08 00 00 00.
There are 8 bytes of Component data.

v Component Data is 01 00 7E 00 7E 00 BC 0B (end of the
packet).

“Chapter 12. Tracing Function Calls in the Generated Code: XYZ Trace” on page 51
“Troubleshooting Unexpected Application Error or Bad Data Problems” on page 72
“Chapter 2. Activity Log for Problem Determination” on page 3

Chapter 11. ORB Communication Trace 49

50 Problem Determination Guide

Chapter 12. Tracing Function Calls in the Generated Code:
XYZ Trace

When debugging your applications, you may want to trace the sequence of function
or method calls when the application is running. One way to do this is to put print
statements (cout for C++ or System.out.println for Java) in your user code.

This topic describes how to trace Managed Object Framework (MOFW) function
calls:

v Tracing MOFW Function Calls (page 51)

v Sample XYZ Trace Output in the Console Log (page 52)

Tracing MOFW Function Calls
If you want to trace the set of framework function calls in the generated code, you
have to put cout statements in Object Builder’s generated .cpp files. The following
steps describe how you can create a macro, XYZ, to perform function call tracing,
and direct the console log output to a file to view the results.

1. After you have the generated code from the Object Builder, add the following
statements to all *_I.cpp and *PO.cpp files.

a. #define XYZ
Define a macro, XYZ, for the cout statement. For example, in
PolicyBO_I.cpp file, add the #define XYZ line as follows:
// Generated from file PolicyBO.idl
// on Friday, July 24, 1998 9:30:36 o'clock AM CDT 01290636449
// by Object Builder
//Version identifier DCE:99FE00AB-DEC6-11d1-B431-08005ACE0236:1
#ifdef SOMCBNOLOCALINCLUDES
#include <PolicyBO.ih>
#include <PolicyKey.hh>
#else
#include "PolicyBO.ih"
#include "PolicyKey.hh"
#endif
// Generated from interface PolicyBO
// Version identifier DCE:99FE00AC-DEC6-11d1-B431-08005ACE0236:1

#define XYZ cout<<__FILE__<<":"<<__LINE__<<":"<<__FUNCTION__<<endl

PolicyBO_Impl::PolicyBO_Impl()
.
.
.

b. XYZ macro calls
For each function in each *_I.cpp and *PO.cpp file, add the XYZ macro call.
For example, in PolicyBO_I.cpp file add the macro calls as follows:
.
.
.
PolicyBO_Impl::PolicyBO_Impl()
{XYZ; }
::CORBA::Float PolicyBO_Impl::amount()
{XYZ;

//Version identifier DCE:99FE008D-DEC6-11d1-B431-08005ACE0236:1
// Insert Method modifications here
return iDataObject->amount();
// End Method modifications here

}
::CORBA::Void PolicyBO_Impl::amount(::CORBA::Float amount)
{XYZ;

© Copyright IBM Corp. 1997, 1998 51

//Version identifier DCE:99FE008D-DEC6-11d1-B431-08005ACE0236:2
// Insert Method modifications here
iDataObject->amount(amount);
// End Method modifications here

}
::CORBA::Long PolicyBO_Impl::policyNo()
{XYZ;

//Version identifier DCE:99FE008E-DEC6-11d1-B431-08005ACE0236:1
// Insert Method modifications here
return iDataObject->policyNo();
// End Method modifications here

}
.
.
.
::CORBA::Void PolicyBO_Impl::internalize_from_stream(::CosStream::StreamIO_...
{XYZ;

//Version identifier DCE:C0AEDB6E-E10A-11d1-B432-08005ACE0236:1
// Insert Method modifications here
iDataObject->amount(sourceStreamIO->read_float());
iDataObject->policyNo(sourceStreamIO->read_long());
iDataObject->premium(sourceStreamIO->read_float());
// End Method modifications here

}
::ByteString* PolicyBO_Impl::getPrimaryKeyString()
{XYZ;

//Version identifier DCE:C0AEDB6F-E10A-11d1-B432-08005ACE0236:1
// Insert Method modifications here
PolicyKey_var policyKey = PolicyKey::_create();
policyKey->policyNo(iDataObject->policyNo());
return policyKey->toString();
// End Method modifications here

}

2. Build your application.

3. Direct the console log to a file for the run time.

a. In the System Manager user interface, under server images, right click on
the server image to be modified.

b. Select Edit .

c. Tab to Log Controls .

d. Select Console Disposition to file.

e. Change the name of the file if you want. It will go to a directory named
%SOMCBASE%\service\server\servername. Even though each server has
its own directory, name the file, for example, servername.console.log, so
that later, when all consoles are gathered into a specific place, consoles
from various servers will be distinguishable.

f. After editing the server image, you must restart the server. Right click on the
server image and select Run immediate .

4. Run the application and look at the function call sequence in the
servername.console.log.

Sample XYZ Trace Output in the Console Log
After implementing the cout tracing with the XYZ macro, you will get a console.log
file that looks like the following:
Server PolicyServer is starting
SOMInit started !!!!!!!!!!!!!!!
Server path = 0HostISomServIPolicyServer
Objects awaiting disposal:
Objects non-smo dead:
Number of elements awaiting disposal or dead non SMOs = 0
SOMInit finished

52 Problem Determination Guide

IVB3639I: Remote debug is not enabled for server PolicyServer.
Server PolicyServer is ready
PolicyHomeMO_I.cpp:38:PolicyHomeMO_create()
PolicyHomeBO_I.cpp:24:PolicyHomeBO_Impl::PolicyHomeBO_Impl()
PolicyHomeMO_I.cpp:45:PolicyHomeMO_Impl::PolicyHomeMO_Impl()
PolicyHomeMO_I.cpp:305:PolicyHomeMO_Impl::_incref()
PolicyHomeMO_I.cpp:31:PolicyHomeMO_Impl::getMixin()
PolicyHomeMO_I.cpp:312:PolicyHomeMO_Impl::_decref()
PolicyHomeMO_I.cpp:31:PolicyHomeMO_Impl::getMixin()
PolicyHomeMO_I.cpp:38:PolicyHomeMO_create()
PolicyHomeBO_I.cpp:24:PolicyHomeBO_Impl::PolicyHomeBO_Impl()
PolicyHomeMO_I.cpp:45:PolicyHomeMO_Impl::PolicyHomeMO_Impl()
PolicyHomeMO_I.cpp:305:PolicyHomeMO_Impl::_incref()
PolicyHomeMO_I.cpp:31:PolicyHomeMO_Impl::getMixin()
PolicyHomeMO_I.cpp:312:PolicyHomeMO_Impl::_decref()
PolicyHomeMO_I.cpp:31:PolicyHomeMO_Impl::getMixin()
PolicyHomeMO_I.cpp:305:PolicyHomeMO_Impl::_incref()
PolicyHomeMO_I.cpp:31:PolicyHomeMO_Impl::getMixin()
PolicyHomeMO_I.cpp:305:PolicyHomeMO_Impl::_incref()
PolicyHomeMO_I.cpp:31:PolicyHomeMO_Impl::getMixin()
.
.
.

“Merge cout Trace and ORB Communication Trace” on page 104
“Troubleshooting Unexpected Application Error or Bad Data Problems” on page 72
“Chapter 11. ORB Communication Trace” on page 41

Chapter 12. Tracing Function Calls in the Generated Code: XYZ Trace 53

54 Problem Determination Guide

Chapter 13. Security Service Trace

The security service trace can be used to display information about the flow of
control for the security service on a client or application server. This topic describes
how to turn on the security service trace and interpret the trace output:

v Setting Security Service Trace (page 55)

v Security Trace Examples (page 57)

Setting Security Service Trace
To trace the security flow of control, you can set the object service security trace
level in any of the following ways.

v To start temporary tracing of a specific application server or client style (page
55), change the security trace level attribute of the Server Image or Client Style
through the System Manager user interface. Tracing will continue at the set level
until either the level is changed or the system management Configuration that
defines the application server or client style is activated again.

v To start more long-term tracing of application servers or client styles (page 56),
change the security trace level attribute of the Server Group, Server
(freestanding), or Client Style in a system management Configuration through the
System Manager user interface. Tracing will continue at the level set until either
the Configuration is changed and activated again or the level is changed on
specific Server Images or Client Style Images.

v To start tracing of all application servers and client styles on a host (page 57),
change the SecurityTraceLevel environment variable on that host. Tracing will
continue at the level set until the level is changed on the environment variable or
through the System Manager user interface (as above).

Notes:

1. If the trace level for an application server or client style is set through both the
SecurityTraceLevel environment variable and the security trace level attribute,
the highest value of the two levels is used by the security service.

2. The output of the trace log entries can be found in the activity.log file which is in
the Cbroker\service directory.

3. For examples of security trace log entries, see Security Trace Examples (page
57).

Setting the Security Service Trace for Temporary Tracing
To set the security trace level for temporary tracing of an individual application
server or client style, use the System Manager user interface to complete the
following steps:

1. Display the System Manager user interface, and set the user-level to Expert .

2. Expand the Host Images folder.

3. Expand the Host Image on which the application server or client style is
running.

4. Set the Security trace level attribute.

v To set the trace level for an application server, complete the following steps:

a. Expand the Server Images folder.

b. From the pop-up menu of the Server Image for the application server,
click Edit . This displays the Object Editor for the Server Image.

© Copyright IBM Corp. 1997, 1998 55

v To set the trace level for a client style, complete the following steps:

a. Expand the Client Style Images folder.

b. From the pop-up menu of the Client Style Image for the client style, click
Edit . This displays the Object Editor for the Client Style.

5. In the Object Editor window, click the Object Services Trace tab.

6. Set the security trace level attribute value to basic or intermediate , to enable
the following trace information to be recorded:

v basic records trace messages for security service set up and configuration
events.

v intermediate records the detailed security service run-time information in
addition to the basic security service trace information. Note that recovery
instructions are not displayed with each intermediate trace message.

7. To apply the trace level and close the Object Editor window, click the OK button.

8. For an application server, the recording of trace information starts immediately,
without having to restart the application server.

For a client style, to start recording of trace information for individual clients you
must restart those clients.

For examples of security trace log entries, see Security Trace Examples (page 57).

Setting Security Trace for Long Term Tracing
To set the security trace level for more long-term tracing of application servers or
client styles, use the System Manager user interface to complete the following
steps:

1. Display the System Manager user interface, and set the user-level to Expert .

2. Expand the Management Zones folder.

3. Expand the Management Zone for the application environment that contains
the application servers or client styles.

4. Expand the Configurations folder.

5. Expand the Configuration that contains the application servers or client styles.

6. Set the security trace level attribute.

To set the trace level for all members of a server group, complete the following
steps:

a. Expand the Server Groups folder.

b. From the pop-up menu of the Server Group, click Edit .

This displays the Object Editor for the Server Group.

To set the trace level for a freestanding application server, complete the
following steps:

a. Expand the Servers (freestanding) folder.

b. From the pop-up menu of the Server (freestanding), click Edit .

This displays the Object Editor for the Server Image.

To set the trace level for a client style, complete the following steps:

a. Expand the Client Styles folder.

b. From the pop-up menu of the Client Style, click Edit .

This displays the Object Editor for the Client Style.

7. In the Object Editor window, click the Object Services Trace tab.

56 Problem Determination Guide

8. Set the security trace level attribute value to basic or intermediate , to enable
the following trace information to be recorded:

v basic records trace messages for security service set up and configuration
events.

v intermediate records the detailed security service run-time information in
addition to the basic security service trace information. Note that recovery
instructions are not displayed with each intermediate trace message.

9. To apply the trace level and close the Object Editor window, click the OK button.

10. To implement all trace level changes within a Configuration, activate the
Configuration again.

To do this, on the pop-up menu of the Configuration, click Activate .

The System Manager displays an Action Console window that you can use to
monitor the progress of the Activate action. The console first displays
messages about the System Manager verifying that the Configuration is valid.
If you have completed the above steps properly, you should see a
Configuration valid message. The console then displays messages for
activating parts of the Configuration. Finally, if you have completed the above
steps properly, you should see a Activation successful message.

11. For an application server, the recording of trace information starts immediately,
without having to restart the application server.

For a client style, to start recording of trace information for individual clients
you must restart those clients.

For examples of security trace log entries, see Security Trace Examples (page 57).

Setting the Trace for All Application Servers
To trace all application servers and client styles on a host, change the
SecurityTraceLevel environment variable on that host; for example, by the following
command:
set SecurityTraceLevel=2

Where the number indicates the trace level, as follows:

1. Security service set up and configuration events (basic trace)

2. Security service run time events (intermediate trace)

This enables trace information to be collected over a period of time for all
application servers and client styles on the host. The trace level setting is preserved
until the environment variable is reset, even if application servers or client styles are
stopped and restarted or their system management Configuration activated again.

This enables trace information to be collected over a period of time into files in the
subdirectory service/server/ServerName. Refer to “showlog Utility” on page 68 for
more information on the formatting of trace logs.

Security Trace Examples
The following examples outline security problems indicated by trace messages from
the security service:

v Example 1: NO_PERMISSION Exception Raised by ORB in
somoa_request_nothread (page 58)

v Example 2: Security Association Establishment Tracking (page 58)

v Example 3: Security DLL Loading Status (page 58)

Chapter 13. Security Service Trace 57

v Example 4: Multiple threaded security establishment (page 58)

v Example 5: Security Session Table Status Monitor (page 59)

v Example 6: Refresh the Server Credential (page 59)

v Example 7: Multiple Hosts, with One Host in the Wrong DCE Cell (page 59)

Example 1: NO_PERMISSION Exception Raised by ORB in
somoa_request_nothread
This exception is raised because no security context is received by the target
server. A client sends a security message without a security context when security
is disabled in the Client Image or the client fails to authenticate itself in the client
security request interceptor.

The following messages are issued for this problem:

v With the security trace level set to at least basic , the following message is
logged before the ORB’s "NO_PERMISSION" message in the trace log file.
SECURITY WARNING: No Security Context has been received

v The ORB logs NO_PERMISSION with the hostname of the client.

v In the activity log file of the client, one of the following messages is logged:

– SECURITY TRACE: Security is disabled in System Management CDS data
store.

– SECURITY TRACE: Fail to authenticate security name = XXXX

To resolve this problem, make sure that the security enabled attribute (on the
Security Service tab of the Object Editor notebook for the Client Style) is set to yes
and that the client’s user ID and password are correct.

Example 2: Security Association Establishment Tracking
Each client and server has to establish a security association between them when
security is enabled. Most of the security problems happen in the process of
establishing security associations.

With the security trace level set to at least basic , the following messages are
logged:

v At the client side, the following two messages are logged:
SECURITY TRACE: Invoke non_existent() on server server_name
SECURITY TRACE: Complete non_existent() to server server_name

v At the server side, the following message is logged:
SECURITY TRACE: Receive a new security service context from client client_name

Example 3: Security DLL Loading Status
If a conflict occurs between the security loading status and the security enablement
status in a Client Style Image, and the security trace level is set to at least basic ,
the following messages are logged:
SECURITY TRACE: Security is enabled in System Management CDS data store.
SECURITY TRACE: Security Client DLL is loaded.

Example 4: Multiple Threaded Security Establishment
Security is designed to support a multiple threaded environment. However, only one
thread is allowed to establish the security association between the client and server.

With the security trace level set to at least basic , the following message is logged
when a security association is being established by another thread:

58 Problem Determination Guide

SECURITY TRACE: Session Entry with Target Server= server_name,
Thread ID= ddddd
is being established in the Client Vault Session Table.
I(Thread ID= ddddd) am going to wait."

The following message will be logged when the security association has been
established.
SECURITY TRACE:Wake up other threads that are waiting for the

availability of session entry of the Target Server
Target Server=server_name

Example 5: Security Session Table Status Monitor
The security associations between clients and servers are kept in the Security
Session (Vault) Table. A session entry is searched in the Session Table before a
new session is created in that table.

With the security trace level set to intermediate , the following message is logged
when a session is searched in the Session Table.
SECURITY TRACE: Search Session Entry with

Target Server= server_name,
Server UUID= uuid_value,
Thread ID= thread_id
in the Client Vault Session Table.

Example 6: Refresh the Server Credential
The authn_and_refresh thread is spawned to refresh the server process DCE
credential every 9 hours. To track the server DCE credential, with the security trace
level set to at least basic , one of the following messages is logged when the
refresh thread succeeds or fails to refresh server DCE credential.
SECURITY TRACE: Succeed to refresh server.
SECURITY TRACE: Fail to refresh server.

Example 7: Multiple Hosts, with One Host in the Wrong DCE Cell
In a multi-host environment where one of the hosts is configured (incorrectly) into a
separate DCE cell, the message sent from this host to any other hosts in the
Component Broker cell will generate the following error message:
gss_accept_sec_context, invalid DCE credential

“Troubleshooting Security Problems” on page 74
“Appendix I. Security Messages” on page 279
Set Trace Levels (System Administration Guide)

Chapter 13. Security Service Trace 59

60 Problem Determination Guide

Chapter 14. APPC Communications Trace

Use this procedure to trace and display information about the flow of control for an
application server using APPC to communicate with tier-3 systems. These trace
logs are to be used by IBM Support team when you report problems related to
APPC communications.

This topic describes how to turn on the APPC Communications trace and interpret
the trace output:

v Setting APPC Communications Trace (page 61)

v Environment Variables Used By Transaction Service (page 61)

v Sample Trace Calls to IBM Communications Server (page 62)

Setting APPC Communications Trace
To trace the APPC flow of control, set the trace level on the Server Image through
the System Manager user interface. You have to set the PAA Communications trace
level and the Transaction Service trace level for an application server. Follow these
steps to turn on the trace:

1. Display the System Manager user interface, and set the user-level to Expert .

2. Expand the Host Images folder.

3. Right click on the Server Image for the application server that you are interested
in, and select Edit . This displays the Object Editor for the Server Image.

4. In the Object Editor window, click the Component Trace tab.

5. Set the PAA trace level and PAA communications trace level attribute values
to advanced .

6. Click the Object Services Trace tab.

7. Set the transaction service trace level attribute value to Advanced .

8. To apply the trace levels and close the Object Editor window, click the OK
button.

This enables trace information to be collected over a period of time into files in the
subdirectory service/server/ServerName. Refer to “showlog Utility” on page 68 for
more information on the formatting of trace logs.

Note: If the system management Configuration that contains the model for the
server is activated again, the trace level changes for the Server Image are reset.

Environment Variables Used By Transaction Service
The Component Broker Transaction Service uses the following environment
variables. Refer to the the Component Broker Planning, Performance, and
Installation Guide for more information on default settings.

v SOMCB_APPC_LIBRARY_NAME
Specifies the name of the IBM Communication Server APPC DLL which is used
to send or receive requests over SNA.

v SOMCB_NOF_LIBRARY_NAME
Specifies the name of the IBM Communication Server Node Operations Facility
DLL which is used to monitor the status of the SNA node and create the SNA
configuration.

v SOMCB_APPC_PARTNER_LIVES
Specifies the number of times a server should be restarted before it deletes an

© Copyright IBM Corp. 1997, 1998 61

APPC Connection that is neither defined in the server’s configuration nor
required to complete outstanding transactions.

v SOMCB_APPC_TIMEOUT
Specifies the maximum number of seconds an allocate or receive request is
permitted to take.

v SOMCB_APPC_DEFAULT_MODE_NAME
Specifies that the SNASVCMG mode group should be used for exchange log
names (XLN) requests at server startup.

Sample Trace Calls to IBM Communications Server
You should submit the formatted trace logs to IBM Support Team for analysis when
you report problems related to APPC Communication. You would not have sufficient
information to interpret the data in these logs. For example, the following trace
shows calls issued by an application server to the IBM Communications Server.
ComponentId: 262253
ProcessId: 518
ThreadId: 422
FunctionName: OTSAPPCLibraryNT::callAPPC(long,CORBA::Long)
ProbeId: 1487
SourceId: 1.6 src/objsvcs/transactions/ots_appc/otsalib_nt.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:54:11.100491287
UnitOfWork: 30229:boyle2
Severity: 3
Category: 3
FormatWarning: 0
PrimaryMessage: The function OTSAPPCLibraryNT::callAPPC(long,CORBA::Long):1487
reported trace message.

ExtendedMessage:
RawDataLen: 164
RawData:
0000 07 00 00 01 00 00 00 00 - 00 00 00 00 04 00 CA C8
0010 00 00 00 00 04 00 79 C8 - 00 00 00 00 00 00 00 00y.........
0020 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
0040 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
0050 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
0060 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
0080 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
0090 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
00A0 00 00 00 00

The following trace is the response from IBM Communications Server to the calls in
the preceding trace example. This shows you the return codes and any returned
information. However, Component Broker does not trace the application data sent
and received.
ComponentId: 262253
ProcessId: 518
ThreadId: 422
FunctionName: OTSAPPCLibraryNT::callAPPC(long,CORBA::Long)
ProbeId: 1489
SourceId: 1.6 src/objsvcs/transactions/ots_appc/otsalib_nt.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0

62 Problem Determination Guide

SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:54:11.101889230
UnitOfWork: 30229:boyle2
Severity: 3
Category: 3
FormatWarning: 0
PrimaryMessage: The function OTSAPPCLibraryNT::callAPPC(long,CORBA::Long):1489

reported trace message.
ExtendedMessage:
RawDataLen: 164
RawData:
0000 07 00 00 01 00 00 00 00 - 00 00 00 00 04 00 CA C8
0010 00 00 00 00 04 00 79 C8 - 00 02 D3 E4 F6 F2 D7 E2y.........
0020 40 40 C7 C2 C9 C2 D4 C9 - E8 C1 C9 E8 C1 F7 E3 F2 @@..............
0030 F9 F0 49 59 41 37 54 32 - 39 30 49 59 4F 4D 34 31 ..IYA7T290IYOM41
0040 30 20 C9 E8 D6 D4 F4 F1 - F0 40 00 00 C7 C2 C9 C2 0@......
0050 D4 C9 E8 C1 4B C9 E8 D6 - D4 F4 F1 F0 40 00 40 40K.......@.@@
0060 40 40 40 40 40 40 40 40 - 01 00 D7 C7 08 04 00 00 @@@@@@@@........
0070 C8 94 45 97 E1 00 00 00 - 00 00 00 00 00 00 00 00 ..E.............
0080 00 00 11 C7 C2 C9 C2 D4 - C9 E8 C1 4B C9 E8 C1 F7K....
0090 E3 F2 F9 F0 DF E9 AD 35 - 03 00 00 01 00 0B 84 575.......W
00A0 7D CF 80 83 }...

“Troubleshooting APPC Problems” on page 77
“Example: APPC Messages in the Activity Log” on page 81
“Appendix H. APPC Messages” on page 263
“Investigating Communications Server Problems” on page 88

Chapter 14. APPC Communications Trace 63

64 Problem Determination Guide

Chapter 15. Problem Determination Tools

Several tools are available to help you with Component Broker problem
determination. They are:

v “Sherlock Tool”
Processes a formatted activity log against a database of known problems to
obtain information on workarounds and fixes.

v “showlog Utility” on page 68
Formats the activity log, error log, event log, and some of the
component and object services trace logs into readable text.

v “bgtrfmt Utility” on page 69
Formats the agent trace log files for viewing.

v “Model Consistency Checker” on page 70
Verifies models that you have built with the Object Builder.

Sherlock Tool

The Sherlock tool processes an activity.log file against a database of known
problems. It generates an output file containing an analysis of errors and
exceptions found in the activity log. The analysis provides suggested user response
and workaround information. Every time the Sherlock tool finds a match for an error
in the activity log in its database, it writes the database’s information into the
analysis output file.

Contact your IBM Engagement Team representative or IBM Support for more
information on the Sherlock tool.

“Sample Input Activity Log to Sherlock”
“Sherlock Output Sample” on page 67
“Chapter 2. Activity Log for Problem Determination” on page 3
“Chapter 16. Troubleshooting Component Broker Run-Time Problems” on page 71

Sample Input Activity Log to Sherlock

This is a sample of the formatted activity log that is processed by the Sherlock tool.
Your activity.log file must be formatted with the showlog utility prior to submitting it
to IBM. You will need to refer to this log when you review the “Sherlock Output
Sample” on page 67.
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 397
ThreadId: 545
FunctionName: SOMSR_ContinueDispatchCallbackObject::wrapExecute(void*)
ProbeId: 530
SourceId: 1.20.1.3 src/sr/somsrcb.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:

© Copyright IBM Corp. 1997, 1998 65

TimeStamp: 9/17/98 17:29:30.072302547
UnitOfWork: 398:kewegner
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function

SOMSR_ContinueDispatchCallbackObject::wrapExecute(void*):530 reported an
activity.

ExtendedMessage: Thread Manager caught Unknown Exception from continue_dispatch
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 397
ThreadId: 545
FunctionName: SOMSR_ContinueDispatchCallbackObject::dumpTargetInfo(void*)
ProbeId: 301
SourceId: 1.20.1.3 src/sr/somsrcb.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/17/98 17:29:30.077448451
UnitOfWork: 398:kewegner
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function

SOMSR_ContinueDispatchCallbackObject::dumpTargetInfo(void*):301
reported an activity.

ExtendedMessage: SRThreadManagerUnknownError: additional information ->
–>Method Name: addBeneficiary
–>Target classname: PolicyEmSQLMO
–>Target type_id: IDL:PolicyEmSQLMO:1.0
–>Target refcount: 1

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 461
ThreadId: 56
FunctionName:
IBOIMLocalToServer_IMMixinBase::setCachingManagedObjectFlag(CORBA::Boolean)
ProbeId: 3428
SourceId: 1.105 src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinBase_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/17/98 16:44:15.824745715
UnitOfWork: 28381:kewegner
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function

IBOIMLocalToServer_IMMixinBase::setCachingManagedObjectFlag(CORBA::Boolean):3428
reported an activity.

ExtendedMessage: A managed object (class name: UNKNOWN) does not
match the caching policy of the container. The reason code is : 0.
Explanation of the reason codes : 1 - The container has the
dataCachedInManagedObject set to YES, but the managed object does
not inherit from the IManagedServer::IManagedObjectWithCachedDataObject.
2 - The container has the dataCachedInManagedObject set to NO, but the

66 Problem Determination Guide

managedObject does not inherit from the
IManagedServer::IManagedObjectWithDataObject. 3 - The managed object did
not support either interface, IManagedServer::IManagedObjectWithCachedDataObject
or IManagedServer::IManagedObjectWithDataObject

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 262251
ProcessId: 607
ThreadId: 472
FunctionName: osql::osql_exec_lazy(char*)
ProbeId: 1172
SourceId: 1.20 src/objsvcs/query/impl/osql.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/17/98 16:23:48.315355880
UnitOfWork: 497:kewegner
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function osql::osql_exec_lazy(char*):1172 reported an error.
ExtendedMessage: Query = "select x from collection1 x where poxlicyNo>3;;"

Query error message = "Error - Unresolved column poxlicyNo has been found"
RawDataLen: 0
–––––––––––––––––––––––––––––––-
.

.

.

“Sherlock Tool” on page 65
“Sample Input Activity Log to Sherlock” on page 65

Sherlock Output Sample

The following is the contents of a sample output file from Sherlock. Use an editor
(that shows line numbers) to browse the formatted input activity log and match each
of the Sherlock comments to the related line number in the activity log. See
“Sample Input Activity Log to Sherlock” on page 65 for the sample activity log for
the following Sherlock output.
––––––––––––––––––––––––––––––––––––
*** Symptom tmunex.txt found in record 1 (line 1)
This message is a signal that a method raised an exception which
was not part of its raises clause. Remember that only system exceptions
and the exceptions which are part of the raises clause can be returned by
a method. There should be a dumpTargetInfo message shortly after this
message. It will contain the information pertaining to the method
which raised the exception. If that method is customer code, it would
be useful to to instrument that method by putting in additional
try - catch blocks to determine what is throwing the exception.
If there is a handleSignal message immediately preceding this
message, it may be that the method has caused a segment violation.
If the handleSignal message provides a call stack, this may give
you additional clues on how to diagnose the problem.
*** Symptom xunknown found in record 1 (line 1)
Sherlock cannot identify this problem.
*** Symptom xunknown found in record 2 (line 23)
Sherlock cannot identify this problem.
*** Symptom mocntr.txt found in record 3 (line 49)

Chapter 15. Problem Determination Tools 67

This is a warning message. The mixin code automatically fixes the
problem. However, the user should be aware that one of three conditions
exists:
1 - The container has the dataCachedInManagedObject set to YES, but the

managed object does not inherit from the
IManagedServer::IManagedObjectWithCachedDataObject.

2 - The container has the dataCachedInManagedObject set to NO, but the
managedObject does not inherit from the
IManagedServer::IManagedObjectWithDataObject.

3 - The managed object did not support either interface,
IManagedServer::IManagedObjectWithCachedDataObject or
IManagedServer::IManagedObjectWithDataObject

This problem should be fixed by adjusting the container that the object is
put in to one which will support the correct caching strategy for the MO.
.

.

.

“Sherlock Tool” on page 65

showlog Utility

The showlog utility is used to format the activity log, error log, event log, and the
component and object services trace logs into readable text. Run the showlog tool
on the host that had the error to get the optimum substitution values in the output
file. You can also browse the activity and error logs from the System Manager user
interface without using the showlog utility.

showlog Command Syntax
The showlog command has the following syntax:
showlog -nt | filename [-debug]

The -nt option formats the error log (only valid on the Windows NT platform).

filename is the input log file, for example, activity.log. The showlog utility reads the
file and formats it for reading.

-debug formats the entry with full debug information (this option is very useful when
debugging a system problem). Note : You must specify -debug after the file name;
otherwise, you will get a formatted debug version of the event log.

If -debug is not specified, only PrimaryMessage , ExtendedMessage , and
RawDataLen information is included for each entry in the log; for example, you get
the following information:
{Activity Warning}
The function IBOIMManagedObjectCustomization_ICDSDataObjectImpl::getStringByName
(const char*):940 raised CORBA exception
IBOIMManagedObjectCustomization::ICDSDataObject::IAttributeNotFound, error code is
0x0 0.
An exception occurred while accessing CDS image
HostIkimberlySomServIkimberly Name
ServerSomContainerIiCDSCachedHomes, attribute usesPolicyGroup. Reason code 1.
Reason codes: 1 - The attribute usesPolicyGroup not found. 2 - The cursor was not
open for the image. 3 - A request was not made to get the data for attribute,
usesPolicyGroup as the wrong type. 4 - CDS exception id: 110028, exception text:
No Attribute of that name was found. 5 - An unknown exception.

68 Problem Determination Guide

See the “Chapter 2. Activity Log for Problem Determination” on page 3 for more
information on all the fields of each entry in the log.

Note : If the output is piped to a file and an editor is used to display the information,
turn on word wrap in the editor to view the full contents of a line.

showlog Example 1
showlog c:\CBroker\service\activity.log -debug > showlog.out

Produces the text file named showlog.out from the activity log with all information
included as part of each entry.

Showlog Example 2
showlog -nt

Produces a text file from the event log; these are abbreviated entries (not all the
debug information is included for each entry).

Formatting Multiple Trace Files
When you set one or more types of component or object service trace, multiple
trace files are generated. The trace files are in the service/server/ServerName
subdirectory of the host on which the application server runs. The names of the
trace files have a yydddhhmmss.xxx format where:

v yy is the year

v ddd is the Julian date

v hh is the hour

v mm is the minutes

v ss is the seconds

v xxx is a three digit number that runs from 101 to 999 and then rolls over to 101

98279095414.111 is an example of a trace file name. A single trace file is created
for each ORB request. You may chose to write a script file to sequentially run
showlog against each of the trace files (ascending sequence) and concatenate
them (using >>) into a single file. If you have set more than one type of component
or object service trace, all trace information is merged into the same set of files.

“Chapter 15. Problem Determination Tools” on page 65

bgtrfmt Utility

To format the agent trace log files (.dct, .tr1, .tr2 files) in the ../data directory, use
the bgtrfmt utility. The syntax for the utility is:
bgtrfmt filenamestem > outputfilename

where filenamestem is the file name without the file extension and outputfilename is
the output file for the formatted trace information. If you have trace files, say,
bgmain_mySystem.dct, bgmain_mySystem.tr1, and bgmain_mySystem.tr2, you
would invoke:
bgtrfmt bgmain_mySystem > bgtrace.output

Chapter 15. Problem Determination Tools 69

That is, supply the stem of the file names without the .dct, .tr1, or .tr2 extension,
and redirect the output to some file so you can look at it.

When running on NT, you will not be able to run bgtrfmt if the trace files are
still open by the System Management executable that created them. You will have
to either stop the executable or create a temporary directory and copy the three
trace files to that directory. You may find the latter to be simpler.

“Chapter 5. Agent Trace Log for Problem Determination” on page 19
“Chapter 15. Problem Determination Tools” on page 65

Model Consistency Checker

You can use the Model Consistency Checker tool to verify models that you have
built with the Object Builder. The Model Consistency Checker provides a
mechanism for you to identify problems, such as dangling relationships, in your
model before compiling or running your application. You can run this tool either from
the command line or from the Object Builder’s GUI. See related tasks for more
information on how to run the tool.

Note: If you are collecting data to report a problem to IBM, turn on all the optional
checking when running the Model Consistency Checker.

Check a Model for Consistency (Application Development Tools)
“Chapter 15. Problem Determination Tools” on page 65

“Troubleshooting Unexpected Application Error or Bad Data Problems” on page 72

70 Problem Determination Guide

Chapter 16. Troubleshooting Component Broker Run-Time
Problems

In this section, recommendations are provided to help you troubleshoot some of
your Component Broker run-time problems.

Read the Activity Log
Always look at the entries in activity log when you are diagnosing run-time
problems. Follow these steps:

1. Read the PrimaryMessage and ExtendedMessage information to help you
understand the error condition. If you find minor code messages (0x4942xxxx)
in the PrimaryMessage field, look them up in the “Appendix G. System
Exceptions and Minor Codes” on page 217 to get a detailed explanation of the
error and the suggested user response.

2. Trace the resulting error listed in the activity log to the initial exception that
caused the error. This may help you identify the reason for the initial failure. See
“Reading the Activity Log” on page 6 for more information on how to do this.

When you have completed the above steps and you still do not know what could
have caused the problem, you can review the following problem scenarios and try
some of the suggested actions to help you diagnose the error.

v “Troubleshooting Component Broker Service Start Up”

v “Troubleshooting Server Activation Problems”

v “Troubleshooting Unexpected Application Error or Bad Data Problems” on
page 72

v “Troubleshooting Cache Related Problems” on page 74

v “Troubleshooting APPC Problems” on page 77

v “Troubleshooting Security Problems” on page 74

“Chapter 1. Problem Determination Information” on page 1
“Chapter 17. Problem Determination Hints and Tips” on page 103

Troubleshooting Component Broker Service Start Up

If you cannot start up the Component Broker Connector Service from the Service
dialog in Control panel, the password registered for the service may be wrong. Did
you change your password recently? If so, try changing the password in the
Services account dialog.

“Chapter 1. Problem Determination Information” on page 1
“Chapter 16. Troubleshooting Component Broker Run-Time Problems”

Troubleshooting Server Activation Problems

When you get a failure while starting up a server, try one or more of the following
actions:

© Copyright IBM Corp. 1997, 1998 71

v Check to see if the Name Server started up correctly in the activity log. Start
reading the log from the point of activation all the way through to the failure.

v Look in the DCE director for any sign of the server.

v If the activation of a configuration failed without an error message, for example,
verification is complete but the server activation did not start, check to see if the
servers are up (in DCE). Does your application use security? If yes, disable
security on the agent client style image (security on agent client image is
automatically turned on), bring down the Component Broker Connector service
and bring it back up to let it take effect. Refer to “Troubleshooting Security
Problems” on page 74 for more information on diagnosing security problems.

v Check if the ORB daemon has been started.

v Start with a clean activity log. If you have been starting up a few servers with a
single activation, try starting them up one at a time.

v Follow the instructions in Hints and Tips: Activity Log (page 103) to format and
erase the activity log so that you start with a clean log. If the server that has the
problem is still running, disable the server by stopping it. Define a new server
and reactivate it. Configure the application on the new server and see if the
problem is repeated.

v Is the system very slow and the server activation always failing? Are there also
timeout problems with CORBA exceptions and errors? Consider increasing the
paging file size (for example, to 400 or 500MB). Verify if the DNS IP
address is incorrectly set. You may also want to change some of the server
timeout settings. Refer to server timeout settings (page 106) for more information
on these settings.

v If you get segmentation faults when performing an activation in System
Management and you have Java server applications, check the PATH system
environment variable. The JDK directory (for example, JDK1.1.6) should be in the
front of the PATH system environment variable to avoid conflicts with other
products that may contain Java DLLs (such as Lotus products). See the JDK
Path Setup (page 108) for more instructions on how to do this.

Planning, Performance, and Installation Guide
“Chapter 1. Problem Determination Information” on page 1
“Chapter 16. Troubleshooting Component Broker Run-Time Problems” on page 71

Troubleshooting Unexpected Application Error or Bad Data Problems

When the client application gets an unexpected error or bad data, try one or more
of the following actions:

v When you get a CORBA:UNKNOWN error and, if in the activity log, you see an
entry where a database connection cannot be made, check to see if the
database (for example, DB2) has been started. Refer to “Activity Log Sample 4:
Client Application Receives an Error” on page 10.

v If your client application fails with this message:
makeChildren Exceptionorg.omg.CORBA.UNKNOWN: minor

code: 1229062304 completed: Maybe

And the activity log shows this DB2 failure:

72 Problem Determination Guide

PrimaryMessage: The function db2emb_access::check_sqlca():524
raised CORBA exception IBOIMException::IDataObjectFailed,
error code is 0xFFFFFC46 rc.
ExtendedMessage:

*** SQL error code: -954, SQLSTATE: 57011, (...)

Then, possibly not enough storage is available in the application heap. Refer to
Run-Time Environment Settings (page 106) for more information on changing the
DB2 heap size.

v If you are getting a CORBA::PERSIST_STORE error, it is very likely that the
problem is related to SQL. The ExtendedMessage in the activity log entry for the
initial error often contains SQL information that is directly related to the cause of
the failure. Look up the SQL error in the SQL message guide (in the DB2 online
documentation). You can probably debug most SQL errors just by using this
guide. If you still require more information on the SQL statement, run Query
Service Trace.

v If the client application hangs (if timeout is set to infinite) or ends with a
CORBA::NOTRANSACTION exception, and the application server is not running,
see if the transaction did not start (look in the activity log). If the transaction did
not start, check your code to see if a begin transaction was executed prior to the
query. If the begin transaction was executed, put a try catch around it to see if it
completed successfully. See the Advanced Programming Guide for more
information on Application Programming Using Transaction Service.

v If you want to have a quick look at the application flow, turn on the ORB request
trace, clean the activity log, and rerun the application.

v If you suspect that the problem is in the user code, run OLT.

v If you suspect that the problem is not in the user code, you can run the XYZ
trace, the ORB communication trace or both of them together.

v If the same model is generating different run-time errors, make sure that you run
the Model Consistency Checker to verify your model.

v You can submit your formatted activity log to run against the Sherlock tool to see
if there are workarounds for your problem.

“Chapter 8. Query Service Trace” on page 27
“Chapter 9. Cache Service Trace” on page 33
“Chapter 6. Object Level Trace for Problem Determination” on page 23
“Chapter 10. ORB Request Trace” on page 39
“Chapter 11. ORB Communication Trace” on page 41
“Chapter 12. Tracing Function Calls in the Generated Code: XYZ Trace” on page 51
“Troubleshooting Unexpected Application Error or Bad Data Problems” on page 72
“Troubleshooting Cache Related Problems” on page 74
“Chapter 2. Activity Log for Problem Determination” on page 3
“Sherlock Tool” on page 65
“Model Consistency Checker” on page 70
Planning, Performance, and Installation Guide

Configure DB2 to use the CBConnector Data Cache (System Administration Guide)
Configure a Cache for SQL Data (System Administration Guide)

Chapter 16. Troubleshooting Component Broker Run-Time Problems 73

Troubleshooting Cache Related Problems

If your activity log contains a system exception with a minor code (somewhere
within the range of 00FA-012B), then you have an error related to the data cache
service. You can try one or more of the following:

v If the major code is BAD_PARAM, INV_ORDER or BAD_TYPECODE, then the
code generated for the DataObject Implementation that calls the cache service
has made a bad call or has passed a bad argument to the cache service. One
possible cause of this error is that the relational schema information contained in
the DDL is inconsistent or has become inconsistent with the actual database.

v If the exception is related to an SQL error, the cache service logs the failing SQL
statement along with the failing sqlcode in the activity log. Examine the activity
log to see if there is such a SQL error just prior to the exception.

v Make sure you have bound the two .bnd files to the target database (see
"Configure DB2 to Use the CBConnector Data Cache" in the System
Administration Guide) and that the userid that the CBConnector server is using
has the authority to use these packages and access your database and read and
update your application tables.

v Make sure that your application has issued a begin() transaction before
attempting to access any objects that are stored in a DB2 database.

If you require additional information to help you diagnose the problem, you can use
the cache service trace.

Data Cache Considerations (System Administration Guide)

“Appendix G. System Exceptions and Minor Codes” on page 217
“Chapter 8. Query Service Trace” on page 27
“Chapter 9. Cache Service Trace” on page 33
“Troubleshooting Unexpected Application Error or Bad Data Problems” on page 72

Configure DB2 to use the CBConnector Data Cache (System Administration Guide)
Configure a Cache for SQL data (System Administration Guide)

Troubleshooting Security Problems

If you encounter a security problem when running applications with security
enabled, you can use the following checklist to help isolate and resolve the
problem.

1. Check the Component Broker activity and error logs for security messages.

2. Check for common security problems (page 74).

3. Check the DCE configuration (page 75).

4. Check security and run-time setup (page 76).

Common Security Problems
Some common problems that you may encounter when setting and administering
the Component Broker security system are:

v Server Authentication (page 75)

74 Problem Determination Guide

v Configuration Attributes (page 75)

v Access to Client Keyring Class (page 75)

Server Authentication
Server is authenticated with the DCE Security server. A server normally
authenticates itself without operator intervention. A transient failure in
communication may prevent the server authentication, and errors will occur when
the clients invoke methods on objects in the server.

Also, login or certificate information that authenticates the server is stored in files on
the server. If the file system is corrupted, problems will occur when the server is
unable to access the required information for authentication.

Configuring the keytab file is automatically done by the Component Broker when
the server is created. However, if the keytab file is corrupted, you must manually
recreate the keytab file using the DCE administration tools. Note that DCE
replication service makes a backup copy of the keytab file. Also, you must
periodically update the server’s password and synchronize the passwords between
the user registry and the keytab file. You can use the DCE’s facilities to
automatically generate passwords. This is a more secure procedure because the
passwords will only be known to the DCE and Component Broker servers.

Server keyrings are also a potential source of problem. If, for some reason (for
example password expiration), you have to recreate or renew the certificate,
depending on how this affects the server’s trust basis, you may have to redeploy
the client keyrings to cite the new trust-basis.

To help prevent any compromise, be sure to set the permissions on the server’s
keyring so that only the server and the relevant administrators can access it.

Configuration Attributes
Component Broker has a large number of configuration attributes to provide
fine-grained control over the behavior of security by editing client images and server
images. However, these choices also provide an opportunity to incorrectly set up
security. Most of the invalid choices are caught and flagged during Component
Broker system management configuration. However, some of the more advanced
configuration options, such as the qualities of protection (QOP) models, are not
evaluated until run time and related errors will not be caught until then.

Access to Client Keyring Class
The value that you specify in the keyring file attribute of the Client Style is a Java
class name. Java and the Component Broker run time expect to find this keyring as
a Java class in the classpath, codepath, archive, or applet URL of the Java client
application or applet. If you placed your client keyring in the Component Broker
keyrings directory, make sure that the class you specified for the keyring in IKMGUI
is the same as the name you specified in the keyring file attribute on the Client
Style. These names must have identical spelling (with same package prefix), and
they are case-sensitive.

If you are working with a Java client applet, make sure that the keyring is
accessible from your Web Server, and that the codepath, archive, or applet URL
include the location of your keyring class. Also copy the client-style properties file
and client keyrings to the Web Server host. Make sure that your client applet
correctly refers to the URL in this properties file in a
com.ibm.CORBA.ClientStyleImageURL parameter of the HTML applet tag.

Chapter 16. Troubleshooting Component Broker Run-Time Problems 75

Check DCE Configuration
Because Component Broker supports only one DCE cell, ensure that all DCE
clients and their DCE servers are configured into one cell. Component Broker
Server is a DCE client so you can have more than one Component Broker Server
per DCE cell.

v For Windows NT, complete the following steps:

1. From the Windows NT Start menu, click Programs - DCE for Windows NT -
DCEsetup .

2. In the right panel of DCE Setup, ensure that the Cell Name entry is
consistent with the same entry on the other hosts within the cell.

3. For a configured DCE server, ensure that the following services are enabled
and in running state:

– Security Client

– Security Server

– CDS Advertiser

– CDS Server

– DTS

4. For a configured DCE client, ensure that the following services are enabled
and in running state:

– Security Client

– CDS Advertiser

– DTS

v For AIX, complete the following steps:

1. From a shell prompt, enter:
lsdce

to list all configured DCE services. Each service should be in Complete
state.

2. Enter
dce_login

to ensure that the DCE services are running.

3. Enter
getcellname

to return the DCE cell name for each host. Ensure that all hosts have the
same cell name.

Check Security and Run Time Setup
Follow these steps to verify that the necessary setup for security service has been
completed:

1. Check the security enablement.

From the System Manager user interface, right click on each entry listed under
Client Style Images and Server Images and select Edit . In the Object Editor,
select the Security Service tab, and ensure that the security enabled field is
set to yes .

2. Check that you have created appropriate certificates for servers and added
them into the keyrings for your client styles.

3. Check that you have distributed the server and client keyrings onto appropriate
hosts in your enterprise.

76 Problem Determination Guide

4. Check that you have made the client properties files available to the clients that
need them.

5. Check that you have set up appropriate accounts for your client and server
principals.

6. If you still suspect a security-related problem, but need more information, you
can turn on Component Broker trace for the security service on one or more
application servers. This enables security trace information to be collected over
a period of time. To turn on security service tracing, see “Chapter 13. Security
Service Trace” on page 55.

“Appendix I. Security Messages” on page 279
Qualities of Protection (System Administration Guide)
Create and Install Server Certificates (System Administration Guide)
Place Server and Client Keyrings in your Enterprise (System Administration Guide)
Administer Accounts for Client and Server Principals (System Administration Guide)
Enable Security within a Configuration (System Administration Guide)
Create and Protect Server Keytab Files (System Administration Guide)

Troubleshooting APPC Problems

This topic provides information about diagnosing problems in the Component Broker
Transaction Service when it is communicating with a tier-3 system over APPC.

Tier-3 communication over APPC involves a number of products, each with its own
terminology and producing its own diagnostics. Therefore a large part of the
problem determination effort is piecing together information from different sources.
This task is easier if you understand the function of each product and are familiar
with its diagnostics and symptoms of common problems.

The aim of this topic is to help you with the APPC problem determination process
by explaining the available diagnostics information and its interpretation.

The general sequence of tasks when investigating APPC problems is as follows:

1. Identify the products or components (page 77)

2. Determine the symptoms (page 78)

3. Identify the failing component (page 79)

4. Trace the failing request (page 80)

5. Check the configuration of components (page 80)

Identify the Products and Components
As a first step, draw out the components being used. For example, the diagram
below shows a typical PAA APPC set up where a client is communicating via a
Component Broker application server to a CICS/ESA region. Alternatively, the tier-3
system may be a Transaction Series server or an IMS region.

Chapter 16. Troubleshooting Component Broker Run-Time Problems 77

Drawing this sort of diagram is often a good place to start, especially if you are
diagnosing a problem on a system that you did not set up. It is worth spending a
little time identifying the systems and products and their configuration information
(for example, system names, mode names, and so on).

For more information about determining the systems and products used for APPC
communication in your Component Broker network, see "Collect Information for
Your SNA Configuration" in the Systems Administration Guide.

Determine the Symptoms
Next, try to identify the symptoms of the failure. For example, try to identify
symptoms related to the following points:

v What was the application server or tier-3 system doing when the failure
occurred? Was it initializing or had it been running for some time?

v What applications were running at the time of the failure? What should they do?

v When does it fail, all the time or intermittently? Has it ever worked and, if so,
what were the circumstances?

v How does the application fail? Does it hang? Is it looping? Was an unexpected
exception raised? Or, was there a server crash?

v Did the application start to fail after a particular event such as a change to the
configuration or a system crash (such changes are often the cause of the
problem)?

v What are the steps required to recreate the problem?

If possible, try to do a little experimentation to narrow down the failure to a simple
scenario, or to discover the extent of the problem. Try to understand if all PAA
APPC requests fail, or just those sent to a particular system, or if the problem is
confined to a single application or Component Broker server.

This type of analysis often indicates the type of problem you are dealing with, for
example:

v If all PAA requests fail then it is likely that there is a configuration problem or that
a component or product is not running.

78 Problem Determination Guide

v If requests suddenly stop working, then perhaps a change to the system (usually
by operator intervention) may have caused the problem. Such changes may
include configuration updates, deletion or relocation of system files, or relocation
of systems to a different machine.

v Hangs tend to be caused by either insufficient resources in the network which
includes the local Component Broker server and the tier-3 system, or deadlocks
in the server or application.

Identify the Failing Component
Next, try to identify the failing component or product. For each component or
product in your diagram, verify that it is running. If it is, check the message logs to
see if one or more components have generated error or warning messages,
especially during its startup and when the failing request occurred. The diagram
below summarizes where to look for these messages.

Probably the easiest place to start looking for messages is the Component Broker
application server’s activity log, because it contains error messages describing, in
Component Broker terms, any task it could not perform. Check the descriptions of
any APPC error messages that you find.

However, it is possible that several components have reported errors. Usually the
component that initially detects the error gives the most precise diagnostics on the
cause of the problem. Subsequent messages probably describe what was affected
by the initial failure. If the Component Broker messages just report a network error
or a remote program failure, then you will need to look for messages in other
products or components.

The following table provides a summary of the diagnostic information that is useful
for different types of errors.

Chapter 16. Troubleshooting Component Broker Run-Time Problems 79

Problem ->
Information
|
v

Appl
Server
Unable to
Initialize

Appl
Server
Unable to
Connect to
Tier-3
System

APPC
request
fails

Hang
during
APPC
request

Appl
Server
crashes

Handle
Signal in
Appl
Server
Activity
Log

Description of
the problem

Yes Yes Yes Yes Yes Yes

Activity log Yes Yes Yes Yes Yes Yes

Component
Broker trace

Yes No Yes Yes Yes Yes

IBM Comm
Server*
configuration
file

Yes Yes Yes Yes No No

IBM Comm
Server*
message file

No Yes No No No No

IBM Comm
Server* trace

Yes Yes Yes Yes No No

Messages
and
diagnostics
from tier-3
system

No No Yes Yes No No

Transaction
Service log

Yes No No Yes Yes No

*IBM Communications Server

Trace the Failing Request
If the messages do not identify the problem, try turning on trace in each component
or product and re-running the failing request. Traces show the calls and responses
being made throughout the system and may display a bad parameter or result.
Traces are often designed for developers of the component or product and are not
easy to read without internal design and code information. However, traces can tell
you if the request reached a particular component or product. If you find that the
request failed before reaching its final destination, then concentrate your suspicions
around the component that rejected the request. Recheck the configuration and
also refer to the documentation on common errors for the component.

The following describes how you can turn on some of these traces:

v “Chapter 14. APPC Communications Trace” on page 61

v “Tracing Calls to the Communications Server” on page 89

Check the State and Configuration of Components
A common source of problems in APPC communications is the configuration of the
components or products. If you have identified a failing component, check that it is
running properly and that its configuration is correct. You should also check other
components’ configurations to make sure that they are running properly and that
you have configured them correctly because they may have a configuration problem
that is impacting the failing component.

80 Problem Determination Guide

v Check the Status and Configuration of the SNA Network. (See “Checking the
Status and Configuration of the SNA Network” on page 91.)

v Check the states of resources in a CICS region. (See “Checking the States of
Resources in a CICS Region” on page 97.)

v Check that you have configured the APPC Connection to a tier-3 System
correctly within Component Broker, as described in the System Administration
Guide.

v Check that Communications Server names Match CICS definitions, as described
in the System Administration Guide.

For more information about checking the state and configuration of tier-3 systems,
see the information provided with those products.

“Appendix H. APPC Messages” on page 263

Example: APPC Messages in the Activity Log

Here are some examples of the messages that are generated by the PAA APPC
support and written to the Component Broker’s activity log. If you experience
problems with PAA APPC, you should browse through the application server’s
activity log messages beginning with the entry on the server startup. Search for the
string ots_appc , because the source of most PAA APPC messages are in files
under this directory.

The following are examples of messages for:

v Successful startup of a server (page 81)

v An unexpected Return code from IBM Communication Server (page 86)

v Loading the Java Virtual Machine (page 87)

v SECURITY ERROR message on each PAA APPC request (page 87)

To look up the meaning of a particular transaction service APPC message, see
“Appendix H. APPC Messages” on page 263.

Successful Server Startup
This example shows messages from an application server that successfully
initializes PAA APPC. These messages are located in the formatted activity log.
Search for the string, ots_appc .

1. The first message you would see is the APPC support being loaded into the
server’s transaction service. This occurs during the running of the server’s
initializers and is the result of Component Broker library somtra1i.dll being
initialized.
–––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 505
ThreadId: 520
FunctionName: OTSAPPCSRM::OTSAPPCSRM()
ProbeId: 106
SourceId: 1.5 src/objsvcs/transactions/ots_appc/otsasrm.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: CashAcctEMSvr

Chapter 16. Troubleshooting Component Broker Run-Time Problems 81

clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:06:31.666955881
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function OTSAPPCSRM::OTSAPPCSRM():106 reported an activity.
ExtendedMessage: APPC support has been enabled in the transaction service
RawDataLen: 0
–––––––––––––––––––––––––––––-

2. Next, you would see the IBM Communication Server libraries being loaded.
There are two libraries involved, wappc32.dll and winnof32.dll. They are loaded
when they are first required. If you are running PAA APPC, this occurs when the
first PAA APPC request runs. If the server has previously run PAA APPC
requests, then the libraries are loaded during the initialization of the transaction
service as the server starts up.

Both of these libraries are loaded together. However, only the loading of the
wappc32.dll is logged. Verify that the Component Broker is using the IBM
Communications Server version of wappc32.dll rather than that of the Microsoft
SNA Server. Check that the string, IBM SNA , appears in this message rather
than WinAPPC - SNA Server for Windows NT . Microsoft SNA Server’s
wappc32.dll is not supported by Component Broker. Both servers use a DLL
with the same name and only one can be installed on the host machine.
–––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 505
ThreadId: 535
FunctionName: OTSAPPCLibraryNT::OTSAPPCLibraryNT()
ProbeId: 194
SourceId: 1.6 src/objsvcs/transactions/ots_appc/otsalib_nt.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: CashAcctEMSvr
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:06:40.508869083
UnitOfWork: 7905:littleapple.rchland.ibm.com
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage:
The function OTSAPPCLibraryNT::OTSAPPCLibraryNT():194 reported an activity.
ExtendedMessage: The SNA library wappc32.dll, version 1.0, for IBM SNA has

been loaded in the server.
RawDataLen: 0
–––––––––––––––––––––––––––––-

3. When a new local LU name is passed to the transaction service (when it is
recovered from the transaction service log, or when a PAA APPC application
makes use of an APPC Connection for the first time), the transaction service
verifies that the local LU name contains valid values and is correctly defined to
the IBM Communications Server. The following message indicates that the local
LU Name is correct.
–––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 505
ThreadId: 535
FunctionName: OTSAPPCListenerNT::checkName(OTSAPPCLUName*)
ProbeId: 255
SourceId: 1.7 src/objsvcs/transactions/ots_appc/otsalist_nt.cpp

82 Problem Determination Guide

Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: CashAcctEMSvr
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:06:40.854713277
UnitOfWork: 7905:littleapple.rchland.ibm.com
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage:
The function OTSAPPCListenerNT::checkName(OTSAPPCLUName*):255 reported an activity.
ExtendedMessage: Server CashAcctEMSvr will send APPC requests from SNA local LU name
'USIBMZP.PVT01001' which is defined with an alias name of 'PVT01001'
RawDataLen: 0
–––––––––––––––––––––––––––––-

4. The following activity log entry shows an APPC Connection being recovered
from the transaction log. The transaction service automatically writes information
about each APPC Connection it is using to the transaction log. This is required
in case an APPC Connection is deleted from the server’s configuration while the
server is stopped with incomplete transactions. When the server is restarted, it
uses the APPC Connection’s information that was recovered from the
transaction log to contact the partner SNA system and complete the transaction.
–––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 505
ThreadId: 535
FunctionName: OTSAPPCPartner::recreateObject(OTSSRMLogSection*,CORBA::ULong)
ProbeId: 546
SourceId: 1.10 src/objsvcs/transactions/ots_appc/otsaptnr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: CashAcctEMSvr
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:06:40.929019384
UnitOfWork: 7905:littleapple.rchland.ibm.com
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage:
The function OTSAPPCPartner::recreateObject(OTSSRMLogSection*,CORBA::ULong):546
reported an activity.

ExtendedMessage: The APPC Connection between local LU 'USIBMZP.PVT01001' and
partner LU 'USIBMZP.CICS4' was recovered from the Transaction Service log.

RawDataLen: 0
–––––––––––––––––––––––––––––-

5. You can use the SOMCB_APPC_PARTNER_LIVES environment variable to
instruct the transaction service to delete APPC Connections from the transaction
log but make sure that these APPC Connections are not defined in the server’s
configuration and they do not have incomplete transactions.

When an APPC Connection is recovered from the transaction log, or when a PAA
APPC request uses the APPC Connection for the first time, the Component Broker
transaction service must exchange log names (XLN) with the tier-3 (partner SNA)
system. This verifies that the transaction logs in both systems have not been
deleted or changed since the last time they communicated with one another. If the
transaction log has changed in either system, new PAA APPC requests are only

Chapter 16. Troubleshooting Component Broker Run-Time Problems 83

allowed to run if there are no partially-complete transactions involving the two
systems. The following example shows a message stating that the exchange log
names process between the Component Broker server and tier-3 system is fine.

Note: The exchange log names process for APPC is part of the SNA architecture
and is required. It means that administrators of Component Broker servers should
not delete the transaction service log files for servers using APPC unless all tier-3
systems that the server is communicating with are also being cold started. If the
transaction service log for a Component Broker server is deleted and you see
messages indicating that the tier-3 system will not exchange log names, then take
one of the following actions:

v If the tier-3 system is CICS/ESA, issue the command CEMT SET
CONNECTION(xxxx) NOTPENDING on the CICS region.

v If the tier-3 system is using an Encina PPC Gateway, use the command:
ppcadmin cancel resync GatewayLUName CBLUName

This command is documented in the Transaction Series CICS
Intercommunications Guide under ppcadmin .

This action may damage the integrity of the data that the Component Broker server
was updating in the tier-3 system.
–––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 505
ThreadId: 511
FunctionName: OTSAPPCPartner::setPartnerLogName(OTSAPPCLogName*,OTSAPPCLogName*)
ProbeId: 1420
SourceId: 1.10 src/objsvcs/transactions/ots_appc/otsaptnr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: CashAcctEMSvr
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:06:42.116710367
UnitOfWork: 7905:littleapple.rchland.ibm.com
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage:
The function OTSAPPCPartner::setPartnerLogName(OTSAPPCLogName*,OTSAPPCLogName*)
:1420 reported an activity.
ExtendedMessage: Transactions are available between server CashAcctEMSvr (local LU name
'USIBMZP.PVT01001') and partner SNA APPC system 'USIBMZP.CICS4'

RawDataLen: 0
–––––––––––––––––––––––––––––-

When log names have been exchanged, the server can send PAA APPC requests
to the tier-3 system.

It is possible that a tier-3 system will send an exchange log names request to
Component Broker from time to time. For the Component Broker to respond to this
request, the application server has a thread dedicated to listening for incoming
exchange of log names requests. When one is received, it is processed by another
thread so that the listening thread can get back to monitoring for the next exchange
of log names request.

84 Problem Determination Guide

The listening thread also monitors the status of the IBM Communication Server
product. If it is running the SNA Node for the local machine, the following
messages appear.
–––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 505
ThreadId: 513
FunctionName: OTSAPPCListenerNT::registerAsATM(OTSAPPCLUName*,CORBA::ULong)
ProbeId: 643
SourceId: 1.7 src/objsvcs/transactions/ots_appc/otsalist_nt.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: CashAcctEMSvr
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:06:42.213633641
UnitOfWork: 7905:littleapple.rchland.ibm.com
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage:
The function OTSAPPCListenerNT::registerAsATM(OTSAPPCLUName*,CORBA::ULong):643
reported an activity.
ExtendedMessage: The SNA product 'IBM SNA' is running
RawDataLen: 0
–––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 505
ThreadId: 513
FunctionName: OTSAPPCListenerNT::startListening()
ProbeId: 379
SourceId: 1.7 src/objsvcs/transactions/ots_appc/otsalist_nt.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: CashAcctEMSvr
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:06:42.217144746
UnitOfWork: 7905:littleapple.rchland.ibm.com
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage:
The function OTSAPPCListenerNT::startListening():379 reported an activity.
ExtendedMessage: Starting the SNA attach manager
RawDataLen: 0
–––––––––––––––––––––––––––––-

If the following message appears, use the IBM Communication Server Node
Operations application to start the node. See Checking the Status and Configuration
of the SNA Network (page 91) for more information on how to do this.
–––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 505
ThreadId: 513
FunctionName: OTSAPPCListenerNT::registerAsATM(OTSAPPCLUName*,CORBA::ULong)
ProbeId: 657
SourceId: 1.7 src/objsvcs/transactions/ots_appc/otsalist_nt.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0

Chapter 16. Troubleshooting Component Broker Run-Time Problems 85

SOMProcessType: 5
ServerName: CashAcctEMSvr
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:07:13.923159238
UnitOfWork: 7905:littleapple.rchland.ibm.com
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function OTSAPPCListenerNT::registerAsATM(OTSAPPCLUName*,COR
BA::ULong):657 reported an activity.
ExtendedMessage: The SNA product 'IBM SNA' has stopped
RawDataLen: 0
–––––––––––––––––––––––––––––-

An Unexpected Return code from IBM Communication Server
The Component Broker transaction service will write messages to the Component
Broker’s activity log if an unexpected result is returned by the IBM Communication
Server. In most cases, a more descriptive message appears either just after this
message, or earlier on in the life-time of the server to describe the problem.
However, as this is a new function, the actual return values are also logged for
problem determination purposes. For example, the following message reports an
error in the ALLOCATE (page 170) call. The return value is in two parts: primary_rc
and secondary_rc, which are documented in the “IBM Communication Server APPC
Interface: Return Codes” on page 195.
–––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 746
ThreadId: 720
FunctionName: OTSAPPCConvIdNT::setState(unsigned short,unsigned short,unsigned
long,OTSAPPCInterface::State)
ProbeId: 1234
SourceId: %I% %W%
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: myserver1
clientHostName:
clientUserId:
TimeStamp: 10/30/98 14:32:16.434741993
UnitOfWork: 8024:panda
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function OTSAPPCConvIdNT::setState(unsigned short,unsigned
short,unsigned long,OTSAPPCInterface::State):1234 reported an activity.
ExtendedMessage: The SNA library used for PAA APPC support returned '0x0300/0x04000000'
from an APPC 'ALLOCATE' call.

RawDataLen: 0
–––––––––––––––––––––––––––––-

In the following entry, the call is nof_atm_wait_active and the return value is 61700
(=0xF104).
–––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 505
ThreadId: 513
FunctionName: OTSAPPCListenerNT::getInboundRequest(OTSAPPCInboundTPN**)
ProbeId: 575
SourceId: 1.7 src/objsvcs/transactions/ots_appc/otsalist_nt.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0

86 Problem Determination Guide

SOMProcessType: 5
ServerName: CashAcctEMSvr
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:07:12.017132256
UnitOfWork: 7905:littleapple.rchland.ibm.com
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage:
The function OTSAPPCListenerNT::getInboundRequest(OTSAPPCInboundTPN**):575
reported an activity.

ExtendedMessage: Unexpected error 61700 from the SNA call nof_atm_wait_active
RawDataLen: 0
–––––––––––––––––––––––––––––-

Loading the Java Virtual Machine
The following entry appears in the activity log when the Java Virtual Machine (JVM)
is loaded into a server. It shows the CLASSPATH and other attributes that it is
using.
–––––––––––––––––––––––––––––-
ComponentId: 102
ProcessId: 505
ThreadId: 447
FunctionName: loadAndInitVM(JavaVM**,JNIEnv**,SOMException*)
ProbeId: 785
SourceId: 1.20 src/shasta/somrt/bossmerge/somshcb.C
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: CashAcctEMSvr
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:10:22.837726560
UnitOfWork: 17481:littleapple.rchland.ibm.com
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage:
The function loadAndInitVM(JavaVM**,JNIEnv**,SOMException*):785 reported an
activity.
ExtendedMessage: Creating Java VM: CLASSPATH=D:\CBroker\ntApps\CashAccountEM\btc
aEMsobPO.jar;.;D:\CBroker\BIN;D:\CBroker\LIB\ivjeab.jar;D:\CBroker\LIB\hod20.jar
;D:\CBroker\LIB\ivjcicon.jar;D:\CBroker\LIB\sompart.zip;D:\CBroker\LIB\ivbtrolt.
jar;D:\CBroker\DATA\KEYRINGS;D:\CBroker\LIB\somojij.zip;D:\CBroker\lib\ivbtrutil
.jar;D:\CBroker\lib\ivbtrjrt.jar;D:\CBroker\lib\ivbtrc.jar;D:\CBroker\lib\ivbjdb
ug.jar;D:\CBroker\lib\ivbwin.jar;D:\CBroker\PARSER;D:\CBroker\LIB\IBMCBJS.ZIP;D:
\CBroker\LIB\somib01.zip;F:\Beans;D:\products\IBMVJava\Ide\program;D:\products\I
BMVJava\Eab\bin;d:\products\Cicscli\Java\JGate\classes;d:\products\jdk1.1.6\lib\
classes.zip;LIB\IBMCBJS.ZIP;LIB\IBMCBJS.ZIP;.;D:\CBroker\LIB\somshcl.zip;D:\CBro
ker\LIB\somshor.zip;;d:\products\jdk1.1.6\bin\..\classes;d:\products\jdk1.1.6\bi
n\..\lib\classes.zip;d:\products\jdk1.1.6\bin\..\lib\classes.jar;d:\products\jdk
1.1.6\bin\..\lib\rt.jar;d:\products\jdk1.1.6\bin\..\lib\i18n.jar, nativeStackSiz
e = 131072, java stack size= 409600, minHeapSize = 1048576, maxHeapSize = 167772
16, enableClassGC = 0, enableVerboseGC= 0
RawDataLen: 0
–––––––––––––––––––––––––––––-

SECURITY ERROR Message on Each PAA APPC Request
If your Component Broker server does not have security enabled, then the following
entry is written in the activity log whenever an APPC Connection is used. It means
that no user ID or password will be sent with the PAA APPC request to the tier-3
system. The tier-3 system should have security set up to allow this.

Chapter 16. Troubleshooting Component Broker Run-Time Problems 87

–––––––––––––––––––––––––––––-
ComponentId: 262252
ProcessId: 505
ThreadId: 447
FunctionName:
ISecurityLocalObjectBasePrivateImpl_Credentials_Impl::get_mapped_security_info(
const char*,const char*,const CORBA::Any&)
ProbeId: 772
SourceId: 1.40 src/objsvcs/security/authn/ISecurityCredentialsI.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: CashAcctEMSvr
clientHostName:
clientUserId:
TimeStamp: 10/30/98 12:10:31.126985568
UnitOfWork: 17481:littleapple.rchland.ibm.com
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage:
The function ISecurityLocalObjectBasePrivateImpl_Credentials_Impl::get_mapped_
security_info(const char*,const char*,const CORBA::Any&):772 reported an error.

ExtendedMessage: SECURITY ERROR: Security is not enabled for target CashAcctEMSvr.
RawDataLen: 0
–––––––––––––––––––––––––––––-

Investigating Communications Server Problems

Communications Server provides the following applications to help you diagnose
SNA communications problems:

v The Log Viewer application

v The Display SNA Sense Data application

v The Trace Facility application

Use these applications to perform these tasks:

v “Tracing Calls to the Communications Server” on page 89

v “Checking the Status and Configuration of the SNA Network” on page 91

v “Viewing Communications Server Messages” on page 95

v “Displaying Explanations of SNA Sense Data” on page 96

v Trace APPC Communications (page 61)

In addition, the local Component Broker application server and the remote tier-3
system may log explanatory messages when intersystem requests fail. For
information about communication messages recorded by the Component Broker
application server, see “Appendix H. APPC Messages” on page 263.

For an overview of CICS intersystem problem determination, see "Intersystem
Problem Determination" in the CICS Intercommunication Guide.

IBM Communications Server for Windows NT (System Administration Guide)
Introduction to SNA (System Administration Guide)
Connections to Tier-3 Systems (System Administration Guide)

88 Problem Determination Guide

“Troubleshooting APPC Problems” on page 77
Collect Information for Your SNA Configuration (System Administration Guide)
Configure Communications Server (System Administration Guide)
Configure an APPC Connection to a Tier-3 System for Use by Applications (System
Administration Guide)

Tracing Calls to the Communications Server

Use this procedure to trace calls made to Communications Server and the data that
is flowing on the SNA network. You control traces by using the Trace Facility
application provided with Communications Server. To trace calls made to
Communications Server, complete the following steps:

1. Start the Communications Server Trace Facility application, by one of the
following methods:

v Start - Programs - IBM Communications Server - Trace Facility

v From the Launch menu of the SNA Node Operations application.

This displays the main Trace Facility window, as shown in the following figure:

The Trace Facility Application

2. To trace the calls that an application server is making to Communications
Server, select the APPN and APPC function name. This displays a list of
components in the middle box.

Component Broker application servers use the APPC API calls for intersystem
requests and a few NOF API calls in the Local SNA listener calls when
receiving inbound intersystem requests.

3. Select either of the APPC API or NOF API components, to display trace options
that control the level of detail of trace to record, as shown in the following figure:

Selecting APPC Trace - Trace Inactive

4. When you have selected the trace option you require, click the Start button.

Chapter 16. Troubleshooting Component Broker Run-Time Problems 89

The start button changes to a Stop button and the message (active) is
displayed in the Title bar at the top of the window, as shown in the following
figure:

Selecting Connectivity Trace - Trace Active

5. Optionally, you can select additional components to trace as before, and
activate trace for those components by clicking the Apply button.

In the example above, connectivity trace is selected to trace the data flowing to
and from the local machine.

6. After you have run the request that you wished to trace, you should stop the
trace (by selecting the Stop button), save it (by selecting the Save button), and
format it (by selecting the Format button). You will be asked for a file name
where the formatted trace should be written, as follows:

Formatting the Trace

For more information about reading Communications Server traces, which requires
some knowledge of the SNA architecture, see the SNA library.

IBM Communications Server for Windows NT (System Administration Guide)
Introduction to SNA (System Administration Guide)
Connections to Tier-3 Systems (System Administration Guide)

“Appendix C. IBM Communication Server Trace Samples” on page 167

“Investigating Communications Server Problems” on page 88
Collect Information for Your SNA Configuration (System Administration Guide)
Configure Communications Server (System Administration Guide)
Configure an APPC Connection to a Tier-3 System for Use by Applications (System
Administration Guide)

90 Problem Determination Guide

Checking the Status and Configuration of the SNA Network

The Node Operations application (pcsnops.exe) is provided by IBM
Communications Server to check the status of the SNA network and to detect any
problems in the SNA configuration. It is used to:

v Start and Stop the Node (page 91) to view the SNA network.

v View Connections (page 92) to see which adjacent nodes are communicating
with the local node.

v View Local LUs (page 93) to check the configuration of your Component Broker
server’s SNA name.

v View Modes (page 94) to see which tier-3 partner systems are communicating
with your Component Broker server’s local LU and how many session are active.

v View Active Sessions (page 95).

The screen below highlights the general features of the Node Operations
application.

Starting and Stopping the SNA Node
When you start the Node Operations application (pcsnops.exe) from IBM
Communication Server when the SNA node is not running, the resulting window
looks like the example below. Select the button with the four green squares on it to
start the node. A dialog box then requests that you select the name of your SNA
configuration file and it uses these SNA definitions to start the node.

Chapter 16. Troubleshooting Component Broker Run-Time Problems 91

When the node is started, you can use the (white) pull-down menu to select the
type of information to display. To stop the node, press the button with the four red
squares on it and then select Yes. This will disconnect the machine from the SNA
network.

Note: it is also possible to start and stop the SNA node using the csstart and
csstop commands. These are useful if you wish to create scripts to automatically
control IBM Communication Server. The csstart command will activate the default
configuration if the node is currently stopped. If the node is already running, it does
nothing. The csstop command shuts down a running node. If the Node Operations
application is running when these commands are issued, you have to select
Refresh from the View pull-down menu to update the Node Operations information.

Viewing Connections
When you start to investigate why the Component Broker server cannot
communication with a tier-3 system, use the Node Operations application to view
Connections. The following window shows an active connection running. The state
is Active and sessions have started.

92 Problem Determination Guide

The next example is not so healthy as the state of the connection is Inactive -
Reset . To start the connection, select the connection name (LINKMIST in the
example) using a right mouse click. This displays a pop-up menu. Select Start . If
the connection switches to Pending and then Active after a minute or so, then all
is well. Re-run the PAA test and if it still fails, check the Modes (page 94). If the
connection switches to Pending and then hangs, check that the connection/link is
ready in the tier-3 system. If the connection switches to Pending and then back to
Reset then either the information in the connection definition is incorrect (usually
the network address) or SNA on the tier-3 system is not running.

If no connections are displayed by Node Operations, check that the SNA node is
started with a configuration file that contains the SNA connection definitions
(System Administration Guide) in it.

Viewing Local LUs
Use the Node Operations application to view Local LU 6.2 definitions and verify that
the definition for each of the local LU names defined in Component Broker APPC
Connections which is activated in the server is correct. Local LU names used by
Component Broker should not be defined in your SNA configuration. This should be
left to the Component Broker server when it first comes to use the local LU name.
Component Broker needs to define its local LU names with Syncpoint
Support=yes which is not possible to do using the node configuration application.

For example, the window below shows 4 local LUs.

Chapter 16. Troubleshooting Component Broker Run-Time Problems 93

The first local LU is always the Control Point (CP) name of the SNA node. This
should not be used by a Component Broker server. Of the remaining three local
LUs, IYA7T290 and IYALAIX5 have Syncpoint Support=yes so they were correctly
defined by a Component Broker Server. IYALAIX6, however, has Syncpoint
Support=no . If a Component Broker server attempts to use it, the following
message will appear in the activity log when the server first attempts to use the
local LU:
ComponentId: 262253
ProcessId: 538
ThreadId: 629
FunctionName: OTSAPPCLibraryNT::checkLocalLUName(OTSAPPCLUName*)
ProbeId: 847
SourceId: 1.6 src/objsvcs/transactions/ots_appc/otsalib_nt.cpp
Manufacturer: IBM
Product: Component Broker
Version: 2.0
SOMProcessType: 5
ServerName: myserver1
clientHostName:
clientUserId:
TimeStamp: 10/30/98 18:43:38.349913043
UnitOfWork: 29748:panda
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function OTSAPPCLibraryNT::checkLocalLUName(OTSAPPCLUName*):847
reported an activity.

ExtendedMessage: Local LU name 'GBIBMIYA.IYALAIX6' is defined in IBM Communication
Server with the syncpoint support disabled. Please delete this local LU name
from the Communication Server configuration and recycle (stop then start) the
SNA node using the Communication Server Node Operations application. Component
Broker will then define the local LU to Communication Server with the correct
settings when the local LU name is next referenced by the server.

Subsequent requests will get 0100/12000000 from an ALLOCATE request.

Viewing Modes
This panel allows you to see which tier-3 partner systems are communicating with
your application server’s local LU and how many sessions are active. It also
displays other characteristics of the sessions; for example, the current session limit
and synchronization level for the mode.

94 Problem Determination Guide

Viewing Active Sessions
The following panel shows individual sessions that are bound between all local LUs
and all partner LUs. You can unbind an individual session by selecting the session
ID using a right-mouse button click which displays a menu with two stop options:
normal and abnormal .

“Investigating Communications Server Problems” on page 88
“Tracing Calls to the Communications Server” on page 89
“Troubleshooting APPC Problems” on page 77
“Appendix F. SNA Data Formats” on page 207

Viewing Communications Server Messages

Use this procedure to view communications messages written by Communications
Server to the PCWMSG.MLG log file.

The PCWMSG.MLG log file is located in the directory that was created during the
install of Communications Server; by default, C:\Communications.

You can use the Log Viewer application provided with Communications Server to
view the messages in the PCWMSG.MLG log file.

To view the messages written by Communications Server, complete the following
steps:

1. Start the Log Viewer, by using one of the following methods:

Chapter 16. Troubleshooting Component Broker Run-Time Problems 95

v Click Start - Programs - IBM Communications Server - Log Viewer

v From the Launch menu of the SNA Node Operations application, click Log
Viewer .

This displays the main window of the Log Viewer, as shown in the following
figure. The messages are listed in the top part of the window, with some related
information in the lower part of the window.

The Log Viewer Application

2. Optionally, to display a complete description of the Log Viewer, click Help -
Using Log Viewer from the menu bar.

3. To display more information about a particular message number, complete the
following steps:

a. Select the message number in the top part of the main window. This
highlights the message number, and displays more information about that
message in the bottom part of the window.

b. If you double-click on the message number, a help window for the message
will be displayed.

4. The Communications Server messages often contain a SNA sense code in the
form of 0xnnnnnnnn; for example, 0x08570003. Optionally, to display a full
explanation of sense codes, use the Display SNA Sense Data Application
provided with Communications Server.

IBM Communications Server for Windows NT (System Administration Guide)
Introduction to SNA (System Administration Guide)
Connections to Tier-3 Systems (System Administration Guide)

“Displaying Explanations of SNA Sense Data”
“Investigating Communications Server Problems” on page 88
Collect Information for Your SNA Configuration (System Administration Guide)
Configure Communications Server (System Administration Guide)

Displaying Explanations of SNA Sense Data

The Communications Server messages often contain an SNA sense code in the
form of 0xnnnnnnnn; for example, 0x08570003. You can use the Display SNA
Sense Data Application provided with Communications Server to get a full
explanation of these sense codes.

96 Problem Determination Guide

To display a full explanation of an SNA sense code, complete the following steps:

1. Start the Display SNA Sense Data Application, by clicking Start - Programs -
IBM Communication Server - Display SNA Sense Data .

This displays the Display SNA Sense Data panel, as shown in the following
figure:

SNA Sense Data Panel

IBM Communications Server for Windows NT (System Administration Guide)
Introduction to SNA (System Administration Guide)
Connections to Tier-3 Systems (System Administration Guide)

“Investigating Communications Server Problems” on page 88

Checking the States of Resources in a CICS Region

The CICS Enhanced Master Terminal (CEMT) application allows you to query the
states of different resources in the CICS region. The following CEMT commands
are useful when investigating PAA APPC problems.

v CEMT INQUIRE TRANSACTION (page 97)

v CEMT INQUIRE PROGRAM (page 98)

v CEMT INQUIRE CONNECTION (page 98)

v CEMT INQUIRE MODE (page 100)

v CEMT INQUIRE TASK (page 100)

For more information about these commands, please see the documentation
supplied with your CICS system.

CEMT INQUIRE TRANSACTION
CEMT INQUIRE TRANSACTION is useful for verifying that the transaction program
name in the Component Broker APPC Connection exists on the tier-3 system.

The CEMT screen below shows the CICS transaction program names that begin
with the letter "B" which are available in the CICS region. The command used to
display this panel is CEMT I TRAN(B*) .

Chapter 16. Troubleshooting Component Broker Run-Time Problems 97

CEMT INQUIRE PROGRAM
The CEMT INQUIRE PROGRAM command is useful for verifying that the real
program pointed to by the transaction definition for the transaction program name in
the Component Broker APPC Connection exists on the tier-3 system.

The CEMT screen below shows the CICS programs that begin with the letters
"CICS" which are available in the CICS region. The command used to display this
panel is CEMT I PROG(CICS*).

CEMT INQUIRE CONNECTION
CEMT INQUIRE CONNECTION is useful for checking the state of connections to
other systems (including Component Broker application servers) that the CICS
region is communicating with.

The CEMT screen below shows the state of all connections to other systems that
the CICS region is communicating with. The command used to display this panel is
CEMT I CONN.

98 Problem Determination Guide

The table below describes the states for a connection:

Out Rel OutOfService Released
This connection is not available for use. Attempts to use this connection
will fail. To make the connection available, type ins over Out on the
CEMT connection entry and press Enter. You should see the connection
switch to Ins Rel .

Ins Rel InService Released
This connection is available for use but not currently connected to the
partner system. To start the connection, type acq over Rel. If the partner
system is running and the SNA definitions are correct, you should see
the connection switch to Ins Acq Xok .

Pen Ins Rel InService Released, incomplete transactions PENding
This connection is available for use but not currently connected to the
partner system. In addition, CICS has some transaction recovery work
to do when the connection is next started. To start the connection, type
acq over Rel. If the partner system is running and the SNA definitions
are correct, you should see the connection switch to Ins Acq Xok .

Ins Acq Xno InService Acquired, eXchange log names NOt successful
This usually means that the connection between CICS and the
Component Broker application server was started (Acquired) when the
application server was not running. Restart the application server, then
rerun CEMT I CONN to see if it switches the state to Ins Acq Xok . If it
does switch the state correctly, then try running a PAA APPC application
to activate the Component Broker APPC Connection. If the state still
has not changed, then look for error messages in the Component
Broker application server’s activity log and follow the instructions for any
APPC messages found. If no messages appear, it is likely that the CICS
region is connecting to a different LU name from that used by the
Component Broker application server (check the CEMT I CONN display
with the local LU name in the Component Broker APPC connection) or
the local LU name for the Component Broker application server is
defined in the SNA network as located on a different machine from
where your Component Broker application server is located.

Chapter 16. Troubleshooting Component Broker Run-Time Problems 99

Pen Ins Acq Xno InService Acquired, eXchange log names NOt successful,
incomplete transactions PENding
This usually means that the connection between CICS and the
Component Broker application server was started (Acquired) when the
Component Broker application server was not running. In addition, the
Pen status means there are incomplete transactions to recover when
the Component Broker application server comes up. In order for
recovery to be successful, the Component Broker application server
needs to use the same transaction log it used before. Restart the
Component Broker application server and monitor the messages written
to the activity log, looking for error messages concerning the recovery of
transactions. Follow the instructions for any APPC messages found.

Ins Acq Xok InService Acquired, eXchange log names OK
This connection is available and can be used for PAA APPC requests.

CEMT INQUIRE MODE
The CEMT INQUIRE MODE command is useful to view how many sessions are
active for a particular mode name. The number of active sessions determines the
number of concurrent APPC requests can run as each session can only run one
request at a time. The information displayed here can also be seen using the Node
Operations application as described in IBM Communication Server Node Operations
(page 94).

The CEMT screen below shows the SNA modes that are currently defined for each
connection to the CICS region. The command used to display this panel is CEMT I
MODE.

CEMT INQUIRE TASK
The CEMT INQUIRE TASK command is useful to view one or more CICS tasks that
are currently running in the CICS region.

The CEMT screen below shows all the CICS tasks that are currently running in the
CICS region. The command used to display this panel is CEMT I TASK .

100 Problem Determination Guide

“Troubleshooting APPC Problems” on page 77
“Appendix H. APPC Messages” on page 263

Troubleshooting Dr. Watson Errors

When a Dr. Watson window appears while running a Component Broker
application, generally means that some system code, or some code that the system
is dependent on, has taken a hard fault or crash. When this occurs, click ok in the
window. Proceed to the directory where Windows NT is installed (for example,
C:\WINNT) and capture the relevant entry or entries from the drwtsn32.log. You can
edit the file and search for pid= . A sample entry header looks like this:
Application exception occurred:
App: (pid=465)
When: 1/27/1998 @ 0:2:36.731
Exception number: c0000005 (access violation)

Refer to the Windows documentation for more information on what you can do
when you get a Dr. Watson error.

“Chapter 16. Troubleshooting Component Broker Run-Time Problems” on page 71

Chapter 16. Troubleshooting Component Broker Run-Time Problems 101

102 Problem Determination Guide

Chapter 17. Problem Determination Hints and Tips

When you encounter a Component Broker run-time error, you can follow some of
these hints and tips to help you quickly gather relevant data to diagnose the
problem. You can also consider implementing some of the Component Broker
settings that are described here because they may prevent some run-time errors
from occurring. The following hints and tips topics are covered:

v “Hints and Tips: Activity Log”

v “Merge cout Trace and ORB Communication Trace” on page 104

v “Use Standalone Servers” on page 105

v “Run-Time Environment Settings” on page 105

v “Preparation Before Each Test Run” on page 108

v “Running the Test” on page 109

Hints and Tips: Activity Log

In most problem determination situations, you would read the entries in the activity
log. It is, therefore, important to find ways to quickly pinpoint the log entries that
pertain to the problem that you are investigating. One way to do this is to reduce
the activity log to a more manageable size. Here are some ways to do that.

Set the Size of the Activity Log
Do not use Activate to start the servers. Start them one at a time. The size of the
activity.log file can be set above its default (1024K or 1 MB) as follows:

1. Go into the System Manager user interface under host images , right click on
the host image and select Edit .

2. Select the tab, Log File Controls , and change activity log maximum size to the
desired number of K bytes. You may want to use 15K for testing robustness and
50K for long runs. This applies to each host that has Component Broker
logging. Note : The activity log wraps after it is full.

Format and Erase Activity Logs: Smaller Activity Logs
Smaller activity logs may speed up your problem determination process. If the
run-time error can be reproduced by rerunning your application, consider performing
the following steps to create a set of smaller activity logs:

1. Format your last activity log into a file and save it. Delete the activity log.
Rerunning the application with a new activity log will minimize the extraneous
information in it.

2. Activate your configuration.

3. When the activation is complete, do a showlog to format the activity log to log1
and delete the activity log.

4. Run your test. After the test, do a showlog to format the activity log to log2.

You now have a set of smaller formatted activity logs to work with. For example, if
log2 shows that a client could not find a factory, log1 will show you why that factory
was not registered in lifecycle. You can also consider giving better file names for the
formatted activity logs, for example, you can specify the following showlog
command:
showlog activity.log -d > serverStartup.980808.firstrun.out

© Copyright IBM Corp. 1997, 1998 103

System Manager User Interface or showlog to Format the Activity Log
You get identical information when you use the System Manager user interface to
browse the activity log or use showlog (with -debug) to format the entries into an
output file. You cannot use the System Manager user interface to dump the
formatted contents of the activity log into an output file. You should run showlog on
the host that created the activity log.

To browse the activity log using the System Manager user interface, follow these
steps:

1. Expand the Host Images folder, expand the host image that you are interest in,
and then expand the Activity Log Image .

2. Right click on Latest and select Browse to view the activity log in a window.

“Chapter 2. Activity Log for Problem Determination” on page 3
“Reading the Activity Log” on page 6
“showlog Utility” on page 68

Merge cout Trace and ORB Communication Trace

You can perform more advanced debugging if you implement the cout tracing as
described in “Chapter 12. Tracing Function Calls in the Generated Code: XYZ
Trace” on page 51 together with the ORB Communications Trace. You may find it
useful to view the output from both traces in a single log. This way, you can, at the
same time, analyze the function calls and the GIOP packets that are sent by the
ORB. To get the merged output, direct the ORB Communications trace to the
console log.

You must start the server in a command window and follow these steps to capture
all the tracing information in the console log:

1. Make sure that the ORB Communications trace is not set for the server image.

a. Display the System Manager user interface, and set the user level to
Expert .

b. Expand your Host Images .

c. Expand the Server Images folder.

d. Left click on your server image to see if it is running. The status bar at the
bottom of the System Manager user interface displays the state (and health)
of the selected server.

e. If your server is running, right click on your server image and select Stop to
stop the server.

f. Right click on your server image and select Edit . This displays the Object
Editor for the Server Image.

g. In the Object Editor window, click the Component Trace tab.

h. If the ORB Communications trace level attribute value is not None , then
select None to disable the trace. Click Apply and OK to apply the change.

2. In a command window, run the server application as follows:

a. Set the environment variables:

v SOMCBENV=s:serverImageName

v HOSTNAME=fullyQualifiedHostName

v SOMDGETENV=1

104 Problem Determination Guide

v SOMDCOMDEBUGFLAG=257
This turns on the ORB Communications trace.

b. Run the server by typing:

somsrsm > outputFile

You will get all the trace information in a readable format interleaved in outputFile.

“Chapter 11. ORB Communication Trace” on page 41
“Chapter 12. Tracing Function Calls in the Generated Code: XYZ Trace” on page 51

Use Standalone Servers

There is no advantage to using server groups unless you plan to implement
Workload Management. Server group configuration is more complex than that of a
standalone server. If you have a server group and want to convert it to a standalone
server, do the following:

1. Go to the configuration, under Server Groups—>Servers , right click on the
server that you want to convert.

2. Select Convert to Free Standing . You will see the exact information and steps
required to do the conversion.

“Chapter 17. Problem Determination Hints and Tips” on page 103

Run-Time Environment Settings

You can change run-time environment settings in the image world. This is done
after each activation so you may not want to use Activate to start all the servers.
You can start servers one at a time and control the settings that are described here.

Log Sizes
The size of the activity log can be set to a number that is greater than its default
(1024K or 1 MB). See “Hints and Tips: Activity Log” on page 103 for instructions on
how to do this. You can use 15MB for testing robustness and 50MB for long runs.
This applies to each host that has Component Broker logging. The activity log
wraps after it is full.

Console Log
The cout or println output from your programs can be piped into a file (console log).
There is a console log for each server. To control this, you can use the System
Manager user interface to do the following:

1. Under server images , right click on the server image that you want to modify
and select Edit .

2. Tab to Log Controls and select Console Disposition to file .

3. Specify the name of the file for the console output. It will be written to a
directory named
%SOMCBASE%\service\server\servername. Even though each server has its
own directory, name the file something like servername.console.log so that later,
when all console logs are gathered into a specific place, console logs from
various servers will be distinguishable.

Chapter 17. Problem Determination Hints and Tips 105

4. After this change, the server will not start. It will have to be Enabled from the
server image to start.

DB2 Preparation
Go to the database server machine to make these modifications:

1. Setup the diagnostic log by going to the Control Center.

2. Under the instance name, right click and select Configure . From there, pick the
log Diagnostic tab. Under this tab, select Diagnostic error capture level and
All errors, warnings, and informational messages . Press Enter to make the
appropriate changes. You will be told to restart DB2.

DB2 Heap Size
You can use the DB2 Control Center to increase your application heap size (for
example, from 128 to 256) to eliminate the DB2 failure error that is caused by not
having enough storage in the application heap. Here are the steps that are needed
to configure the DB2 database from the Control Center:

1. Bring up the Control Center. On Windows NT select Start ->Programs -
>DB2 for Windows NT -> Administration Tools -> Control Center .

2. Find the Database that you want to reconfigure. Select Open up system name
-> Instances -> Node name -> Databases .

3. Select the Database Name and right click to select Configure . This brings up
the Configure Database GUI.

4. Click on the Performance tab.

5. In the performance tab there are different parameters that can be configured.
There are several different heap size entries and you can specify the Application
Heap Size.

You can also use the Performance Configuration SmartGuide to help you determine
the heap size. To invoke the SmartGuide, instead of clicking on Configure , choose
Configure performance .

Paging File Size
Consider increasing the paging file size (for example, to 400 or 500MB) to

reduce the possibility of server activation failures or poor system performance.

DNS IP Address
Verify if the DNS IP address is incorrectly set because it can cause DCE to be very
slow.

Timeouts on the Server Hosts
Most of the default timeout settings in the Component Broker are set up to enable
single-machine debugging. This section describes each of the relevant timeout
values and what criteria should be used in selecting the proper value in the context
of a multi-host environment.

The following descriptions focus on altering timeouts in the model world of Systems
Management. That means that an activation of the proper configuration must be
done for these timeouts to take effect. It also implies that additional Server Hosts
that are configured with servers will have similar timeouts. If timeout modifications
are only a tactical testing statement, the changes described below can all be made
in the image world as well.

There are three groups of major timeouts to consider on server hosts:

v Name Server Request Timeout (page 107)

106 Problem Determination Guide

v Application Server Request Timeout (page 107)

v Daemon Timeouts (page 107)

Name Server Request Timeout
Under the configuration being used, look for Name Servers . There should be a
Sample Name Server . This is probably the server model that is used when a name
server is created. Right click on this server to select Edit , and tab to the Orb tab.
The request timeout value (default 30) represents the amount of time that a Name
Server should wait when requesting something from a remote server before it times
out. Change this entry to a value between 180 and 300 seconds when working in a
multi-host environment. This value is seldom used because Name Servers seldom
make remote requests.

Application Server Request Timeout
Under Servers (free standing) or Server Groups , look for Servers (member of
group) . This is probably the server model that is used when an application server is
created. Right click on this to select Edit , and tab to the Orb tab. The request
timeout value (default 30) represents the amount of time that an Application Server
should wait when requesting something from a remote server before it times out.
Specify a value between 180 and 300 seconds when working in a multi-host
environment. This value can be used in multi-host, multi-server environments. If the
servers are configured on multiple hosts, then the network latency is part of this
value.

The sgcp server and sggw server may also be listed under the Server Group.
These are used if Workload management (WLM) support is being leveraged.
Although these servers only exist on one host in the Server Group, they do have a
request timeout. The request timeout value (default 30) represents the amount of
time that these servers should wait when requesting something from a remote
server before it times out. Specify a value between 180 and 300 seconds when
working in a multi-host environment. If the servers are configured on multiple hosts,
then the network latency is part of this value.

Note : The name server, sgcp server and sggw server are based on the same
process model and infrastructure code as application servers. That is why they are
similar.

Still under the configuration and under Client Styles , right click on the hostname
Default Client to select Edit . Select the Orb tab to see the request timeout value .
This represents the amount of time that this host, when it is used as a client (for
example, SOMCBENV=c:hostname Default Client), should wait for a request to a
server. This is only used if you are running from a command window on the server
host that has the proper environment setting. This is not used when servers call
other servers (described above). Set this value based on how long you are willing
to wait for a server to respond. Error handling in client programs and general client
application design must be considered when setting this value.

Daemon Timeouts
Under each Host Image, there is a folder entitled Daemon Images . This contains
the settings for the somorbd process which serves as the ORB daemon. The
Daemon Image has a request timeout and it should be set similar to the
application server settings. It also has a registration timeout which represents the
amount of time that the daemon should wait for a server that is being started by the
daemon, to register as being active and ready to accept work. A runOnRequest

Chapter 17. Problem Determination Hints and Tips 107

server that is activated by the daemon would have to start within this time period.
Specify a value between 180 and 300 seconds.

Timeouts on the Client Hosts
Managed clients have a Client Style and Agent Image and timeout values should
be set according to the guidelines described in this section. This applies to C++
clients in the Component Broker environment.

Timeout Synchronization and Interactions
If the request timeout is set to 30 seconds and a transactions timeout is set to 180,
then there are 150 seconds when resources might be locked and a retry might not
work. This assumes that a single server is involved. A request timeout of 90
seconds on a client and 30 seconds from server 1 to server 2 means something
different. The clock on the 90 second timeout runs throughout the request. The
clock on the server to server request timeout runs only while a server is making a
request on another server. There are some simple rules:

1. Of all the relevant request timeouts, the client request timeout should be the
largest and always exceed the total expected server request timeout time.

2. If a server talks to two other servers each with 60 second timeouts, then the
client request timeout should be at least 120 seconds and, more likely, at least
150 seconds to allow 30 seconds of actual work to be done on the first server
that it is talking to. The Name Server is the same (from the timeout perspective)
as any other application server.

PATH Setting for Java Applications
The JDK directory (for example, JDK1.1.6) should be in front of the PATH system
environment variable to avoid conflicts with other products that may contain Java
DLLs (such as Lotus products). These conflicts have been known to cause
segmentation faults when performing an activate in System Management.

If you need to manually modify the system PATH environment variable to move your
JDK directory, there is a known problem where the link between the system and
user PATHs gets broken. To get around this problem, you should link them back up
by putting %PATH% at the end of your user PATH variable.

“Preparation Before Each Test Run”
“Merge cout Trace and ORB Communication Trace” on page 104

Preparation Before Each Test Run

When you are testing your application, you should follow these steps prior to
running your application so that you will have better problem determination data
when you encounter an failure or error:

1. Clean the activity.log file. Go to the %SOMCBASE%/service directory and
remove the activity.log file.

2. Cleanup the Database Environment. If you are using DB2, go to a DB2
Command Prompt and do the following:

a. Ensure that for each database you get nothing when you enter list indoubt
transactions . If there are some entries in the list, use list indoubt
transactions with prompting to forget or roll back the transactions.

108 Problem Determination Guide

b. There should be no extra connections when you issue list applications . If
there are some entries in the list, force applications all to clean up the
connections.

c. There should be no suspicious locks when you issue get snapshot for
locks on the database name.

d. Clean up the database table that you are going to use to return it to the
proper state in terms of how many rows there are and what the test data
should be.

3. Cleanup the console logs. For each server, remove the console logs.

4. Remove the OTS Logs. These are usually located in the
%SOMCBASE%/data/otsLog directory.

“Run-Time Environment Settings” on page 105
“Running the Test”

Running the Test

During Startup
Start the servers in order and write down PID numbers and memory utilization
figures.

Getting the PIDs
It is always useful to have the processIDs of the servers that are involved in tests.
While this information appears in the logs, there is additional value in writing down
these numbers during the test run. You may want to refer to these processIDs when
you are reading the activity log. To get the processID, follow these steps:

1. In the System Manager user interface, go to the Host Images for the host and
then to the servers folder. Under the host image , expand the servers folder,
right click on the server and tab over to the Private tab.

2. Look at the process identifier for the processID.

This procedure works for all servers including sgcp, sggw, Name Servers, and
Application Servers.

Get Snapshots of the Activity Log
You can optionally get snapshots of the activity log. Sometimes it is easier to find
relevant entries if the log is in smaller chunks. If there is a recreatable problem,
erase the old activity log. After doing a successful startup, take a snapshot of the
activity log. To take a snapshot of the activity log, follow these steps:

1. Run the showlog command on the activity log.
cd %SOMCBASE%\service
showlog activity.log -d > serverStartup.980808.firstrun.out

2. Delete the activity.log file. A new activity log will be created with the next entry.
The activity log is not open so you can take a snapshot of it while the servers
are running.

Note : Console logs are open when servers are running. You have to stop the
servers before you can copy them to another directory.

Chapter 17. Problem Determination Hints and Tips 109

Monitor System Statistics
You may want to look at memory usage (virtual memory) of key processes by using
these commands:

1. somsrsm

2. somorbd

3. bgmain

If any of these displayed memory usage figures are growing after a test reaches
steady state, then there is a memory leak somewhere. The memory usage figures
should also reach a steady state during the course of an extended run. You can
also look at threads and handles on the tasks manager.

“Run-Time Environment Settings” on page 105
“Preparation Before Each Test Run” on page 108

110 Problem Determination Guide

Chapter 18. Report a Problem to IBM

Use the information in this topic to help you report a suspected problem to IBM.

Before reporting problems, please review the known restrictions in the Late
Breaking News. If the problem is not covered by the known restrictions, please
contact your IBM sponsor to communicate the problem to the Component Broker
development organization. Alternatively, you can submit a problem report directly
through the Component Broker main Web page (http://www.software.ibm.com/ad/cb)
by selecting the Support icon.

When preparing to report a problem, consider the information in the following topics,
which will help you gather the appropriate diagnostic information and package it.
This in turn, will help the support team to provide you with the appropriate service.

v Required Information (page 111)

v Package the Information (page 113)

Required Information
When preparing to report a problem, gather the information that is listed in this
topic. This information will help to diagnose the problem.

Note: This information assumes that you used the default values for the various
logs. If you modified these default values, please provide the corresponding files
and directories in the package.

v When you report a problem, the following information is helpful in problem
diagnosis.

– The environment variables

– The registry settings

– The C:\dbg.out file

– The x:\CBroker\service directory

– The x:\CBroker\data directory

– The DB2 diagnostic log

– The DCE logs (if the problem is DCE related)

– The Model Consistency Checker Output

– The problematic application

v When you report a problem, the following information is helpful in problem
diagnosis.

– The environment variables

– The smit.log file

– The /var/CBConnector/service directory

– The /var/CBConnector/data directory

– The DB2 diagnostic log

– The DCE logs (if the problem is DCE related)

– The Model Consistency Checker Output

– The problematic application

For more information, see the following descriptions:

© Copyright IBM Corp. 1997, 1998 111

Environment Variables
Open a Windows NT command window and get a copy of the environment
variables for your environment. To create this information, run the following
command:
set > setenv.out

This command places a copy of your current environment variables in the
setenv.out file.

Environment Variables
A copy of the environment variables are in the file CBConnector.profile. A
copy of this file is placed in the $HOME directory.

Registry Settings
Component Broker saves supporting information in the NT Registry. To
create a copy of this information from the NT Registry, do the following:

1. Type regedit on the command line to open the Registry Editor.

2. Expand HKEY_LOCAL_MACHINE—>SOFTWARE—>IBM folders to
select ComponentBroker Registry Key.

3. From the menu bar, select Registry—>Export Registry File .

4. Select the folder for the output file. Fill in the File name with
CBRegistry.out and click Save.

This places a copy of your NT Registry settings in the CBRegistry.out file.

dbg.out or smit.log
This file is created automatically for you during Component Broker
installation. It contains information pertaining to the various install and
uninstall steps. This file is cumulative of all Component Broker install and
uninstall (regardless of success).

Service Directory
This directory contains the activity log and subdirectories for any trace logs
that may have been generated. This directory with its subdirectories are
useful in problem diagnosis.

Data Directory
This directory and its subdirectories contain much of the required data for
the system management, transactions, and Interface Repository
components.

DB2 Diagnostic Log
This log helps to decipher DB2 related situations. This log is in your DB2
instance directory.

v The default location is x:\CBroker\sqllib\db2\db2diag.log.

v The default location is $HOME/sqllib/db2dump/db2diag.log.

DCE Logs
These logs help to resolve DCE related problems. The files include:

v %DCELOC%\dcelocal\dcestart.log

v The files in the DCE directory %DCELOC%\dcelocal\var\svc.

Model Consistency Checker
Run the Model Consistency Checker to report on the state of the model and
save the output. Turn on all the optional checking when running this
checker. For more information on how to do this, refer to "Check a Model
for Consistency" in the Application Development Tools Guide.

112 Problem Determination Guide

Problematic Application
If the problem goes beyond the basic Component Broker functions (that is,
the problem can only be re-created using the client application), it may be
useful to have a copy of this application package. The best way to provide
this information is to build a disk image. This install image should include
the DDL, DLL, shared library, executable, and bind files (as applicable).

Package the Information
If possible, zipping or compressing all of these files and directories into a single file
(or, at least a single file for each information item in the list) is the easiest method
of packaging this information. When sending this information to IBM, please provide
the tool and options used to create the zipped or compressed files.

“Chapter 1. Problem Determination Information” on page 1
“Chapter 2. Activity Log for Problem Determination” on page 3

Chapter 18. Report a Problem to IBM 113

114 Problem Determination Guide

Appendix A. Activity Log Samples

This appendix contains the activity log samples for “Reading the Activity Log” on
page 6. They include:

v “Activity Log Sample 1”

v “Activity Log Sample 2” on page 141

v “Activity Log Sample 3” on page 145

v “Activity Log Sample 4” on page 149

v “Activity Log Sample 5” on page 156

Activity Log Sample 1

This is the sample activity log for “Activity Log Sample 1: Server Does Not Start” on
page 8. Some text has been wrapped.
ComponentId: 102
ProcessId: 355
ThreadId: 404
FunctionName: SOM_CreateClass
ProbeId: 411
SourceId: 1.102 src/shasta/somrt/somrt.C
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.518456938
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function SOM_CreateClass:411 reported an activity.
ExtendedMessage: Class IQueryLocalObjectImpl::ParameterListBuilder already exists
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: SOMSRSMClass::run()
ProbeId: 2417
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.573342110
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function SOMSRSMClass::run():2417 reported an activity.
ExtendedMessage: Server fred Name Server is starting
RawDataLen: 0
–––––––––––––––––––––––––––––––-

© Copyright IBM Corp. 1997, 1998 115

ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: SOMSRSMClass::contextControlInit()
ProbeId: 2778
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.708997023
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function SOMSRSMClass::contextControlInit():2778 reported an
activity.

ExtendedMessage: Start ContextControl DLL Initialization
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: startSeqDll(const SOMString&,void*)
ProbeId: 1054
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.717757631
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function startSeqDll(const SOMString&,void*):1054 reported an
activity.

ExtendedMessage: Start DLL: somsmsri.dll Function: SOMInit Timeout: 120000
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: startSeqDll(const SOMString&,void*)
ProbeId: 1245
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.794630229
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function startSeqDll(const SOMString&,void*):1245 reported an
activity.

ExtendedMessage: End DLL: somsmsri.dll Function: SOMInit

116 Problem Determination Guide

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: startSeqDll(const SOMString&,void*)
ProbeId: 1054
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.803796475
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function startSeqDll(const SOMString&,void*):1054 reported an
activity.

ExtendedMessage: Start DLL: somrssri.dll Function: SOMInit Timeout: 60000
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: startSeqDll(const SOMString&,void*)
ProbeId: 1245
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.839203479
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function startSeqDll(const SOMString&,void*):1245 reported an
activity.

ExtendedMessage: End DLL: somrssri.dll Function: SOMInit
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: startSeqDll(const SOMString&,void*)
ProbeId: 1054
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.848279211
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function startSeqDll(const SOMString&,void*):1054 reported an

Appendix A. Activity Log Samples 117

activity.
ExtendedMessage: Start DLL: somscs1i.dll Function: sec_ctx_control_init Timeout: 60000
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: startSeqDll(const SOMString&,void*)
ProbeId: 1245
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.964275765
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function startSeqDll(const SOMString&,void*):1245 reported an
activity.

ExtendedMessage: End DLL: somscs1i.dll Function: sec_ctx_control_init
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: SOMSRSMClass::contextControlInit()
ProbeId: 2795
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.977575496
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function SOMSRSMClass::contextControlInit():2795 reported an
activity.

ExtendedMessage: End ContextControl DLL Initialization
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: SOMSRSMClass::initIM()
ProbeId: 2884
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:34.980611915
UnitOfWork:
Severity: 3
Category: 2

118 Problem Determination Guide

FormatWarning: 0
PrimaryMessage: The function SOMSRSMClass::initIM():2884 reported an activity.
ExtendedMessage: Start Instance Manager Initialization #1
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 355
ThreadId: 404
FunctionName: IBOIMSystemObject_IContainerImpl::processState()
ProbeId: 976
SourceId: 1.73 src/instancemgr/boim/server/IBOIMSystemObject_IContainerImpl_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:35.066616397
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function IBOIMSystemObject_IContainerImpl::processState():976
reported an activity.

ExtendedMessage: The state attribute of container 'BOIM Master Container' is changed.
The new value is 3. Value 1=absent, 2=exists, 3=created, 4=initialized, 5=changed,
6=dead,7=awaitingDisposal, 8=partiallyChanged, and 9=partiallyDestroyed. Other
values are possible.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: SOMSRSMClass::initIM()
ProbeId: 2903
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:35.072504015
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function SOMSRSMClass::initIM():2903 reported an
activity.

ExtendedMessage: End Instance Manager Initialization #1
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: SOMSRSMClass::initORB()
ProbeId: 2982
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:

Appendix A. Activity Log Samples 119

TimeStamp: 9/28/98 15:59:35.075451596
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function SOMSRSMClass::initORB():2982 reported an
activity.

ExtendedMessage: Start ORB Initialization
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:36.830530871
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:36.833896661
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5

120 Problem Determination Guide

ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:38.332923633
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:38.336298642
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:39.834734756
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM

Appendix A. Activity Log Samples 121

Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:39.837931251
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:41.336940623
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:41.340454755
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404

122 Problem Determination Guide

FunctionName:
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags)
ProbeId: 829
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:41.344517002
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags):829
reported an activity.

ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags) line 829.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:43.339797689
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:43.343165993
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.

Appendix A. Activity Log Samples 123

ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:44.841931479
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:44.845462374
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:46.344211098
UnitOfWork:

124 Problem Determination Guide

Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:46.349173459
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:47.846250183
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:

Appendix A. Activity Log Samples 125

clientUserId:
TimeStamp: 9/28/98 15:59:47.849612621
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName:
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags)
ProbeId: 829
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:47.853570106
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags):829
reported an activity.

ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags) line 829.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:49.849060316
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp

126 Problem Determination Guide

ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:49.852330563
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:51.351251097
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:51.354459325
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-

Appendix A. Activity Log Samples 127

ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:52.853443553
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:52.856646753
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:54.355628467
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned

128 Problem Determination Guide

error code 10061.
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:54.358821610
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName:
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags)
ProbeId: 829
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:54.362717076
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags):829
reported an activity.

ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags) line 829.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:

Appendix A. Activity Log Samples 129

clientUserId:
TimeStamp: 9/28/98 15:59:56.358513191
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:56.361708847
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:57.860646981
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3

130 Problem Determination Guide

SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:57.863848504
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:59.362812619
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:59:59.366001570
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067

Appendix A. Activity Log Samples 131

SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:00.864984961
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:00.868238446
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName:
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags)
ProbeId: 829
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:00.872165760
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags):829
reported an activity.

ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at

132 Problem Determination Guide

CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags) line 829.
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:02.867856275
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:02.871060313
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206

(SOMDERROR_CannotConnect) at transip.cpp line 1067.
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:04.370048732
UnitOfWork:
Severity: 1
Category: 2

Appendix A. Activity Log Samples 133

FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:04.373413684
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:05.872174141
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900
returned error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:05.875327055

134 Problem Determination Guide

UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:07.374361569
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:07.377531245
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName:
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags)
ProbeId: 829
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3

Appendix A. Activity Log Samples 135

SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:07.381414140
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags):829
reported an activity.

ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags)
line 829.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:09.377245454
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:09.380522406
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316

136 Problem Determination Guide

ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:10.879364159
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:10.882600882
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:12.381562482
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

Appendix A. Activity Log Samples 137

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:12.384741377
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:13.883664425
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage: Operating System call 'connect' : 9.5.73.52, 900 returned
error code 10061.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName: transip.cpp
ProbeId: 1067
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:13.886824882
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0

138 Problem Determination Guide

PrimaryMessage: The function transip.cpp:1067 reported an activity.
ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at transip.cpp line 1067.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName:
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags)

ProbeId: 829
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:13.892388995
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags):829
reported an activity.

ExtendedMessage:
A SystemException occurred: COMM_FAILURE, minor code 1229062206
(SOMDERROR_CannotConnect) at
CORBA::Request::Request(CORBA::Object_ORBProxy_ptr,char*,CORBA::Flags) line 829.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404
FunctionName:
CallStreamMgr::start_all_listening(::ImplementationDef&,Waitpoint&,Queue&,
unsigned char)

ProbeId: 886
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:13.896327204
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
CallStreamMgr::start_all_listening(::ImplementationDef&,Waitpoint&,Queue&,unsigned
char):886 reported an activity.

ExtendedMessage:
A SystemException occurred: INITIALIZE, minor code 1229062222
(SOMDERROR_SOMDDNotRunning) at
CallStreamMgr::start_all_listening(::ImplementationDef&,Waitpoint&,Queue&,unsigned char)
line 886.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 393316
ProcessId: 355
ThreadId: 404

Appendix A. Activity Log Samples 139

FunctionName:
CORBA::BOA::initialize_impl(CORBA::ImplementationDef*,CORBA::Boolean)
ProbeId: 1956
SourceId: 1.20 src/orb/src/somd/somderr.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:13.899942746
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
CORBA::BOA::initialize_impl(CORBA::ImplementationDef*,CORBA::Boolean):1956
reported an activity.

ExtendedMessage:
A SystemException occurred: INITIALIZE, minor code 1229062222
(SOMDERROR_SOMDDNotRunning) at
CORBA::BOA::initialize_impl(CORBA::ImplementationDef*,CORBA::Boolean) line 1956.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: SOMSRSMClass::initORB()
ProbeId: 3049
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:13.932630132
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function SOMSRSMClass::initORB():3049 reported an activity.
ExtendedMessage: Location Service Daemon is not started
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: main(int,char**)
ProbeId: 98
SourceId: 1.13 src/sr/somsrsm.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:13.935781369
UnitOfWork:
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function main(int,char**):98 reported an activity.
ExtendedMessage: Server fred Name Server failed

140 Problem Determination Guide

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 355
ThreadId: 404
FunctionName: SOMSRSMClass::xSOMSRSMClass()
ProbeId: 2358
SourceId: 1.63.1.7 src/sr/somsrsmc.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: fred Name Server
clientHostName:
clientUserId:
TimeStamp: 9/28/98 16:00:14.004066845
UnitOfWork:
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function SOMSRSMClass::xSOMSRSMClass():2358 reported an
activity.

ExtendedMessage: Server fred Name Server is stopped
RawDataLen: 0
73 records found and printed.
–––––––––––––––––––––––––––––––-

“Reading the Activity Log” on page 6

Activity Log Sample 2

This is the sample activity log for “Activity Log Sample 2: Client Application
Receives an Expected Error” on page 8. Some text has been wrapped.
ComponentId: 131175
ProcessId: 475
ThreadId: 366
FunctionName: IBOIMExtLocalToServer_IDataObjectBase_Impl::retrieveFromDataStore()
ProbeId: 415 SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtLocalToServer_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:05.177520520
UnitOfWork: 12455:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtLocalToServer_IDataObjectBase_Impl::retrieveFromDataStore():415
reraised CORBA exception IBOIMException::IDataKeyNotFound.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 475
ThreadId: 366
FunctionName: IBOIMLocalToServer_IMMixinBase::internalMixinRetrieveFromDatastore()
ProbeId: 3892
SourceId: 1.105 src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinBase_I.cpp

Appendix A. Activity Log Samples 141

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:05.203674116
UnitOfWork: 12455:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinBase::internalMixinRetrieveFromDatastore():3892
received CORBA exception IBOIMException::IDataKeyNotFound and raised CORBA
exception IManagedClient::INoObjectWKey.

ExtendedMessage: The Data Object 'retrieveFromDataStore()' method raised a
CORBA exception, IBOIMException::IDataKeyNotFound. The exception is mapped
to IManagedClient::INoObjectWKey.

RawDataLen: 0
–––––––––––––––––––––––––––––––
ComponentId: 131175
ProcessId: 475
ThreadId: 366
FunctionName: IBOIMLocalToServer_IMMixinBase::internalMixinRefreshFromDatastore()
ProbeId: 2820
SourceId: 1.105 src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinBase_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:05.207259487
UnitOfWork: 12455:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinBase::internalMixinRefreshFromDatastore():2820
reraised CORBA exception IManagedClient::INoObjectWKey.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 475
ThreadId: 366
FunctionName: IBOIMLocalToServer_IMMixinBase::restorePersistentData()
ProbeId: 2042
SourceId: 1.105 src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinBase_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:05.210035258
UnitOfWork: 12455:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinBase::restorePersistentData():2042
reraised CORBA exception IManagedClient::INoObjectWKey.

ExtendedMessage:

142 Problem Determination Guide

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 475
ThreadId: 366
FunctionName: IBOIMLocalToServer_IMMixinTransactionalBase::restorePersistentData()
ProbeId: 1129
SourceId: 1.66
src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinTransactionalBase_I.cpp

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:05.212795106
UnitOfWork: 12455:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinTransactionalBase::restorePersistentData():1129
reraised CORBA exception IManagedClient::INoObjectWKey.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 475
ThreadId: 366
FunctionName:
IBOIMLocalToServer_IMMixinTransactionalBase::synchronizeWithBackingStore()

ProbeId: 668
SourceId: 1.66
src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinTransactionalBase_I.cpp

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:05.215638762
UnitOfWork: 12455:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinTransactionalBase::synchronizeWithBackingStore():668
reraised CORBA exception IManagedClient::INoObjectWKey.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 475
ThreadId: 366
FunctionName: IBOIMExtSystemObject_IHome_Impl::assembleManagedObject(const
ByteString*,IBOIMExt::DataObjectState,CORBA::Boolean,CORBA::Boolean,
IBOIMExtLocalToServer::IDataObject*,CORBA::Boolean,CORBA::Boolean,
IHomeTransactionHelper*)

ProbeId: 7819
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv

Appendix A. Activity Log Samples 143

clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:05.218501695
UnitOfWork: 12455:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::assembleManagedObject(const
ByteString*,IBOIMExt::DataObjectState,CORBA::Boolean,CORBA::Boolean,
IBOIMExtLocalToServer::IDataObject*,CORBA::Boolean,CORBA::Boolean,
IHomeTransactionHelper*):7819
reraised CORBA exception IManagedClient::INoObjectWKey.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 475
ThreadId: 366
FunctionName: IBOIMExtSystemObject_IHome_Impl::findGivenPrimaryKey
(IManagedLocal::IPrimaryKey_ptr,const ByteString&)

ProbeId: 5835
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:05.223648437
UnitOfWork: 12455:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::findGivenPrimaryKey
(IManagedLocal::IPrimaryKey_ptr,const ByteString&):5835
reraised CORBA exception IManagedClient::INoObjectWKey.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 475
ThreadId: 366
FunctionName: IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&)
ProbeId: 5643
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:05.226974837
UnitOfWork: 12455:fred
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&):5643
reported an activity.

ExtendedMessage: The Home 'Home for making Policy objects.' reported an error:
The Home could not find the Managed Object.
The Managed Object creation function was: 'PolicyEmSQLMO_create'.
The managedObjectDllName was 'PolicyDB2.dll'. The

144 Problem Determination Guide

dataObjectCreateFunctionName was 'PolicyEmSQLDOImpl_create',
the dataObjectDllName was 'PolicyDB2.dll'. The Primary
keyCreateFunctionName was: 'PolicyKey_create'. The Primary
keyDllName was 'PolicyC.dll'. Its Key was:

RawDataLen: 12
RawData:
0000 02 01 00 01 52 03 00 00 - A4 09 00 00R.......
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 475
ThreadId: 366
FunctionName:
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&)

ProbeId: 5649
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:05.230031370
UnitOfWork: 12455:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&):5649
reraised CORBA exception IManagedClient::INoObjectWKey.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-

“Reading the Activity Log” on page 6

Activity Log Sample 3

This is the sample activity log for “Activity Log Sample 3: Client Application
Receives an Error And Server Dies” on page 9. Some text has been wrapped.
–––––––––––––––––––––––––––––––-
ComponentId: 104
ProcessId: 475
ThreadId: 366
FunctionName: handleSignal(int,int,CONTEXT*)
ProbeId: 608
SourceId: 1.29 src/ras/src/raswinex.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:12.701712974
UnitOfWork: 7319:fred
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function handleSignal(int,int,CONTEXT*):608 reported an error.
ExtendedMessage: A system error was detected - 40 SEG-VIOLATION (OS signal nbr: 2).
Intel context flags:

Appendix A. Activity Log Samples 145

i386/486 CONTROL INTEGER SEGMENT FULL FLOAT-POINT DEBUG-REG
Intel segment registers:
Gs:00000000 Fs:0000003b Es:00000023 Ds:00000023 Ss:00000023 Cs:0000001b
Intel GP registers:
Edi:05d74740 Esi:022559af Ebx:05d74740 Edx:000009a4 Ecx:00000000
Eax:00000000 Ebp:02ebf42c Eip:05a261fa Esp:02ebf3fc
Error occurred at (Eip):05a261fa, in source file:PolicyS.dll
Call stack unwind: base pointer (return address - DLL/EXE name)
02ebf42c (05819120 - PolicyDB2.dll)
02ebf48c (058E9054 - PolicyC.dll)
02ebf4c4 (058E998A - PolicyC.dll)
2ebf584 (059D5190 - PolicyS.dll)
02ebf5d0 (6B6859E7 - somorori.dll)
02ebf828 (6B6857F8 - somorori.dll)
02ebfc0c (6EACDCE5 - somsrsai.dll)
02ebfd80 (6EACFB5D - somsrsai.dll)
02ebff54 (504419F7 - cppobi36.dll)
02ebffa4 (5043F663 - cppobi36.dll)
02ebffb8 (77F04F2C - KERNEL32.dll)
Module list: size (load address) date-linked-GMT => DLL/EXE name
512000 (00240000) 1998/04/18 04:27:22 GMT => c:\IBMCPPW\BIN\CPPWM35I.dll
19456 (00360000) 1998/09/09 10:46:19 GMT => e:\e9836.01.lite\lib.nt\teceifi.dll
289280 (00400000) 1998/09/09 11:22:59 GMT => e:\e9836.01.lite\bin.nt\somsrsm.exe
4605952 (004C0000) 1998/09/22 19:17:03 GMT => e:\e9836.01.lite\lib.nt\somibe1i.dll
5027328 (009B0000) 1998/09/16 18:47:26 GMT => e:\e9836.01.lite\lib.nt\somibs1i.dll
57856 (02490000) 1998/04/18 04:17:07 GMT => C:\IBMCPPW\LOCALE\iconv\UCSTBL.dll
16896 (030C0000) 1998/09/09 09:06:58 GMT =>
e:\e9836.01.lite\lib.nt\EN_US\somscl1i.dll
980992 (03350000) 1997/08/16 12:53:48 GMT => C:\SQLLIB\BIN\DB2APP.dll
1257472 (03450000) 1997/08/16 12:53:43 GMT => C:\SQLLIB\BIN\DB2SYS.dll
14848 (03590000) 1997/08/16 12:53:51 GMT => C:\SQLLIB\BIN\DB2WINT.dll
32768 (035A0000) 1997/08/16 12:53:44 GMT => C:\SQLLIB\BIN\DB2SYSP.dll
102400 (035B0000) 1997/08/16 12:53:37 GMT => C:\SQLLIB\BIN\DB2ABIND.dll
17920 (035D0000) 1997/08/16 12:55:59 GMT => C:\SQLLIB\BIN\DB2CAPRO.dll
37648 (03A10000) 1997/04/22 23:50:00 GMT => C:\WINNT\System32\rnr20.dll
67072 (04A00000) 1997/04/25 23:13:52 GMT => C:\WINNT\System32\odbcint.dll
230672 (04A50000) 1997/04/25 23:13:44 GMT => C:\WINNT\System32\ODBC32.dll
4096 (04BA0000) 1998/09/09 10:09:57 GMT => e:\e9836.01.lite\lib.nt\db2slf.dll
893952 (057A0000) 1998/09/09 11:08:23 GMT => e:\e9836.01.lite\lib.nt\PolicyDB2.dll
326656 (058D0000) 1998/09/09 10:54:30 GMT => e:\e9836.01.lite\lib.nt\PolicyC.dll
2835456 (05980000) 1998/09/28 15:20:32 GMT => e:\e9836.01.lite\lib.nt\PolicyS.dll
1972224 (05F00000) 1998/09/09 11:21:11 GMT => e:\e9836.01.lite\lib.nt\JPolicyS.dll
414208 (06160000) 1998/04/16 11:05:48 GMT =>
e:\e9836.01.lite\tools\nt\java\bin\javai.dll
46080 (08670000) 1998/04/16 11:39:15 GMT =>
e:\e9836.01.lite\tools\nt\java\bin\zip.dll
3240256 (10000000) 1998/01/16 22:10:53 GMT => C:\DCE\dcelocal\bin\libdce.dll
193024 (1C000000) 1998/01/12 19:34:43 GMT => C:\DCE\dcelocal\bin\pthreads.dll
162816 (28100000) 1997/09/15 15:58:32 GMT => e:\e9836.01.lite\lib.nt\setloc1.dll
519680 (50000000) 1997/09/15 18:00:13 GMT => c:\IBMCPPW\BIN\CPPWOB3I.dll
1283072 (50400000) 1997/11/05 22:05:46 GMT =>
e:\e9836.01.lite\tools\nt\ioc.t\bin\cppobi36.dll
2023424 (51000000) 1997/09/15 18:01:28 GMT => c:\IBMCPPW\BIN\CPPWOU3I.dll
13584 (5F810000) 1997/04/28 21:57:58 GMT => C:\WINNT\System32\rpcltc1.dll
313344 (68000000) 1998/09/09 13:02:41 GMT => e:\e9836.01.lite\lib.nt\somcscdi.dll
188416 (680E0000) 1998/09/09 13:02:41 GMT => e:\e9836.01.lite\lib.nt\somcscsi.dll
7168 (68170000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcsdli.dll
32768 (681F0000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcsmmi.dll
104960 (683C0000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcssni.dll
19968 (68460000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcssti.dll
6656 (68500000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcsthi.dll
14336 (68580000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcsuii.dll
794112 (68620000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somdc01i.dll
127488 (68760000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somdc02i.dll
396800 (688D0000) 1998/09/09 13:02:43 GMT => e:\e9836.01.lite\lib.nt\somdt00i.dll
24064 (68CD0000) 1998/09/09 13:02:45 GMT => e:\e9836.01.lite\lib.nt\somi2a1i.dll
289280 (68D60000) 1998/09/09 13:02:45 GMT => e:\e9836.01.lite\lib.nt\somi2s1i.dll

146 Problem Determination Guide

3622400 (68E10000) 1998/09/09 13:02:45 GMT => e:\e9836.01.lite\lib.nt\somiba1i.dll
210944 (691F0000) 1998/09/09 13:02:47 GMT => e:\e9836.01.lite\lib.nt\somibb1i.dll
855552 (69410000) 1998/09/09 13:02:48 GMT => e:\e9836.01.lite\lib.nt\somibi1i.dll
166400 (69530000) 1998/09/09 13:02:48 GMT => e:\e9836.01.lite\lib.nt\somibl1i.dll
373760 (695C0000) 1998/09/09 13:02:48 GMT => e:\e9836.01.lite\lib.nt\somibp1i.dll
175104 (69900000) 1998/09/09 13:02:49 GMT => e:\e9836.01.lite\lib.nt\somida1i.dll
58368 (699A0000) 1998/09/09 13:02:49 GMT => e:\e9836.01.lite\lib.nt\somide1i.dll
256512 (69A30000) 1998/09/09 13:02:49 GMT => e:\e9836.01.lite\lib.nt\somids1i.dll
659456 (69AF0000) 1998/09/09 13:02:49 GMT => e:\e9836.01.lite\lib.nt\somima1i.dll
50176 (69BF0000) 1998/09/09 13:02:50 GMT => e:\e9836.01.lite\lib.nt\somimb1i.dll
73728 (69C80000) 1998/09/09 13:02:50 GMT => e:\e9836.01.lite\lib.nt\somims1i.dll
510976 (6A1A0000) 1998/09/09 13:02:50 GMT => e:\e9836.01.lite\lib.nt\somira1i.dll
195584 (6A280000) 1998/09/09 13:02:50 GMT => e:\e9836.01.lite\lib.nt\somirs1i.dll
57344 (6A310000) 1998/09/09 13:02:51 GMT => e:\e9836.01.lite\lib.nt\somiym1i.dll
2354176 (6A3A0000) 1998/09/09 13:02:51 GMT => e:\e9836.01.lite\lib.nt\somlcm1i.dll
790528 (6A650000) 1998/09/09 13:02:52 GMT => e:\e9836.01.lite\lib.nt\somloc1i.dll
3214336 (6AF70000) 1998/09/09 13:02:56 GMT => e:\e9836.01.lite\lib.nt\somoq01i.dll
45568 (6B310000) 1998/09/09 13:02:58 GMT => e:\e9836.01.lite\lib.nt\somorbti.dll
182272 (6B3A0000) 1998/09/09 13:02:58 GMT => e:\e9836.01.lite\lib.nt\somorcdi.dll
693248 (6B4D0000) 1998/09/09 13:02:58 GMT => e:\e9836.01.lite\lib.nt\somoriri.dll
1086976 (6B660000) 1998/09/09 13:02:59 GMT => e:\e9836.01.lite\lib.nt\somorori.dll
173568 (6B9E0000) 1998/09/09 13:03:00 GMT => e:\e9836.01.lite\lib.nt\somorpti.dll
24064 (6BA90000) 1998/09/09 13:03:00 GMT => e:\e9836.01.lite\lib.nt\somorssi.dll
6035456 (6BB30000) 1998/09/09 13:03:00 GMT => e:\e9836.01.lite\lib.nt\somosb1i.dll
2080768 (6C150000) 1998/09/09 13:03:01 GMT => e:\e9836.01.lite\lib.nt\somosc1i.dll
1216512 (6C3C0000) 1998/09/09 13:03:02 GMT => e:\e9836.01.lite\lib.nt\sompmcii.dll
9728 (6C550000) 1998/09/09 13:03:02 GMT => e:\e9836.01.lite\lib.nt\sompmg1i.dll
1097216 (6C5F0000) 1998/09/09 13:03:02 GMT => e:\e9836.01.lite\lib.nt\sompmsii.dll
393216 (6CF10000) 1998/09/09 13:03:05 GMT => e:\e9836.01.lite\lib.nt\somrsbsi.dll
25088 (6D0F0000) 1998/09/09 13:03:06 GMT => e:\e9836.01.lite\lib.nt\somrsori.dll
125440 (6D180000) 1998/09/09 13:03:06 GMT => e:\e9836.01.lite\lib.nt\somrssri.dll
1385984 (6D440000) 1998/09/09 13:03:07 GMT => e:\e9836.01.lite\lib.nt\somscs1i.dll
638976 (6D600000) 1998/09/09 13:03:08 GMT => e:\e9836.01.lite\lib.nt\somsgcli.dll
709120 (6DAA0000) 1998/09/09 13:03:09 GMT => e:\e9836.01.lite\lib.nt\somsgtsi.dll
48640 (6DBD0000) 1998/09/09 13:03:09 GMT => e:\e9836.01.lite\lib.nt\somsh.dll
115200 (6DCC0000) 1998/09/09 13:03:09 GMT => e:\e9836.01.lite\lib.nt\somshcb.dll
99840 (6DD70000) 1998/09/09 13:03:09 GMT => e:\e9836.01.lite\lib.nt\somshcpi.dll
91648 (6DE00000) 1998/09/09 13:03:10 GMT => e:\e9836.01.lite\lib.nt\somshori.dll
20992 (6E290000) 1998/09/09 13:03:10 GMT => e:\e9836.01.lite\lib.nt\somsmdei.dll
160768 (6E4B0000) 1998/09/09 13:03:11 GMT => e:\e9836.01.lite\lib.nt\somsmfni.dll
101376 (6E790000) 1998/09/09 13:03:11 GMT => e:\e9836.01.lite\lib.nt\somsmoii.dll
52736 (6EA20000) 1998/09/09 13:03:12 GMT => e:\e9836.01.lite\lib.nt\somsmsri.dll
965632 (6EA90000) 1998/09/09 13:03:12 GMT => e:\e9836.01.lite\lib.nt\somsrsai.dll
671744 (6EBE0000) 1998/09/09 13:03:12 GMT => e:\e9836.01.lite\lib.nt\somsrssi.dll
2754560 (6EDA0000) 1998/09/09 13:03:13 GMT => e:\e9836.01.lite\lib.nt\somsss1i.dll
516096 (6F2F0000) 1998/09/09 13:03:17 GMT => e:\e9836.01.lite\lib.nt\somtrm1i.dll
2202112 (6F3F0000) 1998/09/09 13:03:17 GMT => e:\e9836.01.lite\lib.nt\somtrs1i.dll
2886144 (6F670000) 1998/09/09 13:03:18 GMT => e:\e9836.01.lite\lib.nt\somtrt1i.dll
427520 (6F9A0000) 1998/09/09 13:03:20 GMT => e:\e9836.01.lite\lib.nt\somtrx1i.dll
297984 (74C00000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\skit.dll
484352 (74C60000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\x509cms.dll
62976 (74CF0000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\soedber.dll
34816 (74D10000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\soedapi.dll
13312 (74D50000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\ossdmem.dll
12288 (74D60000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\ossapi.dll
28160 (74D70000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\nspcommon.dll
18432 (74E00000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\cstrain.dll
5120 (74E30000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\cmskfra.dll
1566208 (74E50000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\cms.dll
12288 (74FE0000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\cmpval.dll
13824 (74FF0000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\berreal.dll
44304 (77660000) 1997/04/17 22:34:19 GMT => C:\WINNT\system32\msafd.dll
18704 (77690000) 1997/03/28 01:58:49 GMT => C:\WINNT\System32\wshtcpip.dll
8464 (776A0000) 1997/01/02 19:54:11 GMT => C:\WINNT\System32\WS2HELP.dll
59664 (776B0000) 1997/04/03 01:10:00 GMT => C:\WINNT\System32\WS2_32.dll
20240 (776D0000) 1996/07/26 19:19:24 GMT => C:\WINNT\System32\WSOCK32.dll
41744 (777E0000) 1997/04/22 23:50:01 GMT => C:\WINNT\System32\SAMLIB.dll

Appendix A. Activity Log Samples 147

224528 (77800000) 1997/04/25 19:33:39 GMT => C:\WINNT\System32\NETAPI32.dll
17168 (77840000) 1996/07/26 19:19:23 GMT => C:\WINNT\System32\NETRAP.dll
12560 (779C0000) 1996/07/26 19:19:21 GMT => C:\WINNT\system32\LZ32.dll
65024 (779D0000) 1996/07/26 19:19:21 GMT => C:\WINNT\System32\MSVCRT40.dll
36112 (77A90000) 1996/07/26 19:19:20 GMT => C:\WINNT\system32\VERSION.dll
704272 (77B20000) 1997/04/25 19:33:41 GMT => C:\WINNT\system32\ole32.dll
310032 (77BF0000) 1997/04/25 19:33:18 GMT => C:\WINNT\system32\COMCTL32.dll
1277200 (77C40000) 1997/04/25 19:33:49 GMT => C:\WINNT\system32\SHELL32.dll
185104 (77D80000) 1997/04/25 19:33:18 GMT => C:\WINNT\system32\comdlg32.dll
246544 (77DC0000) 1997/04/11 23:24:11 GMT => C:\WINNT\system32\ADVAPI32.dll
317200 (77E10000) 1997/04/28 21:57:58 GMT => C:\WINNT\system32\RPCRT4.dll
330512 (77E70000) 1997/04/25 19:33:52 GMT => C:\WINNT\system32\USER32.dll
165648 (77ED0000) 1997/04/25 19:33:25 GMT => C:\WINNT\system32\GDI32.dll
372496 (77F00000) 1997/04/25 19:33:31 GMT => C:\WINNT\system32\KERNEL32.dll
355088 (77F60000) 1997/04/11 20:38:50 GMT => C:\WINNT\System32\ntdll.dll
149264 (77FD0000) 1996/07/17 18:15:07 GMT => C:\WINNT\System32\WINMM.dll
271632 (78000000) 1997/01/23 07:07:13 GMT => C:\WINNT\system32\MSVCRT.dll
70656 (780A0000) 1997/01/23 05:27:47 GMT => C:\WINNT\System32\MSVCIRT.dll
Storage dump:
02EBF40C AA AA AA AA 40 AD AD 05 - AA AA AA AA AA AA AA AA@...........
02EBF41C 00 00 00 00 DC FF FF FF - 84 F4 EB 02 90 D0 A8 05
02EBF42C 8C F4 EB 02 20 91 81 05 - 0C 4C D7 05 AF 59 25 02L...Y%.
02EBF43C 3B 01 92 05 F0 34 87 05 - 02 00 00 00 38 F4 EB 02 ;....4......8...
02EBF44C DC BA 86 05 50 9D EE 05 - 30 42 85 05 00 00 00 00P...0B......
02EBF45C E0 FF FF FF D0 B5 D1 05 - 0C 4C D7 05 6E 01 00 00L..n...
02EBF46C A7 D7 F3 6C D0 B5 D1 05 - 01 9F EE 05 F0 64 D7 05 ...l.........d..
02EBF47C D0 4A D7 05 B8 FF FF FF - BC F4 EB 02 90 D0 82 05 .J..............
02EBF48C C4 F4 EB 02 54 90 8E 05 - 94 86 EE 05 3B 01 92 05T.......;...
02EBF49C 01 00 00 00 A4 10 92 05 - E4 15 92 05 50 A8 F1 6EP..n
02EBF4AC 84 F5 EB 02 9C C9 67 6B - B0 48 D7 05 D8 FF FF FFgk.H......
02EBF4BC 7C F5 EB 02 40 B1 90 05 - 84 F5 EB 02 8A 99 8E 05 |...@...........
02EBF4CC B0 9C EE 05 94 86 EE 05 - F8 86 EE 05 30 68 25 020h%.
02EBF4DC 0C 00 00 00 D0 F4 EB 02 - 84 0F 92 05 00 00 FD 00
02EBF4EC 20 00 00 00 E0 30 3F 00 - 00 00 00 00 00 00 FD 000?.........
02EBF4FC F8 9C EE 05 48 F5 EB 02 - 49 1C 25 00 F0 30 3F 00H...I.%..0?.
02EBF50C 00 6B 79 05 78 66 79 05 - 20 F8 EB 02 F0 30 3F 00 .ky.xfy.0?.
02EBF51C 6B 16 41 50 40 00 00 00 - 34 72 52 50 00 00 00 00 k.AP@...4rRP....
–- END OF EXCEPTION DATA –-
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 475
ThreadId: 366
FunctionName: SOMSR_ContinueDispatchCallbackObject::wrapExecute(void*)
ProbeId: 419
SourceId: 1.20.1.3 src/sr/somsrcb.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:12.725450342
UnitOfWork: 7319:fred
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
SOMSR_ContinueDispatchCallbackObject::wrapExecute(void*):419 raised CORBA exception
CORBA::UNKNOWN, error code is 0x4942009C SRThreadManagerUnknownError.

ExtendedMessage: An IException object was received. The exception name is
SOMRASOperatingSystemException, the errorId is 40, and recoverable is 0.
The exception text stack follows:
40 SEG-VIOLATION
The exception location stack follows:

RawDataLen: 0

148 Problem Determination Guide

–––––––––––––––––––––––––––––––-
ComponentId: 103
ProcessId: 475
ThreadId: 366
FunctionName:
SOMSR_ContinueDispatchCallbackObject::dumpTargetInfo(void*)
ProbeId: 301
SourceId: 1.20.1.3 src/sr/somsrcb.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 14:46:12.729104436
UnitOfWork: 7319:fred
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
SOMSR_ContinueDispatchCallbackObject::dumpTargetInfo(void*):301 reported an
activity.

ExtendedMessage: SRThreadManagerUnknownError: additional information ->
–>Method Name: addBeneficiary
–>Target classname: PolicyEmSQLMO
–>Target type_id: IDL:PolicyEmSQLMO:1.0
–>Target refcount: 1

RawDataLen: 0
–––––––––––––––––––––––––––––––-

“Reading the Activity Log” on page 6

Activity Log Sample 4

This is the sample activity log for “Activity Log Sample 4: Client Application
Receives an Error” on page 10. Some text has been wrapped.
ComponentId: 262253
ProcessId: 179
ThreadId: 216
FunctionName: OTSXAConnection::traceXAResult(char*,int,OTSXAXId*,int)
ProbeId: 1778
SourceId: 1.7 src/objsvcs/transactions/xa/otsxacnn.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.192994192
UnitOfWork: 25214:fed
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
OTSXAConnection::traceXAResult(char*,int,OTSXAXId*,int):1778 reported an
activity.

ExtendedMessage: Attempt in server testsrv to open a
connection to the XA Resource Manager database POLICY2 failed with return
code XAER_RMERR.

RawDataLen: 0

Appendix A. Activity Log Samples 149

–––––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 179
ThreadId: 216
FunctionName:
OTSXAConnection::OTSXAConnection(OTSXADatabase*,CORBA::ULong)

ProbeId: 212
SourceId: 1.7 src/objsvcs/transactions/xa/otsxacnn.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.196270306
UnitOfWork: 25214:fed
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
OTSXAConnection::OTSXAConnection(OTSXADatabase*,CORBA::ULong):212
raised CORBA exception CORBA::INTERNAL, error code is 0x494202F0
SOMTRRAS::Minor_unexpectedRetCode.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 179
ThreadId: 216
FunctionName: OTSXAContext::connectdB(CORBA::ULong)
ProbeId: 247
SourceId: 1.3 src/objsvcs/transactions/xa/otsxactx.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.227013311
UnitOfWork: 25214:fed
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function OTSXAContext::connectdB(CORBA::ULong):247
raised CORBA exception CORBA::INTERNAL, error code is 0x494202EF
SOMTRRAS::Minor_unexpectedException.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––
ComponentId: 131178
ProcessId: 179
ThreadId: 216
FunctionName: IDB2AALocalToServer_DB2Context::connectdB()
ProbeId: 335
SourceId: 1.5
src/instancemgr/db2aa/server/IDB2AALocalToServer_DB2ContextImpl_I.cpp

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.267224276
UnitOfWork: 25214:fed

150 Problem Determination Guide

Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IDB2AALocalToServer_DB2Context::connectdB():335 reported an activity.

ExtendedMessage: connect method failed when invoked on the OTSXAContext.
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131178
ProcessId: 179
ThreadId: 216
FunctionName:
IDB2AALocalToServer_DB2ContextControl::connect(CORBA::ULong)

ProbeId: 927
SourceId: 1.11
src/instancemgr/db2aa/server/IDB2AALocalToServer_DB2ContextControlImpl_I.cpp

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.281208731
UnitOfWork: 25214:fed
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IDB2AALocalToServer_DB2ContextControl::connect(CORBA::ULong):927
reported an activity.

ExtendedMessage: beginXA or connectdB method failed when invoked on the
IDB2AALocalToServer_DB2Context.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131178
ProcessId: 179
ThreadId: 216
FunctionName:
IDB2AALocalToServer_DB2ContextControl::connect(CORBA::ULong)

ProbeId: 988
SourceId: 1.11
src/instancemgr/db2aa/server/IDB2AALocalToServer_DB2ContextControlImpl_I.cpp

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.284357455
UnitOfWork: 25214:fed
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IDB2AALocalToServer_DB2ContextControl::connect(CORBA::ULong):988 reported
an activity.

ExtendedMessage: connect method failed when invoked on the
IDB2AALocalToServer_DB2ContextControl.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131178
ProcessId: 179
ThreadId: 216
FunctionName: IDB2AALocalToServer_IDB2ConnectionMgr_Impl::connect(CORBA::ULong)
ProbeId: 55

Appendix A. Activity Log Samples 151

SourceId: 1.1
src/instancemgr/db2aa/server/IDB2AALocalToServer_DB2ConnectionMgrImpl_I.cpp

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.293382901
UnitOfWork: 25214:fed
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IDB2AALocalToServer_IDB2ConnectionMgr_Impl::connect(CORBA::ULong):55
raised CORBA exception IRDBIMLocalToServer::IXAConnectionFailed, error
code is 0x0 0.

ExtendedMessage: connect method failed when invoked on the
IDB2AALocalToServer_IDB2ConnectionMgr_Impl.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131176
ProcessId: 179
ThreadId: 216
FunctionName: IRDBIMExtLocalToServer_IDataObject_Impl::connect()
ProbeId: 367
SourceId: 1.3
src/instancemgr/rdbim/extendable/IRDBIMExtLocalToServer_I.cpp

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.296704272
UnitOfWork: 25214:fed
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IRDBIMExtLocalToServer_IDataObject_Impl::connect():367 reraised CORBA exception
IRDBIMLocalToServer::IXAConnectionFailed.
ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131176
ProcessId: 179
ThreadId: 216
FunctionName: IRDBIMExtLocalToServer_IDataObject_Impl::retrieveFromDataStore()
ProbeId: 215
SourceId: 1.3
src/instancemgr/rdbim/extendable/IRDBIMExtLocalToServer_I.cpp

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.299620843
UnitOfWork: 25214:fed
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function

152 Problem Determination Guide

IRDBIMExtLocalToServer_IDataObject_Impl::retrieveFromDataStore():215
reraised CORBA exception IRDBIMLocalToServer::IXAConnectionFailed.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 179
ThreadId: 216
FunctionName:
IBOIMLocalToServer_IMMixinBase::internalMixinRetrieveFromDatastore()

ProbeId: 3898
SourceId: 1.105
src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinBase_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.326380381
UnitOfWork: 25214:fed
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinBase::internalMixinRetrieveFromDatastore():3898
received CORBA exception IRDBIMLocalToServer::IXAConnectionFailed and raised
CORBA exception CORBA::UNKNOWN.

ExtendedMessage: The Data Object 'retrieveFromDataStore()' method raised
a CORBA exception, IRDBIMLocalToServer::IXAConnectionFailed. The exception is
mapped to CORBA::UNKNOWN.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 179
ThreadId: 216
FunctionName:
IBOIMLocalToServer_IMMixinBase::internalMixinRefreshFromDatastore()

ProbeId: 2820
SourceId: 1.105
src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinBase_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.330106552
UnitOfWork: 25214:fed
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinBase::internalMixinRefreshFromDatastore():2820
reraised CORBA exception CORBA::UNKNOWN.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 179
ThreadId: 216
FunctionName: IBOIMLocalToServer_IMMixinBase::restorePersistentData()
ProbeId: 2042
SourceId: 1.105
src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinBase_I.cpp

Appendix A. Activity Log Samples 153

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.333009714
UnitOfWork: 25214:fed
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinBase::restorePersistentData():2042 reraised CORBA
exception CORBA::UNKNOWN.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 179
ThreadId: 216
FunctionName:
IBOIMLocalToServer_IMMixinTransactionalBase::restorePersistentData()

ProbeId: 1133
SourceId: 1.66
src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinTransactionalBase_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.335789675
UnitOfWork: 25214:fed
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinTransactionalBase::restorePersistentData():1133
reraised CORBA exception CORBA::UNKNOWN.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 179
ThreadId: 216
FunctionName:
IBOIMLocalToServer_IMMixinTransactionalBase::synchronizeWithBackingStore()

ProbeId: 668
SourceId: 1.66
src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinTransactionalBase_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.339541827
UnitOfWork: 25214:fed
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinTransactionalBase::synchronizeWithBackingStore():668
reraised CORBA exception CORBA::UNKNOWN.

154 Problem Determination Guide

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 179
ThreadId: 216
FunctionName:
IBOIMExtSystemObject_IHome_Impl::assembleManagedObject(const
ByteString*,IBOIMExt::DataObjectState,CORBA::Boolean,CORBA::Boolean,
IBOIMExtLocalToServer::IDataObject*,
CORBA::Boolean,CORBA::Boolean,IHomeTransactionHelper*)

ProbeId: 7847
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.342558970
UnitOfWork: 25214:fed
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::assembleManagedObject(const
ByteString*,IBOIMExt::DataObjectState,CORBA::Boolean,CORBA::Boolean,
IBOIMExtLocalToServer::IDataObject*,CORBA::Boolean,CORBA::Boolean,
IHomeTransactionHelper*):7847 reraised CORBA exception CORBA::UNKNOWN.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 179
ThreadId: 216
FunctionName:
IBOIMExtSystemObject_IHome_Impl::findGivenPrimaryKey
(IManagedLocal::IPrimaryKey_ptr,const ByteString&)

ProbeId: 5849
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.348621750
UnitOfWork: 25214:fed
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::findGivenPrimaryKey
(IManagedLocal::IPrimaryKey_ptr,const ByteString&):5849
reraised CORBA exception CORBA::UNKNOWN.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 179
ThreadId: 216
FunctionName:
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&)
ProbeId: 5643
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp

Appendix A. Activity Log Samples 155

Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.351970778
UnitOfWork: 25214:fed
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&):5643
reported an activity.

ExtendedMessage: The Home 'Home for making Policy objects.' reported an
error: The Home could not find the Managed Object. The Managed Object creation
function was: 'PolicyEmSQLMO_create'. The managedObjectDllName was
'PolicyDB2.dll'. The dataObjectCreateFunctionName was 'PolicyEmSQLDOImpl_create',
the dataObjectDllName was 'PolicyDB2.dll'. The Primary keyCreateFunctionName was:
'PolicyKey_create'. The Primary keyDllName was 'PolicyC.dll'. Its Key was:

RawDataLen: 12
RawData:
0000 02 01 00 01 52 03 00 00 - A4 09 00 00R.......
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 179
ThreadId: 216
FunctionName:
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&)
ProbeId: 5662
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/29/98 12:48:02.355266168
UnitOfWork: 25214:fed
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&):5662
reraised CORBA exception CORBA::UNKNOWN.

ExtendedMessage:
RawDataLen: 0
102 records found and printed.
–––––––––––––––––––––––––––––––-

“Reading the Activity Log” on page 6

Activity Log Sample 5

This is the sample activity log for “Activity Log Sample 5: Client Application
Receives an Error” on page 10. Some text has been wrapped.
ComponentId: 131175
ProcessId: 384
ThreadId: 380
FunctionName:

156 Problem Determination Guide

IBOIMLocalToServer_IMMixinTransactionalBase::internalMixinGetTransactionCoordinator()
ProbeId: 958
SourceId: 1.66
src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinTransactionalBase_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:27:14.661163269
UnitOfWork: 11475:fred
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinTransactionalBase
::internalMixinGetTransactionCoordinator():958
raised CORBA exception CORBA::TRANSACTION_REQUIRED, error code is 0x0 0.

ExtendedMessage: The before() method processing
failed when it could not get a Control Transaction Object from the
Transaction Service. This can mean there was no transactional context
on the thread.

RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 384
ThreadId: 380
FunctionName:
IBOIMLocalToServer_IMMixinTransactionalBase::restorePersistentData()

ProbeId: 1031
SourceId: 1.66
src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinTransactionalBase_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:27:14.664751154
UnitOfWork: 11475:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinTransactionalBase::restorePersistentData():1031
reraised CORBA exception CORBA::TRANSACTION_REQUIRED.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 384
ThreadId: 380
FunctionName:
IBOIMLocalToServer_IMMixinTransactionalBase::synchronizeWithBackingStore()
ProbeId: 668
SourceId: 1.66
src/instancemgr/boim/server/IBOIMLocalToServer_IMMixinTransactionalBase_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:

Appendix A. Activity Log Samples 157

TimeStamp: 9/28/98 15:27:14.667901553
UnitOfWork: 11475:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMLocalToServer_IMMixinTransactionalBase
::synchronizeWithBackingStore():668 reraised
CORBA exception CORBA::TRANSACTION_REQUIRED.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 384
ThreadId: 380
FunctionName:
IBOIMExtSystemObject_IHome_Impl::assembleManagedObject(const
ByteString*,IBOIMExt::DataObjectState,CORBA::Boolean,CORBA::Boolean,
IBOIMExtLocalToServer::IDataObject*,CORBA::Boolean,
CORBA::Boolean,IHomeTransactionHelper*)

ProbeId: 7847
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:27:14.670765324
UnitOfWork: 11475:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::assembleManagedObject(const
ByteString*,IBOIMExt::DataObjectState,CORBA::Boolean,CORBA::Boolean,
IBOIMExtLocalToServer::IDataObject*,CORBA::Boolean,CORBA::Boolean,
IHomeTransactionHelper*):7847
reraised CORBA exception CORBA::TRANSACTION_REQUIRED.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 384
ThreadId: 380
FunctionName:
IBOIMExtSystemObject_IHome_Impl::findGivenPrimaryKey
(IManagedLocal::IPrimaryKey_ptr,const ByteString&)

ProbeId: 5849
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:27:14.765196015
UnitOfWork: 11475:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::findGivenPrimaryKey
(IManagedLocal::IPrimaryKey_ptr,const ByteString&):5849
reraised CORBA exception CORBA::TRANSACTION_REQUIRED.

158 Problem Determination Guide

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 384
ThreadId: 380
FunctionName:
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&)
ProbeId: 5643
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:27:14.769326148
UnitOfWork: 11475:fred
Severity: 1
Category: 2
FormatWarning: 0
PrimaryMessage: The function
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&):5643
reported an activity.

ExtendedMessage: The Home 'Home for making Policy objects.' reported an
error: The Home could not find the Managed Object. The Managed Object creation
function was: 'PolicyEmSQLMO_create'. The managedObjectDllName was 'PolicyDB2.dll'.
The dataObjectCreateFunctionName was 'PolicyEmSQLDOImpl_create', the
dataObjectDllName was 'PolicyDB2.dll'. The Primary keyCreateFunctionName was:
'PolicyKey_create'. The Primary keyDllName was 'PolicyC.dll'. Its Key was:

RawDataLen: 12
RawData:
0000 02 01 00 01 52 03 00 00 - A4 09 00 00R.......
–––––––––––––––––––––––––––––––-
ComponentId: 131175
ProcessId: 384
ThreadId: 380
FunctionName:
IBOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString(const ByteString&)

ProbeId: 5662
SourceId: 1.4 src/instancemgr/boim/extendable/IBOIMExtSystemObject_I.cpp
Manufacturer: IBM
Product: Component Broker
Version: 1.3
SOMProcessType: 5
ServerName: testsrv
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:27:14.773905499
UnitOfWork: 11475:fred
Severity: 3
Category: 2
FormatWarning: 0
PrimaryMessage: The function BOIMExtSystemObject_IHome_Impl::findByPrimaryKeyString
(const ByteString&):5662 reraised CORBA exception CORBA::TRANSACTION_REQUIRED.

ExtendedMessage:
RawDataLen: 0
–––––––––––––––––––––––––––––––-
ComponentId: 262253
ProcessId: 408
ThreadId: 472
FunctionName: ICurrent_Impl::rollback()
ProbeId: 1268
SourceId: 1.15 src/objsvcs/transactions/ots/icurrent_I.cpp
Manufacturer: IBM
Product: Component Broker

Appendix A. Activity Log Samples 159

Version: 1.3
SOMProcessType: 1
ServerName:
clientHostName:
clientUserId:
TimeStamp: 9/28/98 15:27:15.017074843
UnitOfWork: 1734:fred
Severity: 2
Category: 2
FormatWarning: 0
PrimaryMessage: The function ICurrent_Impl::rollback():1268 raised CORBA
exception CosTransactions::NoTransaction, error code is 0x494202F9
SOMTRRAS::Minor_noTransaction.

ExtendedMessage:
RawDataLen: 0
11 records found and printed.
–––––––––––––––––––––––––––––––-

“Reading the Activity Log” on page 6

160 Problem Determination Guide

Appendix B. HandleSignal Log Entry and Map File

This section contains the samples used in “HandleSignal - General Page Fault
(GPF) Exception” on page 11. They include:

v “Activity Log Showing General Page Fault Exception”

v “HandleSignal - Compilation Map File Example” on page 164

Activity Log Showing General Page Fault Exception

The following activity log is used in the discussion of “HandleSignal - General Page
Fault (GPF) Exception” on page 11.
ComponentId:104
ComponentId:104
ProcessId:387
ThreadId:426
FunctionName:handleSignal(int,int,CONTEXT*)
ProbeId:608
SourceId:1.29 src/ras/src/raswinex.cpp
Manufacturer:IBM
Product:Component Broker
Version:1.3
SOMProcessType: 5
ServerName:testsrv
clientHostName:
clientUserId:
TimeStamp:9/28/98 11:23:35.288653520
UnitOfWork:3089:kewegner
Severity:1
Category:2
FormatWarning: 0
PrimaryMessage:The function handleSignal(int,int,CONTEXT*):608 reported
an error.
ExtendedMessage: A system error was detected - 40 SEG-VIOLATION (OS
signal nbr: 2).
Intel context flags:
i386/486 CONTROL INTEGER SEGMENT FULL FLOAT-POINT DEBUG-REG
Intel segment registers:
Gs:00000000 Fs:0000003b Es:00000023 Ds:00000023 Ss:00000023 Cs:0000001b
Intel GP registers:
Edi:068250f0 Esi:0225240f Ebx:068250f0 Edx:000009a4 Ecx:00000000
Eax:00000000 Ebp:02dbf42c Eip:064d61fa Esp:02dbf3fc
Error occurred at (Eip) :064d61fa, in source file: PolicyS.dll
Call stack unwind: base pointer (return address - DLL/EXE name)
02dbf42c (062C9120 - PolicyDB2.dll)
02dbf48c (06399054 - PolicyC.dll)
02dbf4c4 (0639998A - PolicyC.dll)
02dbf584 (06485190 - PolicyS.dll)
02dbf5d0 (6B6859E7 - somorori.dll)
02dbf828 (6B6857F8 - somorori.dll)
02dbfc0c (6EACDCE5 - somsrsai.dll)
02dbfd80 (6EACFB5D - somsrsai.dll)
02dbff54 (504419F7 - cppobi36.dll)
02dbffa4 (5043F663 - cppobi36.dll)
02dbffb8 (77F04F2C - KERNEL32.dll)
Module list: size (load address) date-linked-GMT => DLL/EXE name
512000 (00240000) 1998/04/18 04:27:22 GMT => c:\IBMCPPW\BIN\CPPWM35I.dll
19456 (00360000) 1998/09/09 10:46:19 GMT => e:\e9836.01.lite\lib.nt\teceifi.dll
289280 (00400000) 1998/09/09 11:22:59 GMT => e:\e9836.01.lite\bin.nt\somsrsm.exe
4605952 (004C0000) 1998/09/22 19:17:03 GMT => e:\e9836.01.lite\lib.nt\somibe1i.dll
5027328 (009B0000) 1998/09/16 18:47:26 GMT => e:\e9836.01.lite\lib.nt\somibs1i.dll

© Copyright IBM Corp. 1997, 1998 161

57856 (02490000) 1998/04/18 04:17:07 GMT => C:\IBMCPPW\LOCALE\iconv\UCSTBL.dll
16896 (030C0000) 1998/09/09 09:06:58 GMT => e:\e9836.01.lite\lib.nt\EN_US\somscl1i.dll
980992 (03350000) 1997/08/16 12:53:48 GMT => C:\SQLLIB\BIN\DB2APP.dll
1257472 (03450000) 1997/08/16 12:53:43 GMT => C:\SQLLIB\BIN\DB2SYS.dll
14848 (03590000) 1997/08/16 12:53:51 GMT => C:\SQLLIB\BIN\DB2WINT.dll
32768 (035A0000) 1997/08/16 12:53:44 GMT => C:\SQLLIB\BIN\DB2SYSP.dll
102400 (035B0000) 1997/08/16 12:53:37 GMT => C:\SQLLIB\BIN\DB2ABIND.dll
17920 (035D0000) 1997/08/16 12:55:59 GMT => C:\SQLLIB\BIN\DB2CAPRO.dll
37648 (03A10000) 1997/04/22 23:50:00 GMT => C:\WINNT\System32\rnr20.dll
34064 (04360000) 1997/04/25 19:33:47 GMT => C:\WINNT\System32\RpcLtScm.Dll
37648 (04670000) 1997/04/17 22:34:28 GMT => C:\WINNT\System32\RpcLtCcm.Dll
67072 (04A00000) 1997/04/25 23:13:52 GMT => C:\WINNT\System32\odbcint.dll
230672 (04A50000) 1997/04/25 23:13:44 GMT => C:\WINNT\System32\ODBC32.dll
4096 (05340000) 1998/09/09 10:09:57 GMT => e:\e9836.01.lite\lib.nt\db2slf.dll
893952 (06250000) 1998/09/09 11:08:23 GMT => e:\e9836.01.lite\lib.nt\PolicyDB2.dll
326656 (06380000) 1998/09/09 10:54:30 GMT => e:\e9836.01.lite\lib.nt\PolicyC.dll
2835456 (06430000) 1998/09/28 15:20:32 GMT => e:\e9836.01.lite\lib.nt\PolicyS.dll
1972224 (069B0000) 1998/09/09 11:21:11 GMT => e:\e9836.01.lite\lib.nt\JPolicyS.dll
414208 (06C10000) 1998/04/16 11:05:48 GMT => e:\e9836.01.lite\tools\nt\java\bin\javai.dll
46080 (09120000) 1998/04/16 11:39:15 GMT => e:\e9836.01.lite\tools\nt\java\bin\zip.dll
3240256 (10000000) 1998/01/16 22:10:53 GMT => C:\DCE\dcelocal\bin\libdce.dll
193024 (1C000000) 1998/01/12 19:34:43 GMT => C:\DCE\dcelocal\bin\pthreads.dll
162816 (28100000) 1997/09/15 15:58:32 GMT => e:\e9836.01.lite\lib.nt\setloc1.dll
519680 (50000000) 1997/09/15 18:00:13 GMT => c:\IBMCPPW\BIN\CPPWOB3I.dll
1283072 (50400000) 1997/11/05 22:05:46 GMT => e:\e9836.01.lite\tools\nt\ioc.t\bin\cppobi36.dll
2023424 (51000000) 1997/09/15 18:01:28 GMT => c:\IBMCPPW\BIN\CPPWOU3I.dll
13584 (5F810000) 1997/04/28 21:57:58 GMT => C:\WINNT\System32\rpcltc1.dll
313344 (68000000) 1998/09/09 13:02:41 GMT => e:\e9836.01.lite\lib.nt\somcscdi.dll
188416 (680E0000) 1998/09/09 13:02:41 GMT => e:\e9836.01.lite\lib.nt\somcscsi.dll
7168 (68170000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcsdli.dll
32768 (681F0000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcsmmi.dll
104960 (683C0000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcssni.dll
19968 (68460000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcssti.dll
6656 (68500000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcsthi.dll
14336 (68580000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somcsuii.dll
794112 (68620000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somdc01i.dll
127488 (68760000) 1998/09/09 13:02:42 GMT => e:\e9836.01.lite\lib.nt\somdc02i.dll
396800 (688D0000) 1998/09/09 13:02:43 GMT => e:\e9836.01.lite\lib.nt\somdt00i.dll
24064 (68CD0000) 1998/09/09 13:02:45 GMT => e:\e9836.01.lite\lib.nt\somi2a1i.dll
289280 (68D60000) 1998/09/09 13:02:45 GMT => e:\e9836.01.lite\lib.nt\somi2s1i.dll
3622400 (68E10000) 1998/09/09 13:02:45 GMT => e:\e9836.01.lite\lib.nt\somiba1i.dll
210944 (691F0000) 1998/09/09 13:02:47 GMT => e:\e9836.01.lite\lib.nt\somibb1i.dll
855552 (69410000) 1998/09/09 13:02:48 GMT => e:\e9836.01.lite\lib.nt\somibi1i.dll
166400 (69530000) 1998/09/09 13:02:48 GMT => e:\e9836.01.lite\lib.nt\somibl1i.dll
373760 (695C0000) 1998/09/09 13:02:48 GMT => e:\e9836.01.lite\lib.nt\somibp1i.dll
175104 (69900000) 1998/09/09 13:02:49 GMT => e:\e9836.01.lite\lib.nt\somida1i.dll
58368 (699A0000) 1998/09/09 13:02:49 GMT => e:\e9836.01.lite\lib.nt\somide1i.dll
256512 (69A30000) 1998/09/09 13:02:49 GMT => e:\e9836.01.lite\lib.nt\somids1i.dll
659456 (69AF0000) 1998/09/09 13:02:49 GMT => e:\e9836.01.lite\lib.nt\somima1i.dll
50176 (69BF0000) 1998/09/09 13:02:50 GMT => e:\e9836.01.lite\lib.nt\somimb1i.dll
73728 (69C80000) 1998/09/09 13:02:50 GMT => e:\e9836.01.lite\lib.nt\somims1i.dll
510976 (6A1A0000) 1998/09/09 13:02:50 GMT => e:\e9836.01.lite\lib.nt\somira1i.dll
195584 (6A280000) 1998/09/09 13:02:50 GMT => e:\e9836.01.lite\lib.nt\somirs1i.dll
57344 (6A310000) 1998/09/09 13:02:51 GMT => e:\e9836.01.lite\lib.nt\somiym1i.dll
2354176 (6A3A0000) 1998/09/09 13:02:51 GMT => e:\e9836.01.lite\lib.nt\somlcm1i.dll
790528 (6A650000) 1998/09/09 13:02:52 GMT => e:\e9836.01.lite\lib.nt\somloc1i.dll
3214336 (6AF70000) 1998/09/09 13:02:56 GMT => e:\e9836.01.lite\lib.nt\somoq01i.dll
45568 (6B310000) 1998/09/09 13:02:58 GMT => e:\e9836.01.lite\lib.nt\somorbti.dll
182272 (6B3A0000) 1998/09/09 13:02:58 GMT => e:\e9836.01.lite\lib.nt\somorcdi.dll
693248 (6B4D0000) 1998/09/09 13:02:58 GMT => e:\e9836.01.lite\lib.nt\somoriri.dll
1086976 (6B660000) 1998/09/09 13:02:59 GMT => e:\e9836.01.lite\lib.nt\somorori.dll
173568 (6B9E0000) 1998/09/09 13:03:00 GMT => e:\e9836.01.lite\lib.nt\somorpti.dll
24064 (6BA90000) 1998/09/09 13:03:00 GMT => e:\e9836.01.lite\lib.nt\somorssi.dll
6035456 (6BB30000) 1998/09/09 13:03:00 GMT => e:\e9836.01.lite\lib.nt\somosb1i.dll
2080768 (6C150000) 1998/09/09 13:03:01 GMT => e:\e9836.01.lite\lib.nt\somosc1i.dll
1216512 (6C3C0000) 1998/09/09 13:03:02 GMT => e:\e9836.01.lite\lib.nt\sompmcii.dll
9728 (6C550000) 1998/09/09 13:03:02 GMT => e:\e9836.01.lite\lib.nt\sompmg1i.dll

162 Problem Determination Guide

1097216 (6C5F0000) 1998/09/09 13:03:02 GMT => e:\e9836.01.lite\lib.nt\sompmsii.dll
393216 (6CF10000) 1998/09/09 13:03:05 GMT => e:\e9836.01.lite\lib.nt\somrsbsi.dll
25088 (6D0F0000) 1998/09/09 13:03:06 GMT => e:\e9836.01.lite\lib.nt\somrsori.dll
125440 (6D180000) 1998/09/09 13:03:06 GMT => e:\e9836.01.lite\lib.nt\somrssri.dll
1385984 (6D440000) 1998/09/09 13:03:07 GMT => e:\e9836.01.lite\lib.nt\somscs1i.dll
638976 (6D600000) 1998/09/09 13:03:08 GMT => e:\e9836.01.lite\lib.nt\somsgcli.dll
709120 (6DAA0000) 1998/09/09 13:03:09 GMT => e:\e9836.01.lite\lib.nt\somsgtsi.dll
48640 (6DBD0000) 1998/09/09 13:03:09 GMT => e:\e9836.01.lite\lib.nt\somsh.dll
115200 (6DCC0000) 1998/09/09 13:03:09 GMT => e:\e9836.01.lite\lib.nt\somshcb.dll
99840 (6DD70000) 1998/09/09 13:03:09 GMT => e:\e9836.01.lite\lib.nt\somshcpi.dll
91648 (6DE00000) 1998/09/09 13:03:10 GMT => e:\e9836.01.lite\lib.nt\somshori.dll
20992 (6E290000) 1998/09/09 13:03:10 GMT => e:\e9836.01.lite\lib.nt\somsmdei.dll
160768 (6E4B0000) 1998/09/09 13:03:11 GMT => e:\e9836.01.lite\lib.nt\somsmfni.dll
101376 (6E790000) 1998/09/09 13:03:11 GMT => e:\e9836.01.lite\lib.nt\somsmoii.dll
52736 (6EA20000) 1998/09/09 13:03:12 GMT => e:\e9836.01.lite\lib.nt\somsmsri.dll
965632 (6EA90000) 1998/09/09 13:03:12 GMT => e:\e9836.01.lite\lib.nt\somsrsai.dll
671744 (6EBE0000) 1998/09/09 13:03:12 GMT => e:\e9836.01.lite\lib.nt\somsrssi.dll
2754560 (6EDA0000) 1998/09/09 13:03:13 GMT => e:\e9836.01.lite\lib.nt\somsss1i.dll
516096 (6F2F0000) 1998/09/09 13:03:17 GMT => e:\e9836.01.lite\lib.nt\somtrm1i.dll
2202112 (6F3F0000) 1998/09/09 13:03:17 GMT => e:\e9836.01.lite\lib.nt\somtrs1i.dll
2886144 (6F670000) 1998/09/09 13:03:18 GMT => e:\e9836.01.lite\lib.nt\somtrt1i.dll
427520 (6F9A0000) 1998/09/09 13:03:20 GMT => e:\e9836.01.lite\lib.nt\somtrx1i.dll
297984 (74C00000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\skit.dll
484352 (74C60000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\x509cms.dll
62976 (74CF0000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\soedber.dll
34816 (74D10000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\soedapi.dll
13312 (74D50000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\ossdmem.dll
12288 (74D60000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\ossapi.dll
28160 (74D70000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\nspcommon.dll
18432 (74E00000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\cstrain.dll
5120 (74E30000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\cmskfra.dll
1566208 (74E50000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\cms.dll
12288 (74FE0000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\cmpval.dll
13824 (74FF0000) 1998/08/25 15:46:54 GMT => e:\e9836.01.lite\lib.nt\berreal.dll
44304 (77660000) 1997/04/17 22:34:19 GMT => C:\WINNT\system32\msafd.dll
70416 (77670000) 1997/04/22 23:49:50 GMT => C:\WINNT\System32\MSWSOCK.dll
18704 (77690000) 1997/03/28 01:58:49 GMT => C:\WINNT\System32\wshtcpip.dll
8464 (776A0000) 1997/01/02 19:54:11 GMT => C:\WINNT\System32\WS2HELP.dll
59664 (776B0000) 1997/04/03 01:10:00 GMT => C:\WINNT\System32\WS2_32.dll
20240 (776D0000) 1996/07/26 19:19:24 GMT => C:\WINNT\System32\WSOCK32.dll
41744 (777E0000) 1997/04/22 23:50:01 GMT => C:\WINNT\System32\SAMLIB.dll
224528 (77800000) 1997/04/25 19:33:39 GMT => C:\WINNT\System32\NETAPI32.dll
17168 (77840000) 1996/07/26 19:19:23 GMT => C:\WINNT\System32\NETRAP.dll
12560 (779C0000) 1996/07/26 19:19:21 GMT => C:\WINNT\system32\LZ32.dll
65024 (779D0000) 1996/07/26 19:19:21 GMT => C:\WINNT\System32\MSVCRT40.dll
36112 (77A90000) 1996/07/26 19:19:20 GMT => C:\WINNT\system32\VERSION.dll
704272 (77B20000) 1997/04/25 19:33:41 GMT => C:\WINNT\system32\ole32.dll
310032 (77BF0000) 1997/04/25 19:33:18 GMT => C:\WINNT\system32\COMCTL32.dll
1277200 (77C40000) 1997/04/25 19:33:49 GMT => C:\WINNT\system32\SHELL32.dll
185104 (77D80000) 1997/04/25 19:33:18 GMT => C:\WINNT\system32\comdlg32.dll
246544 (77DC0000) 1997/04/11 23:24:11 GMT => C:\WINNT\system32\ADVAPI32.dll
317200 (77E10000) 1997/04/28 21:57:58 GMT => C:\WINNT\system32\RPCRT4.dll
330512 (77E70000) 1997/04/25 19:33:52 GMT => C:\WINNT\system32\USER32.dll
165648 (77ED0000) 1997/04/25 19:33:25 GMT => C:\WINNT\system32\GDI32.dll
372496 (77F00000) 1997/04/25 19:33:31 GMT => C:\WINNT\system32\KERNEL32.dll
355088 (77F60000) 1997/04/11 20:38:50 GMT => C:\WINNT\System32\ntdll.dll
149264 (77FD0000) 1996/07/17 18:15:07 GMT => C:\WINNT\System32\WINMM.dll
271632 (78000000) 1997/01/23 07:07:13 GMT => C:\WINNT\system32\MSVCRT.dll
70656 (780A0000) 1997/01/23 05:27:47 GMT => C:\WINNT\System32\MSVCIRT.dll
Storage dump:Storage dump:
02DBF40C AA AA AA AA 40 AD 58 06 - AA AA AA AA AA AA AA AA@.X.........
02DBF41C 00 00 00 00 DC FF FF FF - 84 F4 DB 02 90 D0 53 06S.
02DBF42C 8C F4 DB 02 20 91 2C 06 - BC 55 82 06 0F 24 25 02,..U...$%.
02DBF43C 3B 01 3D 06 F0 34 32 06 - 02 00 00 00 38 F4 DB 02 ;.=..42.....8...
02DBF44C DC BA 31 06 60 8A 82 06 - 30 42 30 06 00 00 00 00 ..1.′...0B0.....
02DBF45C E0 FF FF FF F0 B5 7B 06 - BC 55 82 06 AA 01 00 00{..U......
02DBF46C A7 D7 F3 6C F0 B5 7B 06 - 01 8C 82 06 70 0B 82 06 ...l..{.....p...

Appendix B. HandleSignal Log Entry and Map File 163

02DBF47C 80 54 82 06 B8 FF FF FF - BC F4 DB 02 90 D0 2D 06 .T............-.
02DBF48C C4 F4 DB 02 54 90 39 06 - D4 3D 9A 06 3B 01 3D 06T.9..=..;.=.
02DBF49C 01 00 00 00 A4 10 3D 06 - E4 15 3D 06 50 A8 F1 6E=...=.P..n
02DBF4AC 84 F5 DB 02 9C C9 67 6B - 60 52 82 06 D8 FF FF FFgk′R......
02DBF4BC 7C F5 DB 02 40 B1 3B 06 - 84 F5 DB 02 8A 99 39 06 |...@.;.......9.
02DBF4CC C0 89 82 06 D4 3D 9A 06 - 38 3E 9A 06 E0 38 25 02=..8>...8%.
02DBF4DC 0C 00 00 00 D0 F4 DB 02 - 84 0F 3D 06 00 00 FD 00=.....
02DBF4EC 20 00 00 00 F0 AF CC 04 - 00 00 00 00 00 00 FD 00
02DBF4FC 08 8A 82 06 48 F5 DB 02 - 49 1C 25 00 00 B0 CC 04H...I.%.....
02DBF50C A0 D8 23 06 78 D1 23 06 - 20 F8 DB 02 00 B0 CC 04 ..#.x.#........
02DBF51C 6B 16 41 50 40 00 00 00 - 34 72 52 50 00 00 00 00 k.AP@...4rRP....
–- END OF EXCEPTION DATA –-
RawDataLen:0

“Chapter 2. Activity Log for Problem Determination” on page 3
“HandleSignal - Compilation Map File Example”

HandleSignal - Compilation Map File Example

This is a sample map file for PolicyS.dll. Some information in this map file has been
removed to compress the view. The notation, // identifies deleted information.
The map file is divided into several sections. The sections that you would use to
locate a method in a call stack are:

v Image base
Identifies the starting image; if the load point is not specified on the link
statement, the default will be 40000.

v Publics by Value
Lists all the methods.

Here is the map file for PolicyS.dll:
IBM(R) Linker for Windows(R), Version 02.01.r2a_WTC355a Copyright (C) IBM
Corporation 1988, 1996. Copyright (C) Microsoft Corp. 1988-1989. All rights reserved.
Current option settings:
IBM(R) Linker for Windows(R), Version 02.01.r2a_WTC355a
Copyright (C) IBM Corporation 1988, 1996.
Copyright (C) Microsoft Corp. 1988-1989.
All rights reserved.
&127;
Current option settings:
&127;DLL&127;CODE:RX&127;DATA:RW
&127;Alignfile:0x00000200&127;ALIGNAddr:0x00010000&127;BASE:0x00400000
&127;MAXSIZE:0x10000000&127;BRowse&127;NODBgpack&127;DEbug
&127;DEFaultlibrarysearch&127;NOEXTdictionary&127;NOFIxed&127;NOFOrce
&127;HEAP:0x00100000,0x00001000&127;NOLinenumbers&127;NOLOgo
&127;MAP:PolicyS.map&127;OCache:0x00763400&127;NOOPTFunc&127;PMTYPE:VIO
&127;SEGMENTS:256 &127;STACK:0x00100000,0x00001000
&127;SUBSYSTEM:CONSOLE,03.10&127;NOVERBose
Image based at 00400000
POLICYS
Start Length Name Class –- 1 –-
00410000 0000000B4H .text CODE 32-bit
&127;at offset 00000000 00006H bytes from C:\IBMCPPW\lib\CPPWM35I.lib
&127;at offset 00000006 00006H bytes from C:\IBMCPPW\lib\CPPWM35I.lib
Origin Group
0000:0 FLAT
Address Publics by Name
004A6170 ?addBeneficiary__13PolicyBO_ImplFv
// ...
005B1FB8 ___vttQ2_9CosStream22StreamableProxyFactory
Address Publics by Value

164 Problem Determination Guide

00410000 ?_CRT_init
// ...
004A6148 ?premium__13PolicyBO_ImplFf
004A6170 ?addBeneficiary__13PolicyBO_ImplFv
004A6228 ?delBeneficiary__13PolicyBO_ImplFv
// ...
Program entry point at 0050D590

“HandleSignal - General Page Fault (GPF) Exception” on page 11
“Activity Log Showing General Page Fault Exception” on page 161

Appendix B. HandleSignal Log Entry and Map File 165

166 Problem Determination Guide

Appendix C. IBM Communication Server Trace Samples

This topic provides sample trace extracts from IBM Communications Server.

v “APPC Verb Trace Samples”

– TP_STARTED (page 168)

– SET_TP_PROPERTIES (page 169)

– ALLOCATE (page 170)

– SEND_DATA (page 172)

– RECEIVE_AND_WAIT (page 173)

– CONFIRMED (page 174)

– GET_ATTRIBUTES (page 175)

– CONFIRM (page 177)

– SEND_ERROR

– DEALLOCATE (page 177)

v “APPC I-Frames Trace Samples” on page 178

– The Bind Request (page 179)

– The Attach FMH-5 and Initial Send Data (page 180)

– Application Data (page 180)

– Exchange Log Names (XLN) (page 181)

– FMH-7s (page 182)

For more information about reading Communications Server traces, which requires
some knowledge of the SNA architecture, see the SNA library.

APPC Verb Trace Samples

These are trace samples for the following APPC verbs:

v TP_STARTED (page 168)

v SET_TP_PROPERTIES (page 169)

v ALLOCATE (page 170)

v SEND_DATA (page 172)

v RECEIVE_AND_WAIT (page 173)

v CONFIRMED (page 174)

v GET_ATTRIBUTES (page 175)

v CONFIRM (page 177)

v SEND_ERROR

v DEALLOCATE (page 177)

When reading the trace samples, refer to the following for additional information on
opcodes, verb parameters, and return codes:

© Copyright IBM Corp. 1997, 1998 167

v “IBM Communication Server APPC Interface: Operation Codes” on page 185
for example, opcode such as fill and what_rcvd.

v “IBM Communication Server APPC Interface: Verb Parameters” on page 194
for example, conv_type, sync_level, rtn_ctl, security, and type.

v “IBM Communication Server APPC Interface: Return Codes” on page 195
for example, primary_rc and secondary_rc.

The notation //... means that text has been removed in the sample trace.

TP_STARTED
The TP_STARTED verb starts a local transaction program (TP). This is used to
group a number of related conversations together. For example, all of the
conversations that belong to the same Component Broker transaction will run under
the same local TP. Values of interest in these trace entries are the tp_id and local
tp_name . The tp_id is passed on all conversation requests so it is useful for
grouping related conversations together. The local tp_name shows the local LU
name in used by the server for this local TP.
–––
[57] 07/08 16:41:38.27,(0082) len=188, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Entry
Trace Level is DATA
TP_STARTED :
opcode = 14
opext = 0
format = 0
primary_rc = 0 OK
secondary_rc = 0 OK
lu_alias[8] = 41554937444A3031

.
A U I 7 D J 0 1

tp_id[8] = 0100EE0200000000
. @ . . @ @ @ @
.

tp_name[64] = 43425365727665723A555349424D4E522E41554//...
. (+//...
C B S e r v e r : U S I B M N R . A U I//...

delay_start = f2
enable_pool = 4b
pip_dlen = c9
–––
[58] 07/08 16:41:38.27,(0083) len=188, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Exit
Trace Level is DATA
TP_STARTED :
opcode = 14
opext = 0
format = 0
primary_rc = 0 OK
secondary_rc = 0 OK
lu_alias[8] = 41554937444A3031

.
A U I 7 D J 0 1

tp_id[8] = 0100EE0200000000
. @ . . @ @ @ @
.

tp_name[64] = 43425365727665723A555349424D4E522E4155//...
. (+ //...
C B S e r v e r : U S I B M N R . A U //...

168 Problem Determination Guide

delay_start = f2
enable_pool = 4b
pip_dlen = c9
–––

SET_TP_PROPERTIES
The SET_TP_PROPERTIES verb is used to associate two logical unit of work
identifiers (LUWIds) with the local TP. One of the LUWIds (see unprot_id) is used
on conversations that not recoverable (synclevel 0 or synclevel 1) and the other
(prot_id) is used on recoverable (synclevel 2) conversations. LUWIds can be
thought of in their simplest terms as the SNA version of the transaction identifier.
The critical LUWId is the one for recoverable conversations as this is required to
relate all updates for a particular Component Broker transaction together. The
LUWId for non-recoverable conversations is used for accounting purposes.
–––
[59] 07/08 16:41:38.28,(0084) len=196, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Entry
Trace Level is DATA
SET_TP_PROPERTIES :
opcode = 7e
opext = 0
format = 0
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100EE0200000000

. @ . . @ @ @ @

.
set_prot_id = 1
new_prot_id = 0
prot_id.fq_lu_name_len = 10
prot_id.fq_luw_name[17] = E4E2C9C2D4D5D94BC1E4C9F7C4D1F0F18A

U S I B M N R . A U I 7 D J 0 1 .
. K

prot_id.instance[6] = E7A335000000
X t . @ @ @
. . 5 . . .

prot_id.sequence[2] = 0100
. @
. .

set_unprot_id = 1
new_unprot_id = 0
unprot_id.fq_lu_name_len = 10
unprot_id.fq_luw_name[17] = E4E2C9C2D4D5D94BC1E4C9F7C4D1F0F192

U S I B M N R . A U I 7 D J 0 1 k
. K

unprot_id.instance[6] = E7A335020000
X t . . @ @
. . 5 . . .

unprot_id.sequence[2] = 0100
. @
. .

set_user_id = 0
set_password = 0
user_id[10] = 00000000000000000000

@ @ @ @ @ @ @ @ @ @
.

new_password[10] = 00000000000000000000
@ @ @ @ @ @ @ @ @ @
.

–––

The exit trace entry just confirms whether the request was successful or not.

Appendix C. IBM Communication Server Trace Samples 169

–––
[60] 07/08 16:41:38.28,(0085) len=196, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Exit
Trace Level is DATA
SET_TP_PROPERTIES :
opcode = 7e
opext = 0
format = 0
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100EE0200000000

. @ . . @ @ @ @

.
set_prot_id = 1
new_prot_id = 0
prot_id.fq_lu_name_len = 10
prot_id.fq_luw_name[17] = E4E2C9C2D4D5D94BC1E4C9F7C4D1F0F18A

U S I B M N R . A U I 7 D J 0 1 .
. K

prot_id.instance[6] = E7A335000000
X t . @ @ @
. . 5 . . .

prot_id.sequence[2] = 0100
. @
. .

set_unprot_id = 1
new_unprot_id = 0
unprot_id.fq_lu_name_len = 10
unprot_id.fq_luw_name[17] = E4E2C9C2D4D5D94BC1E4C9F7C4D1F0F192

U S I B M N R . A U I 7 D J 0 1 k
. K

unprot_id.instance[6] = E7A335020000
X t . . @ @
. . 5 . . .

unprot_id.sequence[2] = 0100
. @
. .

set_user_id = 0
set_password = 0
user_id[10] = 00000000000000000000

@ @ @ @ @ @ @ @ @ @
.

new_password[10] = 00000000000000000000
@ @ @ @ @ @ @ @ @ @
.

–––

ALLOCATE
The ALLOCATE verb is used to create a new conversation using information from
the PAA APPC Connection. This information is build into an attach FMH-5 which
can be seen in the I-Frames trace.
–––
[61] 07/08 16:41:38.28,(0086) len=284, APPN and APPC.APPC API.0000, 00000000://..
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Entry
Trace Level is DATA
ALLOCATE :
opcode = 1
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100EE0200000000

170 Problem Determination Guide

. @ . . @ @ @ @

.
conv_id = 0
conv_type = 1
sync_level = 2
rtn_ctl = 0
duplex_type = 0
conv_group_id = 0
sense_data = 0
plu_alias[8] = 53544C4C55312020

. . <<
S T L L U 1

mode_name[8] = D3F6F2D4C4C5F0F1
L 6 2 M D E 0 1
.

tp_name[64] = C9E5E3D5D6404040404040404//...
. @ @ @ @ @ @ @ //...

security = 0
pwd[10] = 2A2A2A2A2A2A2A2A2A2A

.
* * * * * * * * * *

user_id[10] = 00000000000000000000
@ @ @ @ @ @ @ @ @ @
.

pip_dlen = 0
pip_dptr = 0
fqplu_name[17] = 0000000000000000000000000000000000

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
.

–––

The exit trace shows the conv_id which is an identifier for the conversation. This
will be passed on all subsequent requests that relate to this conversation.
–––
[62] 07/08 16:41:38.28,(0087) len=284, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Exit
Trace Level is DATA
ALLOCATE :
opcode = 1
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100EE0200000000

. @ . . @ @ @ @

.
conv_id = 2fd0001
conv_type = 1
sync_level = 2
rtn_ctl = 0
duplex_type = 0
conv_group_id = 2d30001
sense_data = 0
plu_alias[8] = 53544C4C55312020

. . <<
S T L L U 1

mode_name[8] = D3F6F2D4C4C5F0F1
L 6 2 M D E 0 1
.

tp_name[64] = C9E5E3D5D640404040404040//...
I V T N O
. @ @ @ @ @ @ @ //...

security = 0
pwd[10] = 2A2A2A2A2A2A2A2A2A2A

Appendix C. IBM Communication Server Trace Samples 171

.
* * * * * * * * * *

user_id[10] = 00000000000000000000
@ @ @ @ @ @ @ @ @ @
.

pip_dlen = 0
pip_dptr = 0
fqplu_name[17] = 0000000000000000000000000000000000

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
.

–––

SEND_DATA
The SEND_DATA verb is used to pass GDS Records and Presentation Services
Headers from Component Broker to IBM Communication Server so they can be
sent to the tier-3 system. The example below shows data that makes up a PAO
CRUD method request which has been added to a GDS record with an ID field of
0x12FF.
–––
[63] 07/08 16:41:38.30,(0088) len=185, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Entry
Trace Level is DATA
SEND_DATA :
opcode = f
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100EE0200000000

. @ . . @ @ @ @

.
conv_id = 2fd0001
rts_rcvd = 0
expd_rcvd = 0
dlen = 35 < == This length is in hex
dptr = 82b01600
type = 0
Data Area 1: Length = 53 < == This length is in decimal
003512FF 40404040 C4C9E2D7 D3C1E840 < .5..@@@@.......@ > < DISPLAY >
D3C1E2E3 F1404040 40404040 40404040 <@@@@@@@@@@@ > < LAST1 >
40404040 40404040 40404040 40404040 < @@@@@@@@@@@@@@@@ > < >
40404040 40 < @@@@@ > < >

–––

The following example is a GDS record with an Id of 0x1211 which is an exchange
log names record.
–––
Data Area 1: Length = 58
003A1211 026010E4 E2C9C2D4 D5D94BC1 < .:...′........K. > <-.USIBMNR.A >
E4C9F7C4 D1F0F122 C3C27AA2 9694A399 <"..z..... > < UI7DJ01.CB:somtr >
7AA385A2 A3A299A5 7AF3F5C1 F3C5F7F8 < z.......z....... > < :testsrv:35A3E78 >
F37AF0F0 F0C3F7F0 C2F3 < .z........ > < 3:000C70B3 >

–––

If the LL value is 0x0001, then this is a Presentation Service (PS) header used for
flowing commit messages between Component Broker and tier-3 systems.
–––
Data Area 1: Length = 8
0001060A 00050001 < > < >

–––

172 Problem Determination Guide

The return trace entry just confirms whether the send was successful.
–––
[64] 07/08 16:41:38.30,(0089) len=185, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Exit
Trace Level is DATA
SEND_DATA :
opcode = f
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100EE0200000000

. @ . . @ @ @ @

.
conv_id = 2fd0001
rts_rcvd = 0
expd_rcvd = 0
dlen = 35
dptr = 82b01600
type = 0
Data Area 1: Length = 53
003512FF 40404040 C4C9E2D7 D3C1E840 < .5..@@@@.......@ > < DISPLAY >
D3C1E2E3 F1404040 40404040 40404040 <@@@@@@@@@@@ > < LAST1 >
40404040 40404040 40404040 40404040 < @@@@@@@@@@@@@@@@ > < >
40404040 40 < @@@@@ > < >

–––

RECEIVE_AND_WAIT
The RECEIVE_AND_WAIT call is used for receiving data from the network. The
entry trace shows the maximum amount of data that can be received (see
max_len). The buffer into which the data is to be received is shown in this trace
entry but its contents are not significant. So it may show uninitialized storage, of the
data sent/received by a previous request.
–––
[65] 07/08 16:41:38.30,(008A) len=237, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Entry
Trace Level is DATA
RECEIVE_AND_WAIT :
opcode = b
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100EE0200000000

. @ . . @ @ @ @

.
conv_id = 2fd0001
what_rcvd = 0
rtn_status = 1
fill = 0
rts_rcvd = 0
expd_rcvd = 0
max_len = 5d
dlen = 0
dptr = 82b01600
Data Area 1: Length = 93
AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA < > < >
AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA < > < >
AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA < > < >
AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA < > < >

Appendix C. IBM Communication Server Trace Samples 173

AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA < > < >
AAAAAAAA AAAAAAAA AAAAAAAA AA < > < >

–––

The exit trace is more interesting as it shows the actual data received and the
accompanying indicators. See “IBM Communication Server APPC Interface:
Operation Codes” on page 185.
–––
[71] 07/08 16:41:39.75,(0090) len=237, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Exit
Trace Level is DATA
RECEIVE_AND_WAIT :
opcode = b
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100EE0200000000

. @ . . @ @ @ @

.
conv_id = 2fd0001
what_rcvd = 103
rtn_status = 1
fill = 0
rts_rcvd = 0
expd_rcvd = 0
max_len = 5d
dlen = 5d
dptr = 82b01600
Data Area 1: Length = 93
005D12FF C5D5E3D9 E840E6C1 E240C4C9 < .].......@...@.. > < .)..ENTRY WAS DI >
E2D7D3C1 E8C5C440 40404040 40404040 <@@@@@@@@@ > < SPLAYED >
40404040 40404040 40404040 C4C9E2D7 < @@@@@@@@@@@@.... > < DISP >
D3C1E840 D3C1E2E3 F1404040 4040C6C9 < ...@.....@@@@@.. > < LAY LAST1 FI >
D9E2E3F1 40404040 F860F1F1 F160F1F1 <@@@@.′...′.. > < RST1 8-111-11 >
F1F1C4F0 F161D9F0 F1F0F0F0 F1 <a....... > < 11D01/R010001 >

–––

If this is a receive for application data (ID = 0x12FF), then you would expect that
max_len, dlen and the LL would be the same value (0x5d in this example). If they
are not, then there is a mismatch between the output buffer copy book used in
CICON to generate the PAO and the real application in the tier-3 system.

CONFIRMED
The CONFIRMED verb is used to respond positively to a RQD2 indicator. See
“Transmission Headers (TH) and Request/Response Headers (RH)” on page 207 for
more information on RQD2.
–––
[53] 07/08 16:41:38.25,(007E) len=120, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Entry
Trace Level is DATA
CONFIRMED :
opcode = 4
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0400E30100000000

. @ T . @ @ @ @

.

174 Problem Determination Guide

conv_id = 1ea0004
–––
[55] 07/08 16:41:38.25,(0080) len=120, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Exit
Trace Level is DATA
CONFIRMED :
opcode = 4
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0400E30100000000

. @ T . @ @ @ @

.
conv_id = 1ea0004
–––

GET_ATTRIBUTES
The GET_ATTRIBUTES verb is used by the Component Broker server to extract
the conversation correlator and session identifier for the conversation. The entry
trace is not very useful.
–––
[87] 07/08 16:41:48.32,(00A0) len=28, Connectivity.LAN (LLC2).0001, 00000000://...
Frame Type: TOKEN_RING
Source Address: 400021031054 (canonical: 020084c0082a)
Source SAP: 04
Destination Address: 000629f0d8fa (canonical: 0060940f1b5f)
Destination SAP: 04
RIF Length: 12
RIF Data: 0c80e6419641f001f2f1d3b0
LPDU Type: RR
Command Flag: R Poll Flag: 0
NR: 0c
LPDU Data length: 0
[88] 07/08 16:41:51.32,(00A1) len=260, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Entry
Trace Level is DATA
GET_ATTRIBUTES :
opcode = 7
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100EE0200000000

. @ . . @ @ @ @

.
conv_id = 2fd0001
sync_level = 0
mode_name[8] = 0000000000000000

@ @ @ @ @ @ @ @
.

net_name[8] = 0000000000000000
@ @ @ @ @ @ @ @
.

lu_name[8] = 0000000000000000
@ @ @ @ @ @ @ @
.

lu_alias[8] = 0000000000000000
@ @ @ @ @ @ @ @
.

plu_alias[8] = 0000000000000000
@ @ @ @ @ @ @ @

Appendix C. IBM Communication Server Trace Samples 175

.
plu_un_name[8] = 0000000000000000

@ @ @ @ @ @ @ @
.

fqplu_name[17] = 0000000000000000000000000000000000
@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
.

user_id[10] = 00000000000000000000
@ @ @ @ @ @ @ @ @ @
.

conv_group_id = 0
conv_corr_len = 0
conv_corr[8] = 0000000000000000

@ @ @ @ @ @ @ @
.

luw_id.fq_lu_name_len = 0
luw_id.fq_luw_name[17] = 0000000000000000000000000000000000

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @
.

luw_id.instance[6] = 000000000000
@ @ @ @ @ @
.

luw_id.sequence[2] = 0000
@ @
. .

sess_id[8] = 0000000000000000
@ @ @ @ @ @ @ @
.

–––

However, in addition to the conversation correlator (see conv_corr) and session
identifier (see sess_id), the return trace entry summarizes all of the information
known about the conversation.
–––
[89] 07/08 16:41:51.32,(00A2) len=260, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Exit
Trace Level is DATA
GET_ATTRIBUTES :
opcode = 7
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100EE0200000000

. @ . . @ @ @ @

.
conv_id = 2fd0001
sync_level = 2
mode_name[8] = D3F6F2D4C4C5F0F1

L 6 2 M D E 0 1
.

net_name[8] = E4E2C9C2D4D5D940
U S I B M N R
. @

lu_name[8] = C1E4C9F7C4D1F0F1
A U I 7 D J 0 1
.

lu_alias[8] = 41554937444A3031
.
A U I 7 D J 0 1

plu_alias[8] = 53544C4C55312020
. . < <
S T L L U 1

plu_un_name[8] = E2E3E8F7C9D4F1F6

176 Problem Determination Guide

S T Y 7 I M 1 6
.

fqplu_name[17] = E4E2C9C2D4E2E3E84BE2E3E8F7C9D4F1F6
U S I B M S T Y . S T Y 7 I M 1 6
. K

user_id[10] = 40404040404040404040
@ @ @ @ @ @ @ @ @ @

conv_group_id = 2d30001
conv_corr_len = 8
conv_corr[8] = 0100FC02D8D9C4E1

. @ . . Q R D .

.
luw_id.fq_lu_name_len = 10
luw_id.fq_luw_name[17] = E4E2C9C2D4D5D94BC1E4C9F7C4D1F0F18A

U S I B M N R . A U I 7 D J 0 1 .
. K

luw_id.instance[6] = E7A335000000
X t . @ @ @
. . 5 . . .

luw_id.sequence[2] = 0100
. @
. .

sess_id[8] = D93B11F565630EEF
R . . 5
. ; . . e c . .

–––

The Conversation Correlator and Session Id are used to build the Compare States
GDS Record during recovery.

SEND_ERROR
The SEND_ERROR call (in conjunction with the CONFIRM call is used by
Component Broker to send a backout request.

CONFIRM
The CONFIRM call (in conjunction with the SEND_ERROR call is used by
Component Broker to send a backout request.

DEALLOCATE
The DEALLOCATE call ends a conversation. The dealloc_type parameter indicates
how the conversation is to be terminated.
–––
[63] 07/13 14:58:33.92,(00AC) len=140, APPN and APPC.APPC API.0000, 00000000://...
API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Entry
Trace Level is DATA
DEALLOCATE :
opcode = 5
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100624E00000000

. @ . + @ @ @ @

. . b N
conv_id = 4e660001
expd_rcvd = 0
dealloc_type = 3
log_dlen = 0
log_dptr = 0
implied_forget = 0
–––
[66] 07/13 14:58:33.92,(00AF) len=128, APPN and APPC.APPC API.0000, 00000000://...

Appendix C. IBM Communication Server Trace Samples 177

API Name - APPC(K) Entry Point - APPC
Process ID - 0x 0
Usage - Exit
Trace Level is DATA
DEALLOCATE :
opcode = 5
opext = 0
format = 1
primary_rc = 0 OK
secondary_rc = 0 OK
tp_id[8] = 0100624E00000000

. @ . + @ @ @ @

. . b N
conv_id = 4e660001
expd_rcvd = 0
dealloc_type = 3
log_dlen = 0
log_dptr = 0
implied_forget = 0
–––

“APPC I-Frames Trace Samples”
“Appendix F. SNA Data Formats” on page 207
“Transmission Headers (TH) and Request/Response Headers (RH)” on page 207
“Attach FMH-5” on page 209
“Logical Unit of Work Identifier (LUWId)” on page 210
“GDS Records and Data Mapping” on page 210
“Presentation Services (PS) Header 10” on page 212
“Function Management Header 7 (FMH-7)” on page 213
“Exchange Log Names (XLN) GDS Record” on page 214
“Compare States GDS Record” on page 215
“Conversation Correlator (CC) and Session Id” on page 216

APPC I-Frames Trace Samples

When you request an I-Frames trace from IBM Communications Server, entries
similar to the one shown below are written to the trace file. They contain the actual
SNA records sent over the network, and you need to have some SNA knowledge to
interpret them.

The notation //... means that text has been removed in the sample trace.

The following example shows the I-Frames entry. Each entry contains a
Transmission Header (TH), a Request/Response Header (RH), and a
Request/Response Unit (RU). In the example, the TH is 2E000102 0001, the RH is
0B91 20, and the RU is the rest of the block of data.

178 Problem Determination Guide

[47] 07/08 16:41:37.50,(0078) len=143, Connectivity.LAN (LLC2).0001, 00000000://...
000000
Frame Type: TOKEN_RING
Source Address: 000629f0d8fa (canonical: 0060940f1b5f)
Source SAP: 04
Destination Address: 400021031054 (canonical: 020084c0082a)
Destination SAP: 04
RIF Length: 12
RIF Data: 0c00e6419641f001f2f1d3b0
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 06
NS: 04
LPDU Data length: 115
2E000102 00010B91 20300502 FF0003D0 < 0...... > <j.......} >
00400206 F2001910 E4E2C9C2 D4D5D94B < .@.............K > < . ..2...USIBMNR. >
C1E4C9F7 C4D1F0F1 8BE7A335 01000001 <5.... > < AUI7DJ01.Xt..... >
080400EB 01ACDBC4 E1003A12 11026010 <:...′. > <D......-. >
E4E2C9C2 D4D5D94B C1E4C9F7 C4D1F0F1 <K........ > < USIBMNR.AUI7DJ01 >
22C3C27A A29694A3 997AA385 A2A3A299 < "..z.....z...... > < .CB:somtr:testsr >
A57AF3F5 C1F3C5F7 F8F37AF0 F0F0C3F7 < .z........z..... > < v:35A3E783:000C7 >
F0C2F3 < ... > < 0B3 >

In general, the interesting data is in the RU which contains the data sent between
the Component Broker Server and tier-3 system. Some examples of the more
common I-Frames trace entries are shown below.

The Bind Request
In an I-Frames trace, there are often many entries similar to the one below. These
are bind requests which request that a session is started between two LUs. Look
for the 0x6 and 0x31 shown in bold to identify a bind request.

[29] 07/08 16:41:31.36,(0066) len=190, Connectivity.LAN (LLC2).0001, 00000000://...
Frame Type: TOKEN_RING
Source Address: 000629f0d8fa (canonical: 0060940f1b5f)
Source SAP: 04
Destination Address: 400021031054 (canonical: 020084c0082a)
Destination SAP: 04
RIF Length: 12
RIF Data: 0c00e6419641f001f2f1d3b0
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 00
NS: 00
LPDU Data length: 162
2F000002 80016B81 00310013 07B0B050 < /.....k..1.....P > <,a.......& >
33018186 86810106 02000000 00000000 < 3............... > < ..affa.......... >
16430000 10E4E2C9 C2D4D5D9 4BC1E4C9 < .C..........K... > <USIBMNR.AUI >
F7C4D1F0 F1320009 02E2D5C1 E2E5C3D4 <2.......... > < 7DJ01....SNASVCM >
C7090301 3B11F565 630EEE11 04E4E2C9 <;..ec....... > < G.....5......USI >
C2D4D5D9 4BC1E4C9 F7C4D1F0 F10A1300 <K........... > < BMNR.AUI7DJ01... >
622D655C 6A743F6E 0011E4E2 C9C2D4E2 < b-e\jt?n........ > < ...*|..>..USIBMS >
E3E84BE2 E3E8F7C9 D4F1F62C 0A0408E2 < ..K........,.... > < TY.STY7IM16....S >
D5C1E2E5 C3D4C760 19D93B11 F565630E <′..;..ec. > < NASVCMG-.R..5... >
EE10E4E2 C9C2D4D5 D94BC1E4 C9F7C4D1 <K...... > < ..USIBMNR.AUI7DJ >
F0F0 < .. > < .00 >

If a bind is successful, you will see a bind response coming back. Again, the
important values to look for are in bold . Successful binds mean that basic
communication is possible.

Appendix C. IBM Communication Server Trace Samples 179

[32] 07/08 16:41:34.27,(0069) len=135, Connectivity.LAN (LLC2).0001, 00000000://...
Frame Type: TOKEN_RING
Source Address: 400021031054 (canonical: 020084c0082a)
Source SAP: 04
Destination Address: 000629f0d8fa (canonical: 0060940f1b5f)
Destination SAP: 04
RIF Length: 12
RIF Data: 0c80e6419641f001f2f1d3b0
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 01
NS: 01
LPDU Data length: 107
2F000200 8001EB80 00310013 07B0B050 < /........1.....P > <& >
B3008085 85800006 02000000 00000000 < > < ...ee........... >
10430000 00280009 02E2D5C1 E2E5C3D4 < .C...(.......... > <SNASVCM >
C7090302 3B11F565 630EEE12 05E4E2C9 <;..ec....... > < G.....5......USI >
C2D4E2E3 E84BE2E3 E8F7C9D4 F1F60000 <K.......... > < BMSTY.STY7IM16.. >
6019D93B 11F56563 0EEE10E4 E2C9C2D4 < ′..;..ec........ > < -.R..5.....USIBM >
D5D94BC1 E4C9F7C4 D1F0F0 < ..K........ > < NR.AUI7DJ00 >

The Attach FMH-5 and Initial Send Data
When a Component Broker server wants to send data to a tier-3 system, it requires
an APPC conversation. These are created using an ALLOCATE request. Information
passed on the ALLOCATE is packed into an attach FMH-5 record. An example is
shown below in bold . Search for the 0502 FF pattern to locate it in the trace.
Following the attach FMH-5 in the I-Frames trace is the first data sent on the
conversation. This is formatted into a GDS record. The GDS record is highlighted in
italics below. Further examples of GDS records can be found in application data
and Exchange Log Names (XLN).

[33] 07/08 16:41:34.27,(006A) len=110, Connectivity.LAN (LLC2).0001, 00000000://...
Frame Type: TOKEN_RING
Source Address: 000629f0d8fa (canonical: 0060940f1b5f)
Source SAP: 04
Destination Address: 400021031054 (canonical: 020084c0082a)
Destination SAP: 04
RIF Length: 12
RIF Data: 0c00e6419641f001f2f1d3b0
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 02
NS: 01
LPDU Data length: 82
2E000002 00010B91 20300502 FF0003D0 < 0...... > <j.......} >
00000206 F1001910 E4E2C9C2 D4D5D94B <K > <1...USIBMNR. >
C1E4C9F7 C4D1F0F1 B1B8C841 4D490001 <AMI.. > < AUI7DJ01..H.(... >
080400ED 01E4DCC4 E1001912 10020000 < > <U.D........ >
00000020 00100000 0008D3F6 F2D4C4C5 < > <L62MDE >
F0F1 < .. > < 01 >

Application Data
Application data (that is, the data that makes up the PAO CRUD method requests
and responses) is formatted into GDS records with an ID of 0x12FF.

180 Problem Determination Guide

[81] 07/08 16:41:46.54,(009A) len=141, Connectivity.LAN (LLC2).0001, 00000000://...
Frame Type: TOKEN_RING
Source Address: 000629f0d8fa (canonical: 0060940f1b5f)
Source SAP: 04
Destination Address: 400021031054 (canonical: 020084c0082a)
Destination SAP: 04
RIF Length: 12
RIF Data: 0c00e6419641f001f2f1d3b0
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 0b
NS: 0a
LPDU Data length: 113
2E000202 00010B91 20330502 FF0003D1 < 3...... > <j.......J >
008005C9 E5E3D5D6 001910E4 E2C9C2D4 < > < ...IVTNO...USIBM >
D5D94BC1 E4C9F7C4 D1F0F18A E7A33500 < ..K...........5. > < NR.AUI7DJ01.Xt.. >
00000108 0100F602 D8D9C4E1 003512FF <5.. > <6.QRD..... >
40404040 E4D7C4C1 E3C54040 D3C1E2E3 < @@@@......@@.... > < UPDATE LAST>
F1404040 4040C2C1 D9D5C5E8 40404040 < .@@@@@......@@@@ > < 1 BARNEY >
F3F0F9F0 F9404040 4040C5D4 E260F8F6 <@@@@@...′.. > < 30909 EMS-86 >
F2 < . > < 2 >

[84] 07/08 16:41:48.11,(009D) len=130, Connectivity.LAN (LLC2).0001, 00000000://...
Frame Type: TOKEN_RING
Source Address: 400021031054 (canonical: 020084c0082a)
Source SAP: 04
Destination Address: 000629f0d8fa (canonical: 0060940f1b5f)
Destination SAP: 04
RIF Length: 12
RIF Data: 0c80e6419641f001f2f1d3b0
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 0b
NS: 0c
LPDU Data length: 102
2E000202 000103A1 20005D12 FFC5D5E3 <]..... > <x..)..ENT >
D9E840E6 C1E240E4 D7C4C1E3 C5C44040 < ..@...@.......@@ > < RY WAS UPDATED >
40404040 40404040 40404040 40404040 < @@@@@@@@@@@@@@@@ > < >
40404040 40E4D7C4 C1E3C540 40D3C1E2 < @@@@@......@@... > < UPDATE LAS >
E3F14040 404040C2 C1D9D5C5 E8404040 < ..@@@@@......@@@ > < T1 BARNEY >
40F3F0F9 F0F94040 404040C5 D4E260F8 < @.....@@@@@...′. > < 30909 EMS-8 >
F6F2F0F0 F0F1 < > < 620001 >

Exchange Log Names (XLN)
The exchange log names (XLN) process is used by two SNA systems to make sure
they are both using the correct transaction log. One side (either the Component
Broker server or the tier-3 system) requests a conversation with the other system’s
0x06F2 transaction. It then sends an exchange log names (XLN) GDS record
(which may be be followed by a Compare States GDS Record if there is an
outstanding transaction to resolve) and issues a receive to pick up the response.
This response will contain the response XLN GDS record (and possibly a response
Compare States GDS Record). The conversation is then terminated using
CONFIRM/CONFIRMED.

Appendix C. IBM Communication Server Trace Samples 181

[47] 07/08 16:41:37.50,(0078) len=143, Connectivity.LAN (LLC2).0001, 00000000://...
Frame Type: TOKEN_RING
Source Address: 000629f0d8fa (canonical: 0060940f1b5f)
Source SAP: 04
Destination Address: 400021031054 (canonical: 020084c0082a)
Destination SAP: 04
RIF Length: 12
RIF Data: 0c00e6419641f001f2f1d3b0
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 06
NS: 04
LPDU Data length: 115
2E000102 00010B91 20300502 FF0003D0 < 0...... > <j.......} >
00400206 F2001910 E4E2C9C2 D4D5D94B < .@.............K > < . ..2...USIBMNR. >
C1E4C9F7 C4D1F0F1 8BE7A335 01000001 <5.... > < AUI7DJ01.Xt..... >
080400EB 01ACDBC4 E1003A12 11026010 <:...′. > <D......-. >
E4E2C9C2 D4D5D94B C1E4C9F7 C4D1F0F1 <K........ > < USIBMNR.AUI7DJ01 >
22C3C27A A29694A3 997AA385 A2A3A299 < "..z.....z...... > < .CB:somtr:testsr >
A57AF3F5 C1F3C5F7 F8F37AF0 F0F0C3F7 < .z........z..... > < v:35A3E783:000C7 >
F0C2F3 < ... > < 0B3 >

[51] 07/08 16:41:38.14,(007C) len=40, Connectivity.LAN (LLC2).0001, 00000000://...
Frame Type: TOKEN_RING
Source Address: 000629f0d8fa (canonical: 0060940f1b5f)
Source SAP: 04
Destination Address: 400021031054 (canonical: 020084c0082a)
Destination SAP: 04
RIF Length: 12
RIF Data: 0c80e6419641f001f2f1d3b0
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 05
NS: 07
LPDU Data length: 58
2E000201 000103A1 01003112 11096011 <1...′. > <x......-. >
E4E2C9C2 D4E2E3E8 4BE2E3E8 F7C9D4F1 <K....... > < USIBMSTY.STY7IM1 >
F618C1E3 D94BC2F0 C2F8C2F7 F1F3C6F1 <K.......... > < 6.ATR.B0B8B713F1 >
C5C2F3F6 F0F24BC9 C2D4 <K... > < EB3602.IBM >

Function Management Header (FMH-7)
The FMH-7 is a record used for sending errors, backout requests and for
abnormally terminating conversations. The type of error it represents is given in the
four-byte sense code. This is 0x08640001 in the example below.

[65] 07/13 14:58:33.92,(00AE) len=42, Connectivity.LAN (LLC2).0001, 00000000://...
Frame Type: TOKEN_RING
Source Address: 0004acf7a815 (canonical: 002035ef15a8)
Source SAP: 04
Destination Address: 400045121088 (canonical: 0200a2480811)
Destination SAP: 04
RIF Length: 10
RIF Data: 0a30028a700a00310060
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 0d
NS: 28
LPDU Data length: 16
2E000202 003E0B80 01070708 64000100 <>......d... > < >

A Component Broker server will use a SEND_ERROR verb followed by a
CONFIRM verb to send an FMH-7 that represents a backout request and a
Request Definite Response (RQD2). It will use a DEALLOCATE request with the

182 Problem Determination Guide

appropriate dealloc_type parameter (which selects the sense code) to send an
FMH-7 with a Conditional End Bracket (CEB) to abnormally terminate a
conversation.

When not sending application data, it is possible to request that an FMH-7 be sent
in Receive state. When this occurs the FMH-7 is preceded by a negative response
0x0846 (see below) to make the partner system send the Change Direction (CD).

See “Transmission Headers (TH) and Request/Response Headers (RH)” on
page 207 for more information on RQD2, CD, and CEB.

[64] 07/13 14:58:33.92,(00AD) len=39, Connectivity.LAN (LLC2).0001, 00000000://...
Frame Type: TOKEN_RING
Source Address: 0004acf7a815 (canonical: 002035ef15a8)
Source SAP: 04
Destination Address: 400045121088 (canonical: 0200a2480811)
Destination SAP: 04
RIF Length: 10
RIF Data: 0a30028a700a00310060
LPDU Type: I-Frame
Command Flag: C Poll Flag: 0
NR: 0d
NS: 27
LPDU Data length: 13
2E000202 802D8730 00084600 00 <-.0..F.. > <g...... >

“Appendix C. IBM Communication Server Trace Samples” on page 167
“APPC Verb Trace Samples” on page 167
“Appendix F. SNA Data Formats” on page 207
“Transmission Headers (TH) and Request/Response Headers (RH)” on page 207
“Attach FMH-5” on page 209
“Logical Unit of Work Identifier (LUWId)” on page 210
“GDS Records and Data Mapping” on page 210
“Presentation Services (PS) Header 10” on page 212
“Function Management Header 7 (FMH-7)” on page 213
“Exchange Log Names (XLN) GDS Record” on page 214
“Compare States GDS Record” on page 215
“Conversation Correlator (CC) and Session Id” on page 216

Appendix C. IBM Communication Server Trace Samples 183

184 Problem Determination Guide

Appendix D. Appendix D. IBM Communication Server APPC
Interface

These programming interfaces from the IBM Communication Server are used by the
Component Broker to communicate over SNA. These header files contain the
interface information and can be found in the IBMCS_INSTALL/SDK/WIN32/H
directory, where IBMCS_INSTALL is the install directory for IBM Communications
Server. For more information, see the IBM manual, Communication Server
Client/Server Communications Programming (SC31-8425).

v “IBM Communication Server APPC Interface: Operation Codes” (WINAPPC.H)

v “IBM Communication Server APPC Interface: Verb Parameters” on page 194
(WINPARMS.H)

v “IBM Communication Server APPC Interface: Return Codes” on page 195
(WINRC.H)

IBM Communication Server APPC Interface: Operation Codes

These operation codes from the IBM Communication Server programming interface
are used by the Component Broker to communicate over SNA, which can be found
in winappc.h in the IBMCS_INSTALL/SDK/WIN32/H directory, where
IBMCS_INSTALL is the install directory for IBM Communications Server. For more
information, see the IBM manual, Communication Server Client/Server
Communications Programming (SC31-8425).
/***/
/* Operation codes */
/***/
#define AP_TP_STARTED 0x0014 // See tp_started VCB
#define AP_RECEIVE_ALLOCATE 0x0016
#define AP_TP_ENDED 0x0013 // See tp_ended VCB
#define AP_B_ALLOCATE 0x0001 // See allocate VCB
#define AP_B_CONFIRM 0x0003 // See confirm VCB
#define AP_B_CONFIRMED 0x0004 // See confirmed VCB
#define AP_B_DEALLOCATE 0x0005 // See deallocate VCB
#define AP_B_FLUSH 0x0006
#define AP_B_GET_ATTRIBUTES 0x0007 // See get_attributes VCB
#define AP_B_PREPARE_TO_RECEIVE 0x000A
#define AP_B_RECEIVE_AND_POST 0x000D
#define AP_B_RECEIVE_AND_WAIT 0x000B // See receive_and_wait VCB
#define AP_B_RECEIVE_EXPEDITED_DATA 0x0009
#define AP_B_RECEIVE_IMMEDIATE 0x000C
#define AP_B_REQUEST_TO_SEND 0x000E
#define AP_B_SEND_CONVERSATION 0x0018
#define AP_B_SEND_DATA 0x000F // See send_data VCB
#define AP_B_SEND_ERROR 0x0010 // See send_error VCB
#define AP_B_SEND_EXPEDITED_DATA 0x0011
#define AP_B_TEST_RTS 0x0012
#define AP_B_TEST_RTS_AND_POST 0x0081
#define AP_GET_TP_PROPERTIES 0x0017
#define AP_SET_TP_PROPERTIES 0x007E // See set_tp_properties VCB
#define AP_GET_LU_STATUS 0x007F // See get_lu_status VCB
#define AP_REGISTER_EVENT 0x2066
#define AP_UNREGISTER_EVENT 0x2067
#define AP_EVENT_INDICATION 0x2068
/***/
/* Verb parameter values for APPC */
/* (common verb parameter values are in winparms.h) */
/***/

© Copyright IBM Corp. 1997, 1998 185

#define AP_INDEPENDENT_LU 0x00
#define AP_SYSTEM_LIMIT 0x00
/***/
/* conversation states */
/***/
#define AP_RESET_STATE 0x00
#define AP_SEND_STATE 0x01
#define AP_RECEIVE_STATE 0x02
#define AP_CONFIRM_STATE 0x03
#define AP_CONFIRM_SEND_STATE 0x04
#define AP_CONFIRM_DEALL_STATE 0x05
#define AP_PEND_POST_STATE 0x06
#define AP_PEND_DEALL_STATE 0x07
#define AP_END_CONV_STATE 0x08
#define AP_SEND_PENDING_STATE 0x09
/***/
/* ptr_type */
/***/
#define AP_SYNC_LEVEL 0x00
#define AP_FLUSH 0x01
#define AP_P_TO_R_CONFIRM 0x02
/***/
/* dealloc_type */
/***/
#define AP_SYNC_LEVEL 0x00
#define AP_FLUSH 0x01
#define AP_CONFIRM_TYPE 0x0B
#define AP_ABEND 0x05
#define AP_ABEND_PROG 0x02
#define AP_ABEND_SVC 0x03
#define AP_ABEND_TIMER 0x04
#define AP_TP_NOT_AVAIL_RETRY 0x06
#define AP_TP_NOT_AVAIL_NO_RETRY 0x07
#define AP_TPN_NOT_RECOGNIZED 0x08
#define AP_PIP_DATA_NOT_ALLOWED 0x09
#define AP_PIP_DATA_INCORRECT 0x0A
#define AP_RESOURCE_FAILURE_NO_RETRY 0x0C
#define AP_CONV_TYPE_MISMATCH 0x0D
#define AP_SYNC_LVL_NOT_SUPPORTED 0x0E
#define AP_SECURITY_PARAMS_INVALID 0x0F
#define AP_ATTACH_ERROR 0xFF
/***/
/* fill */
/***/
#define AP_BUFFER 0x00
#define AP_LL 0x01
/***/
/* Other flags for the opext field of APPC verbs */
/***/
#define AP_NON_BLOCKING 0x02
#define AP_OPERATION_INCOMPLETE_FLAG 0x40
/***/
/* Reserved wait_object values */
/* wait objects are used for non-blocking verbs, supplied in secondary_rc */
/* field */
/***/
#define AP_BLOCKING_WAIT_OBJECT 0x00000000L
#define AP_NULL_WAIT_OBJECT 0xFFFFFFFFL
/***/
/* ptr_locks */
/***/
#define AP_SHORT 0x00
#define AP_LONG 0x01
/***/
/* err_type */
/***/
#define AP_PROG 0x00

186 Problem Determination Guide

#define AP_SVC 0x01
#define AP_BACKOUT_NO_RESYNC 0x02
#define AP_BACKOUT_RESYNC 0x03
/***/
/* rtn_ctl */
/***/
#define AP_WHEN_SESSION_ALLOCATED 0x00
#define AP_IMMEDIATE 0x01
#define AP_WHEN_EXPEDITED_DATA_RECEIVED 0x00
#define AP_WHEN_SESSION_FREE 0x02
#define AP_WHEN_CONWINNER_ALLOC 0x03
#define AP_WHEN_CONWINNER_ALLOCATED 0x03
#define AP_WHEN_CONV_GROUP_ALLOC 0x04
#define AP_WHEN_CONV_GROUP_ALLOCATED 0x04
#define AP_WHEN_CONLOSER_ALLOC 0x05
/***/
/* end_type */
/***/
#define AP_SOFT 0x00
#define AP_HARD 0x01
#define AP_CANCEL 0x0A
/***/
/* data_type */
/***/
#define AP_APPLICATION 0x00
#define AP_USER_CONTROL_DATA 0x01
#define AP_PS_HEADER 0x02
#define AP_BASIC_DATA 0x03
/***/
/* err_dir */
/***/
#define AP_RCV_DIR_ERROR 0x00
#define AP_SEND_DIR_ERROR 0x01
/***/
/* what_rcvd */
/***/
#define AP_DATA 0x0100
#define AP_DATA_COMPLETE 0x0200
#define AP_DATA_INCOMPLETE 0x0400
#define AP_SEND 0x0001
#define AP_CONFIRM_WHAT_RECEIVED 0x0002
#define AP_CONFIRM_SEND 0x0003
#define AP_CONFIRM_DEALLOCATE 0x0004
#define AP_USER_CONTROL_DATA_COMPLETE 0x0800
#define AP_USER_CONTROL_DATA_INCMP 0x1000
#define AP_PS_HEADER_COMPLETE 0x2000
#define AP_PS_HEADER_INCOMPLETE 0x4000
#define AP_DATA_SEND 0x0101
#define AP_DATA_CONFIRM 0x0102
#define AP_DATA_CONFIRM_SEND 0x0103
#define AP_DATA_CONFIRM_DEALLOCATE 0x0104
#define AP_DATA_COMPLETE_SEND 0x0201
#define AP_DATA_COMPLETE_CONFIRM 0x0202
#define AP_DATA_COMPLETE_CONFIRM_SEND 0x0203
#define AP_DATA_COMPLETE_CONFIRM_DEALL 0x0204
#define AP_UC_DATA_COMPLETE_SEND 0x0801
#define AP_UC_DATA_COMPLETE_CONFIRM 0x0802
#define AP_UC_DATA_COMPLETE_CNFM_SEND 0x0803
#define AP_UC_DATA_COMPLETE_CNFM_DEALL 0x0804
#define AP_PS_HDR_COMPLETE_SEND 0x2001
#define AP_PS_HDR_COMPLETE_CONFIRM 0x2002
#define AP_PS_HDR_COMPLETE_CNFM_SEND 0x2003
#define AP_PS_HDR_COMPLETE_CNFM_DEALL 0x2004
/***/
/* reason for implied forget indication */
/***/
#define AP_DATA_FLOW 0x00

Appendix D. Appendix D. IBM Communication Server APPC Interface 187

#define AP_UNBIND 0x01
#define AP_FAILURE 0x02
/***/
/* Opcodes for APPC event indications, used as bit masks, so valid values */
/* are 1, 2, 4, 8 etc */
/***/
#define AP_RECEIVED_DATA 0x0001
/***/
/* VCB structures */
/***/
/**STRUCT+**/
/* Structure: APPC_HDR */
/* */
/* Description: Common APPC vcb header */
/***/
typedef struct appc_hdr
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;

} APPC_HDR;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: TP_STARTED */
/* */
/* Description: TP_STARTED verb control block */
/***/
typedef struct tp_started
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char lu_alias[8];
unsigned char tp_id[8];
unsigned char tp_name[64];

} TP_STARTED;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: RECEIVE_ALLOCATE */
/* */
/* Description: RECEIVE_ALLOCATE verb control block */
/***/
typedef struct receive_allocate
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_name[64];
unsigned char tp_id[8];
unsigned long conv_id;
unsigned char sync_level;
unsigned char conv_type;
unsigned char user_id[10];
unsigned char lu_alias[8];
unsigned char plu_alias[8];
unsigned char mode_name[8];
unsigned char reserv3[2];
unsigned long conv_group_id;
unsigned char fqplu_name[17];
unsigned char pip_incoming;
unsigned char conversation_style;

188 Problem Determination Guide

unsigned char reserv4[3];
unsigned char password[10];
unsigned char reserv5[2];
unsigned char dload_id[8];

} RECEIVE_ALLOCATE;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: TP_ENDED */
/* */
/* Description: TP_ENDED verb control block */
/***/
typedef struct tp_ended
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned char type;

} TP_ENDED;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: ALLOCATE */
/* */
/* Description: ALLOCATE verb control block */
/***/
typedef struct allocate
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned long conv_id;
unsigned char conv_type;
unsigned char sync_level;
unsigned char reserv3[2];
unsigned char rtn_ctl;
unsigned char conversation_style;
unsigned long conv_group_id;
unsigned long sense_data;
unsigned char plu_alias[8];
unsigned char mode_name[8];
unsigned char tp_name[64];
unsigned char security;
unsigned char reserv5[11];
unsigned char pwd[10];
unsigned char user_id[10];
unsigned short pip_dlen;
unsigned char *pip_dptr;
unsigned char reserv5a;
unsigned char fqplu_name[17];
unsigned char reserv6[8];

} ALLOCATE;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: CONFIRM */
/* */
/* Description: CONFIRM verb control block */
/***/
typedef struct confirm
{
unsigned short opcode;
unsigned char opext;
unsigned char format;

Appendix D. Appendix D. IBM Communication Server APPC Interface 189

unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned long conv_id;
unsigned char rts_rcvd;
unsigned char expd_data_rcvd;

} CONFIRM;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: CONFIRMED */
/* */
/* Description: CONFIRMED verb control block */
/***/
typedef struct confirmed
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned long conv_id;

} CONFIRMED;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: DEALLOCATE */
/* */
/* Description: DEALLOCATE verb control block */
/***/
typedef struct deallocate
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned long conv_id;
unsigned char expd_data_rcvd;
unsigned char dealloc_type;
unsigned short log_dlen;
unsigned char *log_dptr;
/***/
/* If format field set to 1 and syncpoint callback NOT required then */
/* these fields must be set to null (0x00) */
/***/
DEALLOCATE_CALLBACK callback;
void * correlator;
unsigned char reserv4[4];

} DEALLOCATE;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: FLUSH */
/* */
/* Description: FLUSH verb control block */
/***/
typedef struct flush
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned long conv_id;

} FLUSH;
/**STRUCT-**/

190 Problem Determination Guide

/**STRUCT+**/
/* Structure: GET_ATTRIBUTES */
/* */
/* Description: GET_ATTRIBUTES verb control block */
/***/
typedef struct get_attributes
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned long conv_id;
unsigned char reserv3;
unsigned char sync_level;
unsigned char mode_name[8];
unsigned char net_name[8];
unsigned char lu_name[8];
unsigned char lu_alias[8];
unsigned char plu_alias[8];
unsigned char plu_un_name[8];
unsigned char reserv4[2];
unsigned char fqplu_name[17];
unsigned char reserv5;
unsigned char user_id[10];
unsigned long conv_group_id;
unsigned char conv_corr_len;
unsigned char conv_corr[8];
unsigned char reserv6[13];
unsigned char luw_id[26];
unsigned char sess_id[8];

} GET_ATTRIBUTES;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: PREPARE_TO_RECEIVE */
/* */
/* Description: PREPARE_TO_RECEIVE verb control block */
/***/
typedef struct prepare_to_receive
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned long conv_id;
unsigned char ptr_type;
unsigned char locks;

} PREPARE_TO_RECEIVE;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: RECEIVE_AND_WAIT */
/* */
/* Description: RECEIVE_AND_WAIT verb control block */
/***/
typedef struct receive_and_wait
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned long conv_id;
unsigned short what_rcvd;

Appendix D. Appendix D. IBM Communication Server APPC Interface 191

unsigned char rtn_status;
unsigned char fill;
unsigned char rts_rcvd;
unsigned char expd_data_rcvd;
unsigned short max_len;
unsigned short dlen;
unsigned char *dptr;
unsigned char reserv5[5];

} RECEIVE_AND_WAIT;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: SEND_DATA */
/* */
/* Description: SEND_DATA verb control block */
/***/
typedef struct send_data
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned long conv_id;
unsigned char rts_rcvd;
unsigned char expd_data_rcvd;
unsigned short dlen;
unsigned char *dptr;
unsigned char type;
unsigned char reserv4;

} SEND_DATA;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: SEND_ERROR */
/* */
/* Description: SEND_ERROR verb control block */
/***/
typedef struct send_error
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned long conv_id;
unsigned char rts_rcvd;
unsigned char err_type;
unsigned char err_dir;
unsigned char expd_data_rcvd;
unsigned short log_dlen;
unsigned char *log_dptr;

} SEND_ERROR;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: LUW_ID_OVERLAY */
/* */
/* Description: Identifier for Logical Unit of Work */
/***/
typedef struct luw_id_overlay
{
unsigned char fqlu_name_len;
unsigned char fqlu_name[17];
unsigned char instance[6];
unsigned char sequence[2];

} LUW_ID_OVERLAY;
/**STRUCT-**/

192 Problem Determination Guide

/**STRUCT+**/
/* Structure: GET_TP_PROPERTIES */
/* */
/* Description: GET_TP_PROPERTIES verb control block */
/***/
typedef struct get_tp_properties
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned char tp_name[64];
unsigned char lu_alias[8];
unsigned char luw_id[26];
unsigned char fqlu_name[17];
unsigned char reserv3[10];
unsigned char user_id[10];
unsigned char prot_luw_id[26];

} GET_TP_PROPERTIES;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: GET_LU_STATUS */
/* */
/* Description: GET_LU_STATUS verb control block */
/***/
typedef struct get_lu_status
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned char plu_alias[8];
unsigned short active_sess;
unsigned char zero_sess;
unsigned char reserv3[7];

} GET_LU_STATUS;
/**STRUCT-**/
/**STRUCT+**/
/* Structure: SET_TP_PROPERTIES */
/* */
/* Description: SET_TP_PROPERTIES verb control block */
/***/
typedef struct set_tp_properties
{
unsigned short opcode;
unsigned char opext;
unsigned char format;
unsigned short primary_rc;
unsigned long secondary_rc;
unsigned char tp_id[8];
unsigned char set_prot_id;
unsigned char new_prot_id;
unsigned char prot_id[26];
unsigned char set_unprot_id;
unsigned char new_unprot_id;
unsigned char unprot_id[26];
unsigned char set_user_id;
unsigned char set_password;
unsigned char user_id[10];
unsigned char new_password[10];

} SET_TP_PROPERTIES;
/**STRUCT-**/
/***/

Appendix D. Appendix D. IBM Communication Server APPC Interface 193

/* Windows APPC Extension Return Codes */
/***/
#define WAPPCALREADY 0xF000 /* An async call is already outstanding*/
#define WAPPCINVALID 0xF001 /* Async Task Id is invalid */
#define WAPPCCANCEL 0xF002 /* Blocking call was cancelled */
#define WAPPCSYSNOTREADY 0xF003 /* Underlying subsystem not started */
#define WAPPCVERNOTSUPPORTED 0xF004 /* Application version not supported */
/***/
/* WinAPPCStartup DATA structure */
/***/
#define WAPPCDESCRIPTION_LEN 127
typedef struct tagWAPPCDATA
{
WORD wVersion;
char szDescription[WAPPCDESCRIPTION_LEN+1];

} WAPPCDATA, * PWAPPCDATA, * LPWAPPCDATA;
/***/
/* API function prototypes */
/***/
extern void WINAPI APPC(long);
extern void WINAPI APPC_C(long);
extern HANDLE WINAPI WinAsyncAPPC(HWND, long);
extern HANDLE WINAPI WinAsyncAPPCEx(HANDLE, long);
extern BOOL WINAPI WinAPPCCleanup(void);
extern BOOL WINAPI WinAPPCIsBlocking(void);
extern int WINAPI WinAPPCCancelAsyncRequest(HANDLE);
extern BOOL WINAPI WinAPPCCancelBlockingCall(void);
extern int WINAPI WinAPPCStartup(WORD, LPWAPPCDATA);
extern FARPROC WINAPI WinAPPCSetBlockingHook(FARPROC);
extern BOOL WINAPI WinAPPCUnhookBlockingHook(void);
extern int WINAPI GetAppcReturnCode(struct appc_hdr *,

UINT,
unsigned char *);

/* winappc.h */

“Appendix D. Appendix D. IBM Communication Server APPC Interface” on page 185

IBM Communication Server APPC Interface: Verb Parameters

These APPC verb parameters from the IBM Communication Server programming
interface are used by the Component Broker to communicate over SNA, which can
be found in winparms.h in the IBMCS_INSTALL/SDK/WIN32/H directory, where
IBMCS_INSTALL is the install directory for IBM Communications Server. For more
information, see the IBM manual, Communication Server Client/Server
Communications Programming (SC31-8425).
/***/
/* Verb parameter values */
/***/
#define AP_NO 0x00
#define AP_YES 0x01
#define AP_ONE 0x00
#define AP_ALL 0x01
/***/
/*
sync_level */
/***/
#define AP_NONE 0x00
#define AP_CONFIRM 0x01
#define AP_SYNCPT 0x02
/***/
/* sync_levels_supported */

194 Problem Determination Guide

/* AP_NONE 0x00 */
/* AP_CONFIRM_SYNC_LEVEL 0x01 */
/* AP_EITHER 0x02 defined elsewhere. */
/***/
/***/
/* opext and
conv_type */
/***/
#define AP_BASIC_CONVERSATION 0x00
#define AP_MAPPED_CONVERSATION 0x01
/***/
/* Flags to use in APPC Queue-Level Non-Blocking Mode */
/***/
#define AP_NON_BLOCKING 0x02
#define AP_OPERATION_INCOMPLETE_FLAG 0x40
/***/
/*
"security" */
/***/
#define AP_NONE 0x00
#define AP_SAME 0x01
#define AP_PGM 0x02
/***/
/*
send_type */
/***/
#define AP_NONE 0x00
#define AP_SEND_DATA_FLUSH 0x01
#define AP_SEND_DATA_CONFIRM 0x02
#define AP_SEND_DATA_P_TO_R_FLUSH 0x03
#define AP_SEND_DATA_P_TO_R_SYNC_LEVEL 0x04
#define AP_SEND_DATA_P_TO_R_CONFIRM 0x08
#define AP_SEND_DATA_DEALLOC_FLUSH 0x05
#define AP_SEND_DATA_DEALLOC_SYNC_LEVEL 0x06
#define AP_SEND_DATA_DEALLOC_CONFIRM 0x09
#define AP_SEND_DATA_DEALLOC_ABEND 0x07
/***/
/* Constants for security_details field in PLU_DETAIL structure. These */
/* constants have the same values as the equivalent constants for the bit */
/* settings for BIND byte 23 */
/***/
#define AP_CONVERSATION_LEVEL_SECURITY (unsigned char)0x10
#define AP_PERSISTENT_VERIFICATION (unsigned char)0x01
#define AP_ALREADY_VERIFIED (unsigned char)0x02
#define AP_PASSWORD_SUBSTITUTION (unsigned char)0x04
/* winparms.h */

“Appendix D. Appendix D. IBM Communication Server APPC Interface” on page 185

IBM Communication Server APPC Interface: Return Codes

These return codes from the IBM Communication Server programming interface are
used by the Component Broker to communicate over SNA, which can be found in
winrc.h in the IBMCS_INSTALL/SDK/WIN32/H directory, where IBMCS_INSTALL is
the install directory for IBM Communications Server. This header file contains the
primary and secondary return codes. For more information, see the IBM manual,
Communication Server Client/Server Communications Programming (SC31-8425).
/***/
/*
Primary return codes */
/***/

Appendix D. Appendix D. IBM Communication Server APPC Interface 195

#define AP_OK 0x0000
#define AP_ACTIVATION_FAIL_NO_RETRY 0x0410
#define AP_ACTIVATION_FAIL_RETRY 0x0310
#define AP_ALLOCATION_ERROR 0x0300
#define AP_BACKED_OUT 0x2200
#define AP_BUFFER_PROVIDED_TOO_SMALL 0x4500
#define AP_BUFFER_TOO_SMALL AP_BUFFER_PROVIDED_TOO_SMALL
#define AP_CANCELLED 0x2100
#define AP_CNOS_LOCAL_RACE_REJECT 0x1700
#define AP_CNOS_PARTNER_LU_REJECT 0x1800
#define AP_COMM_SUBSYSTEM_ABENDED 0x03F0
#define AP_COMM_SUBSYSTEM_NOT_LOADED 0x04F0
#define AP_CONVERSATION_TYPE_MIXED 0x1900
#define AP_CONVERSATION_ENDED 0x4200
#define AP_CONV_BUSY 0x05F0
#define AP_CONV_FAILURE_NO_RETRY 0x1000
#define AP_CONV_FAILURE_RETRY 0x0F00
#define AP_DEALLOC_ABEND 0x0500
#define AP_DEALLOC_ABEND_PROG 0x0600
#define AP_DEALLOC_ABEND_SVC 0x0700
#define AP_DEALLOC_ABEND_TIMER 0x0800
#define AP_DEALLOC_NORMAL 0x0900
#define AP_BACKED_OUT 0x2300
#define AP_ERROR_INDICATION 0x4300
#define AP_EXPD_NOT_SUPPORTED_BY_LU 0x4400
#define AP_EXP_DATA_NOT_SUPPORTED_BY_LU AP_EXPD_NOT_SUPPORTED_BY_LU
#define AP_FUNCTION_NOT_SUPPORTED 0x0610
#define AP_INDICATION 0x0210
#define AP_INVALID_KEY 0x20F0
#define AP_INVALID_VERB_SEGMENT 0x08F0
#define AP_LS_FAILURE 0x2300
#define AP_LU_SESS_LIMIT_EXCEEDED 0x0510
#define AP_NODE_NOT_STARTED 0x1B00
#define AP_NODE_STOPPING 0x1A00
#define AP_OPERATION_INCOMPLETE 0x4000
#define AP_OPERATION_NOT_ACCEPTED 0x4100
#define AP_PARAMETER_CHECK 0x0100
#define AP_PATH_SWITCH_DISABLED 0x0710
#define AP_PROG_ERROR_NO_TRUNC 0x0C00
#define AP_PROG_ERROR_PURGING 0x0E00
#define AP_PROG_ERROR_TRUNC 0x0D00
#define AP_REPLACED 0x0080
#define AP_STACK_TOO_SMALL 0x15F0
#define AP_STATE_CHECK 0x0200
#define AP_SVC_ERROR_NO_TRUNC 0x1100
#define AP_SVC_ERROR_PURGING 0x1300
#define AP_SVC_ERROR_TRUNC 0x1200
#define AP_THREAD_BLOCKING 0x06F0
#define AP_TP_BUSY 0x02F0
#define AP_UNEXPECTED_DOS_ERROR 0x11F0
#define AP_UNEXPECTED_SYSTEM_ERROR 0x11F0
#define AP_UNSUCCESSFUL 0x1400
#define AP_ACCESS_DENIED 0x0101
#define AP_INVALID_VERB 0xFFFF
/***/
/*
Secondary return codes */
/***/
#define AP_ACTIVATION_LIMITS_REACHED 0x3E100000L
#define AP_ALLOCATE_NOT_PENDING 0x09050000L
#define AP_ALLOCATION_ERROR_PENDING 0x00000300L
#define AP_ALLOCATION_FAILURE_NO_RETRY 0x04000000L
#define AP_ALLOCATION_FAILURE_RETRY 0x05000000L
#define AP_ALL_APPL_ALREADY_REGISTERED 0x48080000L
#define AP_ALL_MODE_MUST_RESET 0x53010000L
#define AP_ALREADY_STARTING 0xC0010000L
#define AP_APPL_ALREADY_REGISTERED 0x63080000L

196 Problem Determination Guide

#define AP_APPL_NOT_REGISTERED 0x4A080000L
#define AP_AS_NEGOTIATED 0x07000000L
#define AP_AS_SPECIFIED 0x00000000L
#define AP_ATTACH_MANAGER_INACTIVE 0x08050000L
#define AP_AUTOACT_EXCEEDS_SESSLIM 0x52010000L
#define AP_BAD_CONV_ID 0x02000000L
#define AP_BAD_CONV_TYPE 0x11000000L
#define AP_BAD_DUPLEX_TYPE 0x22000000L
#define AP_BAD_CONV_STYLE AP_BAD_DUPLEX_TYPE
#define AP_BAD_ERROR_DIRECTION 0x05010000L
#define AP_BAD_DLOAD_ID 0x03000001L
#define AP_BAD_LL 0xF1000000L
#define AP_BAD_LU_ALIAS 0x03000000L
#define AP_BAD_MODE_NAME 0x57010000L
#define AP_BAD_PARTNER_LU_ALIAS 0x5B010000L
#define AP_BAD_REMOTE_LU_ALIAS 0x03000002L
#define AP_BAD_RETURN_CONTROL 0x14000000L
#define AP_BAD_RETURN_STATUS_WITH_DATA 0xD7000000L
#define AP_BAD_SECURITY 0x13000000L
#define AP_BAD_SNASVCMG_LIMITS 0x54010000L
#define AP_BAD_SYNC_LEVEL 0x12000000L
#define AP_BAD_TP_ID 0x01000000L
#define AP_BAD_TYPE 0x50020000L
#define AP_BO_NO_RESYNC 0x00002408L
#define AP_BO_RESYNC 0x01002408L
#define AP_CANT_CHANGE_TO_ZERO 0x5D010000L
#define AP_CANT_DELETE_ADJ_ENDNODE 0x5C100000L
#define AP_CANT_DELETE_CP_LU 0xB7070000L
#define AP_CANT_MODIFY_PORT_NAME 0x04100000L
#define AP_CANT_RAISE_LIMITS 0x51010000L
#define AP_CHANGE_SRC_DRAINS 0x5D010000L
#define AP_CLASHING_NAU_RANGE 0x1A900000L
#define AP_CNOS_ACCEPTED 0x00000000L
#define AP_CNOS_COMMAND_RACE_REJECT 0x5F010000L
#define AP_CNOS_IMPLICIT_PARALLEL 0x50010000L
#define AP_CNOS_MODE_CLOSED 0x56010000L
#define AP_CNOS_MODE_NAME_REJECT 0x57010000L
#define AP_CNOS_NEGOTIATED 0x07000000L
#define AP_CNOS_REJECT 0x2C100000L
#define AP_CONFIRM_BAD_STATE 0x32000000L
#define AP_CONFIRMED_BAD_STATE 0x41000000L
#define AP_CONFIRM_INVALID_FOR_FDX 0x34000000L
#define AP_CONFIRM_NOT_LL_BDY 0x33000000L
#define AP_CONFIRM_ON_SYNC_LEVEL_NONE 0x31000000L
#define AP_CONFIRMED_BAD_STATE 0x41000000L
#define AP_CONFIRMED_INVALID_FOR_FDX 0x42000000L
#define AP_CONVERSATION_TYPE_MISMATCH 0x34600810L
#define AP_COS_NAME_NOT_DEFD 0x10080000L
#define AP_COS_TABLE_FULL 0x64100000L
#define AP_CPSVCMG_ALREADY_DEFD 0x21020000L
#define AP_CPSVCMG_MODE_NOT_ALLOWED 0x19050000L
#define AP_CP_OR_SNA_SVCMG_UNDELETABLE 0xF3010000L
#define AP_DEACT_CG_INVALID_CGID 0x6C020000L
#define AP_DEALLOC_ABEND_PROG_PENDING 0x00000600L
#define AP_DEALLOC_ABEND_SVC_PENDING 0x00000700L
#define AP_DEALLOC_ABEND_TIMER_PENDING 0x00000800L
#define AP_DEALLOC_BAD_TYPE 0x51000000L
#define AP_DEALLOC_CONFIRM_BAD_STATE 0x53000000L
#define AP_DEALLOC_FLUSH_BAD_STATE 0x52000000L
#define AP_DEALLOC_LOG_LL_WRONG 0x57000000L
#define AP_DEALLOC_NOT_LL_BDY 0x55000000L
#define AP_DEF_LINK_INVALID_SECURITY 0x22080000L
#define AP_DEF_PLU_INVALID_FQ_NAME 0x74020000L
#define AP_DEL_MODE_DEFAULT_SPCD 0xF4010000L
#define AP_DEPENDENT_LU_NOT_SUPPORTED 0x0F900000L
#define AP_DIR_ENTRY_PARENT 0x38100000L
#define AP_DISPLAY_INFO_EXCEEDS_LEN 0xB4010000L

Appendix D. Appendix D. IBM Communication Server APPC Interface 197

#define AP_DISPLAY_INVALID_CONSTANT 0xB5010000L
#define AP_DLC_ACTIVE 0x01100000L
#define AP_DLC_DEACTIVATING 0x86020000L
#define AP_DLC_INACTIVE 0x40100000L
#define AP_DLUR_NOT_SUPPORTED 0x5F100000L
#define AP_DLUS_CAPS_MISMATCH 0x08900000L
#define AP_DLUS_REJECTED 0x07900000L
#define AP_DSPU_ALREADY_DEFINED 0x13900000L
#define AP_DSPU_SERVICES_NOT_SUPPORTED 0x11900000L
#define AP_DUPLICATE 0x8D020000L
#define AP_DUPLICATE_ADJ_NODE_ID 0x04100000L
#define AP_DUPLICATE_CP_NAME 0x02100000L
#define AP_DUPLICATE_DEST_ADDR 0x03100000L
#define AP_DUPLICATE_PORT 0x10100000L
#define AP_DUPLICATE_PORT_NAME 0x06100000L
#define AP_DUPLICATE_PORT_NUMBER 0x05100000L
#define AP_DUPLICATE_TG_NUMBER 0x15530000L
#define AP_DYNAMIC_LOAD_ALREADY_REGD 0x46100000L
#define AP_ERROR 0x13400000L
#define AP_EXCEEDS_MAX_ALLOWED 0x5C010000L
#define AP_EXPD_BAD_RETURN_CONTROL 0x26010000L
#define AP_EXPD_DATA_BAD_CONV_STATE 0x27010000L
#define AP_FDX_NOT_SUPPORTED_BY_LU 0x23000000L
#define AP_FLUSH_NOT_SEND_STATE 0x61000000L
#define AP_FORCED 0xB7020000L
#define AP_HPR_NOT_SUPPORTED 0x62100000L
#define AP_IMPLICIT_REQUEST_FAILED 0x6A080000L
#define AP_IMPLICIT_REQUEST_REJECTED 0x65080000L
#define AP_INVALID_ACTIVE_TRANSACTION 0x66080000L
#define AP_INVALID_ADJ_NNCP_NAME 0x4A100000L
#define AP_INVALID_APPLICATION_NAME 0x61080000L
#define AP_INVALID_AUTO_ACT_SUPP 0xB5020000L
#define AP_INVALID_BACK_LEVEL_SUPPORT 0x15000000L
#define AP_INVALID_BKUP_DLUS_NAME 0x15900000L
#define AP_INVALID_BTU_SIZE 0x44100000L
#define AP_INVALID_BYTE_COST 0xD1010000L
#define AP_INVALID_CATEGORY_NAME 0x67080000L
#define AP_INVALID_CLEANUP_TYPE 0x24100000L
#define AP_INVALID_CNOS_SLIM 0x17020000L
#define AP_INVALID_CN_NAME 0x21080000L
#define AP_INVALID_CONV_TYPE 0xA1020000L
#define AP_INVALID_CONVERSATION_TYPE AP_INVALID_CONV_TYPE
#define AP_INVALID_COS_NAME 0x25100000L
#define AP_INVALID_COS_SNASVCMG_MODE 0x1C020000L
#define AP_INVALID_CP_NAME 0xCA010000L
#define AP_INVALID_DATA_SEGMENT 0x06000000L
#define AP_INVALID_DATA_SIZE 0x62080000L
#define AP_INVALID_DATA_TYPE 0x05070000L
#define AP_INVALID_DAYS_LEFT 0x65100000L
#define AP_ANYNET_NOT_SUPPORTED 0x66100000L
#define AP_INVALID_DEFAULT_RU_SIZE 0x1D020000L
#define AP_INVALID_DESTINATION 0x68080000L
#define AP_INVALID_DISCOVERY_SUPPORT 0x67100000L
#define AP_INVALID_DLC 0x10050000L
#define AP_INVALID_DLC_NAME 0x07100000L
#define AP_INVALID_DLC_TYPE 0x08100000L
#define AP_INVALID_DLUS_NAME 0x00900000L
#define AP_INVALID_DNST_LU_NAME 0x53100000L
#define AP_INVALID_DRAIN 0x27100000L
#define AP_INVALID_DRAIN_SOURCE 0x20100000L
#define AP_INVALID_DRAIN_TARGET 0x21100000L
#define AP_INVALID_DSPU_NAME 0x12900000L
#define AP_INVALID_DSPU_SERVICES 0x10900000L
#define AP_INVALID_DUPLEX_SUPPORT 0x17900000L
#define AP_INVALID_DYNAMIC_LOAD 0x24600810L
#define AP_INVALID_EFFECTIVE_CAPACITY 0x24080000L
#define AP_INVALID_ENABLE_POOL 0x50300000L

198 Problem Determination Guide

#define AP_INVALID_ENABLED 0x25600810L
#define AP_INVALID_FILTER_OPTION 0x0C900000L
#define AP_INVALID_FORCE 0x22100000L
#define AP_INVALID_FP_NAME 0x64080000L
#define AP_INVALID_FQPCID 0x4E100000L
#define AP_INVALID_FQ_LU_NAME 0xFD010000L
#define AP_INVALID_FQ_OWNING_CP_NAME 0xDB020000L
#define AP_INVALID_HOST_LU_NAME 0x54100000L
#define AP_INVALID_ISR_THRESHOLDS 0x5A100000L
#define AP_INVALID_LENGTH 0x59100000L
#define AP_INVALID_LIMITED_RESOURCE 0xCE010000L
#define AP_INVALID_LINK_ACTIVE_LIMIT 0x09100000L
#define AP_INVALID_LINK_ENABLE 0xBA020000L
#define AP_INVALID_LINK_NAME 0xC1010000L
#define AP_INVALID_LINK_NAME_SPECIFIED 0xB0020000L
#define AP_INVALID_LIST_OPTION 0x47100000L
#define AP_INVALID_LS_ROLE 0x43100000L
#define AP_INVALID_LU_ALIAS 0xB1020000L
#define AP_INVALID_LU_NAME 0x29100000L
#define AP_INVALID_MAX_IFRM_RCVD 0x57100000L
#define AP_INVALID_MAX_NEGOT_SESS_LIM 0x14020000L
#define AP_INVALID_MAX_RU_SIZE_UPPER 0x19020000L
#define AP_INVALID_MDS_MU_FORMAT 0x46080000L
#define AP_INVALID_MIN_CONWINNERS 0x1E020000L
#define AP_INVALID_MODE_NAME 0x15020000L
#define AP_INVALID_MODE_NAME_SELECT 0x1E100000L
#define AP_INVALID_MS_CATEGORY 0x60080000L
#define AP_INVALID_NAME_LEN 0xC5020000L
#define AP_INVALID_NAU_ADDRESS 0x50100000L
#define AP_INVALID_NAU_RANGE 0x1B900000L
#define AP_INVALID_NETID_LEN 0xC6020000L
#define AP_INVALID_NEW_PROT 0x01070000L
#define AP_INVALID_NEW_UNPROT 0x03070000L
#define AP_INVALID_NODE 0x4B100000L
#define AP_INVALID_NODE_TYPE 0xC4020000L
#define AP_INVALID_NODE_TYPE_FOR_HPR 0xC8020000L
#define AP_INVALID_NUMBER_OF_NODE_ROWS 0x02080000L
#define AP_INVALID_NUMBER_OF_TG_ROWS 0x09080000L
#define AP_INVALID_NUM_DSLU_TEMPLATES 0x1C900000L
#define AP_INVALID_NUM_LS_SPECIFIED 0xB2020000L
#define AP_INVALID_NUM_LUS 0x5B100000L
#define AP_INVALID_NUM_PORTS_SPECIFIED 0x0B100000L
#define AP_INVALID_OP_CODE 0x2D100000L
#define AP_INVALID_ORIGIN_CP_NAME 0x47080000L
#define AP_INVALID_ORIGIN_NODE 0x4C100000L
#define AP_INVALID_PASSWORD 0x91020000L
#define AP_INVALID_PIP_ALLOWED 0x26600810L
#define AP_INVALID_PLU_NAME 0x1C100000L
#define AP_INVALID_POOL_NAME 0x4F100000L
#define AP_INVALID_PORT_NAME 0x0C100000L
#define AP_INVALID_PORT_TYPE 0x0D100000L
#define AP_INVALID_PRIORITY 0x52100000L
#define AP_INVALID_PRLL_SESS_SUPP 0x28100000L
#define AP_INVALID_PROCESS 0x25050000L
#define AP_INVALID_PROFILE 0x93020000L
#define AP_INVALID_PROPAGATION_DELAY 0x23080000L
#define AP_INVALID_PU_ID 0x02900000L
#define AP_INVALID_PU_NAME 0x56100000L
#define AP_INVALID_PU_TYPE 0x56600000L
#define AP_INVALID_RECV_PACING_WINDOW 0x16020000L
#define AP_INVALID_RESOURCE_TYPE 0x5D100000L
#define AP_INVALID_RESPONSIBLE 0x1F100000L
#define AP_INVALID_RES_NAME 0x48100000L
#define AP_INVALID_RES_TYPE 0x49100000L
#define AP_INVALID_RTP_CONNECTION 0x60100000L
#define AP_INVALID_SEMAPHORE_HANDLE 0xD6000000L
#define AP_INVALID_SESSION_ID 0x12050000L

Appendix D. Appendix D. IBM Communication Server APPC Interface 199

#define AP_INVALID_SESSION_LIMIT 0x26100000L
#define AP_INVALID_SET_NEGOTIABLE 0x1D100000L
#define AP_INVALID_SET_PROT 0x00070000L
#define AP_INVALID_SET_UNPROT 0x02070000L
#define AP_INVALID_SET_USER 0x04070000L
#define AP_INVALID_SET_PASSWORD 0x09070000L
#define AP_INVALID_SNASVCMG_MODE_LIMIT 0x1A020000L
#define AP_INVALID_SOLICIT_SSCP_SESS 0x14900000L
#define AP_INVALID_STATS_TYPE 0x06070000L
#define AP_INVALID_STOP_TYPE 0x0D900000L
#define AP_INVALID_SYM_DEST_NAME 0x58100000L
#define AP_INVALID_SYNC_LEVEL 0xA3020000L
#define AP_INVALID_TABLE_TYPE 0x07070000L
#define AP_INVALID_TARGET_PACING_CNT 0x18020000L
#define AP_INVALID_TEMPLATE_NAME 0x19900000L
#define AP_INVALID_TG 0x4D100000L
#define AP_INVALID_TG_CHARS 0x18030000L
#define AP_INVALID_TG_NUMBER 0x15500000L
#define AP_INVALID_TIME_COST 0xD6010000L
#define AP_INVALID_TP_NAME 0xA0020000L
#define AP_INVALID_TYPE 0x69080000L
#define AP_INVALID_UNINT_PLU_NAME 0x7C020000L
#define AP_INVALID_UPDATE_TYPE 0x37100000L
#define AP_INVALID_USERID 0x90020000L
#define AP_INVALID_USER_DEF_1 0xC3010000L
#define AP_INVALID_USER_DEF_2 0xC4010000L
#define AP_INVALID_USER_DEF_3 0xC5010000L
#define AP_INVALID_WILDCARD_NAME 0x8C020000L
#define AP_KEY_APPL_ALREADY_REGISTERED 0x42080000L
#define AP_LAST_LINK_ON_ACTIVE_PORT 0x45100000L
#define AP_LINK_ACT_BY_LOCAL 0x15100000L
#define AP_LINK_ACT_BY_REMOTE 0x14100000L
#define AP_LINK_DEACTIVATED 0x13100000L
#define AP_LINK_DEACT_IN_PROGRESS 0x12100000L
#define AP_LINK_NOT_DEFD 0x17100000L
#define AP_LOCAL_CP_NAME 0xD7010000L
#define AP_LS_ACTIVE 0xDA010000L
#define AP_LU_ALIAS_ALREADY_USED 0xB9020000L
#define AP_LU_ALIAS_CANT_BE_CHANGED 0xB8020000L
#define AP_LU_ALREADY_DEFINED 0x3B100000L
#define AP_IMPLICIT_LU_DEFINED 0x3C100000L
#define AP_LU_DETACHED 0x5E010000L
#define AP_LU_NAME_POOL_NAME_CLASH 0x51100000L
#define AP_LU_NAME_WILDCARD_NAME_CLASH 0x8E020000L
#define AP_LU_NAU_ADDR_ALREADY_DEFD 0x12020000L
#define AP_MIN_GT_TOTAL 0x55010000L
#define AP_MISSING_CP_NAME 0x15510000L
#define AP_MISSING_CP_TYPE 0x15520000L
#define AP_MISSING_TG_NUMBER 0x15550000L
#define AP_MODE_ACTIVE 0x1A100000L
#define AP_MODE_CLOSED 0x56010000L
#define AP_MODE_NAME_NOT_DEFD 0xF5010000L
#define AP_MODE_NOT_RESET 0x2A100000L
#define AP_MODE_RESET 0x2B100000L
#define AP_MODE_SESS_LIM_EXCEEDS_NEG 0x20020000L
#define AP_MODE_UNDELETABLE 0xF6010000L
#define AP_MS_APPL_NAME_ALREADY_REGD 0x40080000L
#define AP_MS_APPL_NAME_NOT_REGD 0x44080000L
#define AP_NODE_ALREADY_STARTED 0x39100000L
#define AP_NODE_FAILED_TO_START 0x3A100000L
#define AP_NODE_ROW_WGT_LESS_THAN_LAST 0x04080000L
#define AP_NO_DEFAULT_DLUS_DEFINED 0x01900000L
#define AP_NO_LINKS_DEFINED 0x41100000L
#define AP_NO_PORTS_DEFINED_ON_DLC 0x0F100000L
#define AP_NO_PROFILES 0x33100000L
#define AP_NO_USE_OF_SNASVCMG 0x17000000L
#define AP_NO_USE_OF_SNASVCMG_CPSVCMG 0x17000000L

200 Problem Determination Guide

#define AP_P_TO_R_INVALID_FOR_FDX 0xA5000000L
#define AP_PARALLEL_TGS_NOT_ALLOWED 0x15570000L
#define AP_PARALLEL_TGS_NOT_SUPPORTED 0x3F100000L
#define AP_PARTNER_NOT_FOUND 0x13200000L
#define AP_PARTNER_NOT_RESPONDING 0x13300000L
#define AP_PATH_SWITCH_IN_PROGRESS 0x61100000L
#define AP_PIP_LEN_INCORRECT 0x16000000L
#define AP_PIP_NOT_ALLOWED 0x31600810L
#define AP_PIP_NOT_SPECIFIED_CORRECTLY 0x32600810L
#define AP_PLU_ACTIVE 0x1B100000L
#define AP_PLU_ALIAS_ALREADY_USED 0xB4020000L
#define AP_CANT_DELETE_IMPLICIT_LU 0xB6020000L
#define AP_PLU_ALIAS_CANT_BE_CHANGED 0xB3020000L
#define AP_PORT_ACTIVE 0x0E100000L
#define AP_PORT_DEACTIVATED 0x08070000L
#define AP_PORT_INACTIVE 0x3D100000L
#define AP_PS_CREATION_FAILURE 0x18100000L
#define AP_PU_ALREADY_ACTIVATING 0x03900000L
#define AP_PU_ALREADY_ACTIVE 0x05900000L
#define AP_PU_ALREADY_DEACTIVATING 0x04900000L
#define AP_PU_ALREADY_DEFINED 0x0E900000L
#define AP_PU_CONC_NOT_SUPPORTED 0x5E100000L
#define AP_PU_FAILED_ACTPU 0x09900000L
#define AP_PU_NOT_ACTIVE 0x06900000L
#define AP_PU_NOT_DEFINED 0x55100000L
#define AP_PU_NOT_RESET 0x0A900000L
#define AP_PU_OWNS_LUS 0x0B900000L
#define AP_PW_SUB_NOT_SUPP_ON_SESS 0x26050000L
#define AP_P_TO_R_INVALID_TYPE 0xA1000000L
#define AP_P_TO_R_NOT_LL_BDY 0xA2000000L
#define AP_P_TO_R_NOT_SEND_STATE 0xA3000000L
#define AP_QUEUE_PROHIBITED 0x18900000L
#define AP_RCV_AND_POST_BAD_FILL 0xD5000000L
#define AP_RCV_AND_POST_BAD_STATE 0xD1000000L
#define AP_RCV_AND_POST_NOT_LL_BDY 0xD2000000L
#define AP_RCV_AND_WAIT_BAD_FILL 0xB5000000L
#define AP_RCV_AND_WAIT_BAD_STATE 0xB1000000L
#define AP_RCV_AND_WAIT_NOT_LL_BDY 0xB2000000L
#define AP_RCV_EXPD_INVALID_LENGTH 0x25010000L
#define AP_RECEIVE_EXPD_INVALID_LENGTH AP_RCV_EXPD_INVALID_LENGTH
#define AP_RCV_IMMD_BAD_FILL 0xC4000000L
#define AP_RCV_IMMD_BAD_STATE 0xC1000000L
#define AP_RESET_SNA_DRAINS 0x59010000L
#define AP_RESOURCE_NAME_NOT_ALLOWED 0xB70B0000L
#define AP_RTP_NOT_SUPPORTED 0x63100000L
#define AP_R_T_S_BAD_STATE 0xE1000000L
#define AP_R_T_S_INVALID_FOR_FDX 0xE2000000L
#define AP_SECURITY_NOT_VALID 0x51600F08L
#define AP_SEC_REQUESTED_NOT_SUPPORTED 0x16900000L
#define AP_SEND_DATA_CONFIRM_ON_SYNC_LEVEL_NONE 0xF5000000L
#define AP_SEND_DATA_CONFIRM_SYNC_NONE 0xF5000000L
#define AP_SEND_DATA_INVALID_TYPE 0xF4000000L
#define AP_SEND_DATA_NOT_LL_BDY 0xF6000000L
#define AP_SEND_DATA_NOT_SEND_STATE 0xF2000000L
#define AP_SEND_ERROR_BAD_STATE 0x04010000L
#define AP_SEND_ERROR_BAD_TYPE 0x03010000L
#define AP_SEND_ERROR_LOG_LL_WRONG 0x02010000L
#define AP_SEND_EXPD_INVALID_LENGTH 0x24010000L
#define AP_SEND_TYPE_INVALID_FOR_FDX 0xF7000000L
#define AP_SINGLE_NOT_SRC_RESP 0x5A010000L
#define AP_SNASVCMG_RESET_NOT_ALLOWED 0x67010000L
#define AP_SNA_DEFD_COS_CANT_BE_CHANGE 0x0A080000L
#define AP_SNA_DEFD_COS_CANT_BE_DELETE 0x11080000L
#define AP_SPCF_APPL_ALREADY_REGD 0x45080000L
#define AP_SSCP_PU_SESSION_NOT_ACTIVE 0x01030000L
#define AP_STOP_DLC_PENDING 0x42100000L
#define AP_STOP_PORT_PENDING 0x11100000L

Appendix D. Appendix D. IBM Communication Server APPC Interface 201

#define AP_SYNC_LEVEL_NOT_SUPPORTED 0x41600810L
#define AP_SYSTEM_TP_CANT_BE_CHANGED 0x22600810L
#define AP_SYSTEM_TP_CANT_BE_DELETED 0x23600810L
#define AP_TEST_INVALID_FOR_FDX 0x23010000L
#define AP_TG_NUMBER_IN_USE 0x15540000L
#define AP_TG_ROW_WGT_LESS_THAN_LAST 0x05080000L
#define AP_TOO_MANY_PROFILES 0x36100000L
#define AP_TOO_MANY_TPS 0x43020000L
#define AP_TP_ACTIVE 0x19100000L
#define AP_TP_NAME_NOT_RECOGNIZED 0x21600810L
#define AP_TRANS_PGM_NOT_AVAIL_NO_RETRY 0x00004c08L
#define AP_TRANS_PGM_NOT_AVAIL_NO_RTRY 0x00004C08L
#define AP_TRANS_PGM_NOT_AVAIL_RETRY 0x31604B08L
#define AP_UNDEFINED_TP_NAME 0x06050000L
#define AP_UNKNOWN_ERROR_TYPE_PENDING 0x00001100L
#define AP_UNKNOWN_PARTNER_MODE 0x18000000L
#define AP_UNKNOWN_USER 0x32100000L
#define AP_UNRECOGNIZED_DEACT_TYPE 0x0E050000L
#define SV_DATA_EXCEEDS_RU_SIZE 0x02030000L
#define SV_INVALID_DATA_SIZE 0x62080000L
#define SV_INVALID_DATA_TYPE 0x03030000L
#define SV_SSCP_PU_SESSION_NOT_ACTIVE 0x01030000L
#define AP_MEMORY_SHORTAGE 0x00000001L
#define AP_DIRECTORY_FULL 0x00000007L
#define AP_INVALID_ALERT_NUMBER 0x00005521L
#define AP_INVALID_RTM_THRESHOLD 0x00005523L
#define AP_INVALID_RTM_TIMER_OPTION 0x00005524L
#define AP_INVALID_EMULATOR_USER 0x00005536L
#define AP_INVALID_SESSION_NAME 0x00005537L
#define AP_INVALID_SESSION_TYPE 0x00005538L
#define AP_SECURITY_NOT_VALID_PASSWORD_EXPIRED 0x00FF0F08L
#define AP_SECURITY_NOT_VALID_PASSWORD_INVALID 0x01FF0F08L
#define AP_SECURITY_NOT_VALID_USERID_REVOKED 0x02FF0F08L
#define AP_SECURITY_NOT_VALID_USERID_INVALID 0x03FF0F08L
#define AP_SECURITY_NOT_VALID_USERID_MISSING 0x04FF0F08L
#define AP_SECURITY_NOT_VALID_PASSWORD_MISSING 0x05FF0F08L
#define AP_SECURITY_NOT_VALID_GROUP_INVALID 0x06FF0F08L
#define AP_SECURITY_NOT_VALID_USERID_REVOKED_IN_GROUP 0x07FF0F08L
#define AP_SECURITY_NOT_VALID_USERID_NOT_DEFD_TO_GROUP 0x08FF0F08L
#define AP_SECURITY_NOT_VALID_NOT_AUTHORIZED_AT_REMOTE_LU 0x09FF0F08L
#define AP_SECURITY_NOT_VALID_NOT_AUTHORIZED_FROM_LOCAL_LU 0x0AFF0F08L
#define AP_SECURITY_NOT_VALID_NOT_AUTHORIZED_TO_TRANSACTION_PROGRAM 0x0BFF0F08L
#define AP_SECURITY_NOT_VALID_INSTALLATION_EXIT_FAILED 0x0CFF0F08L
#define AP_SECURITY_NOT_VALID_PROCESSING_FAILURE 0x0DFF0F08L
#define AP_SECURITY_NOT_VALID_PROTOCOL_VIOLATION 0x0EFF0F08L
/* winrc.h */

“Appendix D. Appendix D. IBM Communication Server APPC Interface” on page 185

202 Problem Determination Guide

Appendix E. Transaction Service Exceptions

The following explains the exceptions that are listed with Transaction Service
messages in the activity log:

v CORBA::BAD_INV_ORDER
This exception is returned when an internal method is called out of turn. This is
usually an internal logic error in Component Broker. A trace of the Transaction
Service during the failing request is required to determine the cause of this
problem.

v CORBA::BAD_PARAM
This exception is returned when values supplied on the APPC Connection are
not acceptable SNA values. The minor code raised with the exception indicates
which field in the APPC Connection has caused the exception to be raised and
why.

v CORBA::COMM_FAILURE
This exception is raised when an SNA communication failure is detected. This
can be caused by an SNA network failure, shutdown of the tier-3 system or
stopping the IBM Communication Server node locally.

v CORBA::INITIALIZE
This exception is returned from a CosTransactions::Current::begin() method call if
the Transaction Service did not initialize successfully in the server. This may be,
for example, because the Transaction Service Log files are not available. The
activity log messages produced by the Transaction Service when the server
starts indicates why transactions are not available.

v CORBA::INTERNAL
This exception is raised if the transaction service detects an internal logic error. A
trace of the transaction service during the failing request is required to resolve
this problem.

v CORBA::IMP_LIMIT
This exception is raised if the data is too long to send over SNA, or there are too
many active transactions in the server.

v CORBA::INVALID_TRANSACTION
There is a problem with the transactional environment (transaction context)
available to the request. Look at the minor code for more information.

v CORBA::MARSHAL
This exception is raised when Component Broker receives unexpected status
flags or data in an incorrect format from a tier-3 system.

v CORBA::NO_IMPLEMENT
This exception is raised when a feature is not available in the current server.

v CORBA::NO_PERMISSION
This exception is returned when a tier-3 system does not accept the
userId/password sent with a PAA request.

v CORBA::OBJECT_NOT_EXIST
This exception is returned when the transaction program name (TPN) value
supplied on the APPC Connection is not an acceptable SNA value. The minor
code raised with the exception indicates why the exception occurred.

v CORBA::PERSIST_STORE
This is the exception passed to a Component Broker application when a PAA
request fails. To discover the reason behind the failure, look in the activity log at
the exceptions/messages that appear for the same thread just before the

© Copyright IBM Corp. 1997, 1998 203

CORBA::PERSIST_STORE occurs. Generally, the first error message/exception
indicate the cause of the problem, and subsequent messages indicate the
consequence of the failure.

v CORBA::TRANSACTION_ROLLEDBACK
The transaction either has, or is about, to rollback. Therefore further operations
on this transaction are not possible.

v CORBA::TRANSIENT
This exception is raised when Component Broker is unable to exchange log
names (XLN) with a tier-3 system. This is required before transactional requests
can be sent to the tier-3 system.

v CORBA::UNKNOWN
This exception is raised when a non-CORBA exception is caught by Component
Broker.

v CosTransactions::HeuristicCommit
This exception is raised if a tier-3 system commits a transaction without involving
Component Broker’s transaction service in the decision. If Component Broker has
rolled the transaction back then heuristic damage has occurred.

v CosTransactions::HeuristicHazard
This exception is raised if one or more tier-3 systems cannot be contacted when
Component Broker it attempting to terminate (commit or rollback) a transaction.
This means there is the possibility of heuristic damage.

v CosTransactions::HeuristicMixed
This exception is raised when Component Broker detects heuristic damage
during the termination of a transaction.

v CosTransactions::HeuristicRollback
An APPC tier-3 system has rolled back the transaction independently from
Component Broker. If Component Broker has committed the transaction, then
heuristic damage has occurred.

v CosTransactions::NoTransaction
This exception is raised if Component Broker is unable to continue with a request
because a transaction is not active.

v OTSAPPCConnection::AlreadyConnected
This exception is returned when an internal method is called out of turn. This is
usually an internal logic error in Component Broker. A trace of the Transaction
Service during the failing request is required to determine the cause of this
problem.

v OTSAPPCConnection::BadCommunications
This exception is raised when a tier-3 system sends incorrect data or status to
Component Broker.

v OTSAPPCConnection::CommunicationFailure
This exception is raised when an SNA communication failure is detected. This
can be caused by an SNA network failure, shutdown of the tier-3 system or
stopping the IBM Communication Server node locally.

v OTSAPPCConnection::BadLocalLU
This exception is returned when the local LU name value supplied on the APPC
Connection is not an acceptable SNA value. The minor code raised with the
exception indicates why the exception occurred.

v OTSAPPCConnection::BadModeName
This exception is returned when the mode name value supplied on the APPC
Connection is not an acceptable SNA value. The minor code raised with the
exception indicates why the exception occurred.

204 Problem Determination Guide

v OTSAPPCConnection::BadPartnerLU
This exception is returned when the partner LU name value supplied on the
APPC Connection is not an acceptable SNA value. The minor code raised with
the exception indicates why the exception occurred.

v OTSAPPCConnection::BadSecurity
This exception is returned when either the userId or password values supplied in
the user’s logon information is not an acceptable SNA value. The minor code
raised with the exception indicates why the exception occurred.

v OTSAPPCConnection::BadTPN
This exception is returned when the transaction program name (TPN) value
supplied on the APPC Connection are not acceptable SNA values. The minor
code raised with the exception indicates why the exception occurred.

v OTSAPPCConnection::PartnerNotRecoverable
This exception is raised if a tier-3 system does not recognize the exchange log
names (XLN) requests required before transactional requests can be sent to the
tier-3 system. This means that either the tier-3 system does not support incoming
transactional requests, or alternatively, a component in the tier-3 system used to
receive transactional requests over SNA (for example an Encina PPC gateway) is
either not running or incorrectly configured.

v OTSAPPCConnection::NotConnected
This exception is returned when an internal method is called out of turn. This is
usually an internal logic error in Component Broker. A trace of the Transaction
Service during the failing request is required to determine the cause of this
problem.

v OTSAPPCConnection::SecurityNotValid
This exception is returned when a tier-3 system does not accept the
userId/password sent with a PAA request.

v OTSAPPCConnection::TPNUnavailable
This exception is raised if a tier-3 transaction program is not available.

“Chapter 2. Activity Log for Problem Determination” on page 3

Appendix E. Transaction Service Exceptions 205

206 Problem Determination Guide

Appendix F. SNA Data Formats

This file gives an overview of the format of data and other records that flow over
SNA networks. The complete definition is documented in the IBM Manual SNA
Formats (GA27-3136).

v “Transmission Headers (TH) and Request/Response Headers (RH)”

v “Attach FMH-5” on page 209

v “Logical Unit of Work Identifier (LUWId)” on page 210

v “GDS Records and Data Mapping” on page 210

v “Presentation Services (PS) Header 10” on page 212

v “Function Management Header 7 (FMH-7)” on page 213

v “Exchange Log Names (XLN) GDS Record” on page 214

v “Compare States GDS Record” on page 215

v “Conversation Correlator (CC) and Session Id” on page 216

Transmission Headers (TH) and Request/Response Headers (RH)

The blocks of data that appear in an IBM Communication Server I-frames trace
have the following structure:

The first six bytes are the Transmission Header (TH) which describes the source
and destination of the message plus a sequence number. After the TH is the
Request/Response Header or RH. This is three bytes of bit switches describing the
type of data that follows and a number of indicators which reflect the type of
request issued by the partner system/application. These indicators are used to set
the state of the conversation.

0x800000 0=request, 1=response

0x600000 Two bits indicating:

00 An FMH is at the start of the RU
01 The RU contains Network control (NC) data
10 The RU contains Data Flow Control (DFC) data
11 The RU contains a request to start (bind) or

stop (unbind) a session

0x002000 This is the Request Definite Response (RQD2) indicator and means a
CONFIRMED response is requested.

0x000020 The Change Direction (CD) indicator means the sender is now waiting to
receive data.

0x000001 The Conditional End Bracket (CEB) indicator usually means that this is the
last flow for the conversation.

© Copyright IBM Corp. 1997, 1998 207

Finally, after the RH, is the Request/Response Unit (RU) which contains one or
more types of SNA records. For example:

FMH is the Function Management Header.
PS Header is the Presentation Services Header.
GDS Records is the Generalized Data Stream Records.

As far as the Component Broker is concerned, if there is an FMH in the RU, then it
appears first. After that, there may be one or more GDS records. If the conversation
is synclevel 2, a single PS header may be attached at the end.

The responsibility for marshalling these records into RUs is split between
Component Broker’s OTS-APPC component and IBM Communications Server. The
OTS-APPC builds GDS records and PS Headers. These are passed to IBM
Communication Server in a buffer. IBM Communication Server builds FMHs and
takes the data provided by OTS-APPC and breaks it down into RUs. The process
of formatting RUs pays no interest to the boundaries of the records. The aim is to
squeeze as much data into an RU as is allowed by the "max RU size" specified in
the mode definition for the session.

208 Problem Determination Guide

TH is the Transmission Header.
RH is the Request/Response Header.

“APPC I-Frames Trace Samples” on page 178
“APPC Verb Trace Samples” on page 167
“Appendix F. SNA Data Formats” on page 207

Attach FMH-5

The information to start a conversation is supplied by the application on the
ALLOCATE verb. This is packed into an Attach Function Management Header
(FMH) 5. The layout of an attach FMH-5 is shown below. See “APPC I-Frames
Trace Samples” on page 178 for additional information.

CC = Conversation Correlator

“APPC I-Frames Trace Samples” on page 178

Appendix F. SNA Data Formats 209

“APPC Verb Trace Samples” on page 167
“Appendix F. SNA Data Formats” on page 207

Logical Unit of Work Identifier (LUWId)

Logical Unit of Work Identifier (LUWId) is an identifier for a group of related pieces
of work. The protected LUWId is used to group all recoverable work related to a
single Component Broker transaction. So it can be thought of as the SNA
equivalent of the CORBA CosTransactions::otid_t. In addition, there is an
unprotected LUWId which is used to group together the non-recoverable work (that
is, the first part of a pessimistic transaction) for a Component Broker transaction.
Use of the unprotected LUWId is not mandatory but it can be used for accounting
purposes. The two LUWIds associated with a Component Broker transaction are
passed to IBM Communication Server in the SET_TP_PROPERTIES verb. They
can also be seen on the GET_ATTRIBUTES verb.

The format of an LUWId is shown below:

LUWIds flow across the SNA network in attach FMH-5 records and compare states
records.

“APPC I-Frames Trace Samples” on page 178
“APPC Verb Trace Samples” on page 167
“Appendix F. SNA Data Formats” on page 207

GDS Records and Data Mapping

In order for the SNA network to keep track of the length of a piece of data, the data
is sent around the network in GDS records (or GDS variables). In the simplest case
these records have a two-byte inclusive length called the LL, a two-byte ID field
that describes the type of data (see table below) and then the data itself.

210 Problem Determination Guide

The ID values can be:

ID Description Comments

0x12FF Application data Used by Component Broker
to send data and CRUD
requests to the tier-3 system.

0x12F2 User Controlled data Use to send EXEC CICS
LINK requests to a CICS
tier-3 system. Not currently
used by Component Broker
for APPC support.

0x1211 Exchange Log Names (XLN)
request/response

Used by Component Broker’s
transaction service to check
the tier-3 system’s
transaction log is correct.

0x1213 Compare states
request/response

Used by Component Broker’s
transaction service to
resynchronize transactions
after a server/network crash.

0x1210 Change Number of Sessions
(CNOS) request/response

Used by two SNA LUs to
negotiate the number of
sessions that should be
bound between them for a
particular mode name. This
process is controlled by IBM
Communication Server on
behalf of the Component
Broker server using
information from the mode
definition.

It is possible that the length of the data is more than can be represented by a two
byte length. So a GDS record is actually made up of one or more concatenated
logical records. The diagram below shows the data split over 3 logical records.
Notice the ID field only appears in the first logical record. The top bit of each LL is a
concatenation bit. When it is set, it means the following logical record contains data
that is part of the same GDS record as this logical record. So in the diagram below,
the concatenation bit is set in the first two logical records and not in the third.

Appendix F. SNA Data Formats 211

GDS records are passed between Component Broker and IBM Communication
Server using the SEND_DATA and RECEIVE_AND_WAIT verbs.

“APPC Verb Trace Samples” on page 167
“APPC I-Frames Trace Samples” on page 178
“Appendix F. SNA Data Formats” on page 207

Presentation Services (PS) Header 10

Presentation Services (PS) headers (type 10) are used to control the commit of a
transaction across an SNA network. For example, if a Component Broker
transaction has more than one synclevel 2 conversation, it uses a two phase
commit on each conversation, as follows:

Alternatively, if only one synclevel 2 conversation is associated, a one phase
commit is used.

The format of the PS header varies slightly. Component Broker sends prepare and
request commit headers with a modifier of "DEALLOCATE" to indicate that the tier-3
system should end the conversation (by sending a Conditional End Bracket
indicator) on the last PS header it sends. In addition, an IMS system will send a
modifier of 0x0000 with its request commit PS header response to prepare. This
has no meaning and is ignored.

212 Problem Determination Guide

Request commit PS headers sent by CICS, committed PS headers, and forget PS
headers flow without a modifier. So does a heuristic mixed PS header which means
the sender has committed part of the transaction and rolled back another.

Finally, there is a new LUWId PS header. It is included for completeness, but
Component Broker does not send, nor does it expect to receive, this PS header.

“APPC I-Frames Trace Samples” on page 178
“APPC Verb Trace Samples” on page 167
“Appendix F. SNA Data Formats” on page 207

Function Management Header 7 (FMH-7)

The Function Management Header (FMH) 7 is used for sending errors, backout
requests, and abnormally terminating conversations. Its format is as follows:

Appendix F. SNA Data Formats 213

See “APPC I-Frames Trace Samples” on page 178 for examples of the trace.

Most FMH-7s are accompanied by a Conditional End Bracket (CEB) indicator. The
exceptions are:

0x08240000 Backout (rollback) request
0x08240001 Backout (rollback) request - resync pending locally

which are accompanied by a Request Definite Response (RQD2) indicator and
0x08890000 Program issued SendError (not allowed with CB)
0x08890001 Program issued SendError (not allowed with CB)
0x08890100 Partner system issued SendError (not allowed with CB)
0x08890101 Partner system issued SendError (not allowed with CB)

which do not automatically have any indicator with them. See “Transmission
Headers (TH) and Request/Response Headers (RH)” on page 207 for more
information on RQD2 and CEB.

“APPC I-Frames Trace Samples” on page 178
“APPC Verb Trace Samples” on page 167
“Appendix F. SNA Data Formats” on page 207

Exchange Log Names (XLN) GDS Record

The exchange log names (XLN) GDS record is used by an SNA LU (for example, a
Component Broker server or a tier-3 system) to send information about the
transaction log file it is using. XLN GDS records are sent on a conversation
between the resync TPs (0x06F2) from each LU. See “APPC I-Frames Trace
Samples” on page 178 for some examples of this trace.

214 Problem Determination Guide

“APPC I-Frames Trace Samples” on page 178
“APPC Verb Trace Samples” on page 167
“Appendix F. SNA Data Formats” on page 207

Compare States GDS Record

The Compare States GDS record is used by an SNA LU (for example, a
Component Broker server or a tier-3 system) to send information about the state of
a particular transaction. Compare States GDS records, optionally, follow XLN
records on a conversation between the resync TPs (0x06F2) from each LU. See
“Logical Unit of Work Identifier (LUWId)” on page 210 and “Conversation Correlator
(CC) and Session Id” on page 216 for more information on their formats.

Appendix F. SNA Data Formats 215

“APPC I-Frames Trace Samples” on page 178
“APPC Verb Trace Samples” on page 167
“Appendix F. SNA Data Formats” on page 207

Conversation Correlator (CC) and Session Id

A conversation correlator is an identifier for a particular conversation that is known
by the LUs at either end of the conversation. It is assigned by the LU where the
ALLOCATE (page 170) is issued, and it is sent in the attach FMH-5 preceded by a
one byte exclusive length. It is also sent as part of a Compare States GDS record
along with the Id of the session (requested by a GET_ATTRIBUTES call to IBM
Communications Server) and optionally, the LU name of the LU where the
conversation correlator was created (which is always the Component Broker).

“APPC I-Frames Trace Samples” on page 178
“APPC Verb Trace Samples” on page 167
“Appendix F. SNA Data Formats” on page 207

216 Problem Determination Guide

Appendix G. System Exceptions and Minor Codes

This section provides an explanation of the minor codes used by the Component
Broker, the definition of the minor codes in hexadecimal order, and the code ranges
for System Exceptions.

Each minor code begins with 0x4942, which is the OMG-assigned identification
code for the Component Broker ORB. The remaining digits identify the minor code.
In some cases, minor error codes may be reported without the vendor ID. Minor
error codes reported from Java are in decimal and lack the vendor ID.

Minor Codes
Component Broker follows the CORBA model for exception handling. In this model,
all exceptions can be associated with minor error codes. The minor error codes
provide greater detail about the errors that can occur.

Error codes are used in several ways. They are returned in the minor code field of
exception bodies (when appropriate), they are placed in the activity log as part of
the PrimaryMessage, and they can be written in diagnostic messages on a
computer screen. There is not a one-to-one mapping of exception names to minor
error codes. Rather, a minor error code can be associated with several different
exceptions. This means a minor error code message can mean different things
depending on which exception was thrown.

The explanation of each minor error code includes:

Minor Code The hexadecimal value of the minor error
code.

Error Text The text string that identifies the minor error
code.

Explanation A description of the problem that caused the
error.

User Response Actions needed to resolve the problem, if
appropriate.

Minor Code Messages
The minor code messages in this section are organized in hexadecimal order, by
minor code. Some multiple minor codes have the same hexadecimal code.

0x49420031 SOMDERROR_OPSYS
Explanation: An operating system error has occurred.
User Response: Check the log for more information.

0x49420032 SOMDERROR_CouldNotLoadLibrary
Explanation: Client initialization failed to load either security or work load
management library or DLL.
User Response: Check the log for more information.

0x49420033 SOMDERROR_NoMemory
Explanation: A memory allocation failed.
User Response: Increase system resources. Check if process has a memory leak.

0x49420034 SOMDERROR_NotImplemented
Explanation: The invoked operation is not supported in the product or is not valid
on the target object.

© Copyright IBM Corp. 1997, 1998 217

User Response: Check that the operation being invoked and the runtime type of
the target object are compatible. Reference the documentation for the operation to
find out about any restrictions.

0x49420035 SOMDERROR_InvalidProtocolInformation
Explanation: The configuration of the communications protocol(s) is incorrect.
Supported communications protocols are TCP/IP and IPC.
User Response: Insure that at least one valid communications protocol image was
configured using the Systems Management tool (for either TCP/IP or IPC). Insure
that a host image was configured using the correct hostname. Insure that for each
communications protocol configured, the csProfileTag and portNumber are set and
that the portNumber is not in use by another process on the system. (The
portNumber is the port on which the location-service daemon listens for requests.)
The "profile tag" and "port number" settings must be unique for each
communications protocol. Insure that for each server registered in the
Implementation Repository, the set of supported communications protocols for that
server intersects with the set of communications protocol images configured using
the Systems Management tool.

0x49420036 SOMDERROR_InvalidConfigSetting
Explanation: A configuration setting or environment variable has not been properly
set.
User Response: An error log entry indicates which configuration setting or
environment variable is not properly set. If the reported variable is HOSTNAME,
insure that a host image was configured using the Systems Management tool. If the
reported variable is SOMCBASE, insure that the product was properly installed
(SOMCBASE should be set during product installation to be the directory into which
the product was installed.) If the reported variable is SOMCBENV, insure that
SOMCBENV has one of the following forms: D:<image-name> S:<image-name>
C:<image-name> A:<image-name> where "D:" is used when starting the
location-service daemon, "S:" is used when starting a server process, "C:" is used
when starting a client process, and "A:" is used when starting a
systems-management agent process. The <image-name> is the name of a
systems-management image. (For servers, the image name is the same as the
server alias.) For non-managed clients, the SOMCBENV environment variable
should instead be set to the name of a configuration file that contains configuration
settings for the process. The default configuration file is installed in the "etc"
subdirectory of the directory in which the product was installed, and is named
"somcbenv.ini".

0x49420036 SOMDERROR_SOMDDAlreadyRunning
Explanation: The location-service daemon cannot begin listening because another
process is already using the port number on which the daemon was configured to
listen. The most likely cause of this error is attempting to start the location-service
daemon process when another instance of the process is already running.
User Response: Do not attempt to start the location-service daemon, or terminate
the other instance. If no other location-service daemon is running, try reconfiguring
the location-service daemon to listen on a different port number. (Each
communications protocol is configured with a separate port number using the
Systems Management tool.)

0x49420038 SOMDERROR_HostAddress
Explanation: A failure to map a hostname (of a different machine) to a host
address.

218 Problem Determination Guide

User Response: Ensure that the host with which this process is attempting to
communicate is known and can be reached via TCP/IP. For example, try to ping the
remote host by hostname.

0x49420039 SOMDERROR_CouldNotStartProcess
Explanation: The location daemon could not start a server process.
User Response: Check the log for more information.

0x4942003A SOMDERROR_CouldNotStartThread
Explanation: A thread could not be started.
User Response: Check the log for more information. Increase system resources.

0x4942003B SOMDERROR_NoMessages
Explanation: No request messages are pending in a server process when the
server invoked CORBA::BOA::execute_next_request or
CORBA::BOA::execute_request_loop with the CORBA::BOA::SOMD_NO_WAIT
flag.
User Response: Wait for a request to become available, or use the
CORBA::BOA::SOMD_WAIT flag when calling CORBA::BOA::execute_next_request
or CORBA::BOA::execute_request_loop.

0x4942003C SOMDERROR_MarshalingError
Explanation: An error has occurred when trying to marshall or demarshall method
parameters or return results as part of a remote invocation. This occurs, for
example, if the process attempts to pass a IOM proxy as a method parameter or
return result (only objects that inherit from CORBA::Object_ORBProxy can be
passed on cross-process invocations). This error can also occur when
demarshalling an inout sequence, if the length of the incoming sequence is greater
than the original sequence maximum. This error can also occur when using the
Dynamic Skeleton Interface (DSI), if methods are not invoked on the ServerRequest
object in the correct order.
User Response: Ensure that IOM proxies are not passed as method parameters or
return results. Ensure that inout sequences do not grow beyond the maximum of
the sequence. If using the DSI, ensure that operations are invoked on the
ServerRequest object in the correct order.

0x4942003D SOMDERROR_CommTimeOut
Explanation: A process has timed out waiting for a response from another process.
User Response: Ensure that the other process is still active. (Typically a client
receives this error when the server has terminated or hung due to an application
error.) To increase the timeout period, change the "request timeout" setting for the
process using Systems Management. (The default setting is 30 seconds.) Setting
"request timeout" to zero results in an infinite timeout.

0x4942003E SOMDERROR_CannotConnect
Explanation: A client process was unable to connect to a server process when
attempting to invoke a method on a proxy to an object residing in that server
process.
User Response: Ensure that the location-service daemon is running on the
machine on which the server resides. Ensure that the object reference is still valid.
Ensure that the two machines are connected (for instance, try to ping the remote
machine).

0x4942003F SOMDERROR_No_Server_Available
Explanation: A client has invoked a method on a proxy to an object residing in a
server group, but no server in the server group is currently available or the server

Appendix G. System Exceptions and Minor Codes 219

group cannot be reached.
Either a method call was made on a server group aware object, but the server
group has no servers configured in it or a method call was made on a server group
aware object for which there is at least one server configured, but none of the
servers that are available were selected by the configured bind policies.
User Response: Configure at least one server into the server group if the server
group has not servers configured in it. If the server group has at least one server
configured, then investigate the possibility that the configured bind policies are
deselecting all the available servers. This may be the correct behavior in this
particular situation or the bind policy may need to be modified.
Alternatively, there may be a problem communicating with one or of the servers so
check that the servers in the server group are running and that communication is
possible between the client or server that raised this error and the servers in the
server group and then shut down and restart the client or server that raised this
error and/or re-initialize the application that hit the error. Alternatively, catch the
error and retry the method call repeatedly until a server becomes available, but
consider the possibility of a permanent server failure or communications failure.

0x49420040 SOMDERROR_BadObjref
Explanation: An invalid object reference was used. For example, this error is sent
from a server to a client if the server receives a reference to an object that no
longer exists or cannot be located in that server. This error can occur in a client
process if an invalid string is passed to CORBA::ORB::string_to_object. This error
occurs in a server if CORBA::BOA::create is called with input ReferenceData that
doesn’t map to any known exportable object residing in that server. The error also
occurs if CORBA::BOA::get_id is invoked on a nil object reference or on an object
reference that has no associated ReferenceData in that server. The error also
occurs if a server attempts to export an object reference that has no associated
ReferenceData in that server, or if a non-server attempts to pass a local object as a
parameter on a remote method invocation. (A "non-server" is any process that has
not yet called CORBA::BOA::impl_is_ready.)
User Response: In a client process, insure that the object to which the object
reference refers still exists. Insure that strings passed to
CORBA::ORB::string_to_object have not been corrupted or truncated. (There is no
maximum length for an object reference string; some are larger than others.) Insure
that servers don’t attempt to export objects that aren’t handled by the application
adapter of the server. Also, IOM proxies cannot be exported from a server.

0x49420041 SOMDERROR_Unknown
Explanation: An unexpected error occurred during an operation.
User Response: Report the occurrence to technical support.

0x49420042 SOMDERROR_CommunicationsError
Explanation: A communications failure occurred. For example, a process could
have received an unknown or unexpected message type or message content, the
process could have encountered a low-level communications failure in attempting to
send a message or binding to a socket, or an unexpected broken connection could
have occurred.
User Response: Ensure that communications resources are functioning properly.
For instance, when using TCP/IP, try to ping the remote host. Ensure that the
process with which this process is trying to communicate has not failed due to an
application error.

0x49420043 SOMDERROR_ImplRepIO
Explanation: The Implementation Repository database cannot be accessed.

220 Problem Determination Guide

User Response: Ensure that the Implementation Repository was correctly created
and configured using the Systems Management tool. Each host machine must have
its own Implementation Repository.

0x49420044 SOMDERROR_EntryNotFound
Explanation: An entry in the Implementation Repository was not found when
attempting to delete, update, or find it.
User Response: Insure that the specified server alias or UUID matches a server
that was previously registered in the Implementation Repository.

0x49420045 SOMDERROR_ClassNotFound
Explanation: Conversion of an IOR to an object failed because the class name
was unknown or it’s proxy factory cannot be created.
User Response: Verify the class implementation and its bindings exist.

0x49420046 SOMDERROR_ServerAlreadyExists
Explanation: A server was unable to register with the location-service daemon
during CORBA::BOA::impl_is_ready. This is typically caused by another server
already being registered with the location-service daemon under the given server
UUID. (Only one instance of a particular server can be running on a given host at
once.)
User Response: Terminate the duplicate server process. If no duplicate server
process is running, restart the location-service daemon.

0x49420047 SOMDERROR_CtxNoPropFound
Explanation: A specified CORBA::Context property was not found. For example, if
an invalid property name was passed to CORBA::Context::delete_values, this error
occurs.
User Response: Ensure that the specified property name exists in the Context
object.

0x49420048 SOMDERROR_BadParm
Explanation: An application supplied an invalid parameter to an operation.
User Response: The error log should contain a message indicating which
operation was given the invalid parameter. Consult the documentation for that
operation and insure that the parameters passed to it are valid.

0x49420049 SOMDERROR_AuthnFail
Explanation: An application attempted to manipulate an entry in the Implementation
Repository for a server that is either being managed or disabled by the Systems
Management tool. (Such entries in the Implementation Repository cannot be
deleted or updated using the ImplRepository programmatic interface. Only entries
registered using the ImplRepository interface can be updated or deleted using the
ImplRepository interface.) This error is also raised if
CORBA::ImplRepository::find_impldef is used to find a server that was disabled by
Systems Management.
User Response: Use the Systems Management tool to manipulate the server.
Insure that the server has not been disabled by the Systems Management tool.
Insure that all entries in the Implementation Repository to be updated or deleted
programmatically were originally added programmatically (rather than via the
Systems Management tool).

0x4942004A SOMDERROR_DuplicateEntry
Explanation: The application attempted to add a duplicate entry to the
Implementation Repository, or attempted to update the server alias of an existing
entry using a name that is not unique.

Appendix G. System Exceptions and Minor Codes 221

User Response: Ensure that the server UUID and server alias of the
ImplementationDef to be added or updated in the Implementation Repository are
unique. (The server alias need not be unique throughout the network but must be
unique in each Implementation Repository.)

0x4942004B SOMDERROR_Internal
Explanation: Unknown.
User Response: Report the occurrence to technical support.

0x4942004D SOMDERROR_WrongRefType
Explanation: An object reference of the wrong type was used. The most common
reason for this error to occur is if a client invokes an operation on an object in a
server and the object does not support the invoked method. (To support a given
operation, a server must have been compiled and linked with the server-side C++
bindings for the interface that introduces that IDL operation.) Another situation in
which this error can occur is if a server application invokes CORBA::BOA::get_id
and passed in a proxy object (rather than a local object).
User Response: Ensure that a server is compiled and linked with all the
server-side C++ bindings for the interfaces it exports. Ensure that a server does not
pass a proxy object to CORBA::BOA::get_id.

0x4942004E SOMDERROR_SOMDDNotRunning
Explanation: A server was unable to register with the location-service daemon (in
CORBA::BOA::impl_is_ready), because it was unable to contact the daemon. This
is usually a result of the daemon not running or the daemon running on a different
port number than the server expects.
User Response: Ensure that the location-service daemon is running on the same
host as the server. Ensure that the port number configuration setting for each
communications protocol is the same for the systems-management server image
and daemon image.

0x49420051 SOMDERROR_DataConversion
Explanation: Failure to perform code-set translation of character data occurred.
This could result from a failure of the XPG4 functions iconv() or nl_langinfo(). It can
occur if the process is using a non-standard XPG4 code set that does not map to
an OSF code set. It can occur if the native code set for the process (as reported by
the XPG4 function nl_langinfo) does not match the nativeCharSet configuration data
of the process (configured using the Systems Management tool). It can occur if a
server does not have XPG4 code set converters for the transmission code set
chosen by the client process. It can occur if the "char code sets" configuration
setting for the server contains one or more code sets for which the process cannot
open (using iconv_open) XPG4 converters. It can occur in a client process when
attempting to communicate with a server if there is no common code set between
the client and the server.
User Response: Ensure that, when using the translationEnabled configuration
setting, that the other NLS-related configuration settings have been set correctly.
Also ensure that the correct XPG4 code-set converters have been installed and that
all environment variables (such as LOCPATH) required by XPG4 have been set
properly. Ensure that both client and server are using standard code sets
(recognized by both XPG4 and OSF) and that there is some code set supported by
both the client and the server.

0x49420052 SOMDERROR_IRIncoherent
Explanation: An Interface Repository object references another named Interface
Repository object which no longer resides in the IR database.
User Response: Call your IBM customer support center and report the problem.

222 Problem Determination Guide

0x49420053 SOMDERROR_IRInternal
Explanation: An internal programming or database error has occurred.
User Response: Call your IBM customer support center and report the problem.

0x49420054 SOMDERROR_IRDuplicateEntry
Explanation: An attempt was made to create an Interface Repository object and
one already exists in the Interface Repository with either the same
CORBA::RepositoryId or the same name within that container.
User Response: Change the "id" (CORBA::RepositoryId) parameter that is passed
to the ’create_xxxx’ operation, or change the "id" (CORBA::RepositoryId) value of
the object already in the IR which is causing the duplicate entry error via the "id"
write operation, or change the name of one of the two conflicting objects within that
container.

0x49420055 SOMDERROR_IREntryNotFound
Explanation: A "create_xxxx" operation determined that one of the input
parameters referenced an Interface Repository object which was not found in the
database.
User Response: Specify a named object that does exist in the Interface Repository
database.

0x49420056 SOMDERROR_IRCannotConnect
Explanation: The Interface Repository database could not be found or accessed
properly. If this error is thrown, it occurs during a call to "resolve_initial_references"
(with an input string of "InterfaceRepository").
User Response: Ensure that the Interface Repository database exists and is
configured properly. Ensure that the directory/file permissions associated with the
Interface Repository database allow access by the user receiving the exception.

0x49420057 SOMDERROR_IRInUse
Explanation: Another thread or process is already updating that portion of the
Interface Repository database.
User Response: Retry the Interface Repository operation that generated the
exception at a later time.

0x494200C8 SOMSG::CorruptServiceContext
Explanation: A server groups service context was corrupted.
User Response: Check for other symptoms of a transmission error. Gather
information about the problem and follow your local procedures for reporting
problems.

0x494200C8 SOMSG::MCIncompleteConfig
Explanation: The server groups code has failed to find some of its data in the
Common Data Store.
User Response: Delete and reinstate the configuration using the Systems
Management User Interface.

0x494200C8 SOMSG::MCNCRootNotFound
Explanation: The server groups code has failed to find the root naming context of
the name tree.
User Response: Check for other symptoms of a naming service error, then gather
information about the problem and report the occurrence to technical support.

0x494200C8 SOMSG::MCStateInvalid
Explanation: The server groups code has detected an invalid state in the Common

Appendix G. System Exceptions and Minor Codes 223

Data Store.
User Response: Delete and reinstate the configuration using the Systems
Management User Interface.

0x494200C8 SOMSG::NoServerDefined
Explanation: A method call was made on a server group aware object, but the
server group has no servers configured in it.
User Response: Configure at least one server into the server group.

0x494200C8 SOMSG::ObjrefAddFailure
Explanation: The server groups code has failed to add a server object reference
into an internal collection, possibly because of a shortage of memory.
User Response: Increase the amount of memory available and retry.

0x494200C8 SOMSG::RebindMinorCode
Explanation: A server that is a member of a server group has detected that the
client needs to refresh its copy of certain configuration information relating to the
server group.
User Response: No action is required as this minor code is used in normal
processing.

0x494200C9 SOMSG::MCNSNotAvailable
Explanation: The server groups code has detected an unexpected error when
using the naming service.
User Response: Check for other symptoms of a naming service error, then gather
information about the problem and report the occurrence to technical support.

0x494200C9 SOMSG::MCServerNotMember
Explanation: A server has attempted to register or deregister as a member of a
server group, but the server is not configured as a member of the server group.
User Response: Check the configuration to ensure that the server is not a member
of the server group. Try stopping the server and restarting it. If the error still occurs,
gather information about the problem and follow your local procedures for reporting
problems.

0x494200C9 SOMSG::NoServerAvailable
Explanation: A method call was made on a server group aware object for which
there is at least one server configured, but none of the servers that are available
were selected by the configured bind policies.
User Response: Investigate the possibility that the configured bind policies are
deselecting all the available servers. This may be the correct behavior in this
particular situation or the bind policy may need to be modified. Alternatively, there
may be a problem communicating with one or of the servers so check that the
servers in the server group are running and that communication is possible between
the client or server that raised this error and the servers in the server group and
then shut down and restart the client or server that raised this error and/or
re-initialize the application that hit the error. Alternatively, catch the error and retry
the method call repeatedly until a server becomes available, but consider the
possibility of a permanent server failure or communications failure.

0x494200CA SOMSG::MCCDSError
Explanation: The server groups code has detected an unexpected error while
accessing the Common Data Store.
User Response: Delete and reinstate the configuration using the Systems
Management User Interface.

224 Problem Determination Guide

0x494200CA SOMSG::UnknownServer
Explanation: The object request broker has attempted to send a request on a
server group aware object to a particular server but the request has failed and the
server groups code no longer recognizes the server as a member of the server
group in spite of the fact that it was the server groups code that selected the server
from the members of the server group.
User Response: Gather information about the problem and follow your local
procedures for reporting problems.

0x494200CB SOMSG::MCInvalidUse
Explanation: An unimplemented method in an internal server groups object was
called.
User Response: Check that you are not making calls to internal server groups
objects. If not, then gather information about the problem and follow your local
procedures for reporting problems.

0x494200F9 SOMGWDefs::GatewayNotImplemented
Explanation: A non-server group enabled client has attempted to make a method
call on a server group aware object. The method call was sent to the server group
gateway server and was rejected since the gateway server is not yet implemented
to forward requests to the server group.
User Response: A non-server group enabled client has attempted to make a
method call on a server group aware object. The method call was sent to the server
group gateway server and was rejected since the gateway server is not yet
implemented to forward requests to the server group.

0x494200FA ICACHE_BAD_INV_ORDER_KEYINIT
Explanation: Key not set prior to cache operation.
User Response: Check the DO implementation code and report problem to
technical support.

0x494200FA ICACHE_BAD_PARAM_INVATTR
Explanation: An invalid attribute name was passed on a DAO (Data Access Object)
call.
User Response: Make sure that the data object DLL and the system management
DDL are consistent.

0x494200FA ICACHE_INTERNAL_CACHNTRY
Explanation: A set to get attribute value was called from a cache entry which is to
be deleted.
User Response: Check the error log for more information.

0x494200FA ICACHE_NO_IMPLEMENT_D ATATYPE
Explanation: A database attribute type not implemented by the cache component
was encountered in processing a DAO (Data Access Object) call.
User Response: Make sure that the data object implementation is correct and
consistent with the system management ddl.

0x494200FA ICACHE_UNKNOWN_D ATATYPE
Explanation: A database attribute type not implemented by the cache component
was encountered in processing a DAO (Data Access Object) call.
User Response: Make sure that the data object implementation is correct and
consistent with the system management ddl.

0x494200FA NO_MEMORY_DAO
Explanation: The cache component is unable to acquire memory.

Appendix G. System Exceptions and Minor Codes 225

User Response: Increase the amount of virtual memory on the server system or
reduce the number of other tasks running on the server system.

0x494200FB ICACHE_BAD_INV_ORDER_CACHEMGRINIT
Explanation: Application server internal error.
User Response: Check the installation of Component Broker and report problem to
technical support.

0x494200FB ICACHE_BAD_PARAM_INCOMPTYPE
Explanation: The CORBA typecode used on a DAO call is inconsistent with the
database attribute type.
User Response: Make sure that the data object DLL and the system management
DDL are consistent with each other, and are also consistent with the table definition
in the relational database.

0x494200FB ICACHE_INTERNAL_CACHEMGR
Explanation: A program error occurred in the cache component.
User Response: Report the occurrence to technical support.

0x494200FC ICACHE_BAD_PARAM_KEYATTR
Explanation: The key attribute name was passed on a setValue DAO call.
User Response: Make sure that the data object DLL and the system management
DDL are consistent and correct.

0x494200FC ICACHE_BAD_INV_ORDER_NODBCOMM
Explanation: Cache internal error.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x494200FC ICACHE_INTERNAL_AIXDAO
Explanation: A program error occurred in the cache component.
User Response: Report the occurrence to technical support.

0x494200FD ICACHE_BAD_INV_ORDER_NOMAP
Explanation: Map metadata not set prior to cache operation.
User Response: Check the DO implementation code and report problem to
technical support.

0x494200FD ICACHE_BAD_PARAM_INVMAP
Explanation: An invalid map name was passed on a DAO call.
User Response: Make sure that the data object DLL and the system management
DDL are consistent and correct.

0x494200FD ICACHE_INTERNAL_HASH
Explanation: A program error occurred in the cache component.
User Response: Report the occurrence to technical support.

0x494200FE ICACHE_BAD_PARAM_NONKEYATTR
Explanation: A non key attribute was passed on a set key operation.
User Response: Make sure that the data object implementation is correct and
consistent with the system management ddl.

0x494200FE ICACHE_INTERNAL_CACHE
Explanation: A program error occurred in the cache component.
User Response: Report the occurrence to technical support.

226 Problem Determination Guide

0x494200FF ICACHE_BAD_PARAM_SMALLBUF
Explanation: An insufficient buffer size was provided in a getValue DAO call to
retrieve a database attribute of the DATE/TIME/TIMESTAMP type.
User Response: Make sure that the data object DLL and the system management
DDL are consistent and correct.

0x494200FF ICACHE_INTERNAL_GLOBAL_CACHE
Explanation: A program error occurred in the cache component.
User Response: Report the occurrence to technical support.

0x494200100 ICACHE_BAD_PARAM_UNEQUALBUF
Explanation: An incorrect size string was provided in a setValue DAO call to modify
a database attribute of the DATE/TIME/TIMESTAMP type.
User Response: Make sure that the data object implementation is correct and
consistent with the system management ddl.

0x494200100 ICACHE_INTERNAL_SQLACCESS
Explanation: A program error occurred in the cache component.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x49420101 ICACHE_BAD_PARAM_NOTEXTRACT
Explanation: A string value from ::CORBA::Any that was passed in a getValue
DAO call failed to be extracted.
User Response: Make sure that the data object implementation is correct and
consistent with the system management ddl.

0x49420101 ICACHE_INTERNAL_SQLERROR
Explanation: A system error occurred in the cache component when:

v The program ran out of free cursors (maximum 64); the application tried to
access more than 64 tables within a transaction

v An unexpected error occurred in accessing tables.

User Response: Check the error log for more information.

0x49420102 ICACHE_BAD_PARAM_INVD ATATYPE
Explanation: Make sure that the data object implementation is correct and
consistent with the system management DDL.
User Response: Make sure that the data object implementation is correct and
consistent with the system management ddl.

0x49420102 ICACHE_INTERNAL_SQLERROR_CONNECT
Explanation: The cache component failed to establish a database connection.
User Response: Check the error log for more information.

0x49420103 ICACHE_BAD_PARAM_LARGEANYSTR
Explanation: The string buffer passed in the ::CORBA::Any on a setValue DAO call
was larger than the database attribute to be modified.
User Response: Make sure that the data object implementation is correct and
consistent with the system management ddl.

0x49420103 ICACHE_INTERNAL_NOPREFEC
Explanation: A program error occurred in the cache component.
User Response: Check the error log for more information and report the
occurrence to technical support.

Appendix G. System Exceptions and Minor Codes 227

0x49420104 ICACHE_BAD_PARAM_WRONGNUMKEYATTRS
Explanation: The wrong number of key attributes were passed on a DAO
setKeyAttributes or reactivateFromData call.
User Response: Make sure that the data object implementation is correct and
consistent with the system management ddl.

0x49420104 ICACHE_INTERNAL_FKREL
Explanation: A program error occurred in the cache component.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x49420105 ICACHE_BAD_PARAM_LARGEANYBINARY
Explanation: The binary buffer passed in the ::CORBA::Any on a setValue DAO
call is larger than the database attribute to be modified.
User Response: Make sure that the data object implementation is correct and
consistent with the system management ddl.

0x49420105 ICACHE_INTERNAL_BUILDDAOS
Explanation: Internal error. Cache unable to allocate a DAO object.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x49420106 ICACHE_BAD_PARAM_INVINTERFACE
Explanation: An invalid map name was passed on a DAO call.
User Response: Make sure that the data object implementation is correct and
consistent with the system management ddl. Verify that the metadata is consistent
with the database.

0x49420106 ICACHE_INTERNAL_PREFETCH
Explanation: A program error occurred in the cache component.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x49420107 ICACHE_BAD_PARAM_INVFKRELID
Explanation: Invalid relationship identifier.
User Response: Check the DO implementation code and report problem to
technical support.

0x49420108 ICACHE_BAD_PARAM_INVPARENTFKRELID
Explanation: Invalid relationship identifier.
User Response: Check the DO implementation code and report problem to
technical support.

0x49420109 ICACHE_BAD_PARAM_INVCHILDFKRELID
Explanation: Invalid relationship identifier.
User Response: Check the DO implementation code and report problem to
technical support.

0x4942010A ICACHE_BAD_PARAM_INVCHILDKEY
Explanation: Invalid key on cache operation.
User Response: Check the DO implementation code and report problem to
technical support.

0x4942010A ICACHE_BAD_PARAM_INVOVERFLOW
Explanation: An invalid data value was passed to cache service from Data Object.

228 Problem Determination Guide

User Response: If the object attribute maps to a decimal datatype in the database,
either the value passed was invalid, or it overflowed the field in the database
record.

0x4942010B ICACHE_BAD_PARAM_INVCURSOR
Explanation: Internal cache error.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x4942010C ICACHE_BAD_PARAM_INVCURSOROP
Explanation: Internal cache error.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x4942010D ICACHE_BAD_PARAM_EMPTYCOLL
Explanation: Internal cache error.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x4942010E ICACHE_BAD_PARAM_BEGINCOLL
Explanation: Internal cache error.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x4942010F ICACHE_BAD_PARAM_ENDCOLL
Explanation: Internal cache error.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x49420120 ICACHE_BAD_PARAM_BETWEENELEM
Explanation: Internal cache error.
User Response: Check the error log for more information and report the
occurrence to technical support.

0x4942012C SOMERROR_NULL_CHARACTER_IN_STRING
Explanation: A CORBA string or wstring value contained a NULL character. Used
as a minor code for the DATA_CONVERSION exception.
User Response: Ensure that CORBA string and wstring values do not contain
NULL characters

0x4942012D SOMERROR_CHARACTER_OUT_OF_RANGE
Explanation: A CORBA string contained a non-ASCII character (a character whose
ordinal value was greater than 255). Used as a minor code for the
DATA_CONVERSION exception.
User Response: Ensure that CORBA string values do not contain non-ASCII
characters. This problem usually arises in Java, since Java strings can contain
non-ASCII characters.

0x4942012E SOMERROR_STRING_TOO_LONG
Explanation: A string containing too many characters was passed for a CORBA
string or wstring argument that was declared with a bounded length. Used as a
minor code for the MARSHAL exception.
User Response: Ensure that the length of strings passed does not exceed the
maximum length for the string declared in IDL.

Appendix G. System Exceptions and Minor Codes 229

0x4942012F SOMERROR_STRING_IS_NULL
Explanation: A null was passed where a CORBA string or wstring value was
expected. Used as a minor code for the DATA_CONVERSION exception.
User Response: Ensure that your program does not pass null for CORBA string or
wstring arguments. An empty string must be passed instead.

0x49420130 SOMERROR_CDS_ERROR
Explanation: Not currently used.
User Response: None.

0x49420131 SOMERROR_IMPL_NOT_IN_DLL
Explanation: Not currently used.
User Response: None.

0x49420132 SOMERROR_DLL_NOT_LOADED
Explanation: Not currently used.
User Response: None.

0x49420133 SOMERROR_JAVA_CLASS_NOT_LOADED
Explanation: A Java class could not be located or loaded. Used as a minor code
for OBJECT_NOT_EXIST.
User Response: Consult the activity log for a message containing the name of the
Java class that couldn’t be loaded and ensure that it exists in CLASSPATH and can
be loaded.

0x49420134 SOMERROR_INTERFACE_NOT_FOUND
Explanation: A CORBA interface could not be located by IOM. Used as a minor
code for OBJECT_NOT_EXIST.
User Response: Consult the activity log the a message containing the name of the
interface that couldn’t be found. Ensure that an implementation exists for the
requested interface.

0x49420135 SOMERROR_MESSAGE_NOT_UNDERSTOOD
Explanation: A CORBA operation could not be located by IOM. Used as a minor
code for OBJECT_NOT_EXIST.
User Response: Try rebuilding your object implementation (C++ DLL or Java
class). If the problem persists contact Component Broker support.

0x49420136 SOMERROR_CLASS_NOT_LOCALONLY
Explanation: An attempt was made to call _create on a C++ implementation that
had not been compiled as "localonly". Used as a minor code for
OBJECT_NOT_EXIST.
User Response: Ensure that the IDL file has a "#pragma meta X localonly"
statement for the interface or that idlc was run with the "-mlocalonly" option.

0x49420137 SOMERROR_JAVAVM_DLL_NOT_FOUND
Explanation: IOM was unable to load the DLL containing the Java Virtual Machine.
Used as a minor code for OBJECT_NOT_EXIST.
User Response: Consult the activity log for a message containing the name of the
DLL containing the Java Virtual Machine (tagged with the text "loadAndInitVM").
Ensure that the VM DLL name is correct (should be "javai.dll"), that a directory
containing that DLL ($JAVA_HOME\bin for NT, $JAVA_HOME/lib/aix/native_threads
for AIX) is in PATH (for NT) or LIBPATH (for AIX), and that the DLL can be loaded.
Also ensure that the JDK is at the level that Component Broker requires.

230 Problem Determination Guide

0x49420138 SOMERROR_JAVAVM_NOT_JNI_ENABLED
Explanation: The Java Virtual Machine that IOM loaded does not support the Java
Native Interface. Used as a minor code with OBJECT_NOT_EXIST.
User Response: Ensure that the you have installed the Java JDK at the level
required by Component Broker and that the $JAVA_HOME\bin (for NT) or
$JAVA_HOME/lib/aix/native_threads (for AIX) directory appears in your PATH (for
NT) or LIBPATH (for AIX) before any other JDK.

0x49420139 SOMERROR_JAVA_REFLECTION_FAILED
Explanation: IOM was unable to use the Java Reflection API to obtain the list of
methods implemented by a Java class. Used as a minor code for
OBJECT_NOT_EXIST.
User Response: Ensure that your JDK is correctly installed as described above
and that your Java implementation .class files will load without error. Contact
Component Broker support if the problem persists.

0x4942013A SOMERROR_JAVA_HELPER_NOT_LOADED
Explanation: IOM was unable to load the Helper class for a Java implementation.
Used as a minor code for OBJECT_NOT_EXIST.
User Response: Consult the activity log for a message containing the name of the
helper class that couldn’t be found. Ensure that the Helper .class exists and is
reachable from CLASSPATH.

0x4942013B SOMERROR_J AVAVM_NOT_STARTED
Explanation: The JNI_CreateJavaVM call on the installed JDK did not complete
successfully. This means that IOM was unable to initialize the Java Virtual Machine.
Used as a minor code for OBJECT_NOT_EXIST.
User Response: Ensure that the you have installed the Java JDK at the level
required by Component Broker and that it initializes correctly (try running "java
java.lang.String". You should get an error for "main is not defined". Any other result
is incorrect).

0x4942013C SOMERROR_THREAD_ATTACH
Explanation: The JNI_AttachCurrentThread call on the installed JDK did not
complete successfully. This means that IOM was unable to bind to the Java Virtual
Machine. Used as a minor code for OBJECT_NOT_EXIST.
User Response: Ensure that the you have installed the Java JDK at the level
required by Component Broker and that it initializes correctly (try running "java
java.lang.String". You should get an error for "main is not defined". Any other result
is incorrect).

0x494201C3 EXERR_FLOATINGPOINTOVERFLOW
Explanation: The conversion from IEEE Double to MVS Double resulted in an
exponent outside the range of valid exponents.
User Response: Restrict usage of floating point values to those supported by both
IEEE Double and MVS Double.

0x494201C3 EXERR_INVALIDSTREAMIOBUFFERRESETPARM
Explanation: The StreamIO buffer reset param was invalid.
User Response: Internal error, contact IBM support.

0x494201C3 EXERR_INVALIDSTREAMPOLICY
Explanation: The StreamIO buffer header contained an unrecognized value for the
stream policy.
User Response: Internal error, contact IBM support.

Appendix G. System Exceptions and Minor Codes 231

0x494201C3 EXERR_UNSUPPORTEDCODEPAGE
Explanation: Either the source or destination code page, or both, as given in the
StreamIO header, is NULL. This minor code could also indicate that the compiler’s
support for codeset id conversion has failed.
User Response: Ensure that the code page(s) are valid, non-NULL, and that your
compiler supports the codeset id conversion.

0x494201C4 EXERR_FLOATINGPOINTNOTCONFIGURED
Explanation: The conversion between MVS/IEEE Floats or Doubles was unable to
occur because the sourceFloatingPointFormatID and the
destinationFloatingPointFormatID did not match one of the supported formats.
User Response: Internal error, contact IBM support.

0x494201C4 EXERR_INVALIDSTREAMFORMAT
Explanation: The stioFormat of the IStreamLocalObjectIBMImpl_StreamIO_Impl
header was expected to be (Octet) IExtendedStream::IBM, but was not.
User Response: Internal error, contact IBM support.

0x494201C4 EXERR_OBJECTTABLELIMITEXCEEDED
Explanation: The number of objects in the object table has exceeded the upper
limit.
User Response: Internal error, contact IBM support.

0x494201C5 EXERR_CODEPAGENOTCONFIGURED
Explanation: Either the source or destination code page, or both, as given in the
StreamIO header, is an Undefined code page.
User Response: Ensure that the code page(s) are defined and available on the
machine.

0x494201C5 EXERR_EMPTYTABLESEQUENCE
Explanation: There are no entries in the object table.
User Response: Internal error, contact IBM support.

0x494201C5 EXERR_INVALIDENDIANFORMAT
Explanation: The StreamIO buffer header contained an invalid endianFormat value.
User Response: Acceptable values are:

v (Octet)LittleEndian

v (Octet)BigEndian

This is most likely caused by an internal error. Contact IBM support.

0x494201C6 EXERR_ENDIANNOTCONFIGURED
Explanation: The Endian format ID’s of the StreamIO’s were invalid.
User Response: Ensure that both source and destinationEndianFormatID’s are
either BigEndian or LittleEndian. This is most likely caused by an IBM internal error.
Contact IBM support.

0x494201C6 EXERR_INVALIDFLOATINGPOINTFORMAT
Explanation: The Stream IO header indicated an invalid floating point format.
User Response: Acceptable values are IEEE754 and MVS. This is most likely
caused by an IBM internal error. Contact IBM support.

0x494201C6 EXERR_OBJECTTABLESTATEERROR
Explanation: Table did not contain a sufficient number of entries.
User Response: Internal error, contact IBM support.

232 Problem Determination Guide

0x494201C7 EXERR_FLOATINGPOINTUNDERFLOW
Explanation: The conversion from IEEE Double to MVS Double resulted in an
exponent outside the range of valid exponents.
User Response: Restrict usage of floating point values to those supported by both
IEEE Double and MVS Double.

0x494201C7 EXERR_OBJECTTABLEIDSEQUENCEERROR
Explanation: Ensure TableID value sequence is maintained.
User Response: Internal error, contact IBM support.

0x494201C7 EXERR_STRINGNOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

0x494201C8 EXERR_CANTINSTALLINTOOBJECTTABLE
Explanation: Object table was expected to be NULL, but was not.
User Response: Internal error, contact IBM support.

0x494201C8 EXERR_CHARNOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

0x494201C8 EXERR_ICONVCALLFAILED
Explanation: Code page conversion of aString failed.
User Response: Verify string contains valid characters for the target code page.

0x494201C9 EXERR_CANTAPPENDEMPTYOBJECTTABLE
Explanation: An empty object table cannot be appended to the current object table.
User Response: Internal error, contact IBM support.

0x494201C9 EXERR_OCTETNOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

0x494201CA EXERR_UNSIGNEDLONGNOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

0x494201CB EXERR_UNSIGNEDSHORTNOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

0x494201CC EXERR_LONGNOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

0x494201CD EXERR_SHORTNOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

Appendix G. System Exceptions and Minor Codes 233

0x494201CE EXERR_FLOATNOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

0x494201CF EXERR_DOUBLENOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

0x494201D0 EXERR_BOOLEANNOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

0x494201D1 EXERR_OBJECTNOTFOUND
Explanation: The tag read from the stream did not match the expected data type.
User Response: Check that the order of reads/writes in internalize/externalize is
correct.

0x494201D2 EXERR_INVALIDBOOLEANVALUEFOUND
Explanation: The value of a boolean was neither recognized as
((CORBA::Boolean) 0), nor ((CORBA::Boolean) 1).
User Response: Check the object being read/written.

0x494201D9 EXERR_READPASSEDENDOFSTREAM
Explanation: The number of bytes requested to be read from the stioBufferSeq
exceeds the number of bytes left in the stioBufferSeq.
User Response: Check that the order and number of reads/writes in
internalize/externalize is correct.

0x494201F5 LCERR_UNKNOWN_SEE_EVENT_LOG
Explanation: LifeCycle made an invocation which resulted in an exception being
thrown by another component.
User Response: Examine activity log entries prior to this to see if another
exception was logged. Exception is CORBA::UNKNOWN.

0x494201F6 LCERR_SCOPE_MAN_ALREADY_INITIALIZED
Explanation: An undocumented internal method was invoked. Results will be
unpredictable.
User Response: Do not invoke any non-documented methods. Exception is
ILifeCycleLocalObjectImpl::AlreadyInitialized.

0x494201F7 LCERR_SCOPE_STRING_IS_NULL
Explanation: The Scope parameter, or the Scope constructed from the ScopeString
parameter,
contains a NULL element.
User Response: Reconstruct the scope parameter so that elements are either
specified or
left to the defaults. Note that in a ScopeString, any element not explicitly specified
in the string is given a default value as follows:

v cell - *LOCAL

v workgroup - *LOCAL

v host - *LOCAL

v server - *ANY

234 Problem Determination Guide

v container - *ANY

v home - *ANY

It is the user’s responsibility to ensure that the combination of specified elements
and supplied defaults is valid. Exception is CORBA::BAD_PARAM.

0x494201F8 LCERR_FAC_FIND_ALREADY_INITIALIZED
Explanation: An undocumented internal method was invoked. Results will be
unpredictable.
User Response: Do not invoke any non-documented methods. Exception is
ILifeCycleLocalObjectImpl::AlreadyInitialized.

0x494201F9 LCERR_FAC_FIND_LOCATION_IS_NULL
Explanation: An internal method was invoked illegally and with a null parameter.
Results will be unpredictable.
User Response: Do not invoke any non-documented methods. Exception is
CORBA::BAD_PARAM.

0x494201FA LCERR_SCOPE_ELEMENT_NOT_RECOGNIZED
Explanation: The ScopeString parameter contains an element other than cell,
workgroup, host, server, container, or home.
User Response: Remove the invalid element from the ScopeString. Exception is
IExtendeLifeCycle::UnrecognizedScopeElement.

0x494201FB LCERR_FAC_FIND_INVALID_KEY
Explanation: The key used to find the factory is invalid.
User Response: Check that the key used in the find factory operation is correct.
Exception is CosLifeCycle::NoFactory.

0x494201FC LCERR_FACTORY_NOT_FOUND
Explanation: The factory is not registered.
User Response: Check that the key used in the find factory operation is correct.
Try using a factory_finder with a less restrictive scope. Verify that the registration of
the expected factories did not result in any errors. Exception is
CosLifeCycle::NoFactory.

0x494201FD LCERR_SINGLE_LOC_ALREADY_INITIALIZED
Explanation: An undocumented internal method was invoked. Results will be
unpredictable.
User Response: Do not invoke any non-documented methods. Exception is
ILifeCycleLocalObjectImpl::AlreadyInitialized.

0x494201FE LCERR_MO_REGISTRATION_REQUEST_FAILED
Explanation: The FactoryRepository failed to complete all or some part of the
requested operation. Probable cause is a failure in the naming component.
User Response: Check the event log for additional information. Exception is
ILifeCycleRepositoryAdmin::RequestFailed.

0x494201FF LCERR_MO_UNREGISTRATION_REQUEST_FAILED
Explanation: The FactoryRepository failed to complete all or some part of the
requested operation. Probable cause is a failure in the naming component.
User Response: Check the event log for additional information. Exception is
ILifeCycleRepositoryAdmin::RequestFailed.

0x49420200 LCERR_SERVER_BRANCH_UNRETRIEVABLE
Explanation: The FactoryRepository failed to complete all or some part of the

Appendix G. System Exceptions and Minor Codes 235

requested operation. Probable cause is a failure in the naming component.
User Response: Check the event log for additional information. Exception is
ILifeCycleRepositoryAdmin::RequestFailed.

0x49420201 LCERR_UNABLE_TO_CLEAR_ELEMENT
Explanation: Most likely problem with naming code when attempting to clear the
repository.
User Response: Check the event log for additional information. Exception is
ILifeCycleRepositoryAdmin::RequestFailed.

0x49420202 LCERR_A_SCOPE_ELEMENT_IS_NULL
Explanation: An internal method was invoked illegally and with part of the scope
structure as null. Results will be unpredictable.
User Response: Do not invoke any non-documented methods. Exception is
CORBA::BAD_PARAM.

0x49420203 LCERR_INVALID_SCOPE
Explanation: The Scope parameter, or the Scope constructed from the ScopeString
parameter, did not obey the rules for valid scopes. The rules are:

v For the Cell, Workgroup and Host elements of scope, once *LOCAL has been
specified at a lower level, higher levels must also be *LOCAL.

v For the Server, Container and Home elements of scope, once *ANY has been
specified a t a higher level, lower levels must also be *ANY.

User Response: Reconstruct the scope parameter so that it meets the
specifications above. Note that in a ScopeString, any element not explicitly specified
in the string is given a default value as follows:

v cell - *LOCAL

v workgroup - *LOCAL

v host - *LOCAL

v server - *ANY

v container - *ANY

v home - *ANY

It is the users responsibility to ensure that the combination of specified elements
and supplied defaults is valid. Exception is IExtendedLifeCycle::InvalidScope.

0x49420204 LCERR_OUT_OF_MEMORY
Explanation: Machine has run out of virtual memory.
User Response: Cancel some of the applications currently running on the system.
Exception is CORBA::NO_MEMORY.

0x49420205 LCERR_MIXIN_PTR_IS_NULL
Explanation: Internal problem with a Life Cycle object.
User Response: Contact IBM Representative. Exception is CORBA::BAD_PARAM.

0x49420206 LCERR_INVALID_OBJECT
Explanation: Object is in an invalid state of absent.
User Response: Attempt to restart the server. Contact IBM Representative.
Exception is CORBA::INV_OBJREF.

0x49420207 LCERR_INVALID_LOCATION
Explanation: An invalid location object was passed in. The Location object must

236 Problem Determination Guide

inherit fromIManageble.
User Response: Ensure that the location object is properly created. Exception is
CORBA::BAD_PARAM.

0x49420208 LCERR_SYSTEMS_MANAGED
Explanation: An attempt was made to remove a systems managed lifecycle object.
These objects cannot be removed programmatically.
User Response: Remove the lifecycle object using the Component Broker
Graphical Interface. Exception is CosLifeCycle::NotRemovable.

0x49420209 LCERR_BAD_KEY_STRING
Explanation: An invalid key string was a member of the criteria passed to the
create_object method.
User Response: Correct the key string and retry the create_object invocation.
Exception is CosLifeCycle::InvalidCriteria.

0x4942020A LCERR_BAD_RELATIVENAME
Explanation: An invalid relative name was a member of the criteria passed to the
create_object method.
User Response: Correct the relative name and retry the create_object invocation.
The relative name must be a character string. Exception is
CosLifeCycle::InvalidCriteria.

0x4942020B LCERR_BAD_CELL_VISIBLE
Explanation: An invalid value was supplied for the "cell visible" member of the
criteria passed to the create_object method.
User Response: Correct the "cell visible" value and retry the create_object
invocation. Cell visible must be a CORBA::Boolean value. Exception is
CosLifeCycle::InvalidCriteria.

0x4942020C LCERR_BAD_HOST_VISIBLE
Explanation: An invalid value was supplied for the "host visible" member of the
criteria passed to the create_object method.
User Response: Correct the "host visible" value and retry the create_object
invocation. Host visible must be a CORBA::Boolean value. Exception is
CosLifeCycle::InvalidCriteria.

0x4942020D LCERR_BAD_WORKGROUP_VISIBLE
Explanation: An invalid value was supplied for the "workgroup visible" member of
the criteria passed to the create_object method.
User Response: Correct the "workgroup visible" value and retry the create_object
invocation. Workgroup visible must be a CORBA::Boolean value. Exception is
CosLifeCycle::InvalidCriteria.

0x4942020E LCERR_BAD_SCOPE
Explanation: An invalid scope was a member of the criteria passed to the
create_object method.
User Response: Correct the scope value and retry the create_object invocation.
The scope must be of type IExtendedLifeCycle::Scope. Exception is
CosLifeCycle::InvalidCriteria.

0x4942020F LCERR_BAD_SCOPE_STRING
Explanation: An invalid scope string was a member of the criteria passed to the
create_object method.

Appendix G. System Exceptions and Minor Codes 237

User Response: Correct the scope string value and retry the create_object
invocation. The scope string must be a character string. Exception is
CosLifeCycle::InvalidCriteria

0x49420227 CORBAMinorNamingAlreadyBound
Explanation: This indicate that an object is already bound to the name.
User Response: Re-binding operations unbind the name, then rebinds the name
without raising this exception.

0x49420227 CORBAMinorNamingCannotProceed
Explanation: This indicate that the implementation has given up for some reason.
User Response: The client may be able to continue the operation using the
returned naming context.

0x49420227 CORBAMinorNamingContextObjectCreationFailed
Explanation: The creation of a NamingContext object or the narrowing to a
NamingContext implementation object failed.
User Response: Most likely system is running out of memory, or the remote server
of this object resided is not responding.

0x49420227 CORBAMinorNamingDCECDSError
Explanation: This indicate a DCE error has occurred.
User Response: User can look at fsLocStat and CDS entry information in activity
log to determine the problem.

1. If fsLocStat is of type CDS_UNKNOWNATTRIBUTE or
CDS_INVALIDNAME, then the cds_attributes file does not
contain the Naming attributes.

2. If fsLocStat is of type CDS_ACCESSDENIED, then DCE
credential have been expired. Do dce_login to refresh
your DCE server credentials.

3. If fsLocStat is of type CDS_UNKNOWNENTRY, then no object
bound to the supplied name is found.

4. If fsLocStat is of type CDS_ERROR, 0x0DCE60D6, 0x0DCE6042
or CDS_CLEARINGHOUSEDOWN, then make sure all the DCE
services are still running.

0x49420227 CORBAMinorNamingHeapOutOfMemory
Explanation: Attempt to allocate memory on the heap has failed.
User Response: System is running out of memory.

0x49420227 CORBAMinorNamingInvalidCORBAName
Explanation: This indicate that the name is invalid. (This exception may be raised
upon further implementation restrictions.)
User Response: A name (of type CosNaming::Name) is valid if none of the
following is true:

1. It’s length field is not equal to 0.

2. It does not have a component where the id of the component is a NULL pointer
or the value of this id is equal to a null-string.

3. It does not have a component where the kind of the component
is a NULL pointer.

Additional to above, for CDS-based implementation, a name n is invalid if:

1. It does not follow the constraints on CDS global names.

2. It does not confirm or translate to the ISOLatin1 character set.

238 Problem Determination Guide

3. The total name length is greater than 400.

4. The length of a simple name is greater then 254.

5. A simple name starts with the character ’/’.

6. The simple name following "/.:" contains with the character ’=’.

0x49420227 CORBAMinorNamingListSizeExceedMaxValue
Explanation: The list size exceeds the allowed maximum value of 1000.
User Response: Make sure do not exceed the maximum value.

0x49420227 CORBAMinorNamingNoImplementation
Explanation: The invoked operation is not supported in the product or is not valid
on the target object.
User Response: Check that the operation being invoked and the runtime type of
the target object are compatible. Reference the documentation for the operation to
find out about any restrictions.

0x49420227 CORBAMinorNamingNotEmpty
Explanation: This indicate that the naming context contains any bindings.
User Response: User needs to issue a separate unbind or destroy for each single
binding in the sub-tree by traversing the name tree from bottom-up.

0x49420227 CORBAMinorNamingNotFound
Explanation: This indicate that the name does not identify a binding. If a compound
name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot
be resolved.
User Response: Make sure the name is correct and the binding exist in the name
space.

0x49420227 CORBAMinorNamingUnknownException
Explanation: An unknown exception was caught.
User Response: Look backward from activity log to find out the source of the
problem.

0x49420228 CORBAMinorNamingBindingIteratorObjectCreationFailed
Explanation: The creation of a BindingIterator object or the narrowing to a
BindingIterator implementation object failed.
User Response: Most likely system is running out of memory, or the remote server
of this object resided is not responding.

0x49420228 CORBAMinorNamingDCECDSCannotDeleteEntry
Explanation: CDS Naming implementation cannot delete the binding because of
the entry that client provided is not empty.
User Response: User needs to issue a separate unbind or destroy for each single
binding in the sub-tree by traversing the name tree from bottom-up.

0x49420228 CORBAMinorNamingInvalidCORBAObject
Explanation: The object supplied with the invoked method is not of type
CORBA::Object.
User Response: Make sure the object is of type CORBA::Object.

0x49420228 CORBAMinorNamingObjectDestructionFailed
Explanation: The destruction or removing of the object failed.
User Response: Look backward from activity log to find out the source of the
problem.

Appendix G. System Exceptions and Minor Codes 239

0x49420228 CORBAMinorNamingStringNameSyntaxError
Explanation: The String name supplied with invoked method has a syntax error.
User Response: Provide a valid NamingStringSyntax String name.

0x49420229 CORBAMinorNamingBindingStringIteratorObjectCreationFailed
Explanation: The creation of a BindingStringIterator object or the narrowing to a
BindingStringIterator implementation object failed.
User Response: Most likely system is running out of memory, or the remote server
of this object resided is not responding.

0x49420229 CORBAMinorNamingDCECDSHandleCreationFailed
Explanation: CDSPI cdsGetHandle() returned NULL pointer, handle creation failed.
User Response: Most likely system is running out of memory or system resources.

0x49420229 CORBAMinorNamingInvalidDCECDSName
Explanation: The DCE/CDS name converted from the CORBA name supplied with
the invoked method is invalid.
User Response: Provide a valid name for CDS-based implementation, a name n is
invalid if:

1. It does not follow the constraints on CDS global names.

2. It does not confirm or translate to the ISOLatin1 character set.

3. The total name length is greater than 400.

4. The length of a simple name is greater then 254.

5. A simple name starts with the character ’/’.

6. The simple name following "/.:" contains with the character ’=’.

0x49420229 CORBAMinorNamingInvalidNamingContextObject
Explanation: The object supplied with the invoked method is not of type
CosNaming::NamingContext.
User Response: Make sure the object is of type CosNaming::NamingContext.

0x4942022A CORBAMinorNamingDCECDSWrongUsageUnbind
Explanation: Wrong method been called when remove a naming context (bound
using bind_new_context or bind_new_context_with_string).
User Response: User needs to use destroy rather than unbind to remove the
naming context.

0x4942022A CORBAMinorNamingStandardSyntaxModelObjectCreationFailed
Explanation: The StandardSyntaxModel create method returned a NULL object.
User Response: Most likely system is running out of memory or system resources.

0x4942022B CORBAMinorNamingUtilObjectCreationFailed
Explanation: The CosNameUtils Instance method returned a NULL object.
User Response: Most likely system is running out of memory or system resources.

0x4942022C CORBAMinorNamingObjectCreationFailed
Explanation: Failed to create or initialize object.
User Response: Most likely system is running out of memory or system resources,
or look backward from activity log to find out the source of the problem.

0x4942024E CORBAMinorNamingStringHeapOutOfMemory
Explanation: Attempt to allocate memory on the heap has failed.
User Response: Most likely system is running out of memory or system resources.

240 Problem Determination Guide

0x4942024E CORBAMinorNamingStringIllegalStringSyntax
Explanation: Found a syntax error in the string.
User Response: Make sure follow the syntax rule for string.

0x4942024E CORBAMinorNamingStringInvalidCORBAName
Explanation: The CORBA name supplied with the invoked method is invalid.
User Response: A name (of type CosNaming::Name) is valid if none of the
following is true:

1. It’s length field is not equal to 0.

2. It does not have a component where the id of the component is a NULL pointer
or the value of this id is equal to a null-string.

3. It does not have a component where the kind of the component is a NULL
pointer.

0x4942024E CORBAMinorNamingStringUnMachedQuote
Explanation: Found an unmatched quote in the string.
User Response: Make sure a begin-quote is matched by an end-quote or vice
versa.

0x4942024F CORBAMinorNamingStringInvalidStringName
Explanation: The String name supplied with the invoked method is invalid.
User Response: Make sure the length of String name is not zero and the String
name pointer is not NULL.

0x494202EF OTSAPPCMINOR_SPACESFOUND
Explanation: Spaces have been found in a field/parameter supplied to the
component. This is not supported.
User Response: Correct the configuration/parameter and retry. Exception is
CORBA::BAD_PARAMS.

0x494202EF OTSAPPCMINOR_UNEXPECTEDEXCEPTION
Explanation: An unexpected exception has been caught by an object in the
transaction service and this object is unable to process it. The exception is not a
CORBA standard exception nor a CORBA user exception.
User Response: Investigate what your application was doing when the exception
was thrown. For example, which objects were involved, were they calling an
operating system function? Make sure your application has access to the resources
it requires and is using any services from the operating // system or CBSeries
correct. Look in the NT event logs as there may be additional messages which
indicate why the exception was thrown. Exception is CORBA::UNKNOWN.

0x494202EF SOMTRRAS::Minor_unexpectedException
Explanation: An unexpected error occurred and was caught by an object in the
transaction service. The error is not a CORBA standard exception nor a CORBA
user exception.
User Response: Investigate what your application was doing when the exception
was thrown. For example, look at which objects were involved. Where they calling
an operating system function? Make sure your application has access to the
resources it requires and is using any services from the operating system or
Component Broker Connector correctly. Look in the NT event logs for more
information which might indicate why the exception was thrown.

0x494202F0 OTSAPPCMINOR_LONGERTHANEIGHT
Explanation: A field/parameter supplied to the component is longer than its

Appendix G. System Exceptions and Minor Codes 241

maximum length of 8 characters. This is not supported.
User Response: Correct the configuration/parameter and retry. Exception is
CORBA::BAD_PARAMS.

0x494202F0 SOMTRRAS::Minor_unexpectedRetCode
Explanation: An unexpected response was received by an object in the transaction
service. This could be caused either by an application interacting incorrectly with
the transaction service or an internal error in one of the transaction service objects.
User Response: Investigate what your application was doing when the exception
was thrown. For example, look at which transaction service objects were involved
and what point in the lifetime of the transaction the error occurred. Make sure your
application is making correct use of the transaction service. Check the error log for
more information that might describe what your application was doing when the
error occurred and report the occurrence to technical support.

0x494202F1 OTSAPPCMINOR_LONGERTHANSEVENTEEN
Explanation: A fully-qualified LUName field/parameter supplied to the component is
longer than its maximum length of 17 characters. This is not supported.
User Response: Correct the configuration/parameter and retry.Exception is
CORBA::BAD_PARAMS.

0x494202F1 SOMTRRAS::Minor_unknownState
Explanation: An object from the transaction service is unable to perform the action
requested by an application because all, or part, of its internal state is unknown.
This is a transient problem usually due to a configuration error.
User Response: Look for earlier messages in the activity log and follow the
instructions for these messages. Exception is CORBA::INITIALIZE.

0x494202F2 OTSAPPCMINOR_INVALIDSTATE
Explanation: An object from the transaction service has detected an inconsistency
in its internal state. This is caused either by an application making incorrect use of
the transaction service, or there is an internal error in the transaction service.
User Response: Investigate what your application was doing when the exception
was thrown. For example, which transaction service objects were involved and what
point in the lifetime of the transaction did the error occur. Make sure your
application is making correct use of the transaction
// service. If your application is correct, save the NT logs and the information
describing what your application was doing when the error occurred and contact
your support organization. Exception is CORBA::INTERNAL,
CosTransactions::NotPrepared.

0x494202F2 OTSAPPCMINOR_LONGERTHANSIXTYFOUR
Explanation: A Transaction Program Name (TPN) field/parameter supplied to the
component is longer than its maximum length of 64 characters. This is not
supported.
User Response: Correct the configuration/parameter and retry. Exception is
CORBA::BAD_PARAMS.

0x494202F2 SOMTRRAS::Minor_invalidState
Explanation: An object from the transaction service has detected an inconsistency
in its internal state. This is caused either by an application making incorrect use of
the transaction service, or there is an internal error in the transaction service.
User Response: Investigate what your application was doing when the exception
was thrown. For example, look at which transaction service objects were involved
and what point in the lifetime of the transaction the error occurred. Make sure your
application is making correct use of the transaction service. Check the error log for

242 Problem Determination Guide

more information that might describe what your application was doing when the
error occurred and report the occurrence to technical support.

0x494202F3 OTSAPPCMINOR_ZEROLENGTH
Explanation: A field/parameter supplied to the component is either NULL or zero
length. This is not supported.
User Response: Correct the configuration/parameter and retry. Exception is
CORBA::BAD_PARAMS.

0x494202F3 SOMTRRAS::Minor_unfinishedTransaction
Explanation: The transaction service is unable to commit a top-level transaction
because there is still outstanding work occurring for the transaction either locally or
in a remote server. Alternatively, a non-user exception was generated in a remote
method.
User Response: Look in the NT event logs to see if an exception occurred in a
remote server. If a non-user exception is being thrown, correct your application so
that the exception does not occur, or ensure the exception is caught in the server
where it is first thrown. If no exception has occurred, there is a problem in the
design of your application. It should not request a commit until all remote methods
and subtransactions have completed for the transaction. Correct your application.

0x494202F4 OTSAPPCMINOR_TOOMANYDOTS
Explanation: A fully qualified LU name field/parameter supplied to the component
contains more then one ".". This is not supported.
User Response: Correct the configuration/parameter and retry. Exception is
CORBA::BAD_PARAMS.

0x494202F4 SOMTRRAS::Minor_unfinishedSubTransaction
Explanation: The transaction service is unable to commit a subtransaction because
there is either still outstanding work occurring for the transaction or a non-user
exception was thrown and not caught in a remote method.
User Response: Look in the NT event logs to see if an exception occurred in a
remote server involved in the transaction. If a non-user exception is being thrown,
correct your application so that the exception does not occur, or ensure the
exception is caught in the server where it is first thrown. If no exception has
occurred, there is a problem in the design of your application. It should not request
a commit until all remote methods and subtransactions have completed for the
transaction. Correct your application.

0x494202F5 OTSAPPCMINOR_BUFFERTOOSMALL
Explanation: A buffer passed to an internal routine is too small.
User Response: Turn on transaction service trace in the Component Broker server
and rerun the failing request. Then contact IBM Service. Exception is
CORBA::INTERNAL.

0x494202F5 SOMTRRAS::Minor_noMemory
Explanation: An object from the transaction service is unable to acquire the
memory it needs to complete a request from an application.
User Response: Investigate what your application was doing when the exception
was thrown. For example, look at which transaction service objects were involved
and at what point in the lifetime of the transaction the error occurred. Make sure
your application is making correct use of the transaction service. In particular look
for possible loops that may consume memory. If the application runs for some time
before this exception occurs, ensure that objects which are no longer required are
being correctly destroyed. If your application is correct, increase your NT virtual
page size.

Appendix G. System Exceptions and Minor Codes 243

0x494202F6 OTSAPPCMINOR_BADLOGNAME
Explanation: A log name received from a partner system is not specified in the
correct SNA format.
User Response: Turn on link trace in the local SNA product and transaction service
trace in the Component Broker server and rerun the failing request. Then contact
IBM Service. Exception is CORBA::MARSHAL.

0x494202F6 OTSAPPCMINOR_LOGICERROR
Explanation: The transaction service has detected an internal logic error. This
should not occur if the transaction service is being called correctly.
User Response: Investigate what your application was doing when the exception
was thrown. For example, which transaction service objects were involved and what
point in the lifetime of the transaction did the error occur. Make sure your
application is making correct use of the transaction
// service. If your application is correct, save the NT logs and the information
describing what your application was doing when the error occurred and contact
your support organization. Exception is CORBA::INTERNAL.

0x494202F6 SOMTRRAS::Minor_logicError
Explanation: The transaction service has detected an internal logic error. This
should not occur if the transaction service is being called correctly.
User Response: Investigate what your application was doing when the exception
was thrown. For example, look at which transaction service objects were involved
and what point in the lifetime of the transaction the error occurred. Make sure your
application is making correct use of the transaction service. Check the error log for
more information that might describe what your application was doing when the
error occurred and report the occurrence to technical support.

0x494202F7 OTSAPPCMINOR_BADPSHEADER
Explanation: A presentation services (PS) header received from a partner system
during commit processing is not specified in the correct SNA format.
User Response: Turn on link trace in the local SNA product and transaction service
trace in the Component Broker server and rerun the failing request. Then contact
IBM Service. Exception is CORBA::MARSHAL.

0x494202F7 OTSAPPCMINOR_USERERROR
Explanation: The transaction service has been incorrectly called by an application.
User Response: Investigate what your application was doing when the exception
was thrown. For example, which transaction service objects were involved and what
point in the lifetime of the transaction did the exception occur. Look for other
messages in the NT event logs that may give more details on the cause of the
problem. When you have identified which call or calls to the transaction service are
in error, correct your application. Exception is CORBA::INTERNAL.

0x494202F7 SOMTRRAS::Minor_userError
Explanation: The transaction service was incorrectly called by an application.
User Response: Investigate what your application was doing when the exception
was thrown. For example, which transaction service objects were involved and what
point in the lifetime of the transaction did the exception occur. Look for other
messages in the NT event logs that may give more details on the cause of the
problem. When you have identified which call or calls to the transaction service are
in error, correct your application.

0x494202F8 OTSAPPCMINOR_BADLUWID
Explanation: A Logical Unit of Work identifier (LUWId) received from a partner
system is not specified in the correct SNA format.

244 Problem Determination Guide

User Response: Turn on link trace in the local SNA product and transaction service
trace in the Component Broker server and rerun the failing request. Then contact
IBM Service. Exception is CORBA::MARSHAL.

0x494202F8 SOMTRRAS::Minor_mutexError
Explanation: The transaction service was unable to lock or unlock a mutex. This
should not occur if the transaction service is being called correctly.
User Response: Investigate what your application was doing when the exception
was thrown. For example, which transaction service objects were involved and what
point in the lifetime of the transaction did the error occur. Make sure your
application is making correct use of the transaction service. Check the error log for
more information that might describe what your application was doing when the
error occurred and report the occurrence to technical support.

0x494202F9 OTSAPPCMINOR_BADLUNAME
Explanation: A Logical Unit (LU) name received from a partner system is not
specified in the correct SNA format.
User Response: Turn on link trace in the local SNA product and transaction service
trace in the Component Broker server and rerun the failing request. Then contact
IBM Service. Exception is CORBA::MARSHAL.

0x49202F9 SOMTRRAS::Minor_noTransaction
Explanation: A transactional request was issued outside the scope of the
transaction. This is an application error.
User Response: Investigate what your application was doing when the exception
was thrown. For example, which transaction service objects were involved and what
point in the lifetime of the transaction did the exception occur. Ensure that your
application uses the CosTransactions::Current interface to ensure a transaction
context is associated with the current thread of execution when the transaction
service is called.

0x494202FA OTSAPPCMINOR_BADSESSIONID
Explanation: A session identifier received from a partner system is not specified in
the correct SNA format.
User Response: Turn on link trace in the local SNA product and transaction service
trace in the Component Broker server and rerun the failing request. Then contact
IBM Service. Exception is CORBA::MARSHAL.

0x494202FA SOMTRRAS::Minor_wrongTransaction
Explanation: A transactional request was issued in the scope of one transaction
and returned in the scope of another transaction. This is an application error.
User Response: Investigate what your application was doing when the exception
was thrown. For example, look at which transaction service objects were involved
and at what point in the lifetime of the transaction the exception occurred. In
particular, identify the objects that are located in different servers to where the
transaction was started and that either create one or more subtransactions or use
the CosTransactions::Current interface to suspend or resume the transaction
context. It is likely that these objects are not managing transactions correctly.

0x494202FB OTSAPPCMINOR_BADCONVCORRELATOR
Explanation: A conversation correlator received from a partner system is not
specified in the correct SNA format.
User Response: Turn on link trace in the local SNA product and transaction service
trace in the Component Broker server and rerun the failing request. Then contact
IBM Service. Exception is CORBA::MARSHAL.

Appendix G. System Exceptions and Minor Codes 245

0x49202FB SOMTRRAS::Minor_retryLimitExhausted
Explanation: There is a problem communicating with the objects involved in a
transaction. The transaction service made as many attempts to contact this object
as are permitted by the commitRetryLimit configured for the server and made a
heuristic decision.
User Response: Restart any servers that are currently unavailable. This completes
the transaction for any registered objects that are located in these servers. Look at
the action that was taken by each of these objects and correct any problems in the
data for your application caused by this heuristic decision.

0x494202FC OTSAPPCMINOR_BADLUWSTATE
Explanation: A transaction state indicator received from a partner system is not a
recognized SNA value.
User Response: Turn on link trace in the local SNA product and transaction service
trace in the Component Broker server and rerun the failing request. Then contact
IBM Service. Exception is CORBA::MARSHAL.

0x494202FC SOMTRRAS::Minor_wrongState
Explanation: The transaction service is unable to complete the requested operation
because it is not in the correct state to perform the work. This is an application
error.
User Response: Investigate what your application was doing when the exception
was thrown. For example, look at which transaction service objects were involved
and at what point in the lifetime of the transaction the exception occurred. It is likely
that these objects are not managing transactions correctly. Correct your application
as appropriate.

0x494202FD OTSAPPCMINOR_BADXLN
Explanation: An exchange log names (XLN) record received from a partner system
is not
// in the correct SNA format.
User Response: Turn on link trace in the local SNA product and transaction service
trace in the Component Broker server and rerun the failing request. Then contact
IBM Service. Exception is CORBA::MARSHAL.

0x494202FD SOMTRRAS::Minor_timedOut
Explanation: A transaction rolled back because it did not complete within the
specified time limit. This may indicate that the server is waiting for a resource that is
unavailable, or a deadlock has occurred in your application.
User Response: Check that all of the servers involved in the transaction are
operating correctly. In addition, check the use of locks in your application for
possible deadlock situations.

0x494202FE OTSAPPCMINOR_BADCOMPARESTATES
Explanation: An compare states record received from a partner system is not in
the correct SNA format.
User Response: Turn on link trace in the local SNA product and transaction service
trace in the Component Broker server and rerun the failing request. Then contact
IBM Service. Exception is CORBA::MARSHAL.

0x494202FE SOMTRRAS::Minor_notInitialized
Explanation: An object from the transaction service was requested to perform an
operation before it was initialized.
User Response: Investigate what your application was doing when the exception
was thrown. For example, look at which transaction service objects were involved
and at what point in the lifetime of the transaction the error occurred. Make sure

246 Problem Determination Guide

your application is making correct use of the transaction service. If your application
is correct, save the NT logs and the information describing what your application
was doing when the error occurred and report the occurrence to technical support.

0x494202FF OTSAPPCMINOR_NULLOBJECT
Explanation: A transaction service request has been made against an object that
does not exist.
User Response: Investigate what your application was doing when the exception
was thrown. For example, which transaction service objects were involved and what
point in the lifetime of the transaction did the error occur. Make sure your
application is making correct use of the transaction service. If your application is
correct, save the NT logs and the information describing what your application was
doing when the error occurred and contact your support organization. Exceptions
are CORBA::PERSIST_STORE, CORBA::INTERNAL and
CORBA::INVALID_TRANSACTION, CORBA::NO_MEMORY.

0x494202FF OTSAPPCMINOR_SENDRECEIVEFAILED
Explanation: A call to send data from a partner system and receive a response has
failed.
User Response: Turn on link trace in the local SNA product and transaction service
trace in the Component Broker server and rerun the failing request. Then contact
IBM Service. Exceptions are OTSAPPCConnection::TPNUnavailable,
OTSAPPCConnection::SecurityNotValid,
OTSAPPCConnection::BadCommunications,
OTSAPPCConnection::PartnerNotRecoverable, and
OTSAPPCConnection::RecoveryIncomplete.

0x494202FF SOMTRRAS::Minor_nullObject
Explanation: A transaction service request was made against an object that does
not exist.
User Response: Investigate what your application was doing when the exception
was thrown. For example, look at which transaction service objects were involved
and at what point in the lifetime of the transaction the error occurred. Make sure
your application is making correct use of the transaction service. Check the error
log for more information that might describe what your application was doing when
the error occurred and report the occurrence to technical support.

0x49420300 OTSAPPCMINOR_COMMITCOMMFAILURE
Explanation: A commit call is unable to complete because a partner system is
unreachable.
User Response: Restart the partner system. Details of which system is unavailable
is given in a previous message. Exception is CORBA::COMM_FAILURE.

0x49420300 SOMTRRAS::Minor_recoveryFailed
Explanation: The transaction service has experienced problems during recovery
and is unable to accept new requests.
User Response: If transactions are not used in this server then no action is
needed. If transactions are required, look for the messages logged just prior to this
exception being logged as these explain why the transaction service is unavailable.

0x49420301 OTSAPPCMINOR_RBCOMMFAILURE
Explanation: A rollback call is unable to complete because a partner system is
unreachable.
User Response: Restart the partner system. Details of which system is unavailable
is given in a previous message. Exception is CORBA::COMM_FAILURE.

Appendix G. System Exceptions and Minor Codes 247

0x49420301 SOMTRRAS::Minor_terminationNotAllowed
Explanation: An application has attempted to end a transaction using the commit
method in a different server from the one where the transaction was started. This is
not supported by the transaction service.
User Response: Investigate what your application was doing when the exception
was thrown. For example, look at which application objects were involved and at
what point in their processing the commit method call was made. Correct your
application so that the commit is called in the same server as the begin method.
The easiest way to ensure this is to have a single object responsible for calling both
the begin and the commit method.

0x49420302 OTSAPPCMINOR_RESYNCOK
Explanation: A resync request confirms that the transaction has already completed
on both systems.
User Response: No action is required. This exception is thrown for information
only. Exception is CosTransactions::NoTransaction.

0x49420302 SOMTRRAS::Minor_rollbackOnlySet
Explanation: The transaction was marked "rollback only" and one of the following
types of requests was attempted.

v Start a subtransaction

v Register a CosTransactions::Resource object with a
CosTransactions::Coordinator for the transaction

v Register a CosTransactions::Synchronization object with a
CosTransactions::Coordinator for the transaction

v Make a remote request

v Receive a remote request

These operations are not permitted when the transaction is marked as "rollback
only".
User Response: Examine the design of your application to understand how the
transaction service is used. Either alter the code so that these calls are not made
when the transaction is marked "rollback only", or ensure your application uses a
try/catch structure around these calls so it can handle the exception.

0x49420303 OTSAPPCMINOR_PREPAREHEURISTIC
Explanation: A heuristic decision was detected during a prepare operation. This
heuristic decision has been made by one of your application’s
CosTransactions::Resource objects. The transaction service is reporting the
heuristic decision as it will affect the outcome of the transaction.
User Response: None. Exceptions are CosTransactions::HeuristicMixed,
CosTransactions::HeuristicHazard, CosTransactions::HeuristicCommit, and
CosTransactions::HeuristicRollback.

0x4920303 SOMTRRAS::Minor_prepareHeuristic
Explanation: A heuristic decision was detected during a prepare operation. This
heuristic decision was made by one of the CosTransactions::Resource objects of
your application. The transaction service is reporting the heuristic decision as it
affects the outcome of the transaction.
User Response: None.

0x49420304 OTSAPPCMINOR_COMMITHEURISTIC
Explanation: A heuristic decision was detected during a commit operation. This
heuristic decision has been made by one of your application’s
CosTransactions::Resource objects. The transaction service is reporting the

248 Problem Determination Guide

heuristic decision as it will affect the outcome of the transaction.
User Response: None. Exceptions are CosTransactions::HeuristicMixed,
CosTransactions::HeuristicHazard, and CosTransactions::HeuristicRollback.

0x4920304 SOMTRRAS::Minor_commitHeuristic
Explanation: A heuristic decision was detected during a commit operation. This
heuristic decision was made by one of the CosTransactions::Resource objects of
your application. The transaction service is reporting the heuristic decision as it
affects the outcome of the transaction.
User Response: None.

0x49420305 OTSAPPCMINOR_ROLLBACKHEURISTIC
Explanation: A heuristic decision was detected during a rollback operation. This
heuristic decision has been made by one of your application’s
CosTransactions::Resource objects. The transaction service is reporting the
heuristic decision as it will affect the outcome of the transaction.
User Response: None. Exceptions are CosTransactions::HeuristicMixed,
CosTransactions::HeuristicHazard, and CosTransactions::HeuristicCommit.

0x4920305 SOMTRRAS::Minor_rollbackHeuristic
Explanation: A heuristic decision was detected during a rollback operation. This
heuristic decision was made by one of the CosTransactions::Resource objects of
your application. The transaction service is reporting the heuristic decision as it
affects the outcome of the transaction.
User Response: None.

0x49420306 SOMTRRAS::Minor_subtransactionRolledBack
Explanation: A subtransaction rolled back during a commit_subtransaction call to a
CosTransactions::Resource object. This exception is part of the standard
transaction service interface.
User Response: Identify which call to the transaction service resulted in this
exception. Check the documentation for this call and ensure your application is
programmed to handle this exception appropriately.

0x49420307 OTSAPPCMINOR_COMMIT1PROLLEDBACK
Explanation: A transaction rolled back during the commit_one_phase call to a
CosTransactions::Resource object. This exception is part of the standard
transaction service interface.
User Response: Identify which call to the transaction service resulted in this
exception. Check the documentation for this call and ensure your application is
programmed to handle this exception appropriately. Exception is
CORBA::TRANSACTION_ROLLEDBACK.

0x49420307 SOMTRRAS::Minor_commitOnePhaseRolledBack
Explanation: A transaction rolled back during the commit_one_phase call to a
CosTransactions::Resource object. This exception is part of the standard
transaction service interface.
User Response: Identify which call to the transaction service resulted in this
exception. Check the documentation for this call and ensure your application is
programmed to handle this exception appropriately.

0x49420308 OTSAPPCMINOR_COMMIT1PHEURISTIC
Explanation: A heuristic decision was detected during a commit_one_phase call to
a CosTransactions::Resource object. This heuristic decision has been made by one
of your application’s CosTransactions::Resource objects. The transaction service is

Appendix G. System Exceptions and Minor Codes 249

reporting the heuristic decision as it will affect the outcome of the transaction.
User Response: None. Exceptions are: CosTransactions::HeuristicMixed and
CosTransactions::HeuristicHazard.

0x4920308 SOMTRRAS::Minor_commitOnePhaseHeuristic
Explanation: A heuristic decision was detected during a commit_one_phase call to
a CosTransactions::Resource object. This heuristic decision was made by one of
the CosTransactions::Resource objects of your application. The transaction service
is reporting the heuristic decision as it affects the outcome of the transaction.
User Response: None.

0x49420309 SOMTRRAS::Minor_notSubtransaction
Explanation: A method that should only be used when working on behalf of a
subtransaction was issued during a top-level transaction. This is an application
error.
User Response: Identify which call to the transaction service resulted in this
exception. Check the documentation for this call and ensure your application is
programmed to call this object appropriately.

0x4942030A SOMTRRAS::Minor_notTopLevelTransaction
Explanation: A method that should only be used when working on behalf of a
top-level transaction was issued during a subtransaction. This is an application
error.
User Response: Identify which call to the transaction service resulted in this
exception. Check the documentation for this call and ensure your application is
programmed to call this object appropriately.

0x4942030B SOMTRRAS::Minor_commitRolledBack
Explanation: A transaction rolled back during the commit call. This exception is part
of the standard transaction service interface.
User Response: Identify which call to the transaction service resulted in this
exception. Check the documentation for this call and ensure your application is
programmed to handle this exception appropriately.

0x4942030C SOMTRRAS::Minor_noFactoryAvailable
Explanation: A transaction could not be started because a
CosTransactions::TransactionFactory is not available.
User Response: Ensure there is an application server available which contains a
transaction factory for the client.

0x4942030D SOMTRRAS::Minor_activeNested
Explanation: A transaction could not be completed because there are active
subtransactions. This is an application error.
User Response: Correct your application.

0x4942030E OTSAPPCMINOR_NOTSUPPORTED
Explanation: The request could not be completed because the function is not
supported.
User Response: Identify which call to the transaction service is throwing this
exception. Check the documentation for this call and alter your application to use
supported operations. Exceptions are CORBA::NO_IMPLEMENT.

0x492030E SOMTRRAS::Minor_notSupported
Explanation: The request could not be completed because the function is not
supported.

250 Problem Determination Guide

User Response: Identify which call to the transaction service is throwing this
exception. Check the documentation for this call and alter your application to use
supported operations.

0x4942030F SOMTRRAS::Minor_omgtidAlreadyUsed
Explanation: The transaction service can not create a new transaction because it
is unable to generate a new OMGtid as all possible values for the OMGtid are in
use. This could be caused by an application starting many transactions and never
ending them.
User Response: Investigate what your application was doing when the exception
was thrown. For example, which objects were involved and what where they doing.
Look at the points in your application where transactions are started and ended and
ensure your application is making correct use of the transaction service. If your
application is correct, save the NT logs and the information describing what your
application was doing when the error occurred and contact your support
organization. Exception is CORBA::IMP_LIMIT.

0x49420310 SOMTRRAS::Minor_omgtidNull
Explanation: The CosTransactions::TransactionFactory recreate method was called
with a propagation context parameter containing a NULL OMGtid. This method is
provided for use by implementations of the transaction service when receiving
transactional requests from remote servers. It should not be used by applications.
User Response: Investigate what your application was doing when the exception
was thrown. Look at which objects were involved and what they were doing. Ensure
that no part of your application is calling the CosTransactions::TransactionFactory
recreate method. If the error occurs while your application is not using the recreate
method then the transaction service is using this method when receiving a request
from a remote server. Look for errors in this remote server. If you cannot solve the
problem, save the NT logs and the information describing what your application was
doing when the error occurred and report the occurrence to technical support.

0x49420311 SOMTRRAS::Minor_alreadyCurrent
Explanation: The transaction service cannot receive a transactional request for a
local object because the thread where the request is to run is already associated
with this transaction. This is an internal error in the transaction service.
User Response: Check the error log for more information that might describe what
your application was doing when the error occurred and report the occurrence to
technical support.

0x49420312 SOMTRRAS::Minor_noLog
Explanation: The transaction service can not initialize properly because its log file
is not available. This may be because the log directory set up for the server does
not exist, there is insufficient disk space for the log files, or the server does not
have permission to create the log files in the log directory.
User Response: Restart your server and look for the messages generated by the
transaction service. These explain what is wrong with the log configuration. Correct
the log configuration and restart the server.

0x49420313 OTSAPPCMINOR_RESYNCHEURISTIC
Explanation: A heuristic decision was taken when the transaction service was
resolving the outcome of an incomplete transaction during server startup. This
heuristic decision has been made by one of your application’s
CosTransactions::Resource objects. The transaction service is reporting the
heuristic decision as it will affect the outcome of the transaction.

Appendix G. System Exceptions and Minor Codes 251

User Response: None. Exceptions are CosTransactions::HeuristicMixed,
CosTransactions::HeuristicHazard, CosTransactions::HeuristicCommit, and
CosTransactions::HeuristicRollback.

0x4920313 SOMTRRAS::Minor_resyncHeuristic
Explanation: A heuristic decision was taken when the transaction service was
resolving the outcome of an incomplete transaction during server startup. This
heuristic decision was made by one of the CosTransactions::Resource objects of
your application. The transaction service is reporting the heuristic decision as it
affects the outcome of the transaction.
User Response: None.

0x49420314 SOMTRRAS::Minor_asyncRolledBack
Explanation: A request can not be performed on a transaction because this
transaction has already rolled back. This exception is part of the standard
transaction service interface.
User Response: Identify which call to the transaction service resulted in this
exception. Check the documentation for this call and ensure your application is
programmed to handle this exception appropriately.

0x49420315 SOMTRRAS::Minor_thisServerEnding
Explanation: The transaction is being rolled back because the local server is
terminating.
User Response: Rerun the transaction when the server is restarted.

0x49420316 SOMTRRAS::Minor_remoteServerEnding
Explanation: The transaction is being rolled back because another server which is
processing part of the transaction is terminating.
User Response: Rerun the transaction when the remote server is restarted.

0x49420317 SOMTRRAS::Minor_superiorRegFailed
Explanation: The transaction is being rolled back because another server which is
processing part of the transaction can not be contacted.
User Response: Rerun the transaction when the remote server is restarted.

0x49420318 SOMTRRAS::Minor_noLogStorage
Explanation: The transaction service is unable to continue running transactions
because there is insufficient disk space for the transaction service log. This log
contains information about the transactions running in the server and is used during
recovery.
User Response: Free some disk space for the transaction service log.

0x49420320 OTSAPPCMINOR_ROLLBACKONLYSET
Explanation: The transaction has been marked "rollback only" and one of the
following types of requests has been attempted:

v start a new APPC connection

v update a database for the first time during the transaction

v register a CosTransactions::Resource object with a CosTransactions::Coordinator
for the transaction

v register a CosTransactions::Synchronization object with a
CosTransactions::Coordinator for the transaction

v make a remote request

v receive a remote request

252 Problem Determination Guide

These operations are not permitted when the transaction is marked as "rollback
only".
User Response: Examine the design of your application to understand how the
transaction service is used. Either alter the code so that these calls are not made
when the transaction is marked "rollback only", or ensure your application uses a
try/catch structure around these calls so it can handle the
CORBA::TRANSACTION_ROLLEDBACK exception. Exception is
CORBA::TRANSACTION_ROLLEDBACK.

0x494203EC SOMIM_INTERNAL
Explanation: Unknown.
User Response: Report the occurrence to technical support.

0x4942041A SOMROOTIM_ICONTAINERMINOR_HEAP_OUT_OF_MEMORY
Explanation: Memory could not be allocated from a heap.
User Response: A heap could not extend during an allocation. Review the logs to
determine the heap and take action to allow it to extend.

0x4942041A SOMROOTIM_ICONTAINERMINOR_NO_LOCALFRIENDQOS
Explanation: An object cannot register with a container.
User Response: The object lacks the interface needed to register with a container.
Refer to the programming documentation to determine the interface needed.

0x4942041A SOMROOTIM_ICONTAINERMINOR_NOIMPLEMENT
Explanation: The invoked operation is not supported in the product or is not valid
on the target object.
User Response: Check that the operation being invoked and the runtime type of
the target object are compatible. Reference the documentation for the operation to
find out about any restrictions.

0x4942041A SOMROOTIM_ICONTAINERMINOR_UNEXPECTED
Explanation: An unexpected error occurred during an operation.
User Response: This indicates a system type failure. Contact your service provider
for additional help.

0x4942041B SOMROOTIM_ICONTAINER_MC_FAILED_REGISTRATION
Explanation: The master container did not register into the master container object
cache.
User Response: The master container failed to register with itself. Restart the
server, if this fails again contact your service provider.

0x4942041B SOMROOTIM_ICONTAINERMINOR_BAD_KEY
Explanation: The key provided is invalid or corrupted.
User Response: Retry the operation, if the problem persists review the objects key
for valid character set and syntax. If this is not the problem contact your service
provider.

0x4942041B SOMROOTIM_ICONTAINERMINOR_UNKNOWN_HEAP
Explanation: An unexpected error occurred during the use of a heap.
User Response: Review the logs to determine the exact cause of this failure and
take the recommended action.

0x4942044C SOMBOIM_IHOMEMINOR_BADPARAM_CONFIG
Explanation: Configuration of the home failed.
User Response: Check the associated message. Most often this is the result of an

Appendix G. System Exceptions and Minor Codes 253

incorrect DULL or function name. Update the COS with the correct value, or rebuild
the particular DULL to have the function specified and try again.

0x4942044C SOMBOIM_IHOMEMINOR_DUPLICATE_KEY
Explanation: The key given for a createFromPrimaryKey has already been used by
an existing object.
User Response: Perform a findByPrimaryKeyString to find objects which already
exist.

0x4942044C SOMBOIM_IHOMEMINOR_INVALID_KEY
Explanation: The key given for a createFromPrimaryKeyString or
findByPrimaryKeyString can not be used to create or reactivate the object.
User Response: Check the contents of the key to make sure they are correct.
Check to make sure the type of key used is compatible with the keys used by the
home in question.

0x4942044C SOMBOIM_IHOMEMINOR_NO_IMPL
Explanation: The invoked operation is not supported in the product or is not valid
on the target object.
User Response: Check that the operation being invoked and the runtime type of
the target object are compatible. Reference the documentation for the operation to
find out about any restrictions.

0x4942044C SOMBOIM_IHOMEMINOR_NO_MEMORY_CONFIG
Explanation: A memory error occurred during configuration of a home. Memory
could not be extended in the heap.
User Response: Review the log and check to see why the heap could not be used
to create the object.

0x4942044C SOMBOIM_IHOMEMINOR_UNINIT_FAILED
Explanation: The uninitForPassivation or uninitForDestruction method failed to
complete.
User Response: In the case of uninitForDestruction, check to make sure that the
state of the home is "dead". If not, the home can not be destroyed. Otherwise,
check the error log for previous messages which may indicate why the the uninit
method failed.

0x4942044C SOMBOIM_IHOMEMINOR_UNKNOWN_CONFIG
Explanation: An error during the configuration has occurred.
User Response: This is a global configuration exception. Check previous error log
entries for previous configuration exceptions. If these problems are fixed, this
exception should cease to occur as well.

0x4942044C SOMBOIMHOME_IHOMEMINOR_SMOCOHOMENARROW
Explanation: The SMOCO Home could not be narrowed to a home of the correct
type.
User Response: Make sure your CDS default application was built correctly.

0x4942044D SOMBOIM_IHOMEMINOR_BADPARAM_PO
Explanation: Contents of the key passed in invalid.
User Response: Check the contents of the key to determine if this is the correct
key for this particular object.

0x4942044D SOMBOIM_IHOMEMINOR_NO_MEMORY_CREATE_MO
Explanation: A memory error occurred during construction of a managed object.

254 Problem Determination Guide

Memory could not be extended in the heap.
User Response: Review the log and check to see why the heap could not be used
to create the object.

0x4942044D SOMBOIMHOME_IHOMEMINOR_SMOCONARROW
Explanation: The SMOCO could not be narrowed to the correct type.
User Response: Make sure your CDS default application was built correctly.

0x4942044D SOMBOIM_IHOMEMINOR_UNKNOWN_CTOR
Explanation: An unexpected error occurred during the construction of a home. This
error means that the home caught an exception during its creation logic, and has
thrown this exception.
User Response: Check previous log entries to determine the nature of the
exception(s) prior to this exception.

0x4942044E SOMBOIM_IHOMEMINOR_BADPARAM_SYNCFROM
Explanation: The home could not retrieve all its data from the CDS or the home
could not configure itself from the data given.
User Response: Check the previous exception in the error log to see if a
configuration error occurred. If so, take action to correct the configuration value. If a
configuration error did not occur, check the previous entries in the log to see if the
CDS Data Object could not find a particular value in the CDS. If so, correct the
CDS.

0x4942044E SOMBOIM_IHOMEMINOR_COMPLETEFAILED
Explanation: The SMOCO and its home could not be revived.
User Response: Make sure your CDS default application was built correctly.

0x4942044E SOMBOIM_IHOMEMINOR_NO_MEMORY_CREATE_DO
Explanation: A memory error occurred during construction of a data object.
Memory could not be extended in the heap.
User Response: Review the log and check to see why the heap could not be used
to create the object.

0x4942044E SOMBOIM_IHOMEMINOR_UNKNOWN_DTOR
Explanation: An unexpected error occurred during the destruction of a home. This
error means that the home caught an exception during its destruction logic, and has
thrown this exception.
User Response: Check previous log entries to determine the nature of the
exception(s) prior to this exception.

0x4942044F SOMBOIM_IHOMEMINOR_BADPARAM_MIXIN
Explanation: The mixin type used can not be used by the home.
User Response: Check the type of the mixin.

0x4942044F SOMBOIM_IHOMEMINOR_NO_MEMORY_CREATE_PK
Explanation: A memory error occurred during construction of a primary key.
Memory could not be extended in the heap.
User Response: Review the log and check to see why the heap could not be used
to create the object.

0x4942044F SOMBOIM_IHOMEMINOR_UNKNOWN_CREATE_PK
Explanation: An unknown error occurred curing the creation of a primary key
User Response: Check the logic of the keys constructor to see that is behaving
properly.

Appendix G. System Exceptions and Minor Codes 255

0x49420450 SOMBOIM_IHOMEMINOR_BAD_KEY
Explanation: Key component could not be created.
User Response: An internal error has occurred. Check for memory heap overflows.

0x49420450 SOMBOIM_IHOMEMINOR_UNKNOWN_CREATE_FROM_PK
Explanation: During a creation, find, or reactivation, an unknown error occurred.
User Response: This is a catcher exception. To find the cause of the problem,
examine the previous error log entries.

0x49420451 SOMBOIM_IHOMEMINOR_MCINIT
Explanation: The master container or bootstrap home failed to initialize.
User Response: Make sure your CDS default application was built correctly.

0x49420451 SOMBOIM_IHOMEMINOR_NULL_DO_PARAM
Explanation: A null DO was passed into the home during an initForReactivation
call.
User Response: An internal error has occurred.

0x49420451 SOMBOIM_IHOMEMINOR_UNKNOWN_CREATE_DO
Explanation: An unknown error occurred curing the creation of a data object.
User Response: Check the logic of the constructor for the data object to see that is
behaving properly.

0x49420452 SOMBOIM_IHOMEMINOR_PSTATE
Explanation: An error occurred as the result of the home processing its state.
User Response: Check the associated message to see what has occurred. Most
often, this is the result of an object changing its state.

0x49420452 SOMBOIM_IHOMEMINOR_STATE
Explanation: An error occurred as the result of the home processing its state.
User Response: Check to see that the home has a valid state attribute in the CDS.

0x49420453 SOMBOIM_IHOMEMINOR_BAD_KC
Explanation: An error occurred processing the homeIdentification method on the
home.
User Response: Check the value of the managedObjectClass for the home and
make sure that it is valid.

0x49420453 SOMBOIM_IHOMEMINOR_UNKNOWN_CREATE_MO
Explanation: An unknown error occurred during the creation of a managed object.
User Response: Check the logic of the constructor for the managed object to see
that is behaving properly.

0x49420454 SOMBOIM_IHOMEMINOR_UNKNOWN_DELETE_PK
Explanation: An unknown error occurred during the destruction of a primary key.
User Response: Check the logic of the primary keys’ destructor to see that is
behaving properly.

0x49420455 SOMBOIM_IHOMEMINOR_CREATE_DO
Explanation: An unknown error occurred during the creation of a data object.
User Response: Check the logic of the constructor for the data object to see that is
behaving properly.

0x49420456 SOMBOIM_ICDSMINOR_IMKEYCOLLECTION_NOT_SET
Explanation: The key collection was not set in the CDS data object.

256 Problem Determination Guide

0x49420456 SOMBOIM_ICDSMINOR_INITDO_CDS
Explanation: A exception was thrown by the default data store.
User Response: See message log for more information.

0x49420456 SOMBOIM_ICDSMINOR_UNKNOWN
Explanation: An unexpected error occurred during an operation.
User Response: See message log for more details.

0x49420456 SOMBOIM_SMOCOMINOR_INTERNAL_FAILURE
Explanation: An internal failure occurred in the SMOCO. In most situations this is
caused by an incorrect CDS image.
User Response: Check the error log for more information.

0x49420457 SOMBOIM_ICDSMINOR_INITDO
Explanation: An unknown exception occurred while accessing the default data
store.
User Response: See message log for more information.

0x49420457 SOMBOIM_ICDSMINOR_REF_ELEMENT
Explanation: An error occurred while attempting to get a reference by name.
User Response: See message log for more details.

0x49420458 SOMBOIM_ICDSMINOR_DELETE
Explanation: A delete of a CDS image did not complete, since the CDS image was
in the wrong state.

0x49420459 SOMBOIM_ICDSMINOR_GET_SET_ATTRIBUTE_FAILED
Explanation: An error occurred while using an attribute in the CDS.
User Response: See the message log for more details.

0x4942045A SOMBOIM_ICDSMINOR_INVALID_INDEX
Explanation: An invalid index was requested.

0x49420460 SOMBOIM_ICONTAINERMINOR_DEAD_STATE_CDS
Explanation: A container has reactivated in a terminating state.
User Response: The container is terminating and its image are deleted from CDS.
There is no action for this exception, it is informational only.

0x49420460 SOMBOIM_ICONTAINERMINOR_HEAP_OUT_OF_MEMORY
Explanation: Memory could not be allocated from a heap.
User Response: A heap could not extend during an allocation. Review the logs to
determine the heap and take action to allow it to extend.

0x49420460 SOMBOIM_ICONTAINERMINOR_NO_LOCALFRIENDQOS
Explanation: An object cannot register with a container.
User Response: The object lacks the interface needed to register with a container.
Refer to the programming documentation to determine the interface needed.

0x49420460 SOMBOIM_ICONTAINERMINOR_NOIMPLEMENT
Explanation: The invoked operation is not supported in the product or is not valid
on the target object.
User Response: Check that the operation being invoked and the runtime type of
the target object are compatible. Reference the documentation for the operation to
find out about any restrictions.

Appendix G. System Exceptions and Minor Codes 257

0x49420461 SOMBOIM_ICONTAINERMINOR_UNEXPECTED
Explanation: An unexpected error occurred during an operation.
User Response: This indicates a system type failure. Contact your service provider
for additional help.

0x49420461 SOMBOIM_ICONTAINERMINOR_UNKNOWN_HEAP
Explanation: An unexpected error occurred during the use of a heap.
User Response: Review the boimLog and the rootLog to determine the exact
cause of this failure and take the recommended action.

0x49420461 SOMBOIM_ICONTAINERMINOR_UNKNOWN_SETREFDATA
Explanation: The reference data received from the ORB is invalid.
User Response: Retry the operation, if the problem persists review the objects key
for valid character set and syntax. If this is not the problem contact your service
provider.

0x49420462 SOMBOIM_ICONTAINERMINOR_BAD_KEY
Explanation: The key provided is invalid or corrupted.
User Response: Retry the operation, if the problem persists review the objects key
for valid character set and syntax. If this is not the problem contact your service
provider.

0x49420463 SOMBOIM_ICONTAINERMINOR_NO_MORE_KEYS
Explanation: The provided key did not resolve an object.
User Response: The key has become corrupted. Resolve a new object reference.

0x49420464 SOMBOIM_ICONTAINERMINOR_REACTIVATION_FAILED
Explanation: The object is not in memory and cannot be placed in memory.
User Response: This is an internal failure. Gather information from the boimLog
and rootLog and contact your service provider.

0x49420465 SOMBOIM_ICONTAINERMINOR_NO_ACTION_NECESSARY
Explanation: An internal exception has escaped to the user interface.
User Response: None, ignore this error.

0x49420466
SOMBOIM_ICONTAINERMINOR_CAN_NOT_HOLD_THIS_TRANSIENT
Explanation: A transient object is being resolved to an object that does not exist in
the container.
User Response: Create the object into the container before resolving it. A transient
object cannot be reactivated, it must be created before being referenced.

0x49420467 SOMBOIM_ICONTAINERMINOR_NO_HOMES_DEFINED
Explanation: A home cannot be found to create the requested object.
User Response: The container does not have a home capable of creating the
requested object. Review the containers backing store (CDS) to assure the objects
home is configured on this container. Review the logs (boimLog and rootLog) to
assure the creation of the home did not fail during container initialization.

Minor Code Ranges
All minor error codes in Component Broker are defined to fall within a specific
numeric range. This range is defined by the Object Management Group. Within this
range, Component Broker defines further ranges. Each Component Broker range
corresponds to a specific Component Broker component. This makes it possible to
identify which component threw an exception by reading the minor error code.

258 Problem Determination Guide

While it is not necessary for developers to know which component threw an
exception to identify an error, it can be helpful.

Minor codes are scope to System Exceptions in the range from 0 to 4095
(hexadecimal 000 to FFF). A minor code must be a unique number within the scope
for each System Exception, but there is no restriction that minor codes be unique
across all System Exceptions.

Table 5. Code Ranges by Component

Code Range (Hexadecimal) Component or Service

0000-0031
Common error codes. For additional details,
see the list following this table (page 259).

0032-0063 Object Request Broker (ORB)

0064-0095 Java client

0096-00C7 Server run time

00C8-00F9 Server Groups

00FA-012B Caching

012C-015D IOM

015E-018F Concurrency service

0190-01C1 Events service

01C2-01F3 Externalization service

01F4-0225 LifeCycle service

0226-0257 Naming service

0258-0289 Object Identity service

028A-02BB Query service

02BC-02ED Security service

02EE-031F Transaction service

0320-03E7 Reserved

03E8-0419 Application Adapter Framework

041A-044B Root Application Adapter

044C-047D Business Object Application Adapter

047E-04AF Relational DB Application Adapter

04B0-0FFF Reserved

Usually, components raise exceptions using minor codes (from their assigned
range). However, a set of common error codes are provided for use by all
Component Broker components. These minor codes are defined identifiers that are
used to set minor code fields when returning exceptions. These messages are also
defined in the RAS message catalog. These messages are used when storing
errors in the logs.

Common Error Codes
The following is a list of the common error codes:

Code (Hexadecimal): 0000
Description: Minor code is unspecified. No special meaning.
Minor Code: CORBAMinorCommonUnspecified
Message ID: CommonMessageUnspecified

Appendix G. System Exceptions and Minor Codes 259

Code (Hexadecimal): 0001
Description: Detailed exception data was placed into the Activity Log.
Minor Code: CORBAMinorActivityLog
Message ID: CommonMessageActivityLogEntry

Code (Hexadecimal): 0002 - 0006
Description: Reserved

Code (Hexadecimal): 0007
Description: Unable to load message catalog %s, message %d.
Minor Code: CORBAMinorCommonCannotLoadCatalog
Message ID: CommonMessageCannotLoadCatalog

Code (Hexadecimal): 0008
Description: Unable to find message %d in message catalog %s.
Minor Code: CORBAMinorCommonCannotFindMessage
Message ID: CommonMessageCannotFindMessage

Code (Hexadecimal): 0009
Description: Severe Error, data was placed in the Error Log.
Minor Code: CORBAMinorCommonSevereError
Message ID: CommonMessageSevereError

Code (Hexadecimal): 000A
Description: Out of memory.
Minor Code: CORBAMinorCommonOutOfMemory
Message ID: CommonMessageOutOfMemory

Code (Hexadecimal): 000B
Description: Received Operation System Exception %s.
Minor Code: CORBAMinorCommonOSException
Message ID: CommonMessageOSException

Code (Hexadecimal): 000C
Description: Operating System call %s returned %d.
Minor Code: CORBAMinorCommonOSReturnCode
Message ID: CommonMessageOSReturnCode

Code (Hexadecimal): 000D
Description: Failure occurred when creating a thread.
Minor Code: CORBAMinorCommonThreadCreateFail
Message ID: CommonMessagethreadCreateFail

Code (Hexadecimal): 000E
Description: Failure timeout occurred when waiting on a thread
Minor Code: CORBAMinorCommonThreadWaitTimeout
Message ID: CommonMessageThreadWaitTimeout

Code (Hexadecimal): 000F
Description: Failure occurred when creating a semaphore.
Minor Code: CORBAMinorCommonSemaphoreCreateFail
Message ID: CommonMessageSemaphoreCreateFail

Code (Hexadecimal): 0010
Description: Failure occurred when requesting a semaphore.

260 Problem Determination Guide

Minor Code: CORBAMinorCommonSemaphoreRequestFail
Message ID: CommonMessageSemaphoreRequestFail

Code (Hexadecimal): 0011
Description: Failure occurred when releasing a semaphore.
Minor Code: CORBAMinorCommonSemaphoreReleaseFail
Message ID: CommonMessageSemaphoreReleaseFail

Code (Hexadecimal): 0012
Description: Failure occurred on semaphore signal.
Minor Code: CORBAMinorCommonSemaphorSignalFail
Message ID: CommonMessageSemaphoreSignalFail

Code (Hexadecimal): 0013
Description: Failure timeout occurred when waiting on a semaphore.
Minor Code: CORBAMinorCommonSemaphoreWaitTimeout
Message ID: CommonMessageSemaphoreWaitTimeout

Code (Hexadecimal): 0014
Description: Failure occurred when loading executable %s.
Minor Code: CORBAMinorCommonProgramLoadFail
Message ID: CommonMessageProgramLoadFail

Code (Hexadecimal): 0015
Description: Failure occurred when loading library %s.
Minor Code: CORBAMinorCommonDLLLoadFail
Message ID: CommonMessageDLLLoadFail

Code (Hexadecimal): 0016
Description: Failure occurred when creating a heap.
Minor Code: CORBAMinorCommonHeapCreateFail
Message ID: CommonMessageHeapCreateFail

Code (Hexadecimal): 0017-0031
Description: Reserved

“Reading the Activity Log” on page 6

Appendix G. System Exceptions and Minor Codes 261

262 Problem Determination Guide

Appendix H. APPC Messages

While it is running, Component Broker may issue messages related to APPC
connections to tier-3 systems. To understand APPC messages, see the following
messages descriptions. When searching a log for APPC-related messages, search
for the string "ots_appc".

For some example APPC message scenarios, see “Example: APPC Messages in
the Activity Log” on page 81.

APPC support has been enabled in the transaction service.
Explanation: The APPC support of the Transaction Service has been loaded in the
server. This is DLL somtra1i.dll.
System Action: Server continues initializing.
User Response: This message is for information only. No action is required.

The SNA library dllName, version major.minor, for productName has been
loaded in the server.
Explanation: The SNA library used for PAA APPC support has been loaded.
System Action: Server continues initializing.
User Response: Check that this is the SNA product that the server should be
using.

Unable to locate SNA library dllName. Check that a supported SNA product
has been installed on your machine and the path variables have been set up
correctly. (For example, has the machine been rebooted since the SNA
product was installed?) It is possible to specify the full path of the DLL using
the environment variable variableName.
Explanation: The SNA library used for PAA APPC support cannot be loaded.
System Action: Server continues initializing. However, attempts to use PAA APPC
result in CORBA::NO_IMPLEMENT exceptions being raised.
User Response: Verify the set up of the machine and, once corrected, restart the
server.

Unable to locate entry point name in SNA library dllName. Check that a
supported SNA product has been installed on your machine and the path
variables have been set up correctly. (For example, has the machine been
rebooted since the SNA product was installed?) It is possible to specify the
full path of the DLL using the environment variable variableName.
Explanation: The SNA library used for PAA APPC support cannot be loaded.
System Action: Server continues initializing. However, attempts to use PAA APPC
result in CORBA::NO_IMPLEMENT exceptions being raised.
User Response: Verify the set up of the machine and, once corrected, restart the
server.

APPC has been activated in this server. However, it is not supported on this
operating system.
Explanation: PAA APPC support is not available on this operating system.
System Action: Server continues initializing. However, attempts to use PAA APPC
result in CORBA::NO_IMPLEMENT exceptions being raised.
User Response: Check later versions of Component Broker, because one of them
may support PAA APPC on this operating system, and upgrade as necessary.

The SNA library used for PAA APPC support returned ’ primaryRC/secondaryRC’
from an APPC ’ verb’ call.

© Copyright IBM Corp. 1997, 1998 263

Explanation: The current APPC request verb is unsuccessful.
’primaryRC/secondaryRC’ are the hex values of the return codes from the call.
System Action: The current APPC request is unsuccessful. This may affect any
associated transaction.
User Response: Look for other Component Broker messages in the activity log
that occur at the same time as this, as they may indicate the cause of the problem.
If no other messages exist, look up the symbolic names of the return codes in the
sdk/win32/h/winrc.h header file located in the IBM Communication Servers install
directory. Then look up the meaning of the return codes in the IBM Communication
Programming manuals.

Server serverName will send APPC requests from SNA local LU name ’ luname’
which is defined with an alias name of ’ alias’.
Explanation: This message shows the name that the server is using to register in
the SNA network. This is called the local LU name. Remote systems should be
configured to communicate with this local LU name. The alias is a nickname for the
local LU name which is known only on this machine.
System Action: The server continues.
User Response: This message is for information only. No action is required.

Unable to complete transaction tranName (SNA LUWId luwId) because partner
SNA APPC system ’ luname’ is currently unreachable. An attempt to complete
the transaction will be made later.
Explanation: This message warns that a local transaction is unable to complete
because a partner SNA APPC system is unavailable.
System Action: The server continues to retry the connection to the partner SNA
APPC system.
User Response: Attempt to restart the partner SNA APPC system.

Format error detected in SNA presentation services (PS) header received from
partner SNA APPC system ’ luname’. This partner SNA APPC system will no
longer be included in the completion of transaction tranName (SNA LUWId
luwId).
Explanation: This message reports that the local server and partner SNA APPC
system are unable to communicate correctly to commit a transaction.
System Action: The server completes the transaction locally. Updates to data
made in the partner SNA APPC system may be left locked and will have to be freed
manually.
User Response: Turn on traces of SNA link and local server and retry the request.
Contact IBM support.

Format error detected in SNA presentation services (PS) header sent to
partner SNA APPC system ’ luname’. This partner SNA APPC system will no
longer be included in the completion of transaction tranName (SNA LUWId
luwId).
Explanation: This message reports that the local server and partner SNA APPC
system are unable to communicate correctly to commit a transaction.
System Action: The server completes the transaction locally. Updates to data
made in the partner SNA APPC system may be left locked and will have to be freed
manually.
User Response: Turn on traces of SNA link and local server and retry the request.
Contact IBM support.

Heuristic decision made locally for transaction tranName (SNA LUWId luwId)
will be passed to partner SNA APPC system luname and affect updates made
by remote transaction program tpn on conversation correlator.

264 Problem Determination Guide

Explanation: This message reports part of the impact of a locally made heuristic
decision.
System Action: The server completes the transaction locally and in the partner
SNA APPC system.
User Response: Check for heuristic exceptions raised in other local servers
involved in the transaction. Follow local procedures to correct data where these
exceptions occur.

Partner SNA APPC system ’ luname’ made a heuristic decision to commit the
updates made by transaction program ’ tpn’ for transaction tranName (SNA
LUWId luwId). This decision was inconsistent with local transaction and
heuristic damage has occurred.
Explanation: This message reports the occurrence of heuristic damage caused by
action taken in a partner SNA APPC system.
System Action: The server completes the transaction locally.
User Response: Follow local procedures to correct data as appropriate in the local
servers and in the partner SNA APPC system.

Partner SNA APPC system ’ luname’ made a heuristic decision to rollback the
updates made by transaction program ’ tpn’ for transaction tranName (SNA
LUWId luwId). This decision was inconsistent with local transaction and
heuristic damage has occurred.
Explanation: This message reports the occurrence of heuristic damage caused by
action taken in a partner SNA APPC system.
System Action: The server completes the transaction locally.
User Response: Follow local procedures to correct data as appropriate in the local
servers and in the partner SNA APPC system.

Partner SNA APPC system ’ luname’ has reported that updates made by
transaction program ’ tpn’ for transaction tranName (SNA LUWId luwId) have
been partially committed and partially rolled back. Heuristic damage has
occurred in the partner SNA APPC system.
Explanation: This message reports the occurrence of heuristic damage caused by
action taken in a partner SNA APPC system.
System Action: The server completes the transaction locally.
User Response: Follow local procedures to correct data as appropriate in the local
servers and in the partner SNA APPC system.

Data updated by remote transaction program tpn in SNA partner SNA APPC
system luname under transaction tranName (SNA LUWId luwId) is locked,
waiting for an upstream server to end the transaction.
Explanation: This message reports that a transaction in the local server is waiting
for another server to send it the outcome of the transaction. This is taking longer
than expected.
System Action: The server waits to complete the transaction.
User Response: Restart any servers that have been involved in the transaction
and are currently unavailable.

SNA APPC communication between local server name (local LU name luname)
and partner SNA APPC system luname has failed. This may be due to either
the partner SNA APPC system or part of the network shutting down.
Explanation: This message reports that either part of the SNA network, or a
partner SNA APPC system is unavailable.
System Action: The server may wait to complete the transaction or may roll back

Appendix H. APPC Messages 265

the transaction.
User Response: Restart the SNA network or partner SNA APPC system as
required.

Transaction tranName (SNA LUWId luwId) will rollback because of a
communication failure between the local server (local LU name luname) and a
partner SNA system luname.
Explanation: This message reports the reason why a transaction has rolled back.
System Action: The server may wait to complete the transaction or may roll back
the transaction immediately.
User Response: Restart the SNA network or partner SNA APPC system as
required.

Partner SNA APPC system luname has rejected the request to start
transaction program tpn with a sense code of code.
Explanation: The server has made an APPC request to a partner SNA APPC
system which has been rejected. The reason for this is specified in the SNA
architected sense code which appears in the message. This sense code was sent
by the partner system in a Function Management Header (FMH) type 7.
System Action: The server continues. Further messages are logged that describe
the consequences of the sense code.
User Response: Look for other messages that relate to this error and follow the
instructions for them. Alternatively, look up the sense code in the SNA architecture
to discover the cause of the failure.

Unable to automatically define local LU name ’ luname’ with an alias of ’ alias’
in the SNA configuration. The most likely cause is that the alias is already
associated with another LU name.
Explanation: The SNA product is unable to add the configuration for the specified
local LU name.
System Action: The server continues. However, subsequent APPC requests that
use the local LU name will probably fail.
User Response: Start up the SNA Node configuration tool and define a local LU
name profile with a different alias. Activate this configuration and then rerun the
request.

Unable to automatically define partner LU name ’ luname’ with an alias of ’ alias’
in the SNA configuration. The most likely cause is that the alias is already
associated with another LU name.
Explanation: The SNA product is unable to add the configuration for the specified
partner LU name. The most likely cause is that the alias is already associated with
another LU name.
System Action: The server continues. However, subsequent APPC requests that
use the partner LU name will probably fail.
User Response: Start up the SNA Node configuration tool and define a partner LU
name profile with a different alias. Activate this configuration and then rerun the
request.

Unable to define mode name ’ mode Name’ in the SNA configuration.
Explanation: The SNA product is unable to add the configuration for the specified
mode name.
System Action: The server continues. However, subsequent APPC requests that
use the mode name will probably fail.
User Response: Start up the SNA Node configuration tool and define a mode
profile for this mode name. Activate this configuration and then rerun the request.

266 Problem Determination Guide

Starting the SNA attach manager.
Explanation: The attach manager feature of the SNA product has been started.
This is needed by the server to receive inbound requests.
System Action: The server continues.
User Response: This message is for information only. No action is required.

Unexpected error number from the SNA attach manager call name.
Explanation: This message reports a bad return code from a SNA call.
System Action: The system continues. Further messages may be logged
describing the consequences of the failure.
User Response: Look for other messages and follow the instructions for them.

The SNA product name is running.
Explanation: The SNA product used to send APPC requests to partner SNA
systems is available.
System Action: The server continues.
User Response: This message is for information only. No action is required.

The SNA product name has stopped.
Explanation: The SNA product used to send APPC requests to partner SNA
systems is currently unavailable. APPC requests will fail until it is restarted.
System Action: The server continues.
User Response: Restart the SNA product.

Unexpected error number from the SNA call name.
Explanation: This message reports a bad return code from a SNA call.
System Action: The system continues. Further messages may be logged
describing the consequences of the failure.
User Response: Look for other messages and follow the instructions for them.

A request has been received from partner SNA APPC system ’ luname’ to run
SNA transaction program ’ tpn’. This transaction program is not available on
the local server name (local LU name ’ luname’) and so the request has been
rejected.
Explanation: This message reports an unsuccessful inbound request.
System Action: The server continues. The request is rejected.
User Response: Check the configuration in the partner SNA APPC system as it is
probably set up to send the request to the wrong LU name.

Partner SNA APPC system ’ luname’ is unable to process the 0x06F2 request
required to negotiate transactions support. This may be a transient problem.
Until it is resolved, transactions are unavailable between the partner SNA
APPC system and local LU name ’ luname’.
Explanation: This message indicates that the exchange log names (XLN) program
(also known as CLS2 on CICS systems) is currently unavailable on the partner SNA
APPC system. Transactions that involve the partner SNA APPC system will be
unsuccessful until the XLN program is run successfully.
System Action: Component Broker is unable to commit transactions that involve
communication with the partner SNA APPC system LUname until the 0x06F2
request is successful. The Component Broker server keeps retrying.
User Response: 1) Verify that the partner SNA APPC system supports sync level
2, and is correctly configured and running for sync level 2; 2) Verify that the SNA
network is up; and 3) verify that the LU names that appear in the message are
correct. If they are not correct, then you need to update the attributes of the
Connection by using the System Manager user interface.

Appendix H. APPC Messages 267

Connection ’ name’ contains unsupported values. Use the systems
management EUI to correct them.
Explanation: This message indicates errors in systems management configuration.
System Action: Requests that use the connection will fail.
User Response: Look for other messages that indicate which values are invalid
and correct them before re-running the request.

Unable to communicate over connection ’ name’ because the local user is not
authorized to use transaction program ’ tpn’ on partner SNA APPC system
’luname’.
Explanation: An APPC request has been rejected by the partner SNA APPC
system because the security information (userid and password) sent with the
request is insufficient to be granted access.
System Action: The PAA APPC request fails. This does not affect the active
transaction.
User Response: Change the security configuration either locally or in the partner
SNA APPC system to allow the request to run.

Unable to connect to partner SNA APPC system ’ luname’ defined in
connection ’ name’ using local LU name ’ luname’ and mode name ’ modeName’.
Explanation: This message indicates a problem with the SNA configuration, the
availability of the partner SNA APPC system, or the availability of part of the SNA
network.
System Action: The PAA APPC request fails. This does not affect the transaction.
User Response: Ensure that the partner SNA APPC system, and the network to
connect to it, are correctly configured and available, then retry the request.

There has been a communications failure between partner SNA APPC system
’luname’ defined in connection ’ name’ and local LU name ’ luname’.
Explanation: This message reports that either part of the SNA network, or a
partner SNA APPC system is unavailable.
System Action: The server may wait to complete the transaction or may roll back
the transaction.
User Response: Restart the SNA network or partner SNA APPC system as
required.

Transactions are available between server name (local LU name ’ luname’) and
partner SNA APPC system ’ luname’.
Explanation: This message indicates that the local server has successfully
negotiated transactions support with the partner SNA APPC system.
System Action: The server continues.
User Response: This message is for information only. No action is required.

Transactions are not available between local server name(local LU name
luname) and partner SNA APPC system ’ luname’ because the partner SNA
APPC system still has outstanding transactions to complete and the local
server no longer has the same transaction log as it was using before.
Explanation: This message indicates that the local server is unable to negotiate
transaction support with the partner SNA APPC system.
System Action: The server continues. PAA APPC requests to the partner SNA
APPC system will fail.
User Response: Take appropriate actions in the partner SNA APPC system to
complete the transaction.

Transactions are not available between local server name (local LU name
luname) and partner SNA APPC system ’ luname’ because the local server still

268 Problem Determination Guide

has outstanding transactions to complete and the partner SNA APPC system
no longer has the same transaction log as it was using before.
Explanation: This message indicates that the local server is unable to negotiate
transaction support with the partner SNA APPC system.
System Action: The server continues. PAA APPC requests to the partner SNA
APPC system will fail.
User Response: Shut down the local server. Change the server attributes to
restrict the number of retries made by the Transaction Service and set the heuristic
direction to the outcome required for the transactions. Then restart the server and
wait for the transactions to complete.

A 0x06F2 request to negotiate transactions support has been received from
partner SNA APPC system ’ luname’ which contains unexpected data or
conversation attributes. Transactions are consequently unavailable between
the partner SNA APPC system and local LU name ’ luname’.
Explanation: This message indicates that part of a transaction that experienced a
failure cannot be completed.
System Action: The server continues. The transaction remains incomplete.
User Response: Turn on traces of SNA link and local server and retry the request.
Contact IBM support.

Completed resynchronization of transaction name (SNA LUWId luwId) for
conversation ’ correlator’. The partner SNA APPC system ’ luname’ was in ’ name’
state and the local server (local LU name ’ luname’) was in ’ name’. The
outcome of the transaction was commit.
Explanation: This message indicates that part of a transaction that experienced a
failure has been successfully completed.
System Action: The server continues.
User Response: This message is for information only. No action is required.

Completed resynchronization of transaction name (SNA LUWId luwId) for
conversation ’ correlator’. The partner SNA APPC system ’ luname’ was in ’ name’
state and the local server (local LU name ’ luname’) was in ’ name’. The
outcome of the transaction was rollback.
Explanation: This message indicates that part of a transaction that experienced a
failure has been successfully completed.
System Action: The server continues.
User Response: This message is for information only. No action is required.

Unable to complete resynchronization of transaction name (SNA LUWId luwId)
for conversation ’ correlator’ because the partner SNA APPC system ’ luname’
was in ’ name’ state and the local server (local LU name ’ luname’) was in
’name’. These states are inconsistent.
Explanation: This message indicates that part of a transaction that experienced a
failure can not be completed.
System Action: The server continues. The transaction remains incomplete.
User Response: Follow procedures for the local and partner system to manually
complete the transaction.

Local logical unit (LU) ’ luname’ is already in use by another server. APPC
Connections that specify this local LU name will be unavailable in this server.
Explanation: This message indicates that two servers are sharing the same local
LU name. This is not supported and while this situation exists the Component
Broker Transaction Service cannot guarantee recovery between those servers that
use this local LU name and tier-3 systems.

Appendix H. APPC Messages 269

System Action: Requests involving APPC connections that specify this local LU
name will be unsuccessful.
User Response:

1. Locate all servers using this local LU name and shut them down.

2. Restart each one in turn and check that the transaction service successfully
initializes before shutting it down again.

3. Delete the transaction service log files for each of these servers.

4. Correct the System Management configuration so that each server uses
different APPC Connections which also specify different local LU names.

5. Activate this new configuration and restart the servers.

Logical Unit (LU) name ’ luname’ either contains characters other than A-Z, 0-9,
@, $, #, or it begins with a number. This is not allowed by the SNA
architecture.
Explanation: Part of the configuration of an APPC Connection is invalid.
System Action: The APPC Connection is unusable.
User Response: Correct the value in the System Management configuration,
reactivate this configuration and restart the server.

Mode name ’ modename’ either contains characters other than A-Z, 0-9, @, $,
#, or it begins with a number. This is not allowed by the SNA architecture.
Explanation: Part of the configuration of an APPC Connection is invalid.
System Action: Any APPC Connection specifying this value is unusable.
User Response: Correct the value in the System Management configuration,
reactivate this configuration and restart the server.

Mode name ’ modename’ is reserved for SNA service requests and should not
be used by PAA APPC applications, because this can cause deadlocks in the
SNA network.
Explanation: Part of the configuration of an APPC Connection is invalid.
System Action: None.
User Response: Change the value of the mode name in the APPC Connection in
the System Management configuration. Reactivate this configuration and restart the
server.

Local LU name ’ luname’ is defined in IBM Communication Server with the
syncpoint support disabled. Please delete this local LU name from the
Communication Server configuration and recycle (stop then start) the SNA
node using the Communication Server Node Operations application.
Component Broker will then define the local LU to Communication Server
with the correct settings when the local LU name is next referenced by the
server.
Explanation: Part of the configuration of an APPC Connection is invalid.
System Action: Any APPC Connection specifying this value is unusable.
User Response: Remove the local LU name from the Communication Server
configuration and restart the SNA Node.

Component Broker is unable to use the local CP name as a local LU name
because it cannot enable syncpoint support on the CP name. Please change
the local LU name ’ luname’ in the Component Broker APPC Connection
definition so that it is different from the CP name configured in IBM
Communication Server.
Explanation: Part of the configuration of an APPC Connection is invalid.
System Action: Any APPC Connection specifying this value is unusable.

270 Problem Determination Guide

User Response: Change all APPC connections that specify this value of the local
LU name so that they are using a different local LU name. Reactivate this
configuration and restart the server.

A request to allocate a session between local LU name luname and partner LU
name luname using mode name ’ modename’ has timed out after x seconds.
This suggests that either there are insufficient sessions defined for the mode
group or there is a problem in the partner SNA APPC system which is
preventing the other PAA APPC requests from completing.
Explanation: The SNA network is unable to process the current request due to
limited resources.
System Action: The PAA APPC request fails which may cause the current
transaction to rollback.
User Response: Check the state of the partner SNA APPC System and, if
necessary, increase the number of sessions available on the mode group.

A request to receive data from the partner SNA APPC system has timed out
after x seconds. This suggests there is a problem in the partner SNA APPC
system that is preventing this PAA APPC request from completing.
Explanation: The SNA network is unable to process the current request due to
limited resources.
System Action: The PAA APPC request fails which may cause the current
transaction to rollback.
User Response: Check the state of the partner SNA APPC System and, if
necessary, increase the number of sessions available on the mode group.

The APPC Connection between local LU luname and partner LU luname was
recovered from the Transaction Service log.
Explanation: Information about a partner SNA APPC system which was connected
to by this server on a previous occasion has been restored from the Transaction
Service log.
System Action: Server continues initializing.
User Response: This message is for information only. No action is required.

The APPC Connection between local LU luname and partner LU luname has
been deleted from the Transaction Service log.
Explanation: Information about a partner SNA APPC system which was connected
to by this server on a previous occasion has been marked to be deleted from the
Transaction Service log. The delete will actually happen during the next keypoint of
the Transaction Service partner log.
System Action: Server continues.
User Response: This message is for information only. No action is required.

Unable to recover outstanding transactions as the name component has not
been enabled in this server.
Explanation: A Component Broker feature which was enabled during a previous
run of the server has now been disabled. However this feature is needed to
initialize the transaction service.
System Action: Server continues to initialize. However new transactions can not be
started.
User Response: Shut down the server, enable the missing feature and restart the
server.

Creating a new transaction service log logfilename for server serverName as
the log used the last time the server was started is missing. This may cause
data integrity problems if there were outstanding transactions when the

Appendix H. APPC Messages 271

server terminated.
Explanation: The transaction service is creating the files necessary to record
details of any new transactions created or used in this server.
System Action: The transaction service continues with initialization.
User Response: Verify why the transaction log files are missing. If the log directory
name has been changed and the log files have not been copied to the new
directory, stop the server before new transactions are started, copy the log files to
the new directory and restart the server. Use the activity log messages produced as
the server starts to check that the log files have been opened successfully.

The transaction service in server serverName is terminating.
Explanation: The transaction service is ending in the server. This normally happens
at server shutdown. However, if this message appears before the server is shutting
down then an application has called CORBA::release() too often on the
CosTransactions::Current object. In the latter case this message will probably be
followed by a handleSignal() exception on the next request that uses transactions.
System Action: The transaction service shuts down and becomes unusable.
User Response: If the server is not shutting down when this message appears
check all uses of the CosTransactions::Current object by your applications and
correct the errors.

Transaction name has rolled back.
Explanation: An application requested a commit() operation for the transaction.
However, the transaction service has rolled back the transaction due to an error
detected by one of the components involved in the transaction.
System Action: The transaction service has already rolled back the transaction.
User Response: Check the activity log for other messages concerning this
transaction.

The current transaction is name.
Explanation: This message displays the transaction name. It is used to provide
additional information when an error occurs and the application is using a
transaction.
System Action: The server continues.
User Response: Check the activity log for other messages that occur on the same
thread.

The current transaction name is in state state.
Explanation: This message displays the transaction name and state. It is used to
provide additional information when an error occurs and the application is using a
transaction.
System Action: The server continues.
User Response: Check the activity log for other messages that occur on the same
thread.

Transaction service log contains information about transaction name which
was in transactionState state when the server terminated.
Explanation: The server is starting up which involves reading the transaction
service log to recover transactions that did not complete before the server shut
down last time. Transaction name is one of these transactions. The transactionState
value indicates which stage of processing had been reached and whether the
transaction should be committed or rolled back by the transaction service.
System Action: The transaction service continues recovery.
User Response: None, this message is for information only.

272 Problem Determination Guide

Recovered transaction name (SNA LUWId luwId) involved a connection to
partner SNA APPC system ’ partnerLUname’.
Explanation: The server is starting up which involves reading the transaction
service log to recover transactions that did not complete before the server shut
down last time. Transaction name is one of these transactions. Some of the work
for transaction name occurred on the partnerLUname SNA system and this system
may need to be contacted in order to complete the transaction.
System Action: The transaction service continues recovery.
User Response: Ensure SNA connectivity between the local server and the partner
SNA APPC system.

The resynchronization transaction program (0x06F2) is not recognized by
partner SNA APPC system ’ luName’. This may be caused by a configuration
problem in the partner SNA APPC system. Alternatively, the partner SNA
APPC system is not able to support distributed transactions (syncpoints)
using synclevel 2 over SNA.
Explanation: When Component Broker contacts a partner SNA APPC system, it
requests the partner’s resynchronization transaction program called 0x06F2 (or
CLS2 in a CICS system) is run to compare recovery information in each system’s
transaction service log. This process is not currently possible because partner
luName does not recognize the 0x06F2 transaction. This usually means partner
SNA APPC system has not been (or can not be) configured to support distributed
transactions (syncpoints) using synclevel 2 over SNA.
System Action: PAA APPC requests to partner SNA APPC system luName will be
unsuccessful until this problem is resolved.
User Response: Use the documentation supplied with the partner SNA APPC
system to change its configuration to support distributed transactions over SNA.
(The partner’s documentation may refer to this as syncpoint support or synclevel 2
or synclevel syncpoint support.)

The resynchronization transaction program (0x06F2) for partner SNA APPC
system ’ luName’ is currently unavailable. This may be caused by a
configuration problem in the partner SNA APPC system. Alternatively, a
process which controls SNA transactions on behalf of the partner SNA APPC
system (such as an Encina PPC Gateway) is not running.
Explanation: When Component Broker contacts a partner SNA APPC system, it
requests the partner’s resynchronization transaction program called 0x06F2 (or
CLS2 in a CICS system) is run to compare recovery information in each system’s
transaction service log. This process is not currently possible because the partner
luName’s 0x06F2 transaction is unavailable.
System Action: PAA APPC requests to partner SNA APPC system luName will be
unsuccessful until this problem is resolved.
User Response: Use the documentation supplied with the partner SNA APPC
system to enable the 0x06F2 transaction program.

The transaction program ’ tpn’ in partner SNA APPC system ’ luName’ is
currently unavailable. This may be caused by a configuration problem in the
partner SNA APPC system. Alternatively, a process which controls SNA
transactions on behalf of the partner SNA APPC system (such as an Encina
PPC Gateway) is not running.
Explanation: A PAA APPC request for transaction program tpn was unsuccessful
because the partner SNA APPC system does not recognize the transaction program
name tpn which means it can not identify which program to run.
System Action: PAA APPC requests for transaction program tpn to partner SNA
APPC system luName will be unsuccessful until this problem is resolved.
User Response: Use the documentation supplied with the partner SNA APPC

Appendix H. APPC Messages 273

system to enable the tpn transaction program, or update the transaction program
name specified in the Component Broker APPC Connection.

The APPC support is unable to send another request to the partner SNA
APPC system ’ luName’ for the current transaction name (SNA LUWId luwId)
because there is response data from the previous request that has not yet
been processed. This is usually due to an incomplete output buffer defined in
the PAA APPC Transaction Object (TO) navigation. This problem may result in
the transaction rolling back.
Explanation: A PAA APPC request for transaction program tpn was unsuccessful,
because the data send by the transaction program as a response to the previous
request has not been processed. This is usually due to an incomplete output buffer
defined in the PAA APPC Transaction Object (TO) navigation. This problem may
result in the transaction rolling back.
System Action: The PAA APPC request is unsuccessful.
User Response: Correct the implementation of the Transaction Object (TO) and
rerun the request.

The APPC support is unable to send another request to the partner SNA
APPC system ’ luName’ because there is response data from the previous
request that has not yet been processed.
Explanation: A PAA APPC request for transaction program tpn was unsuccessful,
because the data send by the transaction program as a response to the previous
request has not been processed. This is usually due to an incomplete output buffer
defined in the PAA APPC Transaction Object (TO) navigation. This problem may
result in the transaction rolling back.
System Action: The PAA APPC request is unsuccessful.
User Response: Correct the implementation of the Transaction Object (TO) and
rerun the request.

Transaction program tpn in partner SNA APPC system ’ luName’ has rolled
back transaction name (SNA LUWId luwId).
Explanation: The work carried out on partner SNA APPC system luName for
transaction program tpn has been rolled back. This will result in all of the work on
all servers for transaction name being rolled back.
System Action: The transaction is rolled back.
User Response: Check diagnostic messages on the partner SNA APPC system to
determine why the transaction rolled back in that system. Take any corrective action
on that system, if required.

Transaction program tpn or partner SNA APPC system ’ luName’ has
abnormally terminated the conversation to the local server serverName (local
LU name luName).
Explanation: The conversation between the local server and partner SNA APPC
system luName has been shut down abnormally by actions in the partner system.
This may be due to the transaction program explicitly terminating the conversation
because it detected an error, or the partner SNA APPC system may have ended the
conversation because of a time out, or because transaction program tpn terminated
before ending the conversation. If the conversation was started at synclevel 2 then
this will cause the transaction to rollback.
System Action: The conversation is cleaned up locally. The transaction may
rollback later.
User Response: Check diagnostic messages on the partner SNA APPC system to
determine why the conversation was abnormally terminated. Take any corrective
action, if required.

274 Problem Determination Guide

The APPC support is unable to start an APPC conversation between local
server serverName (local LU name luName) and partner SNA APPC system
’luName’. This may be caused by a configuration error. Alternatively, part of
the SNA network or the partner SNA APPC system may not be running.
Explanation: This message means that Component Broker is unable to
communicate with the partner SNA APPC system. This may be because of a
configuration error (such as a misspelt LU name or mode name). Alternatively, part
of the SNA network, or the partner SNA system itself may not be running.
System Action: The PAA APPC request is unsuccessful.
User Response: Check the SNA configuration and network and correct the
problem. This is best approached by checking the values used in the Component
Broker APPC connection and IBM Communication Server. If these values are
correct, check that they have been activated in the IBM Communication Server
Node Operations Application. Then check that the partner SNA APPC system is
running and is configured to accept requests from the local LU name. Finally, work
out the path (machines and systems) through the SNA network that should be used
to connect to the partner SNA APPC system. Make sure they are activated
correctly. Look for error messages generated in these machines and systems.

The APPC support is unable to send an APPC request between local server
serverName (local LU name luName) and partner SNA APPC system ’ luName’
because the SNA sessions are not bound at synclevel 2. This could be
because the local LU name has been defined explicitly to IBM Communication
Server (in which case, delete the Local LU definition and restart the SNA
node). Alternatively, the partner SNA APPC system has not been set up to
support distributed transactions (syncpoints) over SNA.
Explanation: This message means that Component Broker is unable to send
transactional requests to the partner SNA APPC system because of a configuration
error. Either the local LU name is defined in the IBM Communication Server
configuration which has the effect of disabling the support for syncpoints or the
partner SNA system is not set up to support syncpoints.
System Action: The PAA APPC request is unsuccessful.
User Response: Check the SNA configuration using IBM Communication Server’s
Node Configuration Application. If the local LU name is in the configuration then
delete it and restart the SNA node. If the local LU name is not defined to IBM
Communication Server then correct the configuration in the partner SNA APPC
system.

The APPC support is unable to send an APPC request between local server
serverName (local LU name luName) and partner SNA APPC system ’ luName’
because the local SNA node is not running. Use the IBM Communication
Server Node Operations application to start the SNA node.
Explanation: This message means that Component Broker is unable to send APPC
requests to the partner SNA APPC system because IBM Communication Server is
not running.
System Action: The PAA APPC request is unsuccessful.
User Response: Use IBM Communication Server’s Node Operations Application to
start the SNA node. Then rerun the PAA APPC request.

Transaction program ’ tpn’ in partner SNA APPC system ’ luName’ has rejected
a PAA APPC request because it is expecting the conversation type to be
BASIC and the local APPC support uses MAPPED conversations.
Explanation: This message means there is an incompatibility between the APPC
conversations used by Component Broker and those used by the partner SNA
APPC system. Component Broker uses MAPPED conversations, however, the
partner SNA APPC system is expecting a BASIC conversation. This may only be

Appendix H. APPC Messages 275

due to a configuration error in the transaction program definition for tpn in the
partner APPC system. Alternatively, transaction program tpn may need to be
enhanced to accept mapped conversations.
System Action: The PAA APPC request is unsuccessful.
User Response: Correct the configuration or code for transaction program tpn and
rerun the PAA APPC request.

Partner SNA APPC system ’ luName’ has rejected a PAA APPC request
because an exchange log names (XLN) conversation is required. The APPC
support will attempt an exchange log names. When this is successful, retry
the request.
Explanation: This message means that a PAA APPC request was unsuccessful
because it was sent in the small time window between Component Broker checking
the status of the network, the network failing and being restarted and an exchange
log names request used to validate the reconnection of the two systems. This
condition should happen very rarely and only in the cases where the partner SNA
APPC system or SNA network is restarted automatically.
System Action: The PAA APPC request is unsuccessful. Component Broker runs
an exchange log names conversation with the partner SNA APPC system so that
subsequent PAA APPC requests succeed.
User Response: Check for the message that indicates the exchange log names is
successful and then retry the PAA APPC request.

The APPC support is unable to send an APPC request between local server
serverName (local LU name luName) and partner SNA APPC system ’ luName’
using mode name ’ <modename>’ because either the mode name or the
partner LU name is not defined to IBM Communication Server or the partner
SNA APPC system does not recognize the mode name.
Explanation: This message means that a PAA APPC request was unsuccessful
because the partner SNA APPC system can not be connected using the partner LU
name and mode name supplied. This may be due to incorrect values being
specified in the Component Broker APPC Connection or the operator may have
deleted some of the configuration from IBM Communication Server Node
Operations. Alternatively, the partner SNA APPC system may not be running, or it
may be incorrectly configured.
System Action: The PAA APPC request is unsuccessful.
User Response: Check the SNA configuration and network and correct the
problem. This is best approached by checking the values used in the Component
Broker APPC connection and IBM Communication Server. If these values are
correct, check that they have been activated in the IBM Communication Server
Node Operations Application. Then check that the partner SNA APPC system is
running and is configured to accept requests from the local LU name. Finally, work
out the path (machines and systems) through the SNA network that should be used
to connect to the partner SNA APPC system. Make sure they are activated
correctly. Look for error messages in these systems.

The APPC support is unable to process the following SNA buffer because it
contains an unexpected value in byte position index. The buffer is x bytes
long.
Explanation: This message means that Component Broker is unable to interpret
some data received from the SNA network. Other messages will indicate the
resource affected.
System Action: The PAA APPC request is unsuccessful.
User Response: Turn on Component Broker Transactions trace and IBM
Communication Server’s I-Frames trace and rerun the request. Save the activity log
and these traces and contact your support center.

276 Problem Determination Guide

The APPC support is unable to process the following SNA buffer because it
does not contain all of the data expected. The buffer is x bytes long.
Explanation: This message means that Component Broker is unable to interpret
some data received from the SNA network. Other messages will indicate the
resource affected.
System Action: The PAA APPC request is unsuccessful.
User Response: Turn on Component Broker Transactions trace and IBM
Communication Server’s I-Frames trace and rerun the request. Save the activity log
and these traces and contact your support center.

The APPC support is unable to process the following SNA buffer because it
contains unexpected values.
Explanation: This message means that Component Broker is unable to interpret
some data received from the SNA network. Other messages will indicate the
resource affected.
System Action: The PAA APPC request is unsuccessful.
User Response: Turn on Component Broker Transactions trace and IBM
Communication Server’s I-Frames trace and rerun the request. Save the activity log
and these traces and contact your support center.

The APPC support has received a request to commit a transaction from
transaction program ’ tpn’ in partner SNA APPC system ’LUName’. This is not
supported and will result in transaction name (SNA LUWId luwId) being rolled
back.
Explanation: This message means that a PAA APPC request was unsuccessful
because the transaction program tpn attempted to initiate the commit (SYNCPOINT)
of transaction name rather than waiting until the Component Broker application
requested that the transaction committed. This is not supported and is a
programming error in transaction program tpn.
System Action: The transaction is rolled back.
User Response: Correct transaction program tpn so that it does not initiate commit
processing.

Transaction program ’ tpn’ in partner SNA APPC ’ luName’ issued the verbName
APPC verb (issued as cpicVerbName on the CPI-C programming interface or
cicsCallName on the CICS programming interface). This is not supported and
the APPC conversation has been abnormally terminated."
Explanation: This message means that a PAA APPC request was unsuccessful
because the transaction program tpn used an APPC verb that is not supported by
Component Broker.
System Action: The conversation is abnormally terminated by Component Broker.
User Response: Correct transaction program tpn so that it does not use
unsupported APPC verbs.

The transaction service log in server serverName has created a new extent file
extentFileName
Explanation: The given extent file has been created by the transaction service log.
System Action: The server continues.
User Response: No action required, this message is for information only

Transaction program ’ tpn’ in partner SNA APPC ’ luName’ has sent more than
the x bytes of data requested by the local application. This is not supported
and the APPC conversation has been abnormally terminated."
Explanation: This message means that a PAA APPC request was unsuccessful
because the transaction program tpn send more data than Component Broker is
expecting.

Appendix H. APPC Messages 277

System Action: The conversation is abnormally terminated by Component $
Broker.
User Response: Correct the navigation code that calls transaction program tpn so
that it requests the correct length of data.

278 Problem Determination Guide

Appendix I. Security Messages

While it is running, Component Broker may issue messages related to security. The
security service records the following messages in the error, activity, or trace logs.

Many of these messages indicate an internal problem with the security service or
the Component Broker run time. If you encounter any errors like that, report the
problem to IBM.

However, for those messages that may be relevant to you or your programmers,
descriptions are given following the table listing the messages. To understand those
messages, see the message descriptions.

Number Message

10114 Method method_name of class ′%2$s’ failed. (page 283)

10115 DCE call ′%1$s’ failed. (page 283)

10237 DCE Login is required for this application...

10238 Enter Principal Name:

10239 Enter Realm (Cell) Name:

10240 Enter Password:

10241 Enter Realm (Cell) Name: "

10242 < Default Realm (Cell) Name: %s >

10243 SECURITY ERROR: DCE/GSS apis: %1$s reported an error code
(%2$d) which indicates %3$s. (page 283)

10244 SECURITY ERROR: _narrow() failed on %1$s object. (page 283)

10245 SECURITY ERROR: _create() failed on %1$s object. (page 283)

10246 SECURITY ERROR: Failed to get an ORB Current object. (page 283)

10247 SECURITY ERROR: Failed to get an ORB object. (page 283)

10248 SECURITY ERROR: Failed to get imagename. (page 283)

10249 SECURITY ERROR: Failed to construct imagepath.

10250 SECURITY ERROR: Failed to open cursor on CDS for target %1$s.

10251 SECURITY ERROR: Failed to get hostname from CDS for target %1$s.

10252 SECURITY ERROR: Failed to get keytab file from CDS for target %1$s.

10253 SECURITY ERROR: Failed to get principal name from CDS for target
%1$s.

10254 SECURITY ERROR: Failed to get QOP from CDS for target %1$s.

10255 SECURITY ERROR: Undefined hostname from CDS.

10256 SECURITY ERROR: Undefined keytab file from CDS.

10257 SECURITY ERROR: Undefined principal name from CDS.

10258 SECURITY ERROR: Undefined QOP from CDS.

10259 SECURITY ERROR: Undefined principal/password for data system from
CDS. (page 284)

10260 SECURITY ERROR: Unsupported QOP: %d. (page 284)

10261 SECURITY ERROR: Unsupported Security Association Option: %d.

10262 SECURITY ERROR: Invalid Message Type. (page 284)

© Copyright IBM Corp. 1997, 1998 279

Number Message

10263 SECURITY ERROR: Session entry that was created previously is not
found.

10264 SECURITY ERROR: NULL value of session entry encountered.

10265 SECURITY ERROR: Security Tagged Component has no corresponding
entry from the session table.

10266 SECURITY ERROR: Target Server’s uuid is not found. (page 284)

10267 SECURITY ERROR: Failure during the invocation of non_existent().
(page 284)

10268 SECURITY ERROR: Found Security Tagged Component that contains
no Tagged Component data.

10269 SECURITY ERROR: No Security Service Context found in the Request
object.

10270 SECURITY ERROR: No or Insufficient Security Service Context
received.

10271 SECURITY ERROR: Expected GIOP::Request message type but
GIOP::Reply message type is received instead.

10272 SECURITY ERROR: No Security Context is received.

10273 SECURITY ERROR: Failed to verify the signature of security context
when reclaiming message. (page 284)

10274 SECURITY ERROR: Vault::init_security_context failed to create security
context.

10275 SECURITY ERROR: Mutual authentication handshake failure. (page
284)

10276 SECURITY ERROR: No principal is received.

10277 SECURITY ERROR: No token is returned from
Vault::accept_security_context. (page 285)

10278 SECURITY ERROR: Default credential is not set properly.

10279 SECURITY ERROR: Cannot open catalog: %1$s.

10280 SECURITY ERROR: Cannot close catalog: %1$s.

10281 SECURITY ERROR: Cannot allocate memory from the heap for %1$s.
(page 285)

10282 SECURITY ERROR: Unexpected internal error in Security.

10283 SECURITY ERROR: Undefined principal/hostname in Credentials object
for target %1$s.

10284 SECURITY ERROR: Credentials object with principal %1$s does not
represent target %2$s.

10285 SECURITY ERROR: Security is not enabled for target %1$s.

10286 SECURITY ERROR: Authentication is not enabled for target %1$s.

10287 SECURITY ERROR: Failed to insert a session entry.

10288 SECURITY WARNING: DCE configuration file \"dce_cf.db\" not found.

10289 SECURITY WARNING: Principal’s DCE credential is going to expire.
Attempt to renew.

10290 SECURITY WARNING: Server’s DCE credential is going to expire.
Attempt to renew.

10291 SECURITY WARNING: No established DCE login context available
during authentication.

280 Problem Determination Guide

Number Message

10292 SECURITY WARNING: Unable to certify the authenticity of principal
%1$s.

10293 SECURITY WARNING: Invalid login context from DCE for principal
%1$s. (page 285)

10294 SECURITY WARNING: Failed to get imagename.

10295 SECURITY WARNING: Failed to construct imagepath.

10296 SECURITY WARNING: Failed to open cursor on CDS for target %1$s.

10297 SECURITY WARNING: Failed to get hostname from CDS for target
%1$s.

10298 SECURITY WARNING: Failed to get keytab file from CDS for target
%1$s.

10299 SECURITY WARNING: Failed to get principal name from CDS for target
%1$s.

10300 SECURITY WARNING: Failed to get QOP from CDS for target %1$s.

10301 SECURITY WARNING: Failed to get Login Source from CDS for target
%1$s.

10302 SECURITY WARNING: Undefined hostname from CDS. (page 285)

10303 SECURITY WARNING: Undefined keytab file from CDS.

10304 SECURITY WARNING: Undefined principal name from CDS. (page 286)

10305 SECURITY WARNING: Undefined QOP from CDS. (page 286)

10306 SECURITY WARNING: Default credential is not set properly.

10307 SECURITY WARNING: Unknown server name. No Tagged component
is created.

10308 SECURITY WARNING: <EstablishTrustInClient> is not set.

10309 SECURITY WARNING: Principal closed/cancelled Login Panel.

10310 SECURITY WARNING: Improper Component Broker login configuration.

10311 SECURITY WARNING: LoginHelper::request_login failed to return
Credentials object.

10312 SECURITY WARNING: No Tagged Component profile is found in the
proxy object of request message.

10313 SECURITY WARNING: No Security Tagged Component is found in
Tagged Component profile.

10314 SECURITY WARNING: No Security Context has been received.

10315 SECURITY WARNING: Target Server’s uuid is not found.

10316 SECURITY WARNING: init_security_context failed to create security
context.

10317 SECURITY WARNING: _narrow() failed for %1$s.

10318 SECURITY WARNING: _create() failed for %1$s.

10319 SECURITY SSL ERROR: Key Ring file %1$s is not found. (page 286)

10320 SECURITY SSL ERROR: Key Ring file %1$s cannot be opened.

10321 SECURITY SSL ERROR: Bad format of Key Ring file %1$s. (page 286)

10322 SECURITY SSL ERROR: Bad password from Key Ring file %1$s. (page
287)

10323 SECURITY SSL ERROR: Invalid timeout value %1$d.

Appendix I. Security Messages 281

Number Message

10324 SECURITY SSL ERROR: Expired certificate.

10325 SECURITY SSL ERROR: Invalid or No SSL Cipher is provided.

10326 SECURITY SSL ERROR: No SSL certificate is found in Key Ring file
%1$s. (page 287)

10327 SECURITY SSL ERROR: Bad certificate.

10328 SECURITY SSL ERROR: Unsupported certificate type. (page 287)

10329 SECURITY SSL ERROR: Initialization failed.

10330 SECURITY SSL ERROR: Permission denied.

10331 SECURITY SSL ERROR: Unknown failure.

10332 SECURITY SSL ERROR: SSL type cannot be determined.

10500 SECURITY TRACE: Invoke non_existent() on server %1$s (page 287)

10501 SECURITY TRACE: Complete non_existent() to server %1$s.

10502 SECURITY TRACE: Receive a new security service context from client
%1$s. (page 288)

10503 SECURITY TRACE:Call DCE gss_init_sec_context
for Target Server= %1$s,
in Vault::init_security_context. (page 288)

10504 SECURITY TRACE: Call gss_accept_sec_context in
Vault::accept_security_context :
Server Name = %1$s (page 288)

10505 SECURITY TRACE: Session Entry with
Target Server= %1$s,
Thread ID= %2$d
is being established in the Client Vault Session Table.
I(Thread ID= %3$d) am going to wait. (page 288)

10506 SECURITY TRACE:Wake up other threads that are waiting for the
availability of session entry of the Target Server
Target Server=%1$s. (page 288)

10507 SECURITY TRACE: Server name is %1$s.

10508 SECURITY TRACE: Search Session Entry with
Target Server= %1$s,
Server UUID= %2$s,
Thread ID= %3$d
in the Client Vault Session Table.

10509 SECURITY TRACE: Security is enabled in System Management CDS
data store.

10510 SECURITY TRACE: Security is disabled in System Management CDS
data store.

10511 SECURITY TRACE: DCE Security Context(Credential) is valid.

10512 SECURITY TRACE: DCE Security Context(Credential) is invalid.

10513 SECURITY TRACE: Session entry is not initialized or Session entry
state is UNSECURE. (page 288)

10514 SECURITY TRACE: Context Status of Session entry is unknown. (page
288)

10515 SECURITY TRACE: Authenticate server %1$s with keytab file %2$s.

10516 SECURITY TRACE: Succeed to authenticate security name = %1$s
password/keytab file = %2$s.

282 Problem Determination Guide

Number Message

10517 SECURITY TRACE: Succeed to refresh server.

10518 SECURITY TRACE: Out bound message to %1$s has valid DCE
Credential.

10519 SECURITY TRACE: Out bound message to %1$s has invalid DCE
Credential.

10520 SECURITY TRACE: Fail to refresh server.

10521 SECURITY TRACE: Security Server DLL is loaded.

10522 SECURITY TRACE: Security Client DLL is loaded.

10523 SECURITY TRACE: Fail to authenticate security name = %1$s
password/keytab file = %2$s.

10114: Method method_name of class class_name failed.
Explanation: Security code fails in a method invocation, such as authenticate()
method of the PrincipleAuthenticator class.
User Response: None.

10115: DCE call call_name failed.
Explanation: Security code failed in DCE API calls. This error can be caused by
DCE configuration errors or DCE runtime errors.
System Action: The DCE API call name is shown in the log entry.
User Response: Check that DCE is configured and running properly.

10243: SECURITY ERROR: DCE/GSS apis: api_name reported an error code
(return_code) which indicates message.
Explanation: Security code failed in DCE API call. This error can be caused by
DCE configuration errors or DCE run-time errors. DCE API name api_name, its
return status return_code, and DCE return message message are shown in the log
entry.
User Response: Check that DCE is configured and running properly.

10244: SECURITY ERROR: _narrow() failed on %1$s object.
Explanation: Security code fails to narrow a base class to its subclass. This is a
Component Broker system error. The subclass name is shown in the log entry.
User Response: None.

10245: SECURITY ERROR: _create() failed on %1$s object.
Explanation: Security code fails to create an instance of the class. This error may
be due to insufficient memory resource. The class name is shown in the log entry.
User Response: None.

10246: SECURITY ERROR: Failed to get an ORB Current object
Explanation: Security code fails to get the Security Current object from the ORB
object. This is a Component Broker system error. Security initialization code might
fail to register its Current object with the ORB object.
User Response: None.

10247: SECURITY ERROR: Failed to get an ORB object.
Explanation: Security code fails to get the ORB object from the
CORBA::ORB_init() call. This is a Component Broker system error. Security
initialization code fails to register its Current object with the ORB object.
User Response: None.

Appendix I. Security Messages 283

10248: SECURITY ERROR: Failed to get imagename.
Explanation: Security code fails to get the CDS image name of the current
process. The CDS database might be corrupted.
User Response: Check the integrity of the CDS database.

10259: SECURITY ERROR: Undefined principal/password for data system
from CDS.
Explanation: data system principal and data system password should be defined
when the get_mapped_security_info() of the IExtendedSecurity::Credentials
interface is called.
User Response: Check that the data system principal and data system password
attributes were set for the data system.

10260: SECURITY ERROR: Unsupported QOP: %d.
Explanation: Unsupported security QOP options were received in the Security
Interceptors.
User Response: None.

10262: SECURITY ERROR: Invalid Message Type.
Explanation: The message type is neither GIOP::Request nor GIOP::Reply. This is
a Component Broker system error.
User Response: None.

10263: SECURITY ERROR: Session entry that was created previously is not
found.
Explanation: A session entry that existed previously was lost from the Session
Table. This is a Component Broker system error.
User Response: None.

10265: SECURITY ERROR: Security Tagged Component has no corresponding
entry from the session table.
Explanation: A session entry is not found for a tag component when the client
receives a response message in the interceptor. This is a Component Broker
system error.
User Response: Not available.

10266: SECURITY ERROR: Target Server’s uuid is not found.
Explanation: The target server UUID is not found in the target server proxy object.
The target server is recognized by its UUID in the client process. This is a
Component Broker system error.
User Response: None.

10267: SECURITY ERROR: Failure during the invocation of non_existent().
Explanation: The non_existent method invocation is used to establish security
association between the client and the server. The failure of the non_existent
method invocation means that the authentication process fails in the server.
User Response: Make sure that the client process is security enabled and the
client has a valid DCE credential.

10273: SECURITY ERROR: Failed to verify the signature of security context
when reclaiming message.
Explanation: A message exchanged between a client and server, or between two
servers, could not be reclaimed. This could indicate that a rogue is tampering with
the message traffic between these two points.
User Response: Check the message traffic to see if it is being tampered with.

284 Problem Determination Guide

10275: SECURITY ERROR: Mutual authentication handshake failure.
Explanation: The client principal and server principal could not be mutually
authenticated. This may be the result of an internal processing error, or possibly a
transient failure in the communication flow. However, it is more likely to indicate that
either the client principal or the server principal have invalid authentication
information, in which case this message should be accompanied by another
message indicating a log-in failure. The client principal authentication errors can be
caused by user errors. The server principal authentication errors are internal
processing errors.
User Response: Check for any other messages indicating a log-in failure. If there
are none, check that the authentication information for the client principal and
server principal is valid.

10277: SECURITY ERROR: No token is returned from
Vault::accept_security_context.
Explanation: Server fails to accept security context. It is caused by the failure in
the DCE gss_accept_sec_context() call. The server fails to accept security context.
User Response: None.

10281: SECURITY ERROR: Cannot allocate memory from the heap for <object
name>.
Explanation: This usually indicates that your host is running out of available
memory. This may be due to having too many applications open at the same time,
a memory leak in one of your applications, or simply that you don’t have enough
memory installed on your host.
User Response: Start by closing, and possibly restarting some of your applications.
If necessary, install more memory on your host, or move some of your applications
to another host.

10293: SECURITY WARNING: Invalid login context from DCE for principal.
Explanation: The DCE login context for the client principal is invalid. This is usually
due to the context having expired. A Component Broker application server can
become a DCE client when it invokes a method on the downstream server. A
client’s DCE login context will be automatically refreshed if its login source is in the
DCE key table file. Otherwise, a panel will be prompted for user ID and password.
System Action: Component Broker will automatically attempt to refresh the
credential, or solicit the userid and password from the client principal to form a new
credential.
User Response: Most often, this warning can be ignored. However, if it recurs
frequently there may be a problem with your DCE setup, or this may also be an
indication that someone attempt to subvert the Component Broker security system.

10302: SECURITY WARNING: Undefined hostname from CDS.
Explanation: The host name defined in the Component Broker system
management configuration is incorrect.
User Response: Check that Component Broker was installed properly onto the
host. If needed, use the System Manager user interface to reconfigure your host
with its correct host name or reinstall Component Broker onto the host.

10303: SECURITY WARNING: Undefined keytab file from CDS.
Explanation: The keytab file that you specified for the server in your system
management Configuration does not exist. Because the keytab file is created
automatically by Component Broker when the server is configured, this message
usually means the keytab file has been subsequently deleted or renamed, or that
the Configuration was changed to refer to the wrong keytab file. In this case,
Component Broker will resort to using the default keytab file. However, if it is unable

Appendix I. Security Messages 285

to authenticate the server with the default keytab file, then this message should be
accompanied by another message indicating that server authentication has failed.
User Response: Check for another message indicating that server authentication
has failed. Try using the DCE administration tools to recreate the keytab file, and
ensure the keytab file attribute defined on the Server model is set to refer to that
keytab file.

10304: SECURITY WARNING: Undefined principal name from CDS.
Explanation: The security name specified for the server in your system
management Configuration has not been set.
User Response: Use the System Manager user interface to set the security name
attribute for the Server model then activate the Configuration again.

10305: SECURITY WARNING: Undefined QOP from CDS.
Explanation: This indicates that the system management configuration database
(CDS) is corrupted. All standard export QOP model or standard perform QOP
model options in the Security Service notebook of the Server Image or the Client
Image should be supported by Component Broker.
User Response: Use the System Manager user interface to set and activate the
QOP-related attributes for your Server or Client Style, then activate the
Configuration again.

10319: SECURITY SSL ERROR: Key Ring file file/class name is not found.
Explanation: The keyring file or class specified for the server or client in your
system management Configuration does not exist. The keyring file may have been
deleted or renamed, or the keyring file setting may have been incorrect to begin
with.
For Java clients, the keyring file attribute should specify a Java class. Therefore the
keyring file value in the Client Style model should not have any directory path or
.class extension. Rather the keyring file attribute should be a normally formed Java
class name, corresponding to the class name you assigned to the keyring class
with KEYMAN or IKMGUI.
User Response: Locate the correct keyring file and either recreate it or rename it
back to its correct name, or use the System Manager user interface to modify the
Client Style or Server to set the keyring file attribute to the correct name, then
activate the Configuration again.
For Java clients, check that the keyring class can be found in the classpath or, if
you are using a Java Applet client, in the CODE, CODEBASE, or ARCHIVE
attributes of the APPLET tag in the HTML document that initiated the applet.

10320: SECURITY SSL ERROR: Key Ring file file/class name can not be
opened.
Explanation: The keyring file or class could not be opened. This is probably due to
an access violation for the file; the identify under which the client or server is
executing is not authorized to access the keyring file. Check the permissions on the
keyring file and make sure the client or server is able to read it.
User Response: Locate the correct keyring file and either recreate it or rename it
back to its correct name, or use the System Manager user interface to modify the
Client Style or Server to set the keyring file attribute to the correct name, then
activate the Configuration again.
For Java clients, check that the keyring class can be found in the classpath or, if
you are using a Java Applet client, in the CODE, CODEBASE, or ARCHIVE
attributes of the APPLET tag in the HTML document that initiated the applet.

10321: SECURITY SSL ERROR: Bad format of Key Ring file file/class name.
Explanation: The format of the keyring file or class is incorrect. The file may have

286 Problem Determination Guide

become corrupted.
User Response: If needed, recreate the keyring.

10322: SECURITY SSL ERROR: Bad password from Key Ring file.
Explanation: The password used to open the keyring file is incorrect. Either the
keyring file has been changed — specifically the password on the keyring has been
modified — or the password set for the client or server in your system management
Configuration is incorrect.
User Response: Use the System Manager user interface to update the keyring
password attribute of the Client Style or Server model with the correct password
value, then reactivate your Configuration.

10323: SECURITY SSL ERROR: Invalid timeout value timeoutvalue.
Explanation: The timeout value set for the client or server in your system
management Configuration is invalid.
User Response: Use the System Manager user interface to update the SSL V3
Session Timeout attribute of the Client Style or Server model with the correct
timeout value, then activate your Configuration again.

10324: SECURITY SSL ERROR: Expired certificate.
Explanation: The server certificate has expired. Most certificates are good for one
year. When they have expired, they must be renewed with your certificate authority.
User Response: Follow the procedures specified by your certificate authority to
renew or replace your server certificate, and then update it into your server keyring
file. If you don’t change the trust-basis for your server, then you should not have to
change any client keyrings. However, the certificates for the trust-basis will
eventually expire as well and, when they do, you will have to use the new or
renewed certificate to update all of your client keyrings that cite that trust-basis.

10326: SECURITY SSL ERROR: No SSL certificate is found in Key Ring file
file/class name.
Explanation: The certificate for the corresponding server was not found in the
keyring class file. This can occur at the server if you did not identify the server’s
certificate as being the default certificate in the keyring. Or this can occur at the
client if a certificate for the trust-basis in the server is not included in the client’s
keyring.
User Response: Check that you have identified the server’s certificate as being the
default certificate in the server keyring and the certificate is included in the client’s
keyring.

10327: SECURITY SSL ERROR: Bad certificate.
Explanation: The certificate for the corresponding server is bad; somehow it has
been corrupted.
User Response: You will usually have to recreate the certificate in the keyring.
Follow the steps outlined in the System Administration Guide.

10328: SECURITY SSL ERROR: Unsupported certificate type.
Explanation: The certificate is of the wrong type. Component Broker only supports
X.509v3 certificates.
User Response: Use the IKMGUI or KEYMAN administration tools to recreate the
certificate.

10500: Invoke Non_Existent Method
Explanation: Client invokes non_existent method on the target server object to
establish the security association between the client and the server.
User Response: None.

Appendix I. Security Messages 287

10501: Complete Non_Existent Method
Explanation: Client received a response message of the non_existent method from
the server.
User Response: Not available.

10502: Receive a New Security Context Request
Explanation: Server received a non_existent method from the client.
User Response: None.

10503: Call gss_init_sec_context
Explanation: Client calls DCE GSS API, gss_init_sec_context, to initialize the DCE
security context.
User Response: None.

10504: Call gss_accept_sec_context
Explanation: Server calls DCE GSS API, gss_accept_sec_context, to accept
client’s DCE security context.
User Response: None.

10505: Multiple Treaded Client Request
Explanation: Multiple threaded clients are attempting to establish the security
context with the same target server.
User Response: None.

10506: Security Association is Established
Explanation: The security association between the client and the server is
established.
System Action: Wake up the threads that are waiting on the security association.
User Response: None.

10513: Unexpected Session Entry State
Explanation: The session entry is in unknown state. This is a Component Broker
system error.
User Response: None.

10514: Incomplete Session Entry
Explanation: The session entry is missing context status. This is a Component
Broker system error.
User Response: Contact your IBM representative.

“Troubleshooting Security Problems” on page 74
“Chapter 13. Security Service Trace” on page 55
Create and Install Server Certificates (System Administration Guide)
Place Server and Client Keyrings in your Enterprise (System Administration Guide)
Administer Accounts for Client and Server Principals (System Administration Guide)
Enable Security within a Configuration (System Administration Guide)

288 Problem Determination Guide

Appendix J. Session Service Messages

When the Component Broker is running, it may issue messages related to its
session services. To understand session service messages, see the following
message descriptions.

The top-level coordinator was not accessible from a sub-level coordinator,
during an attempt to force session <sessionName> to end immediately in
server <serverName>
Explanation: The top-level coordinator was not accessible from a sub-level
coordinator, during an attempt to force the session to end immediately. This
exception can be generated if both the top-level and sub-level processes attempt to
timeout a session at the same time, and in such a condition does not indicate an
error. If this occurs, this message will be located between a CORBA::INV_OBJREF
exception and a message indicating that the session has been timed out.
System Action: The server continues.
User Response: Verify that this message is a result of both the top-level and
sub-level processes attempting to timeout the session. If this is not the case refer to
previous errors in the activity log to determine the cause of the problem.

An attempt was made to end session <sessionName> specifying an end mode
not available from the current process
Explanation: A sub level process has called Current::endSession with an end mode
other than EndModeResetForce. Sub-level processes are restricted to calling
Current::endSession with EndModeResetForce, but top-level processes can specify
any end mode.
System Action: The server continues.
User Response: Verify the logic of the application code. Ensure that the caller
should not be running in the top-level process where the session was created.

Attempt to resume a transaction during the resume of session
<sessionName> failed
Explanation: While performing a session resume operation on the given session, a
transaction within the scope of the session failed to resume successfully.
System Action: The session context is disassociated from the current thread.
User Response: Verify the logic of the application code. If necessary, refer to
previous errors in the activity log to determine the cause of the problem.

Session <sessionName> has timed out after <n> seconds in server
<serverName>
Explanation: Your application has set a time limit for session <sessionName> and
this time limit has been reached. This may indicate that the server is waiting for a
resource that is unavailable, or a deadlock has occurred in your application.
System Action: The session service resets the session.
User Response: Check that all of the servers involved in the session are operating
correctly. In addition, check the use of locks in your application for possible
deadlock situations.

The operation has detected that session <sessionName> has been forced to
end immediately
Explanation: The session has been forced to end immediately. This can be caused
by a timeout occurring, or as a result of the session being ended with the
EndModeResetForce end mode specified. The operation which detected this
condition is unable to continue.
System Action: The server continues.

© Copyright IBM Corp. 1997, 1998 289

User Response: Verify the cause of this message, and ensure that this is
consistent with the logic of the application code.

Session <sessionName> could not be imported into server <serverName>, as
a problem was occurred whilst communicating with another server involved
in the session
Explanation: A problem occurred during communication with another server
involved in the session. As a result, the session could not be imported and was
forced to reset immediately.
System Action: The session is forced to reset.
User Response: Refer to previous errors in the activity log to determine why the
session could not be imported.

One or more of the resources involved in session <sessionName> did not
checkpoint successfully. The checkpoint operation is incomplete
Explanation: The checkpoint operation was incomplete because one or more
resources involved in the session did not checkpoint successfully. This can occur if
there was a problem communicating with another server involved in the session or
if a resource itself was unable to checkpoint and raised the NotProcessed
exception. Incomplete updates have occurred within the session.
System Action: The server continues.
User Response: Refer to previous errors in the activity log to determine why the
resource was unable to checkpoint. Restart any servers that are currently
unavailable. If necessary follow local procedures to correct data as appropriate in
the local server(s).

One or more of the resources involved in session <sessionName> did not
reset successfully. The reset operation is incomplete
Explanation: The reset operation was incomplete because one or more resources
involved in the session did not reset successfully. This can occur if there was a
problem communicating with another server involved in the session or if a resource
itself was unable to reset and raised the NotProcessed exception. Incomplete
updates have occurred within the session.
System Action: The server continues.
User Response: Refer to previous errors in the activity log to determine why the
resource was unable to reset. Restart any servers that are currently unavailable. If
necessary follow local procedures to correct data as appropriate in the local
servers.

One or more of the resources involved in session <sessionName> did not end
successfully. The end operation is incomplete
Explanation: The end operation was incomplete because one or more resources
involved in the session did not end successfully. This can occur if there was a
problem communicating with another server involved in the session or if a resource
itself was unable to end and raised the NotProcessed exception. Incomplete
updates have occurred within the session.
System Action: The server continues.
User Response: Refer to previous errors in the activity log to determine why the
resource was unable to end. Restart any servers that are currently unavailable. If
necessary follow local procedures to correct data as appropriate in the local
servers.

290 Problem Determination Guide

Appendix K. Transaction Service Messages

While it is running, the Transaction Service writes out a number of messages to the
server’s transaction log and activity log. To understand Transaction Service
messages, see the following message descriptions:

Opening new transaction service log <logfilename> in server <serverName>.
Explanation: The Transaction Service is creating the files necessary to record
details of any transactions created or used in this server.
System Action: The Transaction Service continues with the initialization.
User Response: None.

Opening transaction service log <logfilename> in server <serverName>.
Explanation: The Transaction Service is opening the files necessary to record
details of any transactions created or used in this server.
System Action: The Transaction Service continues with the initialization.
User Response: None.

Recovering incomplete transactions from the transaction service log for the
server.
Explanation: During server initialization, the Transaction Service detected that
there were transactions running when the server was last terminated. These must
be completed before new transactions can be created or used.
System Action: The Transaction Service attempts to contact the other servers
involved in each of these transactions to determine whether the transaction should
be committed or rolled back. Once the decision has been made, the chosen action
is taken to complete the transaction. This might take some time if it needs to
contact servers that are not currently available.
User Response: Ensure all servers that are involved in transactions with this
server are running.

All recovered transactions are now complete in server <serverName>.
Explanation: The Transaction Service is unavailable in this process because it is
not able to create a log to record information about transactions that are created or
accessed in this server.
System Action: The server continues but transactions cannot be used.
User Response: If transactions are not used in this server, no action is needed. If
transactions are required, ensure a directory for the log is correctly configured on
the server. This log directory must be on a local disk with sufficient space to hold a
separate set of log files for each server. Once the log configuration is correct,
restart your server.

The transaction service started successfully in server <serverName>.
Explanation: The Transaction Service has successfully initialized inside the server
and is now ready for new transactions to be created.
System Action: The server continues.
User Response: None.

Client applications must link with client library <clientLibraryName> rather
than the server library <serverLibraryName>.
Explanation: The Transaction Service has been called in a process that has not
been correctly initialized. If the process reporting this message is a client
application, this application has been linked to the server library rather than the
client library. If the process is a server, it has not been correctly configured to
request server initialization.

© Copyright IBM Corp. 1997, 1998 291

System Action: The client application terminates immediately.
User Response: Link the client application with the client library
<clientLibraryName> and not the server library <serverLibraryName>.

Transaction <name> has timed out after <x> seconds in server <serverName>.
Explanation: Your application has set a time limit for transaction <name> and this
time limit has been reached. This might indicate that the server is waiting for a
resource that is unavailable, or a deadlock has occurred in your application.
System Action: The Transaction Service rolls back the transaction.
User Response: Check that all the servers involved in the transaction are
operating correctly. Check the use of locks in your application for possible deadlock
situations.

The transaction service in server <serverName> has made a heuristic commit
decision for transaction <name>.
Explanation: The Transaction Service in server <serverName> is unable to contact
all the objects registered with the transaction within the number of retries permitted
by the commitRetry attribute of the server. The Transaction Service has therefore
taken a heuristic decision based on the setting of the heuristicDirection attribute for
the server.
System Action: The Transaction Service commits the transaction in the local
server and in any other server where it is controlling resources.
User Response: Restart any servers that are currently unavailable. This completes
the transaction for any objects registered with the transaction that are located in
these servers. Look at the action that has been taken by each of these objects and
correct any problems in your application’s data caused by the heuristic decision.

The transaction service in server <serverName> has made a heuristic rollback
decision for transaction <name>.
Explanation: The Transaction Service in server <serverName> is unable to contact
all the objects registered with the transaction within the number of retries permitted
by the commitRetry attribute of the server. The Transaction Service has therefore
taken a heuristic decision based on the setting of the heuristicDirection attribute for
the server.
System Action: The Transaction Service rolls back the transaction in the local
server and in any other server where it is controlling resources.
User Response: Restart any servers that are currently unavailable. This completes
the transaction for any objects registered with the transaction that are located in
these servers. Look at the action that has been taken by each of these objects and
correct any problems in your application’s data caused by the heuristic decision.

The transaction service in server <serverName> has assumed a rollback vote
for a resource that raised a heuristic exception during the prepare for
transaction <name>.
Explanation: An object that inherits from CosTransactions::Resource and that has
registered with a CosTransactions::Coordinator object for transaction <name> has
raised either a CosTransactions::HeuristicHazard or
CosTransactions::HeuristicMixed exception during a prepare method call. The
prepare method call usually returns a CosTransactions::Vote value. The Transaction
Service has assumed the vote returned by this object is
CosTransactions::VoteRollback, based on the setting of heuristicDirection configured
for the server.
System Action: The Transaction Service rolls back the transaction.
User Response: Correct any problems in your application’s data caused by the
heuristic decision made in the CosTransactions::Resource object.

292 Problem Determination Guide

The transaction service in server <serverName> has assumed a commit vote
for a resource that raised a heuristic exception during the prepare for
transaction <name>.
Explanation: An object that inherits from CosTransactions::Resource and that has
registered with a CosTransactions::Coordinator object for transaction <name> has
raised either a CosTransactions::HeuristicHazard or
CosTransactions::HeuristicMixed exception during a prepare method call. The
prepare method call usually returns a CosTransactions::Vote value. The Transaction
Service has assumed the vote returned by this object is
CosTransactions::VoteCommit, based on the setting of heuristicDirection configured
for the server.
System Action: The Transaction Service uses this vote to complete the two-phase
commit.
User Response: Correct any problems in your application’s data caused by the
heuristic decision made in the CosTransactions::Resource object.

The client library <clientLibraryName> could not be loaded.
Explanation: The system was unable to load the client library <clientLibraryName>.
This is usually because the library is not in one of the directories listed in your
PATH environment variable. Alternatively, the file permissions for the library might
not allow your userid to access the library.
System Action: The client application terminates immediately.
User Response: Check the libraries located in the directories listed in your PATH
environment variable. Alter your PATH environment variable so that the correct
client library is loaded.

The transaction service in server <serverName> could not write the log name
to the CDS.
Explanation: The Transaction Service was unable to write a new log name to the
CDS.
System Action: The server continues but transactions cannot be used.
User Response: Examine the activity log to find out why the CDS can not be
written to.

No new transaction service log names are available for server <serverName>.
Explanation: The Transaction Service is unable to open a new log because all
available log names (somtr000 to somtrFFF) are in use.
System Action: The server continues but transactions cannot be used.
User Response: None.

The transaction service in server <serverName> is unable to maintain a log as
there is insufficient space in the log directory.
Explanation: The Transaction Service tried to create a new log or tried to write to
an existing log. There was insufficient space in the file system which holds the log
directory to allow this action.
System Action: The server continues but transactions cannot be used.
User Response: Make more space available in the Log directory.

The transaction service log in server <serverName> has absorbed its log
cushion file
Explanation: The log cushion file has been removed in order to make space
available for a new extent file. The file system which holds the log directory is
getting low on free space.
System Action: The server continues.
User Response: Make more space available in the Log directory.

Appendix K. Transaction Service Messages 293

The transaction service log in server <serverName> has restored its log
cushion file.
Explanation: A previously removed log cushion file has been re-created. This
occurs in response to an increase in the amount of free space available on the file
system which holds the log directory.
System Action: The server continues.
User Response: None.

The transaction service in server <serverName> could not open its log. Error
was <error>.
Explanation: The required log could not be opened. This can occur if the log
directory does not exist, or if one of the files that make up the servers log is open
on another process.
System Action: The server continues but transactions cannot be used.
User Response: Make sure that the configured log directory exists. If it does exist,
check that none of the files that make up the servers log are open on another
process.

“Appendix M. XA Messages” on page 305.

294 Problem Determination Guide

Appendix L. Workload Management Messages

While it is running, Component Broker may issue messages related to workload
management of client requests across application servers in controlled server
groups.

To understand workload management messages, see the following message
descriptions:

1100 "System Error. A distributed set method has detected an invalid
precondition (%1$d)."
Explanation: Not available.
User Response: Contact your IBM Representative.

1101 "System Error. The distributed set ElementMonitor state (%1$d) is invalid
for check()."
Explanation: Not available.
User Response: Contact your IBM Representative.

1102 "System Error. The distributed set ElementMonitor cannot change state
from %1$d to %2$d."
Explanation: Not available.
User Response:Contact your IBM Representative.

1200 "The object request broker has been server group enabled."
Explanation: The issuing process is now able to apply workload distribution logic to
remote workload managed objects.
User Response: For information only. If you did not intend for workload
management to be enabled, you can disable the ORB’s enhanced workload
management (WLM) extension, as described in the System Administration Guide.

1300 "The bind policy dynamic link library %1$s could not be loaded."
Explanation: The bind policy dynamic link library <libraryName> could not be
loaded.
User Response: Check that the bind policy library was correctly included as an
additional executable with the application and has been successfully installed.

1301 "The bind policy factory function %1$s could not be located in dynamic
link library %2$s."
Explanation: The bind policy factory function <functionName> either does not exist
or has not been correctly exported from the library.
User Response: See information on writing Bind Policies in the Advanced
Programming Guide.

1302 "The bind policy factory function %1$s in dynamic link library %2$s
failed."
Explanation: The bind policy factory function <functionName> in dynamic link
library <libraryName> failed.
User Response: Check earlier messages in the log and, if needed, the source of
your bind policy. You may have made a mistake coding your bind policy, or other
errors in the log may tell you what is happening.

1303 "The bind policy method %1$s::init failed."
Explanation: The bind policy method <methodName>::init failed.
User Response: Check earlier messages in the log and, if needed, the source of

© Copyright IBM Corp. 1997, 1998 295

your bind policy. You may have made a mistake coding your bind policy, or other
errors in the log may tell you what is happening.

1304 "The bind policy method %1$s::rankServers failed."
Explanation: The bind policy method <methodName>::rankServers failed.
User Response: Check earlier messages in the log and, if needed, the source of
your bind policy. You may have made a mistake coding your bind policy, or other
errors in the log may tell you what is happening.

1305 "The bind policy method %1$s::notifyChoice failed."
Explanation: The bind policy method <methodName>::notifyChoice failed.
User Response: Check earlier messages in the log and, if needed, the source of
your bind policy. You may have made a mistake coding your bind policy, or other
errors in the log may tell you what is happening.

1306 "Server %1$s is unavailable and will temporarily be excluded from
server selection."
Explanation: The workload distribution manager has detected a previous failure in
processing a request on server <serverName>. An attempt will be made to
automatically resend the request to another server in the controlled group, where
possible.
User Response You may have deliberately made the server unavailable.
Otherwise, check that the server is running and enabled for workload management.
Perhaps check later messages to ensure that the request was serviced by another
server.

1307 "No servers are defined in server group %1$s."
Explanation: No application servers that are members of the controlled server
group <groupName> have registered with the SGCP server. The current request
cannot be dispatched. An exception is raised.
User Response: Check the following points:

v You have configured some servers in the server group, and activated the system
management Configuration containing the Server Group model

v At least one of the servers is running

v There were not any other errors logged during startup of the application servers
(members of the server group).

1308 "No servers are available in server group %1$s."
Explanation: All of the server members of the controlled server group
<groupName> that are registered with the SGCP have been marked unavailable.
(See also message 1306 above.) The current request cannot be dispatched. An
exception is raised.
User Response: Check the following points:

v You have configured some servers in the server group, and activated the system
management Configuration containing the Server Group model

v At least one of the servers is running

v There were no other errors logged during startup of the application servers
(members of the server group).

1402 "The name space binding for Server Group Control Point %1$s can not
be resolved."
Explanation: The name space binding for Server Group Control Point
<serverName> cannot be resolved.

296 Problem Determination Guide

User Response: Previous errors might indicate why the entry for the SGCP could
not be resolved by the Name Server. Also check for errors logged by the SGCP
server during startup.

1403 "The server list for server group %1$s could not be determined."
Explanation: The server list for server group <groupName> could not be
determined.
User Response: Contact your IBM Representative.

1404 "System Error. A returned token does not match any token in the
cache."
Explanation: Not available.
User Response: Contact your IBM Representative.

1405 "No connection to the Server Group Control Point for server group %1$s
is available."
Explanation: No connection to the Server Group Control Point for server group
<groupName> is available.
User Response: Check that the SGCP server is running. Check for other errors.

1406 "The policy list for policy group %1$s could not be determined."
Explanation: The policy list for policy group <groupName> could not be
determined.
User Response: Contact your IBM Representative.

1500 "The server has been activated as a member of server group %1$s."
Explanation: The server has been activated as a member of server group
<groupName>.
User Response: For information only.

1501 "A corrupted or truncated server groups service context was detected."
Explanation: Not available.
User Response: Contact your IBM Representative.

1505 "Unable to register a WLM object reference."
Explanation: A WLM object reference for an object configured for workload
management could not be registered with the ORB. The object will be registered
with a non-WLM object reference.
User Response: Check for any related errors that may have been logged earlier.

1700 "Registration with the Server Group Control Point for server group %1$s
has failed."
Explanation: Registration with the Server Group Control Point for server group
<groupName> has failed.
User Response: Check for any related errors that may have been logged earlier.

1800 "Server Group Control Point for server group %1$s is initialized."
Explanation: The SGCP Server is ready to control workload management for the
server group <groupName>.
User Response: For information only.

1801 "System Error. Attribute ServerGroupId is not configured for the Server
Group Control Point."
Explanation: Not available.
User Response: Contact your IBM Representative.

Appendix L. Workload Management Messages 297

1802 "System Error. Impossible state transition."
Explanation: Not available.
User Response: Contact your IBM Representative.

1803 "One or more servers in server group %1$s may continue to use expired
configuration data for policy group %2$s."
Explanation: As a result of reactivation, or other system management processes,
the configuration information has changed for policy group <groupName>. The
SGCP server has been unable to synchronize this change across all the servers
that were actively registered.
If any registered server is still active, despite the SGCP server’s attempt to contact
it having failed, then that server may continue to accept requests from clients that
have been based on the old configuration information for the policy group.
User Response: Check for other errors that may have been logged earlier showing
this problem.

1804 "System Error. Policy group %1$s has invalid state %1$d."
Explanation: Policy group <groupName> has invalid state.
User Response: Contact your IBM Representative.

1805 "Bind policy %1$s has an invalid C++ Class association (%2$s)."
Explanation: The configuration information for Bind Policy <policyName> contains
an invalid reference to a C++ Class object.
User Response: Check that the bind policy has been correctly configured with a
C++ Class object representing the name of the C++ class implementing the bind
policy.

1806 "Bind policy %1$s has no valid C++ Class configuration."
Explanation: The configuration of bind policy <policyName> is incomplete.
User Response: Check that the bind policy has been correctly configured with a
C++ Class object representing the name of the C++ class implementing the bind
policy.

1807 "Exception caught storing attribute %1$s for Bind Policy %2$s."
Explanation: An exception was caught whilst storing the attribute <attributeName>
for Bind Policy <policyName>.
User Response: Check for previously logged errors.

1808 "Exception caught storing attribute %1$s for Policy Group %2$s."
Explanation: An exception was caught whilst storing the attribute <attributeName>
for Policy Group<groupName>.
User Response: Check for previously logged errors.

1809 "Exception caught storing attribute %1$s for Server Group Control
Point."
Explanation: An exception was caught whilst storing the attribute <attributeName>
for the Server Group Control Point.
User Response: Check for previously logged errors.

1810 "Server Group Control Point needs to add a new Policy Group."
Explanation: The SGCP has processed a dynamic configuration update introducing
a new Policy Group.
User Response : Not available.

298 Problem Determination Guide

1811 "Policy Group %1$s needs to add a new Bind Policy."
Explanation: The SGCP has processed a dynamic configuration update introducing
a new Bind Policy into Policy Group <groupName>.
User Response : Not available.

1812 "System Error. Exception caught creating datastore key to SGCP Image."
Explanation: Not available.
User Response: Contact your IBM Representative.

1813 "Server Group Control Point initialization terminated for server group
%1$s."
Explanation: An object required for workload management services could not be
found. This message could just indicate that the server in question is in the process
of being deleted. However it could also mean that the CDS is corrupt in some way.
User Response: Check the state of the server to see if it is being deleted. If
required, check that the DCE CDS is not corrupted.

1814 "System Error. Exception caught accessing Configuration Manager."
Explanation: Not available.
User Response: Contact your IBM Representative.

1815 "Active server %1$s has been removed from the server group."
Explanation: As a result of activating a system management Configuration, a
member server <serverName> has been removed from the server group. The
SGCP server believed that server to be active and running.
User Response: Check that you meant to remove the server from the server
group. Otherwise, if needed, reconfigure the server as a member of the server
group then activate the system management Configuration again.

1816 "Exception caught removing server information for server %1$s."
Explanation: An exception was caught whilst removing server information for the
server <serverName>.
User Response: Look for previous errors.There may be some problem with the
CDS.

1817 "System Error. Exception caught processing information on member
servers."
Explanation: Not available.
User Response: Contact your IBM Representative.

1818 "System Error. Exception caught processing server registration."
Explanation: Not available.
User Response: Contact your IBM Representative.

1819 "Server registration for server %1$s failed. Server is not a member of the
controlled server group."
Explanation: A server has attempted to register its availability with the SGCP
server, but the SGCP server does not accept that that server is a member of the
server group. This may be a "race" condition that can be resolved by reactivation. It
might indicate a more severe inconsistency in the CDS.
User Response: In the system management Configuration try removing the Server
(member of group) from the Server Group, then activate the Configuration again.
Then add the Server (member of group) back into the Server Group, then activate
the Configuration again. If problems persist then contact your IBM Representative.

Appendix L. Workload Management Messages 299

1820 "System Error. Exception caught processing server deregistration."
Explanation: Not available.
User Response: Contact your IBM Representative.

1821 "Server deregistration for server %1$s failed. Server is not a member of
the controlled server group."
Explanation: A server has attempted to de-register its availability with the SGCP
server, but the SGCP server does not accept that that server is a member of the
server group. This may be a "race" condition that can be resolved by reactivation. It
might indicate a more severe inconsistency in the CDS.
User Response: In the system management Configuration try removing the Server
(member of group) from the Server Group, then activate the Configuration again.
Then add the Server (member of group) back into the Server Group, then activate
the Configuration again. If problems persist then contact your IBM Representative.

1822 "A control point entry for this server may not have been unbound from
the Name Service."
Explanation: Not available.
User Response: Check the following entry in the DCE CDS and delete any entry
found:
/workgroup/resources/server_groups/<server_group_name>/control_points/<server_name>

1823 "System Error. Exception caught storing state data."
Explanation: Not available.
User Response: Contact your IBM Representative.

1824 "Server Group Control Point is unable to contact the Server Group
Gateway server %1$s."
Explanation: Server Group Control Point is unable to contact the Server Group
Gateway server <serverName>.
User Response: Check earlier in the log for messages that may indicate some
problem with Name Server access, or that the SGGW server is not running.

1825 "System Error. Server registration for server %1$s failed. Server Group
Control Point initialization is incomplete."
Explanation: Server registration for server <serverName> failed. Server Group
Control Point initialization is incomplete.
User Response: Contact your IBM Representative.

1826 "System Error. Server deregistration for server %1$s failed. Server
Group Control Point initialization is incomplete."
Explanation: Server de-registration for server <serverName> failed. Server Group
Control Point initialization is incomplete.
User Response: Contact your IBM Representative.

1827 "System Error. Server Group Control Point initialization is incomplete.
Client access is denied."
Explanation: Not available.
User Response: Contact your IBM Representative.

1828 "Server information for server %1$s already exists and will be
overwritten."
Explanation: The SGCP server has found that information for a supposedly "new"
server already existed in the SGCP datastore. Perhaps a server of the same name
used to exist but was deleted and is now being reinstated and the original deletion
did not clean up properly.

300 Problem Determination Guide

User Response: If you are confident that you really are adding a new server then
this should be safe. If not then this might indicate a more serious CDS corruption
problem.

2000 "Internal unrecoverable error in server groups gateway server."
Explanation: Not available.
User Response: Contact your IBM Representative.

2003 "Server groups gateway failed to bind server group name ’%1$s’ into the
naming service."
Explanation: The server groups gateway failed to bind the server group name
<groupName> into the naming service. The Server Group Control Point Server will
not start unless it can find this reference in the naming service.
User Response: Check that the CDS is correctly set up.

2005 "Failed to create local server groups gateway intercept object."
Explanation: Not available.
User Response: Contact your IBM Representative.

2006 "Unknown exception when binding to naming service. Server will
terminate."
Explanation: Not available.
User Response: Inspect the activity log for other errors.

2009 "Failed to read the data needed on request inbound to the Server groups
gateway."
Explanation: The Server group gateway server received a corrupted request.
User Response: If no other errors appear in the log, contact your IBM
Representative.

2010 "Exception when invoking outbound request from the Server groups
gateway."
Explanation: This failure indicates that the request redirected through the gateway
server could not be dispatched to an application server in the controlled server
group.
User Response: Check the log for other errors.

2011 "Exception trapped when preparing outbound request from the Server
groups gateway."
Explanation: Not available.
User Response: The log should contain details of what the error actually was.

2012 "System exception trapped calling method ’%1$s’ from the Server
groups gateway."
Explanation: A system exception was trapped when calling method
<methodName> from the Server groups gateway. The exception will be returned to
the client as a failure on the method call.
User Response: Inspect the log for errors.

2013 "Unknown exception trapped calling method ’%1$s’ from the Server
groups gateway."
Explanation: An unknown exception was trapped when calling the method
’<methodName> from the Server groups gateway. The exception will be returned to
the client as a failure on the method call.
User Response: Inspect the log for errors.

Appendix L. Workload Management Messages 301

2014 "Error resolving parameter of type==’%1$s’, mode==’%2$s’ on method
call ’%3$s’."
Explanation: The information read from the Interface Repository tells the gateway
server the signature of the method being called. While trying to resolve this
particular type of parameter an error occurred.
User Response: Verify that the Interface Repository has the correct information for
the method.

2015 "Error resolving incoming parameters on method ’%1$s’, object type
’%2$s’."
Explanation: The information read from the Interface Repository tells the gateway
server the signature of the method being called. While trying to resolve the
signature this error occurred.
User Response: Verify that the Interface Repository has the correct information for
the method.

2016 "Error getting an inout parameter return value on method ’%1$s’, object
type ’%2$s’."
Explanation: While using the information from the Interface Repository to get the
value of a transmitted parameter an error occurred.
User Response: Check that the Interface Repository is correct or inspect the log
for other errors.

2017 "Error copying return value from method ’%1$s’, object type ’%2$s’.
Value cannot be returned to the client."
Explanation: The data returned from the application server in the server group
could not be passed back to the client application.
User Response: Check that the Interface Repository correctly defines the return
parameter types, and that the return value is correct.

2051 "Server groups gateway cannot access Interface Repository. Requests
cannot be forwarded."
Explanation: An error occurred accessing the Interface Repository.
User Response: Check that the IR is correctly available to the host on which the
gateway server is running.

2052 "Server groups gateway cannot retrieve interface definition from
Interface Repository for object ’%1$s’."
Explanation: No entry could be found in the Interface Repository for the object type
making the method call.
User Response: Not available.

2053 "Server groups gateway cannot retrieve operation definition from
Interface Repository for operation ’%1$s’ on object ’%2$s’."
Explanation: Although information about this object can be found in the Interface
Repository, no information about this method name could be found.
User Response: Add the information to the Interface Repository and rerun the
application.

2054 "Server groups gateway cannot create outgoing request object."
Explanation: Not available.
User Response: Check the log for other errors.

2055 "Server groups gateway did not get a response on method call ’%1$s’."
Explanation: No response was returned on this method call, although one was

302 Problem Determination Guide

expected.
User Response: Check the log for other errors.

Appendix L. Workload Management Messages 303

304 Problem Determination Guide

Appendix M. XA Messages

When the Component Broker is running, it may issue messages relating to XA
Resource Managers. To understand XA messages, see the following message
descriptions:

Attempt in server <serverName> to load switchLoadFile
<switchLoadFileName> for the XA Resource Manager database
<databaseName> failed. Check that the file exists and is in the current search
path.
Explanation: The server <serverName> failed to load the switch load file
configured for the XA Resource Manager database <databaseName>.
System Action: The database is not available for use with this server.
User Response: Check that the switch load file exists and is available in the
current search path.

Error in server <serverName>. The switchLoadFile <switchLoadFileName> for
the XA Resource Manager database <databaseName> is invalid because it
does not contain the required function <functionName>.
Explanation: The server <serverName> successfully loaded the switch load file
configured for the XA Resource Manager database <databaseName>, but it does
not contain the function <functionName> that is required to enable the server to
obtain a pointer to the xa_switch_t structure of the XA Resource Manager.
System Action: The database is not available for use with this server.
User Response: Add the required function to the switch load file implementation. A
sample switch load file is provided with Component Broker.

Server <serverName> has successfully opened a connection to the XA
Resource Manager database <databaseName>.
Explanation: The server <serverName> successfully opened a connection to the
XA Resource Manager database <databaseName>. The database is available for
use with this server. (Future successful attempts to open connections to this
database will not result in this message being issued).
System Action: None.
User Response: None.

Attempt in server <serverName> to open a connection to the XA Resource
Manager database <databaseName> failed with return code <xaReturnCode>.
Explanation: The server <serverName> was unable to open a connection to the
XA Resource Manager database <databaseName>. The return code received from
xa_open was <returnCode>. The XA Resource Manager database is not available
for use with the server.
System Action: None
User Response: If you do not require the database <databaseName> to run with
this server, you can ignore this message. Otherwise, take the following steps to
correct this problem:

1. Ensure that the Resource Manager is started.

2. Check that the database <databaseName> is correctly configured in the server
configuration. In particular, ensure that the openString and the switchLoadFile
are correct.

3. Ensure that the database exists on the Resource Manager.

4. Ensure that the server has the correct authority to access the database.

© Copyright IBM Corp. 1997, 1998 305

5. Check that the same Resource Manager is not configured more than once. The
combination of openString and switchLoadFile must be unique for each XA
Resource Manager configured.

6. Many Resource Managers have a configurable limit on the number of
concurrent connections to the database. Check that the server has not
exceeded this limit. This might be possible if it had many configured databases
on the Resource Manager or if there were many applications accessing this
database concurrently.

7. Establish why the server is unable to contact the Resource Manager database.
Diagnostics provided for the Resource Manager may be useful. For example, if
the Resource Manager Type is DB2 for NT, you should analyze the DB2 log file
available in %DB2PATH%\%DB2INSTANCE%\db2diag.log for further
information.

No attempt was made by the server <serverName> to recover transactions on
the XA Resource Manager database <databaseName> because a previous
attempt to open a connection to this database failed.
Explanation: Because the server <serverName> has failed to open a connection to
the database <databaseName>, it has not attempted to recover any outstanding
transactional work on the database. Outstanding transactional work relating to this
server may have associated locks on the database which will not be released until
this problem is fixed.
System Action: The server <serverName> will attempt to recover transactions on
the database <databaseName> when it has successfully opened a connection to
the database.
User Response: If you do not require the database <databaseName> to run with
this server, and you are satisfied that no locks are held on the database as a result
of previous outstanding transactional work by this server, you can ignore this
message. Otherwise, refer to any previous messages in the log to establish why an
attempt to open a connection to the database failed. Correct the problem based on
the information provided in the previous messages.

Attempt by the server <serverName> to recover transactions on the XA
Resource Manager database <databaseName> failed with return code
<returnCode>.
Explanation: The server <serverName> may have failed to to recover all
outstanding transactional work on the database. The return code received from
xa_recover was <returnCode>. Outstanding transactional work relating to this server
may have associated locks on the database which will not be released until this
problem is fixed.
System Action: The server <serverName> will attempt to recover transactions on
the database <databaseName> when it successfully opens a connection to the
database. The XA Resource Manager database is not available for use with the
server.
User Response: If you do not require the database <databaseName> to run with
this server, and you are satisfied that no locks are held on the database as a result
of previous outstanding transactional work by this server, you can ignore this
message. Otherwise, establish why the Resource Manager was unable to
successfully complete the request, and take appropriate action if required. Other
messages in the log and diagnostics for the Resource Manager may be useful in
identifying the problem.

Server <serverName> detected an error when attempting to rollback the
transaction <tranName> on the XA Resource Manager database
<databaseName> (configured as <configurationType> <imageName>). The

306 Problem Determination Guide

return code was <returnCode>. This error occurred during the database
recovery processing.
Explanation: The server <serverName> has failed to rollback the transaction
<tranName> during an attempt to recover outstanding transactional work on the
database. The return code received from xa_rollback was <returnCode>. This
transaction may hold locks on the database which will not be released until this
problem is fixed. The XA Resource Manager database is not available for use with
the server.
System Action: The server <serverName> will keep attempting to rollback
transaction <tranName> on database <databaseName> each time it successfully
opens a connection to the database.
User Response: Establish why the server is unable to rollback this transaction on
the Resource Manager database and correct the problem. Diagnostics for the
Resource Manager may be useful.

Server <serverName> is ignoring the configured XA Resource Manager
database <databaseName> defined because it is already defined.
Explanation: Two Resource Managers have been configured with the same unique
identity. Each configured XA Resource Manager must be uniquely identified to a
server. The unique identity is the databaseName of a rdbConnection image.
System Action: The server continues with initialization.
User Response: Check that the two configured XA Resource Managers refer to the
same database. If they do, this message can be ignored. However, if they do not,
access to the ignored Resource Manager will be impossible until the two XA
resource managers have been assigned unique identities and the server has been
restarted.

Server <serverName> received an error from xa_end(TMSUCCESS) during
completion processing for transaction <tranName> on the XA Resource
Manager database <databaseName>. The return code was <returnCode>.
Explanation: The server <serverName> has failed to successfully complete a unit
of work on an XA Resource Manager for the specified transaction. The request was
xa_end and the return code received was <returnCode>.
System Action: The CosTransactions::Resource representing the updates to the
XA Resource Manager database <databaseName> on server <serverName> for the
specified transaction will vote to rollback the transaction. This will result in the
transaction being rolled back.
User Response: Establish why the Resource Manager was unable to successfully
complete the request and take appropriate action if required. Other messages in the
log and diagnostics for the Resource Manager may be useful in identifying the
problem.

Server <serverName> received an error from xa_prepare during two phase
commit processing for transaction <tranName> on the XA Resource Manager
database <databaseName>. The return code was <returnCode>.
Explanation: The server <serverName> has failed to successfully complete an
xa_prepare during two phase commit processing for the specified transaction. The
return code received was <returnCode>.
System Action: The CosTransactions::Resource representing the updates to the
XA Resource Manager database <databaseName> on server <serverName> for the
specified transaction will vote to rollback the transaction. This will result in the
transaction being rolled back.
User Response: Establish why the Resource Manager was unable to successfully
complete the request, and take appropriate action if required. Other messages in
the log and diagnostics for the Resource Manager may be useful in identifying the
problem.

Appendix M. XA Messages 307

Server <serverName> received an error from xa_rollback during rollback
processing for transaction <tranName> on the XA Resource Manager
database <databaseName>. The return code was <returnCode>.
Explanation: The server <serverName> has failed to complete an xa_rollback
request during transaction rollback processing. The return code received was
<returnCode>.
System Action: The server action will depend on the return code received:

v If the return code indicates that the unit of work has been rolled back, the
transaction can rollback successfully.

v If the return code indicates a heuristic problem, the transaction will report an
appropriate heuristic outcome.

v If the return code indicates a Resource Manager problem, the transaction will
report an outcome of HeuristicHazard.

User Response: Establish why the Resource Manager was unable to successfully
complete the request, and take appropriate action if required. Other messages in
the log and diagnostics for the Resource Manager may be useful in identifying the
problem.

Server <serverName> received an error from xa_commit during one phase
commit processing for transaction <tranName> on the XA Resource Manager
database <databaseName>. The return code was <returnCode>.
Explanation: The server <serverName> has failed to complete an xa_commit
request during transaction one-phase commit processing. The return code received
was <returnCode>.
System Action: The server action will depend on the return code received:

v If the return code indicates that the unit of work has been rolled back, the
transaction will report an outcome of RolledBack.

v If the return code indicates a heuristic problem, the transaction will report an
appropriate heuristic outcome.

v If the return code indicates a Resource Manager problem, the transaction will
report an outcome of HeuristicHazard.

User Response: Establish why the Resource Manager was unable to successfully
complete the request, and take appropriate action if required. Other messages in
the log and diagnostics for the Resource Manager may be useful in identifying the
problem.

Server <serverName> received an error from xa_commit during two phase
commit processing for transaction <tranName> on the XA Resource Manager
database <databaseName>. The return code was <returnCode>.
Explanation: The server <serverName> has failed to complete an xa_commit
request during two-phase commit processing of a transaction. The return code
received was <returnCode>.
System Action: The server action will depend on the return code received:

v If the return code indicates that the unit of work has been committed, the
transaction can commit successfully.

v If the return code indicates a heuristic problem, the transaction will report an
appropriate heuristic outcome.

v If the return code indicates a Resource Manager problem, the transaction will
report an outcome of HeuristicHazard.

308 Problem Determination Guide

User Response: Establish why the Resource Manager was unable to successfully
complete the request, and take appropriate action if required. Other messages in
the log and diagnostics for the Resource Manager may be useful in identifying the
problem.

Server <serverName> received an error from xa_forget during completion
processing for transaction <tranName> on the XA Resource Manager
database <databaseName>. The return code was <returnCode>.
Explanation: The server <serverName> has failed to complete an xa_forget
request during transaction completion processing. The return code received was
<returnCode>.
System Action: As the transaction outcome has already been determined, the
server will ignore the error.
User Response: Establish why the Resource Manager was unable to successfully
complete the request, and take appropriate action if required. Other messages in
the log and diagnostics for the Resource Manager may be useful in identifying the
problem.

Server <serverName> received an <axRequest> from the XA Resource
Manager database <databaseName>. The transaction service was unable to
process the request, and returned <returnCode>.
Explanation: The server <serverName> has failed to process a request received
from the Resource Manager during normal processing. The request received was
<axRequest> and the return code returned was <returnCode>.
System Action: None.
User Response: Establish why the Resource Manager was unable to successfully
complete the request, and take appropriate action if required. Other messages in
the log and diagnostics for the Resource Manager may be useful in identifying the
problem.

Server <serverName> attempted to re-use a connection to XA Resource
Manager database <databaseName>, but the connection has non-transactional
work outstanding.
Explanation: An XA Connection has been used to access an XA Resource
Manager outside the scope of a transaction, and has an old unit of work in
progress. The Transaction Service has received an ax_reg call from the XA
Resource Manager to indicate the start of the unit of work, but it has not received
an ax_unreg call to indicate that the unit of work is complete. If the unfinished unit
of work relating to this server has associated locks on the database, these will not
be released until the unit of work is completed.
System Action: The server <serverName> will be unable to use the connection for
transactional work. If the unfinished unit of work has locks on the database, access
to the database may be limited.
User Response: Establish the creator of the incomplete unit of work and make the
changes required to ensure that the unit of work is completed. Note that if a request
to a server causes a non transactional unit of work to be started (by accessing an
XA database outside the scope of a transaction), it must complete that unit of work
before returning. If the unfinished unit of work causes problems when accessing the
XA Resource Manager <databaseName>, external facilities made available by the
XA Resource Manager must be used to complete the unit of work.

Server <serverName> received an error from xa_close when closing a
connection to the XA Resource Manager database <databaseName>. The
return code was <returnCode>.
Explanation: The server <serverName> has failed to close a connection to an XA
Resource Manager. The return code received was <returnCode>.

Appendix M. XA Messages 309

System Action: If possible, appropriate action will be taken to force closure of the
connection. If this is not possible, the connection will be left and will not be re-used.
User Response: Establish why the Resource Manager was unable to successfully
complete the request, and take appropriate action if required. Other messages in
the log and diagnostics for the Resource Manager may be useful in identifying the
problem.

XA support has been enabled in the transaction service.
Explanation: The XA support of the Transaction Service has been loaded in the
server. This is DLL somtrx1i.dll.
System Action: Server continues initializing.
User Response: This message is for information only. No action is required.

Heuristic decision made locally for transaction <tranName> (XID <xid>) will
affect updates made to XA Resource Manager database <databaseName>.
Explanation: This message reports part of the impact of a locally made heuristic
decision.
System Action: The server completes the transaction locally and in the database
server.
User Response: Check for heuristic exceptions raised in other local servers
involved in the transaction. Follow local procedures to correct data where these
exceptions occur.

Data updated in XA Resource Manager database <database> under
transaction <tranName> (XID <xid>) is locked, waiting for an upstream server
to end the transaction.
Explanation: This message reports that a transaction in the local server is waiting
for another server to send it the outcome of the transaction. This is taking longer
than expected.
System Action: The server waits to complete the transaction.
User Response: Restart any servers that have been involved in the transaction
and are currently unavailable.

An attempt to prepare transaction <tranName> (XID <xid>) on database
<databaseName> in server <serverName> failed. The transaction will be rolled
back.
Explanation: Transaction <tranName> is being committed but a problem has been
encountered preparing data that was part of the transaction for commit. The data
resides on database <databaseName>. As a result the transaction will be rolled
back. <tranName> is the name of the transaction used internally by the transaction
service. It is included so that this message can be associated with other messages
from the same transaction. <xid> is the name of the transaction that was provided
to the database. <databaseName> is the databaseName attribute of the appropriate
RdbConnection image.
System Action: The transaction is rolled back.
User Response: Check in the activity log for earlier messages that may indicated
the cause of the problem and take action as appropriate for these messages.

An attempt to prepare transaction <tranName> (XID <xid>) on database
<databaseName> in server <serverName> failed because an attempt to obtain
a connection to the database failed. The transaction will be rolled back.
Explanation: Transaction <tranName> is being committed, but a connection could
not be obtained to database <databaseName> in order to prepare data that was
part of the transaction for commit. As a result the transaction will be rolled back.
<tranName> is the name of the transaction used internally by the transaction
service. It is included so that this message can be associated with other messages

310 Problem Determination Guide

from the same transaction. <xid> is the name of the transaction that was provided
to the database.<databaseName> is the databaseName attribute of the appropriate
RdbConnection image.
System Action: The transaction is rolled back.
User Response: Check in the activity log for earlier messages that may indicated
the cause of the problem and take action as appropriate for these messages.

An attempt to commit transaction <tranName> (XID <xid>) on database
<databaseName> in server <serverName> failed because an attempt to obtain
a connection to the database failed. This is reported to the transaction service
as a transient error.
Explanation: Transaction <tranName> is being committed, but a connection to
database <databaseName> could not be obtained in order to commit the data. This
is reported to the transaction service as a transient error. <tranName> is the name
of the transaction used internally by the transaction service. It is included so that
this message can be associated with other messages from the same transaction.
<xid> is the name of the transaction that was provided to the database.
<databaseName> is the databaseName attribute of the appropriate RdbConnection
image.
System Action: The transaction service will retry the commit according to the
configured settings of the transaction service parameters "commit retry limit" and
"retry restricted" for server <serverName>.
User Response: Check in the activity log for earlier messages that may indicate
the cause of the problem, and take action as appropriate for these messages. If the
problem persists such that the transaction service completes the configured number
of retries without success, the updates to the database <databaseName> will
remain uncommitted. In this situation, steps must be taken to commit the
transaction using the facilities provided by the database provider. If this is not done,
locks may remain on the database, and the database will retain information about
the transaction in its log, which may result in problems due to the log being full.

An attempt to rollback transaction <tranName> (XID <xid>) on database
<databaseName> in server <serverName> failed because an attempt to obtain
a connection to the database failed. This is reported to the transaction service
as a transient error.
Explanation: Transaction <tranName> is being rolled back, but a connection to
database <databaseName> could not be obtained in order to commit the data. This
is reported to the transaction service as a transient error. <tranName> is the name
of the transaction used internally by the transaction service. It is included so that
this message can be associated with other messages from the same transaction.
<xid> is the name of the transaction that was provided to the database.
<databaseName> is the databaseName attribute of the appropriate RdbConnection
image.
System Action: The transaction service will retry the rollback according to the
configured settings of the transaction service parameters "commit retry limit" and
"retry restricted" for server <serverName>.
User Response: Check in the activity log for earlier messages that may indicate
the cause of the problem, and take action as appropriate for these messages. If the
problem persists such that the transaction service completes the configured number
of retries without success, the updates to the database <databaseName> will
remain active. In this situation, steps must be taken to rollback the transaction using
the facilities provided by the database provider. If this is not done, locks may remain
on the database, and the database will retain information about the transaction in its
log, which may result in problems due to the log being full.

Appendix M. XA Messages 311

An attempt to forget transaction <tranName> (XID <xid>) on database
<databaseName> in server <serverName> failed because an attempt to obtain
a connection to the database failed. This is reported to the transaction service
as a transient error.
Explanation: Database <databaseName> reported a heuristic error during the
completion of transaction <tranName>, and so must be directed to forget the
transaction. However, a connection to the database could not be obtained in order
to make the request to forget. This is reported to the transaction service as a
transient error. <tranName> is the name of the transaction used internally by the
transaction service. It is included so that this message can be associated with other
messages from the same transaction. <xid> is the name of the transaction that was
provided to the database. <databaseName> is the databaseName attribute of the
appropriate RdbConnection image.
System Action: The transaction service will retry the forget according to the
configured settings of the transaction service parameters "commit retry limit" and
"retry restricted" for server <serverName>.
User Response: Check in the activity log for earlier messages that may indicate
the cause of the problem, and take action as appropriate for these messages. If the
problem persists such that the transaction service completes the configured number
of retries without success, the database must be told to forget the transaction using
the facilities provided by the database provider. If this is not done, the database will
retain information about the transaction in its log which may result in problems due
to the log being full.

A request has been received to prepare/commit transaction <tranName> (XID
<xid>) on database <databaseName> in server <serverName>. However, due
to previously reported failures the database has already been rolled back. As
a result the transaction will be rolled back.
Explanation: Transaction <tranName> is being committed, and a request has been
made for updates to database <databaseName> to be committed. However, due to
earlier reported problems, the database has already been rolled back. <tranName>
is the name of the transaction used internally by the transaction service. It is
included so that this message can be associated with other messages from the
same transaction. <xid> is the name of the transaction that was provided to the
database. <databaseName> is the databaseName attribute of the appropriate
RdbConnection image.
System Action: The transaction will be rolled back.
User Response: Check in the activity log for earlier messages that may indicate
why the database was previously rolled back, and take action as appropriate for
these messages.

A request to close a connection to database <databaseName> on server
<serverName> was received when the connection was active for transaction
<tranName> (XID <xid>). The database will be rolled back immediately and the
resource representing the transaction will vote rollback when the transaction
is completed.
Explanation: The server has encountered problems using a connection to
database <databaseName>, and has decided to close the connection. However, the
connection is currently associated with transaction <tranName>, which means that
the connection is currently being used to update the database. As a result, the
database will be rolled back. <tranName> is the name of the transaction used
internally by the transaction service. It is included so that this message can be
associated with other messages from the same transaction. <xid> is the name of
the transaction that was provided to the database. <databaseName> is the
databaseName attribute of the appropriate RdbConnection image.
System Action: The database is rolled back immediately, but the transaction is

312 Problem Determination Guide

effectively marked ’rollback only’. As a result, any subsequent attempt to commit the
transaction will result in a rollback.
User Response: Check in the activity log for earlier messages that may indicate
why the decision was made to close the connection, and take action as appropriate
for these messages.

“Appendix K. Transaction Service Messages” on page 291

Appendix M. XA Messages 313

IBM

Part Number: SC09–2799–00

Printed in the United States of America

SC09–2799–00

