RBASIC
CROSS DEVELOPMENT SYSTEM

by M. J. Budiong

Copyright (c) 1992 M. J. Budiong
Published by King Computer Services, Inc.
10350 Samoa Avenue, Tu]unga, Ca 91042. (818) 951-5240

Copyright (c) 1988 1989; 1900, 1991 -
King Computér Services; Inc.
10350 Samoa Avenue, Fujunga, CA $1042
(818) 9513240

RBASIC SUPPORT

PLEASE READ THIS AGREEMENT
BEFORE COMMENCING USE OF RBASIC.
IF YOU DO NOT AGREE WITH THIS SUPPORT AGREEMENT,
PLEASE RETURN YOUR RBASIC PACKAGE FOR A REFUND.

-

In our attempt to make the RBASIC package as inexpensive as possible, we have not included the provision for
phone support in the cost of the package. However, since the Beta test was completed, we have found that all
support calls have involved bugs in the BASIC code, not in the RBASIC Compiler itself. This is not to say that
the Compiler is guaranteed bug-free, but a great deal of testing was done in Beta.

In view of the fact that it is extremely expensive, time consuming and sometimes impossible to sort out what the
problem is with a program on the phone, we will not provide phone support for the RBASIC compiler.

We emphasize that before using RBASIC, you:

1. Thoroughly test your program.
2. Read the RBASIC Manual, making sure that you do not go past any words you do not understand.

If you come across a word you do not understand, look it up in a good dictionary before proceeding.
3. Revise your code and make any necessary changes where RBASIC differs from Standard M100 BASIC.
4. Retest your program to ensure there are no bugs before using RBASIC.
5. After compiling your code with RBASIC, run it as a .CO program before trying to burn eproms.
6. Only when you are certain there are no problems with the code, burn your EPROM.

Proceeding in this fashion makes it easier to isolate just where the problem is.

If after you have thoroughly tested your program, you have a problem with the output using RBASIC, please do
the following:

1. Write down exactly what the problem is.

2. Write down the line number where the the problem occurred.

3. Write down a brief description of what the code is supposed to be doing.

4. Send this with a copy of your program on a diskette to our Technical Support department.

We will endeavor to find out what the problem is and fix it. If it turns out to be a bug in RBASIC, we will return
your program and the revised RBASIC compiler free of charge.

If the problem is not caused by RBASIC, but by some other problem, your program will be returned with notes
on what we found. In common with the policy of many software houses, if the problem is not caused by a bug in
our product we will bill for time spent on the problem. Our standard rate for this service is $60.00/hr, in 15
minufe increments.

After an initial review, our technical support specialist will have some idea of how long the fix will take. If he
estimates it will be lengthy to locate and fix the problem, we will contact you to find out how you wish to proceed.

King Computer Services, Inc.
1016 North New Hampshire, Los Angeles, CA 90029

II.

III.

. Terms and conditions of sale and license of King
Computer Services, Inc. (KCSI) Software purchased from
King Computer Services or an authorized dealer.

Customer

A,

"LIMITED WARRANTY
Obligations.

Customer assumes full responsibility that
this software meets the specifications,
capacity, capabilities, versatility and
other requirements of customer.

Customer assumes responsibility for the
conditions and effectiveness of the
operating environment in which the
software is to function, and for its
installation.

KCSI Limited Warranty.

A.

B.

Limit of
A.

KCSI makes no warranty as to the design,
capability, capacity or suitability for
use of the software. The software is
licensed on an AS IS basis, without
warranty other than for the media.

No one is authorized to alter the terms of
this warranty.

Liability.

KCSI shall have no liability or
responsibility to customer or any other
person or entity with respect to any
liability, loss or damage caused or
alleged to be cause directly or indirectly
by the software.

KCSI will not be liable for any damages
caused by delay in delivering or supplying
the software.

Iv.

Warranty and License

Page 2

RBASIC Compiler Software License.

A.
B.
c.

D.

The Copyright on the RBASIC Compiler is
held by King Computer Services, Inc.
Applicable copyright laws apply to the
software.

Title to the software remains with King
Computer Services, Inc.

The customer may use the Software on one
host computer.

The customer is permitted to make
additional copies of the software only for
backup purposes.

RBASIC Libraries Software License.

A.

B.

C.

D.

The Copyright for the Libraries is held by
King Computer Services, Inc.

Applicable copyright laws apply to the
software.

Title to the software remains with King
Computer Services,Inc.

The software is intended to be used as an
integral part of (linked with) software
created by the customer. When used in such
a format, it may be distributed without
further licensing or royalty.

The Library files (.REL) files themselves
may not be distributed, or reproduced in
any way but may be copied only for back up
purposes.

This manual is

Copyright (c) 1988 King Computer Services, Inc.
It may not be copied or reproduced in any way.

Table of Contents

Page 1

Table of Contents

1. Installation.

Distribution Diskette - Installing on Hard Drive -
Installing on a Dual Floppy System.

2. Overview.

About This Manual - Why Use RBASIC - Operating
Description - Changes from Earlier Versions

3. Using RBASIC

Developing - Uploading - Compiling - Assembling -
Downloading - Testing - Compiling for ROM

4. RBASIC Syntax

General Syntax - Unsupported Commands - Commands
Requiring Modified Syntax - Commands that are
Treated Differently - Handling String Space -
Undocumented BASIC Syntax - Additional Syntax
Problems

5. Compiler Switches.

What is a Switch - Including Comments - Noisy
Compile - Line Numbering - Tracing Program
Execution - Error Trapping - Interrupt Trapping -
Setting the ORG Address - Naming the ROM Chip -
Assembling with MAC.

6. Sending from the PC

The SND.EXE Program - SND.EXE Defaults - SND.EXE
Switches

Table of Contents

Page 2

7. Receiving on the PC

The RCV.EXE Program - RCV.EXE Defaults - RCV.EXE
Switches

8. Receiving on the 100/102

‘Description of COLOADER.EXE - Using COLOADER.EXE -
Using COLOADER.EXE With The ROM Eliminator -
Technical Information About COLOADER.EXE - COLOADER
Switches -

9. The A100 Assembler

Overview - Opcodes - Labels - Pseudo-Ops - Special
Opcodes - Assembler Output - Compiling for MAC vs
Al100

10. ON ERROR Processing

Using No Error Checking - Errors Using Line Numbers
- ON ERROR Logic - ON ERROR Space Saving Tips

11. ON INTERRUPT Processing

Overview - Space Saving Tips

12. Compiler Error Messages

Keyword Errors - Target Line Number Errors - IF
ELSE Errors - FOR NEXT Errors - Syntax Errors -
Assembler Errors

13. Technical Information

Compiler Description - Reserved Memory - Code
Execution Speed - Overwriting HIMEM

14. Questions and Problems.
Common Questions - Known Bugs

i

Table of Contents
Page 3

15. Assembly Language MERGE.

Extending BASIC - Assembly Source Compatibility -
Overview of Techniques - Labeling Restrictions -
Program Control Restrictions - Programming Examples
- Option ROM Considerations

THE FOLLOWING CHAPTERS APPLY TO VERSION 5.0 ONLY

APPLIES

16. Multiple Programs on One ROM.

Problems associated with program conflicts when
more than one program is put on a ROM - Parent and
Child programs - Inheritance - Differences in Child
Programs - Differences in Parent Progranms

17. Compiling for the Model 200.

Using RBASIC options for the Model 200 -
Limitations regarding CALLS - Receiving on the
Model 200 - Using COLOADER.EXE

18. Version 5 Enhancements.

New switches - Non-KEY Interrupts /X. - Compiler
Control Directives

TO ALL VERSIONS

Appendix A ROMS and HEX Files.

Selecting and Using EPROMS - Intel HEX Format
Information

Installation

Chapter 1, Page 1

Distribution Diskette.

Installation

The distribution diskette contains the following files.

1. RBASIC.EXE
2. Al100.EXE

3. RCV.EXE

4. SND.EXE

5. COLOADER. EXE
6. ‘ RCO.ASM

7. RRM.ASM

8. XXXXXXXX.SUP

The BASIC .to ROM compiler
(translator).

An 8085 Assembler used to
assemble the output from
RBASIC.EXE.

A PC program to upload BASIC
files from the Model 100/102 to
the PC.

A PC program to download .HEX
files from the PC to the Model
100/102.

A PC program that will create one
of two loader programs RCO.BA or
RRM.BA that can be sent to the
Model 100/102.

The source code for an assembly
language program that is used by
COLOADER.EXE to create RCO.BA.

The source code for an assembly
language program that is used by
COLOADER.EXE to create RRM.BA

Several support files containing
Assembly language source code
support routines that are
included in the assembly by the
Al100 assembler.

Installation

Chapter 1, Page 2

10.

11.

12.

13.

XXXXXXXX.100 Support files that are specific
' . to the Model 100/102.

XXXXXXXX.CO,ROM Support files that are specific
to the Model 100/102 that require
different versions depending on
whether the file is being
compiled as a .CO file or a ROM
image.

XXXXXXXX.BA One or moré BASIC files that may
be used for testing the compiler.

XXXXXXXX.DOC Document files relating to the
sample BASIC prograns.

README.RBS This file if included will
contain any changes to the
information in this manual.

Hard Drive Installation.

Working with a hard drive is preferable but not essential.
Simply create a directory on your hard drive to contain the
files. The directory may have any name, but this example
uses RBASIC.

1.

Ensure you are currently logged in to the hard
drive by typing

C: <ENTER>

Change to the root directory by typing

cd \ <ENTER>

Create the new directory by typing

md rbasic <ENTER>

Change into the newly created directory by typing

cd rbasic . <ENTER>

Installation

Chapter 1, Page 3

Insert the distribution diskette in drive A:.

Copy all the data from drive A: to the new
directory by typing

copy Ak, * <ENTER>

Put the distribution diskette away and save it as
your backup.

Dual Floppy Installation.

1.

2‘

Insert a blank diskette in drive B:
Format the diskette by typing
format b: ‘ <ENTER>

Press enter when the format program asks you to
insert the diskette in drive B:.

When the format program is done it will ask you if
you want to format another. Type 'N' and press
enter.

Insert the distribution diskette in drive A:.

Copy all the files to drive B: by typing

copy A:*.* B: <ENTER>

When the copy is completed, remove the distribution
diskette from drive A: and save it as your back up.

Remove the diskette you have just created from
drive B: and label it "RBASIC WORKING DISKETTE".

An Overview of RBASIC

Chapter 2, Page 1

An Overview of RBASIC

About This Manual.

Some of the aspects of using RBASIC are very technical.
While every effort has been made to keep it simple, you
will be exposed to some assembly language coding concepts
and some of the areas of the Model 100/102 Operating System
that you do not normally have to deal with when developing
interpreted BASIC code.

It is important therefore that you read this manual and
fully understand the differences between RBASIC and BASIC
and how the development cycle works before you plunge in to
your code. Without prior assembly language programming
experience, you can end up over your head very quickly if
you do not read this manual.

Please read the manual.

Why use RBASIC.

The primary reason for using RBASIC is the ease with which
it allows Model 100/102 programs to be moved into and run
from option ROMs. It will allow very large programs to be
compiled and loaded into an option ROM, thus freeing up RAM
for data files.

RBASIC is a semi-compiler. It does not produce true
compiled code. Large portions of code are left for the
BASIC interpreter to handle. It may produce an improvement
in execution speed because of the amount of code that is
actually compiled. Certain key verbs such as GOTO, GOSUB
and RETURN that normally have to be interpreted by BASIC
are compiled to faster machine language equivalents.

Every statement (initial keyword in a command) is called
directly. This means that the interpreter does not have to
search through tables to determine which command to
execute. In some areas, notably FOR-NEXT handling, RBASIC
runs slower than interpreted BASIC, and this may offset the
speed gained in other areas.

An Overview of RBASIC

Chapter 2, Page 2

RBASIC creates code security. Whether you use RBASIC to
generate ROMable code or .CO programs, the program cannot
be LISTed. It is conceivable that someone could disassemble
the program, but it is much harder to decipher what is
happening in the program because of the way the code is
generated.

RBASIC creates code integrity. When you have a critical
application on the line such as a process control, the last
thlng you want is some bright spark delving into the code
to improve performance by changing the program.

RBASIC is royalty free. Once you buy the package which is
competitively priced, you may create, modify and burn as
many ROMs as you want and you pay nothing further for the
use of the program.

RBASIC is a no strings attached package. We do not attempt
to nor do we pretend to own any portion of your code. You
may use RBASIC as you would any other compiler. What you
develop with it is yours to keep.

For the assembly language programmer, the RBASIC compiler
produces commented assembly language listings that allow
hand modification to handle special code requirements and
the inclusion of machine language routines that may be
assembled directly into the final output.

Operating Description.
Briefly the steps for the development of a BASIC ROM are.

1. Write a BASIC program on the Model 100 that follows
the simple syntax guidelines for RBASIC. Run it and
test it until it works to your satisfaction.
Remember when testing that the final program will
be committed to hardware (a ROM), and it is much
harder to correct errors once the ROM is burned.

2. Upload the program to the PC.

3. Compile (translate) the program using RBASIC
specifying that the output is to be used to create
a .CO program. The output from the compiler will be
an assembly language source code file ORGed in high
memory that makes direct calls to Model 100/102
operating system routines.

An Overview of RBASIC

Chapter 2, Page 3

Assemble the file created by RBASIC using A100.

Download the assembled program to the Model 100/102
and run it as a .CO program to ensure that the
translation worked correctly. Test and correct as
needed.

Compile (translate) the program using RBASIC
specifying that the output is to be used to create
a ROM image program. The output from the compiler
will be an assembly language source code file ORGed
at address 0 in memory that makes indirect calls to
Model 100/102 operating system routines. The file
will also include the necessary ROM support
routines.

Assemble the file created by RBASIC using A100.

Download the assembled program to a ROM burner, or
ROM Emulator such as the SoundSight Chameleon, or
the GTEK ROM Emulator.

If you have downloaded to a ROM emulator you may do
further testing and correction before finally
committing the result to a ROM.

The RBASIC package includes send and receive programs
(SND.EXE and RCV.EXE) designed to send from and receive to
a PC clone. They are included for convenience, but it is
recommended that you use your own telecommunications
program to do the transfers. SND.EXE and RCV.EXE do not
work with all clones and if either of them doesn't work
then you will have to provide a TC package of your own.
Every package I have seen supports ASCII transfers (with
XON/XOFF flow control) which is the type of transfer needed
to work with RBASIC.

Using RBASIC

Chapter 3, Page 1

Using RBASIC

Developing.

Before you begin writing or modifying programs, study the
chapter on syntax differences. Every effort has been made
to allow all of the Model 100/102 BASIC syntax to be used
in a program, but there are a handful of exceptions and
rules that you need to know.

Using the guidelines, develop or modify your program to
conform to these rules. Test the program thoroughly to
ensure that it runs to your satisfaction. The RBASIC
compiler cannot detect logic errors in a program, and it
assumes that it is compiling a program that will run on a
Model 100/102.

Uploading.
Once the program is running satisfactorily, connect the PC
and Model 100/102 via their RS-232 ports using a null modem

cable or a straight cable with an null modem adapter.

Change to the directory (for hard drive) or the drive (for
dual floppy systems) that contains the RBASIC development
system.

Assuming the program is named PROGA.BA, on the PC type
RCV PROGA.BA <ENTER>

On the model 100 from the BASIC screen type

SAVE "COM:88N1E" <ENTER>

The RCV.EXE program will report the progress of the upload,
and will inform you when the upload is completed.

The BASIC program will now exist on the PC as an ASCII file
named PROGA.BA

Refer to the Chapter on Receiving files for further
information on using RCV.EXE or if you are having trouble
receiving. Some PCs cannot receive comfortably at 9600 baud
and it will be necessary to change the baud rate as covered
in that chapter.

Using RBASIC

Chapter 3, Page 2

Compiling.

The first step is to compile the program as a .CO file. The
RBASIC command line supports various switches which are
covered in detail in the chapter on compiler options. For
the time being we will concentrate on three.

The /O switch allows you to specify an ORG address other
than the default of 0 (zero). Any time the ORG address is
set to zero, the compiler assumes that it will generate a
ROM file. Any address other than zero will generate a .CO
type program. The output .CO file from the compiler is
anywhere from 10% to 50% larger than the original BASIC
program. For the time being calculate the size of your
original BASIC program and add about 50% to the size.
Subtract this value from 62960 (MAXRAM) and that will be
the ORG address for the .CO file. Assuming PROGA.BA on the
Model 100/102 is about 2000 bytes, we will reserve 3000
bytes for the program and set the ORG address at 59000 (a
nice round number). The switch for this will be /059000.
See the detailed description of the /O switch in the
chapter on switches for more information on ORG addresses.

If the program uses ON ERROR logic, the compiler needs to
know this. ON ERROR logic generates extra code for each
statement in order to allow error trapping. The ON ERROR
switch is /E.

If the program uses interrupt trapping logic ON COM, ON
TIME$ or ON KEY, the compiler also needs to know this to
generate additional interrupt checking logic. The ON
INTERRUPT switch is /I.

RBASIC assumes a default file extension of .BA so the
command line to compile the program would be at least

RBASIC PROGA /059000

If the other switches are needed, they must be separated by
spaces.

RBASIC PROGA /059000 /E /I

Assuming there are no errors, the output file will be
called PROGA.ASM and will be an assembly language source
code file ready for assembly. If you have errors, please
refer to the chapter on errors which contains descriptions
on how to handle them.

Using RBASIC

Chapter 3, Page 3

Assembling.

The Al100 assembler is a very rudimentary assembler designed
to handle the output from the RBASIC compiler it has no
switches or options. It does support some special non-
standard opcodes for compiling ROM code. Please refer to
the chapter on the assembler for a more detailed '
description.

The PROGA.ASM file would be assembled using the command
A100 PROGA <ENTER>

The output from an assembly is three files. PROGA.SYM
contains the addresses and numeric values for all labels
and EQUate operators in the .ASM source code file.
PROGA.PRN contains a listing file that contains a complete
hex map of the assembled program including all INCLUDE
files. PROGA.HEX is an Intel HEX file suitable for
downloading to the Model 100/102 for testing.

Downloading.

The PROGA.HEX file may now be downloaded to the Model
100/102 for testing. The Model 100/102 requires a loader
that can take the Intel .HEX file and poke it in to memory
as a machine language program. COLOADER.EXE has been
provided to create the loader for you. The loader must be
set up at an address that is 500 bytes less than the ORG
address used for the program you will be testing. PROGA in
the example above was ORGed at 59000 so on the PC type

COLOADER RCO /058500

This will use RCO.ASM on the distribution diskette to
create a BASIC program named RCO.LDR.

On the Model 100 type
RUN "COM:88nle <ENTER>
From the PC type

SND RCO.LDR <ENTER>

Using RBASIC

Chapter 3, Page 4

Once the program is loaded it will run on the Model 100 and
display the message “Creating RCO.CO Program" and will
return to the BASIC 'Ok' prompt when it is completed. You
may delete the RCO.BA program by typing NEW. Your Menu will
now show a new file RCO.CO. This is a machine language
loader that will quickly download the main program for you.

Now we are ready to send the main program. position the
cursor over RCO.CO and press ENTER. The screen will go
blank and the Model 100/102 is now in receive mode waiting
for you to send it a file. From the PC type

SND PROGA.HEX <ENTER>

RCO.CO will display dots '.' on the screen as records are
received from the PC. When the download is complete, you
will be returned to the Model 100/102 menu.

This completes the downloading process. For further
information on SND.EXE, consult the chapter on sending
files from the PC and on receiving on the Model 100/102.

Testing.

Once the program is downloaded it can be run by calling the
entry address. For this particular example on the Model
100/102 type

CALL 59000 <ENTER>

The program should run exactly as it did when it was a
BASIC program. Test all the ins and outs of the program.
Error trapping logic and any Interrupt logic. Ensure that
free space has not been used up when exiting the program.

If there are any problems with the program, try to isolate
the line or lines causing the problem. See the Trace switch
and Line number switch in the Compiler switches chapter and
try re-compiling and running with trace on to isolate the
problem. Check the syntax of the line(s) in question and
follow the guides in the chapter on errors. Once the
program is running correctly the final compile can be done.

Using RBASIC

Chapter 3, Page 5

Compiling for ROM.

Compiling for the ROM version is identical to compiling for
a .CO version, except that the ORG address is omitted from
the command line.

RBASIC PROGA /E /1 <ENTER>

There is one more thing that you may want to do for the ROM
version. Once a program is burned in to a ROM, it is
started by CALLing 63012. Popular commercial ROMs shortcut
this approach by having the ROM install a name for itself
on the Model 100/102 menu which may be used to start the
ROM. The ROM compiler allows this option using the /R
switch followed by up to 6 characters of name that will be
placed on the menu exactly as you enter them.

RBASIC PROGA /E /I /RProga <ENTER>

The above line will compile the program and add in code to
create a menu entry of "Proga" on the Model 100/102 menu
that may be used to start the ROM.

When the ROM is first plugged in, it is started by

CALL 63012 <ENTER>

Once this is done, the name "Proga" will appear on the menu
can be used to start the ROM.

The output file from RBASIC will be called PROGA.ASM and
will be larger than the original PROGA file because of the
addition of special code to support the Option ROM logic.

PROGA.ASM is assembled with A100
A100 PROGA <ENTER>

which will again create the files PROGA.SYM, PROGA.PRN and
PROGA.HEX.

PROGA.HEX is in Intel Hex format, a very standard format
used by virtually every ROM burner on the market. This file
can be downloaded to the burner in whatever way is usual
for that burner and the ROM can be created.

RBASIC Syntax

Chapter 4, Page 1

RBASIC Syntax

General Syntax Rules.

In general, RBASIC supports all of the 100/102 syntax that
would apply to a compiled BASIC. It does not support
commands that relate only to interpreted BASIC such as
MERGE, LIST and LLIST. It also does not support the
undocumented syntax of 100/102 BASIC such as NEXT C,B,A.

There are a few code ordering requirements but in general
you will not find much difference between BASIC and RBASIC
because a lot of work went into keeping them compatible to
allow easy program conversion.

Unsupported Commands.

The only commands that are not supported in RBASIC are the
ones that clearly relate to interpreted BASIC. These are
SAVE, CSAVE, LIST, LLIST, MERGE, EDIT, CONT, DSKO$ and NEW.

The IPL command is not supported, but is intended to be
included in a future release.

The MERGE verb is used for including assembly language
source code files in an RBASIC program. Please refer to the
detailed chapter on using the MERGE verb.

RBASIC Syntax

Chapter 4, Page 2

Commands Requiring Modified Syntax.
FOR-NEXT.

FOR-NEXT loops within the code are actually rewritten and
compiled into a loop with a control variable as follows

Original Code:

10 FOR A =1 TO 10

20 'Do Something

30 NEXT A

40 FOR B = 100 TO 1 STEP -1
50 'Do Something

60 NEXT B

70 FOR A = C TO D STEP E

80 'Do Something

90 NEXT A

Becomes:

10 LET A =1

20 'Do Something

30 LET A=A+1:IF NOT (A>10) THEN GOTO 20
40 LET B=100

50 'Do Something

60 LET B=B+(-1):IF NOT (B<1l) THEN GOTO 50
70 LET A=C

80 'Do Something

90 LET A=A+E:IF NOT (A>D) THEN GOTO 80

The above is representative of the way a FOR-NEXT will
behave though the actual technique used produces code that
is a little tighter than the above example.

The previous examples all show FOR-NEXT loops starting on a
new line number for illustration only. FOR-NEXT controls
may be placed anywhere on the line as in

10 PRINT "START":FOR A = 1 TO 10:PRINT A;:NEXT A

RBASIC Syntax

Chapter 4, Page 3

Using this construction imposes some limitations on syntax,
variable use and timing.

First any variables used in a FOR-NEXT control should not
be modified within the loop.

10 B=100

20 FOR A=1 TO B
30 B=B+1

40 NEXT A

The above code in BASIC will correctly cause A to be
incremented to 100 and the loop will end. BASIC evaluates
the value of B once at line 20 and then ignores all changes
to B in line 30.

In RBASIC the above will produce an infinite loop. Since A
is compared to B each time a NEXT is issued, A will never
become greater than B. If a step variable is used, it is
subject to the same restrictions.

10 E = 1

20 FOR A=1 TO 10 STEP E
30 E=E+1

40 NEXT A

The above causes no problem in interpreted BASIC, but in
RBASIC the step value will be increased by 1 on each pass.
The loop will execute less than 10 times because of the
change in the step variable.

Timing problems will arise when the limit or the step
values are variables rather than constants.

20 FOR A = B TO C STEP D
30 'Do Something
40 NEXT A

RBASIC Syntax

Chapter 4, Page 4

Each time the NEXT is executed, the Variables A, C and D
must be looked up in the variable table. The amount of time
the look up will take depends on where the variables are
located in the table. A variable is added to the table the
first time that it is referenced, so the timing on the
FOR-NEXT could behave differently at different times in the
program if the variables do not already exist.

If timing is critical, force the variables into existence
near the beginning of the program logic so that their
locations are fixed early in the variable table before they
are used anywhere else in the program. Once this is done,
the timing of the loop will be consistent. You will have to
time the loop to figure out what the value will be, but the
value will not change as long as the variables are
initialized at the top of the program.

10 A=0:B=1:C=10:D=1

20 FOR A = B TO C STEP D
30 'Do Something

40 NEXT A

Syntax differences.

1. Negative Step values are recognized only when the
compiler encounters a '-' as the first non-space character
after a STEP statement. The '-' must be explicitly placed

in the source code. If a STEP is to be down rather than up,
then the first character after a STEP must be a minus '-'.
If the STEP value is a negative variable then it must be
made positive and preceded with a '-'.

RBASIC Syntax

Chapter 4, Page 5

BASIC

10 E = -15

20 FOR A = 100 TO 1 STEP E
30 'Do Something

40 NEXT A
RBASIC

10 E = =15
15 E = -E

20 FOR A = 100 TO 1 STEP -E
30 'Do Something

40 NEXT A
or
10 E = ~15

20 FOR A = 100 TO 1 STEP -(-E)
30 'Do Something
40 NEXT A

Note that in both RBASIC examples the first non-blank
character after the STEP Kkeyword is a minus '-'. The
compiler uses this character to recognize a downward
stepping FOR-NEXT.

Other Syntax differences in FOR-NEXT.

2. The NEXT in a FOR-NEXT control statement must
always name the control variable.

BASIC:
10 FOR A

1 to 10: GOSUB 100 : NEXT

RBASIC:
10 FOR A = 1 to 10: GOSUB 100 : NEXT A

The absence of the variable name will result in a Missing
or Invalid NEXT variable Error during compilation.

RBASIC Syntax

Chapter 4, Page 6

3. The NEXT in a FOR-NEXT control statement must
always appear after the FOR statement. BASIC allows GOTOs
to be used to force unusual constructions which RBASIC will
not support.

BASIC:

10 GOTO 30

20 NEXT : GOTO 40

30 FOR A = 1 to 10: GOSUB 100: GOTO 20

40 'Do Something Else

RBASIC:

10 FOR A = 1 to 10

20 GOSUB 100: NEXT A
30 'Do Something Else

4. Whenever RBASIC encounters a NEXT, it operates
strictly on the assumption that the innermost currently
active FOR is to be taken to its NEXT state.

The following will work in BASIC but not in RBASIC.

10 FOR A =1 TO 10
20 'Do Something
30 IF (X<>24) THEN NEXT A ELSE NEXT A:PRINT ny=24"

The intention of the above code is to complete the FOR-NEXT
loop and carry on to the next line if X=24 or to complete
and print a message if X<>24.

RBASIC cannot handle this syntax. It sees the first NEXT A

as the complement to
produces a NEXT with
rewritten to work in

10 FOR A =1 TO 10
20 'Do Something
30 NEXT:IF X=24 THEN

line 10. The second NEXT A in line 30
FOR error. This logic must be
RBASIC.

PRINT "X=24"

RBASIC Syntax

Chapter 4, Page 7

DATA

1. DATA statements must appear on their own lines and
not mixed with other statements.

BASIC:
10 PRINT "HELLO":DATA 1,2,3

RBASIC
10 PRINT "HELLO"W
20 DATA 1,2,3

2. BASIC allows strings not enclosed in quotes as data
statements. RBASIC requires that all strings be quoted.

BASIC:
10 DATA HELLO,BYE, 10
RBASIC:

10 DATA "HELLO","BYE",10

3. RBASIC will not recognize an OUT OF DATA condition.
During compilation, RBASIC collects up all data statements
and moves them to the end of the BASIC code. When a READ
command is issued the next piece of stored DATA is read in
exactly as is done in interpreted BASIC. If a READ goes
beyond the end of the DATA statements, the program just
keeps trying to read in whatever else is in memory which is
usually support code. It is up to the programmer to ensure
that his data statements are correctly matched with read
statements.

The moving of DATA statements in an RBASIC program does not
affect the way your program behaves.

RBASIC Syntax

Chapter 4, Page 8

CALL

One of the undocumented features of the CALL Statement that
is used by many programmers is the fact that on entry to
the CALL, the DE register pair points to the remainder of
the CALL line. Several programs use this to pass a third
parameter, using the documented A and HL register pairs as
the first and second parameter after a CALL and then
placing a commented string at the end of the line. DE will
point to the string.

CALL 55078,5,22 'george

On entry at 55078, the A register contains 5, the HL
register contains 22 and the DE register points to
" |george“ .

Generally in RBASIC comments are removed during the
compilation.

Because the above technique is commonly in use, an
exception is made for comments following a CALL statement.
These are included in such a way that the DE register ends
up correctly pointed at the comments.

If you do not use the technique, remember that comments
after a CALL are included in the output program and will
take up space.

RBASIC Syntax

Chapter 4, Page 9

Commands That are Treated Differently.
END, and STOP are both treated as an END statement.

The MENU command will cause the program to stop running and
return to the Model 100/102 main menu.

-

CLEAR

RBASIC supports all three versions of the CLEAR command but
in different ways. It is important to understand the
differences.

1. CLEAR may be used in RBASIC without arguments to
zero out all variables.

10 CLEAR

This causes all numeric and string variables to be removed
from the variable table. As far as the program is
concerned, this action is the same as setting all strings
to a value of "" and all numbers to a value of 0 (zero). In
addition all arrays are unDIMed by this verb.

This is the only version of CLEAR that has this effect. In
interpreted BASIC any version of CLEAR causes variables to
be erased. In RBASIC the CLEAR verb must be used on it's
own to erase variables.

Another difference is that CLEAR used anywhere in
interpreted BASIC does more than initialize variables,
causing the stack to be destroyed including all pending
RETURNs and FOR-NEXT loops. The RBASIC CLEAR only clears
variables and DIMs.

RBASIC Syntax

Chapter 4, Page 10

2. CLEAR followed by an integer is used to allocate
string variable space-.

CLEAR 500

may be used to clear string space. Please see later notes
on c%earing extra string space for RBASIC programs.

The CLEAR string space command is compiled so that it only
occurs once in the running program. If a program contains

10 CLEAR 100
and
40 CLEAR 500

RBASIC will compile this to a single CLEAR 500 to allocate
string space as part of the set up actions by the compiled
program before the first line of code is executed. If no
CLEAR command is issued, the compiler compiles a CLEAR 256
into the code.

As mentioned CLEARing string space is not executed as part
of the running program but as part of the set up logic, and
the CLEAR nnn does not cause variables to be reset.

In interpreted BASIC

10 CLEAR 200 'Clears all, allow 200 str bytes
In RBASIC
10 CLEAR:CLEAR 200 'Clear all, allow 200 str bytes

In practice most CLEARing is done at the start of a program
before any variables have been initialized, and there is no
need to repeat the CLEAR verb.

RBASIC Syntax

Chapter 4, Page 11

3. As of version 2.00, clearing HIMEM is supported by
RBASIC. The syntax is the same as interpreted BASIC

10 CLEAR 500,55000
or
20 CLEAR ,52000

The first line will set up 500 bytes of string space and
set HIMEM to 55000. The second version sets up HIMEM
without allocating the string space.

All the CLEAR values for HIMEM in a program are processed
and the lowest memory location is used to set HIMEM once
before the program begins running. If lines 10 and 20 above
both appeared in a program, HIMEM would be set only once to
52000, the lower value, before the program began running.

An RBASIC program compiled as a .CO file will itself
attempt to occupy some sort of HIMEM position. If the CLEAR
statement attempts to set HIMEM above the beginning of the
RBASIC program, the statement will be ignored and the
compiler will issue a warnhing.

An example will illustrate this better than an explanation.
Assume that PROGA.BA contained line 20 above to set HIMEM
to 52000. If the PROGA.BA itself is compiled at an address
below 52000 such as

RBASIC PROGA /049000

it would be dangerous for the program to reset HIMEM to
52000. In a case like this, the CLEAR value is not compiled
and the compiler provides a warning message that an attempt
was made to CLEAR a HIMEM value higher than the ORG address
of the program.

RBASIC Syntax

Chapter 4, Page 12

This type of problem will usually occur when the final
RBASIC program will reside in a ROM and will need to CLEAR
some HIMEM, but the test version is assembled as a .CO
file.

Once the program is compiled and assembled as a ROM
program, the warning will disappear and the CLEAR statement
will compile correctly.

CLEAR will not accept variable arguments for either string
space or HIMEM. .

Interpreted BASIC allows

10 A=200:C=55000
20 CLEAR A,C

RBASIC requires that either arguments when used must be
constants.

RBASIC Syntax

Chapter 4, Page 13

MAXFILES

MAXFILES may only be issued once in the program and behaves
like the CLEAR nnnnn command. The largest of multiple
MAXFILES statements is used, and is processed in the set up
code before the first line of the program is executed. If
no MAXFILES command is issued the compiler generates code
for MAXFILES=1. MAXFILES like CLEAR will not accept a
variable as the argument, but only a constant in the range
0 to 15.

GOSUB, GOTO

Because BASIC is interpreted, it will let you get away with
missing lines such as

10 GOTO 30

20 GOSUB 100

30 PRINT "HELLO"
40 END

Because line 20 is never executed, the interpreter does not
have to deal with the fact that there is no line 100 for
the GOSUB. RBASIC must resolve all line numbers into
addresses at compile time. Each line number is given a
label of its original line number preceded by an 'L'. Line
20 above will generate code that reads

L20:
CALL L100

The Al100 assembler will have a problem with this because
L100 is never defined later in the program. The compiler
will compile the program correctly, but the assembler will
issue an error of

Undefined Label L1100

When you see this error, your original program will contain
a GOSUB or GOTO to a line that does not exist.

RBASIC Syntax

Chapter 4, Page 14

Handling String Space.

This is a primary area of difference between RBASIC and
BASIC.

In BASIC, an area of string space is cleared in memory and
certain string variables, but not all, are placed in this
area.

10 CLEAR 100
20 B$=STRINGS (100, '*"')
30 AS$="ABCDEFGHIJKLMNOP"

The above commands will work in BASIC even though it
appears that too much string space is being used. Line 20
uses up the 100 bytes of string space, but line 30 does not
require string space. The variable A$ created in line 30 is
set up to point to the actual "ABCDEFGHIJKLMNOP" string in
the BASIC program. If a string requires a computation or an
operation to create it or to determine its value, it is
allocated to string space. If it is a straight assignment -
a constant, string space is not allocated, and the string
in the BASIC code is used as the variable. READ-DATA
statements are treated the same way.

10 CLEAR 100

20 READ AS

30 END

40 DATA "HELLO YOU ALL"

The READ at line 20 does not use any string variable space,
because AS$ is set to point straight to the string in the
DATA statement in line 40. '

RBASIC is different because it requires all strings to be
created in the memory reserved for string space. Once
RBASIC code resides in the Option ROM the Standard ROM
cannot point to or access memory in the option ROM.

RBASIC Syntax

Chapter 4, Page 15

The compiler handles this by recognizing string constant
assignments and converting them to string operations.

10 LET AS$= "HELLO"

becomes
10 LET AS$="HELLO"+"" ("HELLO" plus a null string)
The compiler recognizes the above as a constant and will
automatically generate the above code causing all the
string to end up in string variable space. This means that
your program will probably require more string space.

The RBASIC compiler will attempt to count up string
constants used in LET assignments or DATA statements and
will display the information at the end of the compilation
as:

String Constants = nnn bytes

The nnn value will be a decimal number composed of the
bytes counted that appear as constants in LET and DATA
statements.

10 A$S="Hello"

20 PRINT AS

30 AS$=AS$+"You all"
40 PRINT AS

50 READ AS$
60 PRINT AS
70 END

80 DATA "Goodbye"

After compiling the above program, RBASIC will display the
nessage:

String Constants = 12 bytes
This figure is derived by adding the bytes used by "Hello"

and "Goodbye" in lines 10 and 80. The string "You all" in
- line 30 is not counted because it is not a constant.

RBASIC Syntax

Chapter 4, Page 16

In general terms, the byte count for string constants
should be added to whatever value you were using as an
argument to CLEAR in your original BASIC program. In the
above program, if the original program CLEARed 100 bytes,
this should be changed to CLEAR 112.

Remember that if you do not issue an explicit CLEAR command
in an interpreted BASIC program, a default of 256 is used
just as if you had included a command to CLEAR 256.

Undocumented Syntax.

The compiler was written around the documented BASIC
syntax. There are a dgreat number of undocumented BASIC
syntax formats that the Model 100 will accept. The task of
tracking through the Model 100/102 to find all the
undocumented syntax is way beyond the scope of this
compiler though some effort has been made to achieve
compatibility.

For example the BASIC interpreter will accept the NEXT
syntax in line 30 which is not mentioned in the manual.

10 FOR C = 1 to 10: FOR B = 1 to 10: FOR A =1 to 10
20 STATEMENT: STATEMENT
30 NEXT A, B, C

The RBASIC compiler will support this NEXT usage, but the
rule is if the syntax doesn't exist in the Model 100 BASIC
manual then don't expect RBASIC to handle it.

The RBASIC compiler will accept an empty THEN statement.
The following produces the same result in both the BASIC
interpreter and the RBASIC compiler.

10 IF A = 1 THEN ELSE GOTO 30
20 STATEMENT

RBASIC Syntax

Chapter 4, Page 17

Comments and Copyrights

It is fairly common to embed copyrights and version numbers
in a BASIC program using comments. Because RBASIC disposes
of all comments, these would be lost in the normal course
of compiling.

If you want to embed that information into your program or
onto a ROM so that the information would show up if anyone
disassembled the package, then you must do so by using an
assignment statement that will will be compiled into the
final output.

BASIC
10 ' The Singer Program
20 ! by Singer Associates

30 ' v 1.00 Copyright (c) 1989

RBASIC
10 A$="The Singer Program"
20 AS=" by Singer Associates"

30 AS$=" v 1.00 Copyright (c) 1989"

The above code causes AS$ to be repetively assigned
different values, but the strings will be compiled into the
output .CO or ROM program and will be visible if the
program is disassembled. They cause a minor slow up at the
start of the program, but they do allow you to put your
'‘brand' on your ROM products.

Compiler Switches

Chapter 5, Page 1

Compiler Switches

What is .a Switch

The RBASIC compiler supports a number of options that can
be controlled at compile time by placing switches on the
command line. A switch is a group of characters separated
from other elements of the command line by one or more
spaces. A switch starts with the '/' character. This
character is followed by a single character indicating
which switch is to be controlled. The character is case
insensitive. /E and /e are the same switch. A switch may be
followed by one or more additional characters indicating
further actions to take on the switch. A switch may appear
any where on the command line as long as it is separated
from other elements of the command line by spaces.

RBASIC /i PROGA /E

RBASIC /e /i PROGA

RBASIC PROGA /I /e

All of the above examples have the same effect as switches

to the compiler.

Including Comments /C

The Comment switch will cause each line of BASIC code to be
included as a comment in the output .ASM source file. This

is useful for studying how the compiler generates its

output. The default is not to include comments.

RBASIC PROGA /c

Noisy Compile /N

The Noisy switch will display each line of BASIC code on
the screen as it is compiled.

RBASIC /N

Compiler Switches

Chapter 5, Page 2

Line Numbering /L

The compiler normally generates a single dummy line number
of 9999. If a syntax error occurs anywhere in the program,
the display will read "SN? in 9999" because all lines have
been given this dummy number. The line number switch will
cause the correct line number to be set up before each line
is executed. Since this generates more code, it may not be
needed except in the early stages of development to provide
correct line numbers in case the program does drop into an
error message. The Line switch is automatically turned on
by either the Trace Switch or the Error Trapping switch.

RBASIC PROGA /L

Tracing Program Execution. /T

One of the features of BASIC interpreters on larger
computers are TRON (trace on) and TROFF (trace off)
commands to trace program execution in order to locate
logic bugs.

A trace option has been provided for the RBASIC compiler.
Compiling with the trace switch will cause additional code
to be generated to display the currently executing line
number on the LCD. The numbers appear surrounded by "<>"
parentheses.

<10> <20> <100> <110> <120> etc.

Using the trace switch also turns on the line numbering
switch as if you had used /L on the command line.

RBASIC PROGA /t

Slow Trace /S

The slow trace acts exactly like Trace except that it waits
for you to press a key after displaying the line number,
but before executing the line. See notes in Chapter 14 for
bugs using slow trace with programs containing INKEYS$
logic.

RBASIC PROGA /S

Compiler Switches

Chapter 5, Page 3

Error Trapping. /E

ON ERROR logic causes the need for additional code to save
the current statement and next statement which are needed
to process a RESUME or RESUME NEXT command. The compiler
has no way of knowing that such code is needed until it
hits -an ON ERROR statement. If you have used ON ERROR logic
in your program, then compile with the Error trapping
option. The Error trapping option turns on Line numbering
as if you had included /L on the command line. For further
information see the chapter on Error trapping.

RBASIC PROGA /E

Interrupt Trapping /I

The compiler also needs to be alerted if ON COM, ON TIMES
or ON KEY interrupt trapping is being used in the program.
This also generates additional code, to check for and
handle the interrupt events. For further information on
this subject see the chapter on Interrupt Trapping. The /I
switch automatically enables the break (/B) switch.

RBASIC PROGA /I

Break-Pause Check /B

The default code generated by the compiler ignores the
BREAK and PAUSE keys. This switch will cause code to be
generated to do a Break-Pause check before each line of
code similar to the technique used by the BASIC
interpreter. The Break-Pause check logic is needed if your
code includes ON KEY interrupt logic, so using the /I
switch will also cause the inclusion of Break-Pause
checking code.

RBASIC PROGA /b

Compiler Switches

Chapter 5, Page 4

Setting the ORG Address /Onnnnn

The default ORG address for the .ASM file is 0 (zero). When
the ORG address is set to 0, the compiler assumes that a
ROM is being generated and does three things. First it
includes support code needed for ROM programs. Secondly it
changes the way Standard ROM routines are called to call
them ‘indirectly. Third it changes the code so that strings
that must be processed by the Standard ROM are copied out
of the Option ROM to RAM and sets HL to point to them in
RAM. When the ORG address is set to a non-zero value, the
file is generated as though it were going to be loaded and
run from RAM. Obviously the ORG Address to do any good
would have to be set to a value in high RAM. If no ORG
address switch is set, the file is ORGed at zero. The ORG
address must be specified as a decimal value.

RBASIC PROGA /059000

An ORG address is an ORiGin. This address is the lowest
address in memory at which code for a program will be
placed. All programs are placed in memory in order to be
run. BASIC programs do not have to be a fixed addesses but
.CO (machine language) programs must be. Since RBASIC
converts a BASIC program to a machine language program, an
origin address must be selected for the program. For an
Option ROM version, the Origin address is always 0 (zero).
For a RAM version (.CO), an address in high memory must be
selected. The operating system uses addresses from 62960 on
up, so any machine language program will have to be placed
below this address. The A100 assembler will tell you how
big the resulting machine program is and what the highest
possible ORG address that could be used is.

Compiler Switches

Chapter 5, Page 5

Naming The ROM Chip. /Rssssss

A program in a ROM may be started by CALLing 63012 and this
may be used whenever you want to start the program. It is
also possible to create a ROM trigger file. A ROM trigger
file is .a file created on the 100/102 menu that can be used
to start the ROM program. This technique is used in
commercial ROMs wherein you will see the name "GldCrd", or
"Forms" on the menu. Positioning the cursor over the name
and pressing enter will start the ROM program. The same may
be done with an RBASIC ROM. The ROM Trigger name should be
no more than 6 characters long and if you include more than
6 the remainder will be ignored. The ROM Trigger Name will
be created exactly as entered.

1. RBASIC PROGA /RProg
2. RBASIC PROGA /RSTUFF

The first example will create a menu entry "Prog"
and the second will create "STUFF".

You may include a space in a ROM Name, but if you
do, the entire switch must be enclosed in quotes.

3. RBASIC PROGA "/RMy Prg"

The last example will create a ROM Name of "My Prg"
on the menu.

Compiler Switches

Chapter 5, Page 6

Assembling With MAC /M

A large part of this project was developed on a PC running
a CPM emulator. The Assembler used was the Digital Research
Assembler MAC until A100 was completed. MAC supports macros
and other useful tools that can be used for debugging. If
you have an emulator and MAC, you may specify that you want
the output .ASM file to be MAC compatible. This would be
useful if you intend to hand modify any of the Assembler
code, and would prefer to write with macros. This switch
would also work for any assembler that is fully MAC
compatible.

RBASIC PROGA /m

See the section on the A100 Assembler for a list of
differences between MAC and Al00.

Sending From The PC

Chapter 6, Page 1

Sending From The PC

The SND.EXE Program.

The SND.EXE program is designed to be a quick ’
telecommunications program for sending ASCII files from the
PC to another computer. You may of course use any Telcom
program to do this and may have to if SND.EXE does not work
with your PC, but SND.EXE is very convenient because most
programs require load time and then ask you for
communications parameters and finally let you name the file
to send. SND.EXE is as simple as

SND PROGA.HEX <ENTER>

The Model 100/102 or other receiving computer must be ready
in receive mode before the SND program is invoked and the
two computers must be connected via a null modem cable or
connector.

To send a BASIC program from the PC to the Model 100, the
BASIC program must exist on the PC in ASCII format
(untokenized). On the Model 100/102 type

LOAD "COM:88N1E" <ENTER>

on the PC type

SND PROGA.BA

The PC will display the BASIC program as it is sent
including the ending CR-LF as control characters "M"J.

SND.EXE Defaults.

SND.EXE assumes the natural defaults for sending an ASCII
file. XON/XOFF is enabled and this parameter is not
optional. Data is sent out COMM1 on the PC but this may be
changed with switches. Baud is 9600, Data is 8 bits, Parity
is set to none and 1 stop bit is used.

Command line switches may be used to change the defaults
other than XON/XOFF protocol which is always enabled.

Sending From The PC

Chapter 6, Page 2

SND.EXE Switches

SND.EXE expects the name of the file to send, and there are
three switches available.

The Comm Port switch allows you to change to COMM2. The
switch is /C2. The 'C' may be upper or lower case and may
appear anywhere on the command line.

SND PROGA.BA /c2

The data switch allows you to change baud rate, data bits,
stop bits and parity.

The switch is a slash followed numbers and letters similar
to the Model 100 COM string, /bdps where:

b = Baud Rate 8=9600, 7=4800, 6=2400, 5=1200, 4=600,

3=300
d = Data Bits 8 or 7
p = Parity N=No Parity, E=Even Parity, 0=0dd Parity
s = Stop Bits 1 or 2

Example for 300 baud, 7 Data, Even Parity, 1 Stop use:
SND HELLO.BA /37El

The matching parameter on the Model 100 would be

LOAD "“COM:37E1E"

Note that the Model 100 uses the same string with an 'E'
added on to the end to Enable XON/XOFF. The 'E' is not

required for SND.EXE because it always uses XON/XOFF
protocol.

The third SND.EXE switch displays a brief description of
the command syntax and switches.

SND /h
SND.EXE will also display help if there is an error on the

command line or switches or the specified file cannot be
found.

Receiving To The PC

Chapter 7, Page 1

Receiving To The PC

The RCV.EXE Program.

The RCV.EXE program is designed to be a quick
telecommunications program for receiving ASCII files on the
PC from another computer. You may of course use any Telcom
program to do this and may have to if RCV.EXE will not work
with your PC, but RCV.EXE is very convenient because most
programs require load time and then ask you for
communications parameters and finally let you name the file
to receive. RCV.EXE is as simple as

RCV PROGA.BA <ENTER>

RCV.EXE must be run and ready before the Model 100/102 or
other sending computer begins sending and the two computers
must be connected via a null modem cable or connector.

To receive a BASIC program from the 100 on the PC type

RCV PROGA.BA

On the Model 100/102 type

SAVE "COM:88N1lE" <ENTER>

When the upload is complete, the BASIC program will exist
on the PC in ASCII format (untokenized).

RCV.EXE Defaults.

RCV.EXE assumes the natural defaults for receiving an ASCII
file. XON/XOFF is enabled and this parameter is not
optional. Data is received at COMM1 on the PC but this may
be changed with switches. Baud is 9600, Data is 8 bits,

Parity is set to none and 1 stop bit is used.

Command line switches may be used to change the defaults
other than XON/XOFF protocol which is always enabled.

Receiving To The PC

Chapter 7, Page 2

RCV.EXE Switches

RCV.EXE expects the name of the file to receive, and there
are three switches available.

The Comm Port switch allows you to change to COMM2. The
switch is /C2. The 'C' may be upper or lower case and may
appear anywhere on the command line.

RCV PROGA.BA /c2

The data switch allows you to change‘baud rate, data bits,
stop bits and parity.

The switch is a slash followed numbers and letters similar
to the Model 100 COM string, /bdps where:

b = Baud Rate 8=9600, 7=4800, 6=2400, 5=1200, 4=600,
3=300

d = Data Bits 8 or 7

p = Parity N=No Parity, E=Even Parity, 0=0dd Parity

s = Stop Bits 1 or 2

Example for 300 baud, 7 Data, Even Parity, 1 Stop use:
RCV HELLO.BA /37El

The matching parameter on the Model 100 would be

SAVE "COM:37E1lE"

Note that the Model 100 uses the same string with an 'E!
added on to the end to Enable XON/XOFF. The 'E' is not

required for RCV.EXE because it always uses XON/XOFF
protocol.

Receiving To The PC

Chapter 7, Page 3

The third RCV.EXE switch displays a brief description of
the command syntax and switches.

RCV /h

RCV.EXE will also display help if there is an error on the
command line or switches or the specified file cannot be
created.

The /N switch will cause a 'Noisy' receive by displaying a
'.' dot on the screen for each full record received from
the Model 100/102. Normally the RCV program displays a
single asterisk '*' to indicate that reception has begun,
and nothing further until reception is completed. It then
flushes the capture buffer. The noisy switch may not be
optimum at 9600 baud so it is normally set off.

The RCV program will abort if any key is pressed. In the
event that the computer hangs up because the Model 100/102
is not sending, press any key to terminate RCV.EXE.

As mentioned before, the RCV.EXE program is very simple and
receives characters by repetitively polling the COM port
for characters. On some PCs, the polling is not fast enough
to keep up with a 9600 baud transfer. If you experience any
difficulty receiving data to the PC, then try a lower baud
rate.

Receiving On The 100/102

. Chapter 8, Page 1

Receiving on the 100/102

A Description of COLOADER.EXE

Creating compiled programs on the PC presents a Catch-22
for the Model 100/102. The output file from the compile and
assemble steps is an Intel HEX file. This file format is
very compatible for ROM burners, but cannot be directly
loaded in to the Model 100.

In order to get a .HEX file onto the 100/102 as a machine
language program, a program must exist on the Model 100/102
that can receive and load this type of file. This .HEX
loader should be as efficient as possible. A HEX loader
could be written in BASIC, but BASIC runs very slowly when
you are trying to load large files. The answer is to create
a HEX loader that is written in machine language.

COLOADER.EXE handles this nicely. COLOADER is a program
that runs on the PC. It will write a BASIC program that can
be downloaded to the Model 100/102. The BASIC program is
not the HEX loader, but when it is run on the Model 100 it
will create a machine language program that is a HEX
loader.

This sounds complicated, but it simple to use.

Using COLOADER.EXE

It is easiest to describe COLOADER.EXE using a real
example. Assume you have created a BASIC program PROGA.BA
that must be ORGed at 57000 to fit in to Model 100 memory.

The program would be compiled and assembled using that
address.

RBASIC PROGA /057000

Al100 PROGA

Receiving On The 100/102

Chapter 8, Page 2

The output from these two steps will be a file named
PROGA . HEX. : .

Now we're ready to use COLOADER.

1.

Ensure that the files COLOADER.EXE, Al100.EXE and
RCO.ASM are available in the current directory.

calculate a second ORG address that is 500 bytes
below the address of your program.

57000 - 500 = 56500

Using this address, start COLOADER.EXE with the
following command.

COLOADER RCO /056500

This will create a BASIC program named RCO.LDR. The
file is BASIC program, but does not use the
standard .BA or .BAS extension.

Load and run RCO.BA on the Model 100. On the Model
100 type

RUN "COM:88N1E" <ENTER>
Oon the PC type

SND RCO.LDR <ENTER>

While RCO.LDR is running it will display the
message "Creating RCO.CO Program'". This should only
take a few seconds, and the 'Ok' Prompt will
appear.

The BASIC program that was just loaded and run has
now done its job and you may delete it by typing
WNEW" and pressing ENTER.

Press F8 to return to the Model 100/102. The menu
will now contain the program RCO.CO. This program
is the HEX loader and can be used to load your
program as described in the following steps.

Receiving On The 100/102

Chapter 8, Page 3

10.

11.

12.

Position the cursor over RCO.CO and press enter.
The Model 100/102 Screen will clear, and the loader
is now waiting for you to send your program file.

‘On the PC type

SND PROGA.HEX <ENTER>

While your program is loading, RCO.CO will display
dots ('.') on the screen indicating that HEX
records are being received and poked into the Model
100/102 Memory.

When the load is complete, you will return to the
Model 100/102 System Menu.

To start running your program; enter BASIC and type

CALL 57000 <ENTER>

As long as your program's original ORG address does
not change, you may edit, recompile and reload
using RCO.CO as many times as needed. If your
program must be ORGed at a lower address because of
an increase in size, then go back to Step 1 and
create a new version of RCO.LDR and download and
run it.

Receiving On The 100/102

Chapter 8, Page 4

Using COLOADER.EXE with the ROM Eliminator.

COLOADER.EXE may also be used to create a loader for the
SoundSight ROM Eliminator.

The loader created on the Model 100/102 is named RRM.CO and
also ‘uses about 500 bytes. If you have no other machine
language programs the ORG address can be set as high as
62460 since ROM programs do not require any HIMEM.

Repeating the example of the above PROGA.HEX with the
exception that it has been recompiled at address 0 to be
loaded in to a ROM.

1.

Ensure that the files COLOADER.EXE, Al100.EXE and
RRM.ASM are available in the current directory.

Calculate the ORG address at 500 bytes below HIMEM
(in this example MAXRAM is used).

62960 - 500 = 62460
Using this address, start COLOADER.EXE with the
following command.
COLOADER RRM /062460
This will create a BASIC program named RRM.LDR.
Load and run RRM.LDR on the Model 100. On the Model
100 type
RUN "COM:88N1E" <ENTER>
Oon the PC type
SND RRM.LDR <ENTER>
While RRM.BA is running it will display the message

"Creating RRM.CO Program". This should only take a
few seconds, and the '0Ok' Prompt will appear.

The BASIC program that was just loaded and run has
now done its job and you may delete it by typing
"NEW" and pressing ENTER.

Receiving On The 100/102

Chapter 8, Page 5

10.

12.

13.

Press F8 to return to the Model 100/102. The menu
will now contain the program RRM.CO. This program
is the HEX loader and can be used to load your
program as described in the following steps.

Position the cursor over RRM.CO and press enter.
The Model 100/102 Screen will clear, and the loader
is now waiting for you to send your program file.
On the PC type

SND PROGA.HEX <ENTER>

While your program is loading, RRM.CO will display
dots ('.') on the screen indicating that HEX

records are being received and poked into the ROM
Eliminator.

When the load is complete, you will return to the
Model 100/102 System Menu.

To start running your program, enter BASIC and type

CALL 63012 <ENTER>

Receiving On The 100/102

Chapter 8, Page 6

Technical Information About COLOADER.EXE

If you are not familiar with assembly language programming
on the Model 100/102, the following description may be of
little interest to you.

COLOADER.EXE uses an Intel .HEX file as input to generate a
BASIC program that contains the DATA statements necessary
to poke a machine language program in to RAM along with a
FOR-NEXT loop to do the poking.

Assuming that you start COLOADER with the command

COLOADER RCO

1.

COLOADER opens up the HEX file RCO.HEX and reads in
the bytes creating BASIC DATA statements for each
byte encountered.

COLOADER generates a FOR-NEXT loop that starts at
the ORG address and reads and pokes the data
statements.

The last code generated by COLOADER is a SAVEM
command.

When this program is sent to the 100 and run there,
it creates a machine language program by poking the
program bytes into memory and then saving it as a
.CO file.

COLOADER could be used to create a loader for any
Intel .HEX file or .ASM source program that can be
assembled with A100, but if the ORG address is to
be passed to A100 by COLOADER, then the .ASM file
must not contain an ORG statement.

Receiving On The 100/102

Chapter 8, Page 7

COLOADER will also allow an .ASM file to first be assembled
to generate the .HEX file.

Assuming that you start COLOADER with the command

COLOADER RCO /056000

the following happens.

1.

COLOADER calls the Al100.EXE assembler and asks it
to assemble RCO.ASM using an ORG address of 56000.
Aside from the forced ORG address, there is nothing
special about this assembly, and A100 does its
usual job of generating RCO.PRN, RCO.SYM and
RCO.HEX. If you look at RCO.ASM you will notice
that it does not contain an ORG address. This is
deliberate so that COLOADER can pass the ORG
address for Al100 to use.

COLOADER proceeds to use the RCO.HEX file just
created as input for the steps 1 through 3 of the
previous example.

COLOADER also allows the name of the loader to be changed.
A second file name or partial file name will be used to
modify the name of the output file.

COLOADER RCO X Use RCO.HEX to create X.LDR

COLOADER RCO A: Use RCO.HEX to create RCO.LDR on

the A: drive.

COLOADER RCO .ILOD Use RCO.HEX to create RCO.LOD.

COLOADER RCO .LOD /059000 Assemble RCO.ASM at address 59000

and use the RCO.HEX file to
create RCO.LOD.

Receiving On The 100/102

Chapter 8, Page 8

COLOADER Switches

sonnnnn The ORG Address switch.
and
/A The Assemble switch

The ORG switch /Onnnnn is used to establish the ORG address
that will be passed to A100 for the assembly. The assemble
switch /A is used to initiate an assembly without passing
an ORG address to the A100 assembler. When using COLOADER
to create RCO.LDR or RRM.LDR always pass an address as in
the examples given above. You may modify or edit the files
RRM.ASM and RCO.ASM but you should first keep a copy of the
original in case the changes cause the loader to stop
working.

If an ORG address is passed by COLOADER to Al100 but the
.ASM source code file already contains an ORG address, the
passed address will be ignored, and the ORG statement in
the file will be used. If PROGA.ASM file contains an ORG
address then

COLOADER PROGA /056000
is equivalent to
COLOADER PROGA /A

because the passed addressed is ignored.

/N NEW Switch.

The output program generated by COLOADER ends with an END
statement. After the BASIC program has poked the machine
language into memory and SAVEM'd the result, the BASIC
program is no longer needed.

The /N switch will cause the BASIC program to end with NEW
instead of END causing it to remove itself from memory.

_ The NEW switch only works correctly with the poke switch,
/P, described below.

Receiving On The 100/102

Chapter 8, Page 9

/P Poke Only

Since COLOADER can be used on any .HEX file it would be
possible for it to attempt to poke a large file into
memory. When this happens, three areas will use up Model
100/102 memory.

1. The BASIC loader program.

2. The area of memory that the machine language loader
is being poked into.

3. The SAVEM'd .CO file.

The /P switch omits the SAVEM step in the output program as
one method of avoiding memory exhaustion.

/H The Help Switch

This switch provides a brief display of the syntax and
switches for COLOADER. It can be used as the only argument
on the command line. The help is not intended to replace
the manual, but only to provide a way to jog your memory.

COLOADER /h

Displays a brief Help text about using COLOADER.

The Al100 Assembler

Chapter 9, Page 1

The A100 Assembler

Overview.

The Al00 is a simple two pass assembler specifically
designed to compile the output of the RBASIC compiler. It
has a few special features to handle assembling code for
the Model 100/102.

The assembler supports the complete set of 8085 opcodes
including SIM and RIM and a subset of the common
pseudo-ops.

It does not support math operators or macros.

OPCODES - This is the standard set of Intel mnemonics for
the 8085 chip. The 8080 set plus SIM and RIM. I refer you
to any standard text on these.

OPERANDS =~ Operands may be decimal, hex or labels. Hex
numbers must start with a digit, and be terminated with H
or h. Labels must be defined somewhere within the source
module being assembled. Operands may not contain math
operators. The following are not legal.

LXI H,5302 ;Legal Decimal Value
SHLD OAF70H ;Legal Hex Value

LDA BUFFER

LDA 5302+16 ;Tllegal Math Operator

ILXI D,2405-8 ;Tllegal Math Operator

The Al100 Assembler

Chapter 9, Page

2

LABELS - Labels must start in column 1 and must end with a
first 8 characters are significant.

colon. Only the

DOIT:
MOV A,1
JMP DOIT2
DOIT1:
DB 5
DOIT2:
JMP SOMEWHERE
COMMENTS - Comments must be preceded by a semicolon.

Everything after the semicolon is ignored.

:This is a comment

XRA

A

;And so is this

PSEUDO-OPS - Several standard and a few special pseudo-ops

are supported.

CTRLZ: EQU

MSG: DB
or
MSG: DB
TABLE: DW

DW
BUF: DS

26
65,66,0
'ABC',0

5507
2205,0

256

;EQU to assign a value

;DB to create bytes of

:DW to create words of

:DS to reserve storage

A storage area reserved with DS is not filled in
assembler and simply causes the current position
skip the specified number of bytes.

to a label

storage

storage

by the
counter to

The Al1l00 Assembler

Chapter 9, Page 3

INCLUDE - Include causes another file to be included at
this point of the assembly. The file is included and
assembled in line as if the original code had been written
into the file being assembled.

INCLUDE SOURCE.ASM
. INCLUDE 1I0.SUP

ROM - ROM is a special pseudo-op that switches the
assembler to ROM mode. It controls the way the compiler
treats the special opcodes covered ih the next section. It
has no parameters and is usually included at the beginning
of the source code file so that it affects the entire
assembly.

Special Opcodes.

The A100 assembler supports three special Opcodes that are
not a standard part of the 8085 command set. They were
added to the assembler for ROM development. There are two
mnemonics for each for each of the three opcodes.

The STDROM or CSR opcode is similar to a CALL but it is
specifically used for CALLing a routine in the Model
100/102 Standard ROM.

The STDIJMP or JSR opcode is similar to a JMP but it is
specifically used for jumping to a routine in the Model
100/102 Standard ROM.

The STDRET or RSR opcode is similar to a RETurn but is used
to return from an Option ROM routine called by a Standard
ROM routine.

STDROM 4b44H ;Call print char routine
or CSR 4b44H

STDJIMP 5797H ;Jmp to menu routine
or JSR 5797H

STDRET ;Return to Standard ROM.

or RSR

The A100 Assembler

Chapter 9, Page 4

These three instructions, in either variation, assemble
differently depending on whether the ROM pseudo-op has been
set. When the ROM PSEUDO-OP is not set, they assemble as
standard CALL, JMP and RET instructions. When the ROM
PSEUDO-OP has been used they assemble as indirect CALL, JMP
and RET instructions executing via the code in the

ROMHEAD. SUP module.

Assembler Output Files

The output from A100 is three files. The .SYM file contains
a list of all the labels in the .ASM file and the values
that were resolved for them at assembly time.

The .PRN file contains a complete listing of the assembled
file including any files that pulled in to the main module
with the INCLUDE directive.

The .HEX file is an Intel hex format file suitable for
loading to a Model 100/102 using RCO.CO or RRM.CO. The
format is used by nearly all ROM burners on the market.

Compiling for MAC vs Al00.

There are really only two differences in the output files
generated by RBASIC when the /M switch is used to generate
a file that is compatible with the Digital Research
Assembler.

MAC does not support the INCLUDE pseudo-op, so the compiler
actually physically copies INCLUDE files into the output
.ASM file and does not use the INCLUDE directive.

MAC also does not support the specially opcodes STDROM,

STDIJMP and STDRET. Instead the compiler generates macros at

the start of the .ASM file that MAC can handle. In fact the

three special opcodes are really more like macros, but they

have been embedded in A100 whereas they must be defined as
- macros for MAC.

ON ERROR Processing

Chapter 10, Page 1

-ON ERROR Processing

Using No Error Checking

ON ERROR processing capability has been included in RBASIC
but not without a cost in space in the final output.

The lowest level of error processing is none at all. RBASIC
requires that a line number be stored for each line that is
executing. Without any checking, the default line number
9999 is loaded and saved once to be used as the line number
throughout the program. If an error occurs you will be
dropped into the BASIC error screen with the standard error
message specifying a line of 9999

?SN Error in 9999

If the code has been thoroughly checked and verified, you
may not care about this because if no errors come up this
will never present a problem.

Errors Using Line Numbers.

The next step up from here is to include line numbers at
compile time using the /L switch. This will cause the
compiler to generate code that will load and save each line
number at the start of the line. If an error occurs under
these conditions the line number will be the actual line in
which the error occurred. (Please see the one exception on
FOR-NEXT loops in the Chapter on RBASIC syntax).

You will still drop into the BASIC Ready screen.
?SN Error in 510

This may be a wise move during development as line numbers
will help you locate and iron out errors.

ON ERROR Processing

Chapter 10, Page 2

ON ERROR Logic.

ON ERROR logic uses up even more code space. For every line
the line number must be saved, and for every statement the
addresses of the current statement and the next statement
must be saved. The address of the current statement is used
for a RESUME command, and the address of the next statement
is used for a RESUME NEXT command.

This is not much of a problem for ROM Development since you
usually have room to spare in a ROM,- but it can cause
problems for .CO development.

ON ERROR Space Saving Tips

The compiler has been designed to allow you to localize
your ON ERROR logic if you only need it for a portion of
the code, but not for all.

A classic example is dealing with legal errors. The favored
legal error is trying to open a file input to determine if
exists and trapping the error if any.

10 EF=0:GOSUB 500
20 IF EF THEN PRINT "FILE NOT FOUND"

500 ON ERROR GOTO 600

510 OPEN "FILE.DO" FOR INPUT AS 1
520 ON ERROR GOTO O

530 RETURN

600 EF=1:RESUME NEXT

The samples set a flag to zero and then execute a

subroutine to open the file. The subroutine sets an error

exit that will set the flag to one, attempts to open the

file and then clears the error trap. The error trap if it

is executed will set the flag to 1 and this condition is
- tested at line 20.

ON ERROR Processing

Chapter 10, Page 3

In the above example the only error that is of concern to
the programmer is the-event of a file not found. Any other
error that occurs is going to drop out of the program into
the standard BASIC error screen. If you have a situation
like this, you can greatly optimize the code by placing the
subroutine at 500 at the very end of the code.

If the compiler is run without the error trapping switch
/E, it will not generate any error trapping code until it
encounters the first ON ERROR statement at line 500. The
compiler will display "Warning ON ERROR logic implemented
at line 500" but since that is the only place you need the
logic it presents no problem.

If you still wanted to trap correct line numbers in the
event of some other error use the /L switch on the
compiler.

RBASIC PROGA /L

This would give you line numbers for all of your program,
and ON ERROR logic only at the end of the program for the
one routine that needs it.

ON INTERRUPT Processing

Chapter 11, Page 1

ON INTERRUPT Processing

Overview

ON INTERRUPT Processing is implemented in RBASIC in
approximately the same way it is done for interpreted
BASIC. Before each statement is executed a check is made to
determine if an interrupt event has occurred. If one has
and the interrupt is enabled, that interrupt is serviced
before the statement is executed.

Normally the /I switch is used to tell the compiler that ON
INTERRUPT logic must be compiled in to the code.

Space Saving Tips

As with ON ERROR logic, the routines that actually require
interrupt processing can be moved to the bottom of the code
and if the switch is not used at compile time, the compiler
will not generate ON INTERRUPT checking logic until it
encounters the first ON COM, ON TIME$, or ON KEY command.

For example a screen routine that needed to intercept ON
KEY interrupts only while the screen was being displayed
might look something like this.

100 ON KEY GOSUB 200,300,400,500,600,700,800,900
110 GOSUB 1000 'Display all prompts

120 GOSUB 2000 'Enter all fields

130 KEY OFF:RETURN

The routines at 100,1000 and 2000 could all be moved down
at clumped at the bottom of the code. The routines at 200
through 900 need not be moved unless they themselves are
expecting to do additional interrupt handling.

The basic rule is that routines that may be interrupted
should appear after the first ON INTERRUPT instruction. The
ON INTERRUPT instruction should appear as late in the code
as possible. With this done compile without the /I switch
and the compiler will turn on interrupt processing logic
only for the portion of code after the ON INTERRUPT
command.

Again the compiler will display a warning such as "Warning
ON INTERRUPT Logic implemented at Line 4000".

Compiler Error Messages

Chapter 12, Page 1

Compiler Error Messages

There are few compiler error messages. The RBASIC compiler
is designed around the idea that the program was alive and
well as an interpreted BASIC program and does not do a lot
of syntax checking.

Keyword Errors

The keyword in a BASIC statement is the first token that
indicates that an action is to be performed. PRINT, IF, LET
(stated or implied) GOSUB, GOTO, ON are all examples of
keywords.

MERGE not supported in line nnnnnn.

This error is displayed when any unsupported keyword is
encountered. The unsupported keywords are listed in the
chapter on RBASIC Syntax. If you get this error, remove the
offending statement. RBASIC will not compile it.

Missing Keyword in line nnnnnn.

This error is displayed when a statement exists without a
keyword such as

20 "Hello"

If you get this error correct the code to include the right
verb.

Invalid Keyword in line nnnnnn.
This error indicates that a statement starts with a BASIC
token that is not legal as a verb.

30 SGN(A)

In the above example SGN is a legal BASIC token, but it may
not be used as at the start of a statement. The correct
syntax would be LET B=SGN(A).

If you get this error correct the line and recompile.

Compiler Error Messages

Chapter 12, Page 2

Target Line Errors

Invalid GOTO or GOSUB Target in line nnnnnn.

This error indicates that a GOTO or GOSUB contains a
missing or invalid target line such as attempting to GOTO
or GOSUB a variable (which some BASICs do allow).

30 GOSUB AX

Note that the compiler does not produce errors when the
target of a GOTO or GOSUB does not exist. The Line

30 GOTO 500
will generate the assembly language instruction
JMP L500

If line 500 does not exist, the compiler does not know
this. The assembler will pick it up and display an error
message of

UNDEFINED Label L500

IF ELSE Errors

IF ELSE Too Complicated at line nnnnnn.

The compiler internal tables allow 10 levels of IF-ELSE
nesting within a single statement. If the statement
contains more than this the above message will be
displayed. To correct this error, break up the IF-ELSE into
smaller lines.

Compiler Error Messages

Chapter 12, Page 3

FOR NEXT Errors.

Missing or Invalid Variable in NEXT in line nnnnnn.

This error indicates that a NEXT command has been issued
without naming the varlable, or a NEXT has been issued for
a variable that is not in use in a FOR statement. If you
get this error, add or correct the NEXT variable.

10 FOR A=1 to 10
20 NEXT B

or

10 FOR A=1 to 10
20 NEXT

Syntax Errors

Syntax Error in line nnnnnn.

This is general purpose catch all error. If you see this
error, take a look at the code and correct whatever is
wrong. If the syntax is acceptable to BASIC it should work
for RBASIC with a few exceptions to do with undocumented
syntax covered in the chapter on RBASIC syntax.

Compiler Error Messages

Chapter 12, Page 4

Assembler Errors

Unless you hand modify the assembler output code from the
compiler, the only error message that you will encounter
will be

Undefined Label Lnnnn
where nnnn will be decimal number as in
Undefined Label L9070

The RBASIC compiler creates labels for line numbers by
preceding the line number with an 'L'.

The above error indicates that the original BASIC program
contains a GOSUB or GOTO 9070, but line 9070 does not
exist. This is the one error that is picked up at assembly
time rather than compile time.

The assembler also provides important information about the
final output code.

The main piece of information is the End address of the
.HEX file. When you are assembling for an Option ROM, this
address can help to decide the size of ROM needed.

0000H - 1FFFH = 8K ROM
2000H - 3FFFH = 16K ROM
4000H 7FFFH = 32K ROM

above 7FFFH will not fit on a ROM

The assembler assumes that you are developing for the Model
100/102. If the org address is set higher than 0000H which
is the start address for a ROM, the assembler operates on
the basis that you are assembling a file intended to be
loaded as a .CO file. If the End address is higher than the
Model 100/102 MAXRAM (62960 decimal or F5F0 Hex) it will
display a warning message that the .HEX file will not load
and run as a .CO program because it will overwrite reserved
system memory during the load.

Compiler Error Messages

Chapter 12, Page 5

Additionally for non-ROM assemblies (assembled at an ORG
address other than 0000) the assembler displays the highest
possible ORG address that can be used for this program. If
you have received the warning message that your code has
extended above F5F0, then you must use this recommended ORG
address or a lower one if you want your program to load and
run as a .CO file on a Model 100/102.

Technical Information

Chapter 13, Page 1

Technical Information

Compiler Description.

The dﬁtput of the RBASIC compiler uses a great deal of the
BASIC interpreter to get code executed.

The code that is generated contains a tokenized line that
looks almost exactly like the original line with out the
key word. For example

10 PRINT A,B

will compile down to a tokenized line containing 'A,B' and
a call to the Model 100/102 PRINT routine. This call is
done indirectly through a support routine that will be
called XPRINT.

When the code is executed the following steps are done:

1. If the code is being generated for an Option ROM,
the tokenized line is copied to a buffer in RAM
(see reserved memory below).

2. The HL register is loaded to point to the first
character of the tokenized line either in the code
or in the reserved buffer.

3. The Corresponding Model 100/102 routine is called
directly (for .CO code) or indirectly (for ROM
code) .

These steps are so straight forward for the bulk of
the BASIC verbs that the code is generated directly
in the compiler.

Technical Information

Chapter 13, Page 2

There are a few verbs such as READ where this process will
not work and some additional processing is necessary before
the interpreter can take over. For these, special support
code is written and included in a support file such as
XREAD.SUP

A third category exists in which the interpreter cannot be
used at all such as in tracing. The XTRACE.SUP support file
is a complete trace support routine. It calls routines in
the standard ROM to do such things as display the line
nunmbers. :

A fourth category of verbs present straight faster compiled
versions.

GOSUB 100 becomes CALL L100
GOTO 100 becomes JMP L100

You can obtain a fair understanding of the compiler output
by compiling a program with the /C (include lines as
comments) option and then assembling it. Print or display
the resulting .PRN file which will incorporate all INCLUDE
files and should give you a good idea of how the process is
being done.

Technical Information

Chapter 13, Page 3

Reserved Memory.

The output code from the compiler requires a buffer in RAM.
Rather than require that the program clear HIMEM before it
can be run, the TELCOM back page is used as a buffer. This
is an are of memory that extends from FCCOH to FDFFH (64704
through 65023). If your program uses any of this memory it
will have to be changed to place your data somewhere else.
This area is frequently referred to as the TELCOM back page
or the ALT-LCD buffer. It is normally used by TELCOM to
store the previous page of data.

Code Execution Speed

Although speed was a secondary issue in the design of the
compiler, there are some areas in which the compiler
generates code that is faster at execution time.

1. Keywords. Every time the interpreter begins a new
statement a great deal of set up code is executed,
then the interpreter goes through a dispatching
process to identify the key word and jump to the
correct routine. In RBASIC the set up code has been
minimized and the compiler generates code that
directly calls the keyword to be executed.

2. GOSUB-GOTO. When the interpreter encounters a GOSUB
or GOTO, it must evaluate the following line number
and then search through the BASIC program to locate
the line before transferring control to it. The
further away the line is in the code, the longer it
takes to find it. In RBASIC the line numbers are
already known and located. A GOSUB translates to a
CALL and GOTO translates to a JMP. The transfer
time is identical no matter where the line is.

Technical Information

Chapter 13, Page 4

One area where RBASIC is slower is in string assignments.
All string assignments done with a LET or READ command must
be converted to string operations for ROM code.

10 LET AS="HELLO"
becomes
10 LET AS$="HELLO"+""

10 READ AS
20 DATA "HELLO"
becomes

10 LET AS$="HELLO"+""

This is designed to force the string variable to be moved
into the string space variable area where it can be
accessed, It cannot be directly accessed in the option ROM
and this will slow down assignment and READ operations on
strings.

Overwriting HIMEM.

A common error that can occur during testing is ORGing the
program at an address that is too high in memory.

The A100 assembler displays the highest address of the code
on the screen as

End address is 9d27=40231d

If the hex value is higher that F5F0 or the decimal value
is higher than 62960, a warning is displayed and the
program should be re-compiled with a lower ORG address.

If any attempt is made to load the above file some of it
will be poked in to reserved system memory and the Model
100/102 will crash during the download.

Questions and Problems

Chapter 14, Page 1

Questions and Problems

The following is a list of common questions and problems
that have come up using the RBASIC system.

1.

-

‘Can more than one BASIC program be compiled in to

one ROM?

Under Version 5.0 of the RBASIC Compiler, yes. (See
Chapter 16) -

Under version 4.0, the simple answer is no. This
version of the compiler is not designed to handle
this. It would be possible for someone well versed
in Assembly language to compile two or more
programs and perform some deft surgery on the .ASM
files to get them all in to one ROM, but it is not
an easy task. It would probably be simpler to
combine all the programs in to one and include a
BASIC front end menu that jumps to the appropriate
part of the complete program.

While downloading a .HEX file to be tested as a .CO
file before burning in to a ROM, the Model 100/102
locks up?

You are probably ORGing the file too high in memory
and overwriting reserved system memory during the
download. See the section on Overwriting HIMEM in
the chapter on Technical Information.

Questions and Problems

Chapter 14, Page 2

Known Bugs

Please refer to this list, and the list of Syntax problems
in the chapter on Syntax before reporting a bug. They may
already be known about.

1. When Line numbering or tracing is used, RBASIC can
. loose track of the correct line number within a FOR-
NEXT control.

10 FOR A = 1 to 10 : STATEMENT1:STATEMENT2:
20 NEXT A ’

The NEXT at line 20 forces control back to
STATEMENT1 then STATEMENT2. When control is forced
back to STATEMENT1, the line number is not reset to
10, but remains 20. If an error occurred in
STATEMENT1 or STATEMENT2, the error message would
indicate an error in line 20. If certainty is
required on line numbers within a control
statement, then the first statement after a FOR
must start on its own line number. In practice this
is rarely a problem.

10 FOR A = 1 to 10
20 STATEMENT1:STATEMENT2:
30 NEXT A

Questions and Problems

Chapter 14, Page 3

If an error occurs when the program is already
executing an error trap routine, normally the error
should cause the program to drop into a BASIC error
screen and stop running.

10 ON ERROR GOTO 100

20 PRNT "HELLO"

30 END

100 PRNT "TRAPPED THE ERROR"
110 RESUME NEXT

In the above example the error at line 20 would
cause the routine at 100 to be called. The error in
line 100 will cause a program abort and syntax
message.

? SN Error in line 100

Under certain circumstances which have not yet been
isolated, RBASIC will get caught in an endless
loop. The error at line 100 causes another call to
100. This can only be undone by pressing reset.

The only solution is to ensure that your error
trapping routines do not themselves contain errors
or the potential for error.

The Slow Trace switch does not work on lines that
use an INKEY$ loop.

100 AS$=INKEYS$:IF AS$="" THEN GOTO 100

If a program containing the above line were
compiled with the /S option, the program would hang
up at line 100 when run. The problem is a conflict
between the key needed for the slow trace, and the
key needed for INKEY$. It is nearly impossible to
press two keys fast enough to respond to the slow
trace and then provide a key that can be picked up
by INKEYS.

If a slow trace is needed, then change the line to
an INPUT statement for the debugging session and
resign yourself to pressing ENTER after the
keystroke. -

100 INPUT AS$

Questions and Problems

Chapter 14, Page 4

As of this writing, there has been one report of a
problem with the LOADM command producing a Syntax
Error. The report is not clear whether the error is
occurring during compilation or at run time. We
have as yet been unable to duplicate the problem
and would appreciate hearing from anyone who runs
in to this one.

A LOADM command will not work within a subroutine
but that is true for both RBASIC and interpreted
BASIC. The program misbehaves differently but for
the same reason. .

10 GOSUB 100

20 PRINT "Load Completed"
30 END

100 LOADM "PROG.CO"

110 RETURN

The LOADM at line 100 destroys the stack for either
BASIC or RBASIC.

In BASIC this produces the error

? RG Error in line 110 (RETURN without GOSUB Error)
In RBASIC the program exits to the Model 100 Menu,
or produces a spurious error because the RETURN has
lost its place in the stack and will jump to some

unknown piece of code (usually the Menu).

For LOADM to work within RBASIC, the command must
not be issued within a subroutine.

Questions and Problems

Chapter 14, Page 5

Using the Radio Shack bar code package has revealed
a bug in the RBASIC verrsion of RUNM. This Bar Code
package includes three drivers for PLESSY, UPC or
3-0F-9 code. The recommended procedure in the
manual is to RUNM "file name" such as

RUNM "B3OF9"

Then OPEN the WAND for input. In RBASIC this is
producing spurious error messages. The same effect
can be achieved by using LOADM and CALL which is
functionally equivalent to RUNM.

LOADM "Y“B3OF9":CALL 61824

This bug will show up in other efforts to run or
use machine language routines with a BASIC program.

In general terms you can get around the RUNM
problem by loading the program using LOADM and then
CALLing the correct entry address. If you do not
know the correct entry address then use the LOADM
command by itself to establish this. If you had a
file called DOIT.CO on your Model 100/102 menu and
did not know the entry address for it, you could
enter BASIC and type

LOADM "DOIT"

This might display

Top @ 59123
End : 62950
Exe. : 59555

The address listed as the Exe. address would be
used as the CALL address to get around the bug in
the RBASIC version of DOIT. This would be coded as

10 LOADM "DOIT":CALL 59555

The Top address is the highest value that HIMEM may
have that still allows DOIT to run. The RBASIC
program that runs DOIT must contain a clear
statement to set HIMEM to 59123 or lower statement
such as

CLEAR 100,59123

Questions and Problems

Chapter 14, Page 6

The RBASIC compiler will create a ROM trigger file
name on the menu if requested by using the /R
switch. :

RBASIC DODAH /RDODAH

The above command will create an entry on the Model
100 menu of "DODAH" that can be used to start the
program.

This file cannot be correctly killed. The command
KILL "DODAH"

will result in the Model 100/102 internal counters

being messed up and the Menu will display a free
bytes count in excess of 60000 bytes.

Questions and Problems

Chapter 14, Page 7

The Compiler does not correctly handle MAXRAM in a
clear statement. As in

10 CLEAR 500,MAXRAM
This must be changed to

10 CLEAR 500,62960

The compiler generates a Missing KEYWORD Error when
a space precedes an ELSE after a COLON.

100 IF A=15 THEN PRINT A: PRINT B:AELSE PRINT C

This space causes a missing KEYWORD Error. Correct
this by eliminating the space.

100 IF A=15 THEN PRINT A: PRINT B:ELSE PRINT C

Questions and Problems

Chapter 14, Page 8

9. A bug exists in the PRINT USING logic under certain
circumstances when using PRINT USING with a variable.

10 O$="###.##":PRINT USING 0$;123.5:B$="Hello"

The above line causes the value "Hello" to be assigned to
to 0$ as well as BS$.

A similar problem happens when using a PRINT STRINGS$() af
ter a PRINT USING.

20 OS$="###.##":PRINT USING 0$;123.5:? STRING(5,49)

This casues 0% to be set equal to STRINGS(4,49) or in this
case "11111".

The reason is not known, but a fix is being worked on. The
bug has always existed in the compiler but was not
previously discovered because of the unusual combination of
conditions.

1. A PRINT USING using a variable.
2. Immediately followed by an assigment or PRINT
STRINGS () command.

For the time being, you can code around this problem by
immediately reassigning the variable to itself after the
PRINT USING statement.

The fixes for the above two lines would read

10 OS$S="###.##":PRINT USING 0$:123.5:0$=0$:BS$="Hello"

20 O$="###.##":PRINT USING 0$;123.5:0$=0$:? STRING(5,49)

Assembly Language MERGE

Chapter 15, Page 1

Assembly Language MERGE

Extending BASIC.

The MERGE verb cannot be used in RBASIC. The program once
compiled is immutable, therefore another BASIC source file
cannot added to the code.

Rather than let a perfectly good verb go to waste, a
special extension to the language has been implemented
starting with version 2.00 of RBASIC.

The MERGE verb may be used to include an assembly language
source code file directly into the RBASIC program. This
will primarily be of benefit to assembly language
programmers and the coverage of this subject assumes that
you have some knowledge in this area.

Assembly Source Compatibility

RBASIC will generate .ASM files that can be assembled with
A100, or the CPM MAC assembler. Any assembly language code
must be written so that it will assemble correctly. Please
see the section on A100 for a brief rundown on the
assembler.

The intended use of the MERGE command is to allow routines
that must be fast to be included and directly callable from
within the RBASIC program.

Assembly Language MERGE

Chapter 15, Page 2

overview of Techniques.

The technique is fairly straight forward.

1. Write a assembly language routine and place it in a
text file.
2. . Place a MERGE command in the RBASIC source code

file that names the text file.
3. Compile and assemble as before.

For example a routine could be written and placed in a file
called HOOPLA.ASM. Line 500 below would cause the contents
of HOOPLA.ASM to be added to the output generated by the
RBASIC compiler.

10 GOSUB 500 or GOTO 500
500 MERGE HOOPLA.ASM

The entire routine in HOOPLA.ASM would have the line 500
label L1500 and GOSUB 500 at line 10 would actually cause a
call to the 1500 label.

Lio:
CALL L500

The entire output file which includes the BASIC program and
the logic from HOOPLA.ASM would then be assembled by
Al100.EXE. '

Assembly Language MERGE

Chapter 15, Page 3

Labeling Restrictions.

It is good practice to avoid using labels in a MERGE file
that might conflict with labels generated by RBASIC. RBASIC
generates three basic types of labels within the program
logic.

Line labels use the original program line number preceded
by an 'L'. Line 500 becomes L500, line 2705 becomes L2705
and so on.

Statement labels are used to mark the beginning of
statements. Statement labels begin with an X and then
contain digits. Statement numbers are generated during the
compile sequentially. The first statement label will be X1,
the next X2 and so on to the end of the program.

Jump labels are generated in a similar way and are used to
mark jumps for IF-ELSE and FOR-NEXT logic. Jump labels also
start with X followed by digits.

Outside the program logic, support routines are generated
usually starting with an X. For example the PRINT support
routine is called XPRINT, and READ support routine is
called XREAD.

The last set of labels are actual addresses within the
Model 100/102 operating system. They are all listed in
SYSAD.100.

If you avoid using these names as labels, you can create a
file that can be directly inserted in a program.

Assembly Language MERGE

Chapter 15, Page 4

Program Control Restrictions

The program control restrictions are pretty much what you
would expect.

1. If a routine is inserted at a line number that is
called with a GOSUB, then it must end with RETurn. :

2. If a routine is inserted at a line number that is
jumped to with a GOTO then it must NOT end with a RETurn.

3. If a routine is inserted at a line number that is
executed in line in the code, then it must NOT end with a
RETurn.

4. The routine must not alter the stack, and should
not change any BASIC variables (as named in SYSAD.100)
unless you have carefully studied what the program is
doing.

5. If the routine will be calling a Standard ROM
routine then use the CSR or STDROM macro to ensure that the
CALL will always assemble correctly.

STDROM 4b44h ;:Display one character
or

CSR 4b44h ;Display one Character
instead of

CALL 4b44h :Incorrect

Assembly Language MERGE

Chapter 15, Page 5

Programming Examples.

UPPER.ASM is routine that locates the BASIC variable CS$
and converts the entire contents of the string to upper
case.

; UPPER.ASM
;Locate the Variable CS$ and convert its contents to upper

UPPER:
LXI H, CASEVR ;Locate variable 'CSS$!
STDROM 4790H ;VARPTR in Standard ROM
MoV A,D ;Ptr to Varptr in DE
ORA E
RZ sReturn if no Var found
LDAX D ; LENGTH
ORA A ;Return if Zero length
R2Z
MOV C,A ;Length to C
INX D
XCHG ;PTR to STR addr in HL
MOV E,M ;PTR to string in DE
INX H
MOV D,M
XCHG ;Now in HL
UP1:
MOV A,M
CPI 'a! ;If less than 'a’
Jc UP2 iSkip)
CPI v ;If gt or = 'z'+1
JNC UP2 ;Skip
ANT ODFH :Turn Off Bit 5
MOV M,A
up2:
INX H ;Step through string
DCR C
JNZ UP1
RET ;RET for use with GOSUB
CASEVR:

DB 'css$!

Assembly Language MERGE

Chapter 15, Page 6

This routine is set up to be called in an RBASIC program.

The following program acce

pts user input, converts it to

upper case, and then re-displays the results. The variable

CS$ has been permanent

1y reserved as the variable to use

for case conversions. The routine is accessed, by setting

Ccs$ = to

the line number for the routine.

10
20
30
40
50
60
70

PRINT "Input A STRING";

INPUT X$

CS$=X$

GOSUB 1000

PRINT "The Converted string is"
PRINT CS$

END

1000 MERGE UPPER.ASM

A similar routine to do lower case
included in the same program.

10
20
30
40
50
60
70
80

PRINT "Input A STRING";

INPUT X$

Cs$=X$

GOSUB 1000

PRINT "The Upper Case string is
GOSUB 2000

PRINT "The Lower Case string is
END

1000 MERGE UPPER.ASM
2000 MERGE LOWER.ASM

the string to convert and then doing a GOSUB to

conversion could be

" 7CS$

n ;css

Assembly Language MERGE

Chapter 15, Page 7

s LOWER.ASM : -
;Locate the Variable CS$ and convert its contents to lower
;case.

LOWER:
. IXI H,CASEVR ;Locate variable 'CS$!
STDROM 4790H :VARPTR in Standard ROM
MOV A,D ;Ptr to Varptr in DE
ORA E
RZ :Return if no Var found
LDAX D ;s LENGTH
ORA A ;Return if Zero length
RZ
MOV C,A ;Length to C
INX D
XCHG ;PTR to STR addr in HL
MOV E,M ;PTR to string in DE .
INX H
MOV D,M
XCHG ;Now in HL
LWl:
MOV A,M
CPI ‘Al ;If less than 'A!
Jc w2 ;Skip
CPI e ;If gt or = 'Z'+1
JNC Lw2 :Skip
ORI 020H ;Turn On Bit 5
MOV M,A
Lw2:
INX H :Step through string
DCR C
JNZ LWl

RET :RET for use with GOSUB

Assembly Language MERGE

Chapter 15, Page 8

Note in the above examples that CASEVR only exists in
UPPER.ASM, but not in-LOWER.ASM. Having it in both would
cause a duplicate name conflict so one file must rely on
the other to have the data named.

It would also be possible to place CASEVR in a third file
and include it as a single 3 byte data field. As long as
the Iine number to which it was attached was never
executed, it would hold data without any problem. In the
example below, CASEVR would have to be removed from
UPPER. ASM. -

;s CASEVR.ASM
CASEVR: DB 'css!

10 PRINT "Input A STRING";

20 INPUT X$

30 CS$=X$

40 GOSUB 1000

50 PRINT "The Upper Case string is ";CS$
60 GOSUB 2000

70 PRINT "The Lower Case string is ";CS$
80 END

1000 MERGE UPPER.ASM

2000 MERGE LOWER.ASM

3000 MERGE CASEVR.ASM

Assembly language routines can call one another provided
the routines RETurn. Because the UPPER.ASM file starts with
the label UPPER:, the routine included at line 1000 will
have two labels, L1000 and UPPER. LOWER.ASM or any other
assembly language source code file could access the UPPER
routine with

CALL L1000
or
CALL UPPER

Obviously the second choice makes more sense since the file
could be included at any line number.

Assembly Language MERGE

Chapter 15, Page 9

You can also call or jump to a BASIC line number from
within the assembly language routine provided the rules for
program control are followed.

It would be possible to write a machine language sorting
routine that called BASIC program lines to display progress
messages so that the machine language logic could be kept
simple.

Option ROM Considerations.

In the previous examples, a constant value for 'CS$' has
been created in the assembly language routines to be
accessed by the VARPTR routine.

Once the program is moved to an Option ROM, accessing this
memory becomes more awkward.

First the memory cannot be used to store data. It will be
burned into the ROM and will not be modifiable. Second,
routines in the Standard ROM cannot be passed pointers to
data stored in an Option ROM. Standard ROM routines cannot
‘point' into the option ROM.

This problem was overcome in compiler design by copying
data to a buffer in the TELCOM back page area (FCCOH) and
then processing the data in that buffer. There is no reason
that you cannot take advantage of the logic.

The routine is called CP2BUF, and the address of the buffer
is SUPBUF. The CP2BUF routine expects the data to be null
terminated. Set HL to point to the data and CALL CP2BUF. On
exit the DE register pair contain the address of SUPBUF.

Given these parameters, the following is an example of
UPPER.ASM modified to run in an Option ROM.

Assembly Language MERGE

Chapter 15, Page 10

'UPPER ASM

:Locate the Varlable CS$ and conver
;case. Runs as CO or ROM routine

LXI
° CALL
XCHG

STDROM
MOV
ORA
RZ
LDAX
ORA
RZ
MOV
INX
XCHG
MOV
INX
MOV
XCHG
UP1l:
MOV
CPI
JC
CPI
JNC
ANT
MOV
UP2:
INX
DCR
JNZ
RET
CASEVR:
DB

H,CASEVR
CP2BUF

4790H
A,D

UP1

'cs$!', 0

t its contents to upper

;Locate variable 'Cs$'
;Copy up to RAM

;Point HL at the copied
;data

;VARPTR in Standard ROM
:Ptr to Varptr in DE

;Return if no Var found
;s LENGTH

;:Return if Zero length
;Length to C

:PTR to STR addr in HL
:PTR to string in DE

:Now in HL

:If less than 'a'
;Skip

;If gt or = '2'+1
;Skip

:Turn Off Bit 5

;Step through string

;RET for use with GOSUB

:Add null for CP2BUF

Multiple Programs on One ROM
Chapter 16, Page 1

Multiple Programs on One ROM
APPLIES TO VERSION 5.0 ONLY
Multiple Programs

It is possible to include multiple BASIC programs on one
ROM, ‘but it may be complicated.

The main problems are brought about by inter-program
conflicts. Many programs initialize various values, and
rely on the exit or END of the program, or the next RUN
statement to re-initialize these.

For example it is possible for a program to set up ON KEY
interrupt logic. When the program exits or ENDS it is not
necessary to clear these interrupts as the END statement
and or next RUN statement will clear the interrupts.

If multiple programs are merged into one ROM, an exit does
not occur between programs. Moving from program A to
program B leaving interrupts installed that were set in
program A can cause very hairy results.

It is important to remember these facts as a program that
runs fine on its own may leave things set up that interfere
with other programs.

Parent and Child.

In order to allow the creation of multiple programs on a
ROM it is necessary for one program to be named as the
-parent program. This would usually be a menu type program
that dispatches to all the other programs.

All the remaining programs on the ROM are classed as
children or descendant programs.

Multiple Programs on One ROM
Chapter 16, Page 2

Inheritance.

Parent and child process will pass inherited
characteristics back and forth even so far as one child
program passing a characteristic back through the parent
process to another child program.

The parent should be careful to set the correct
characteristics for each child, or the child should reverse
any system wide parameters that it sets while it is
running. A common close for a child process would be to
close all files, clear all variables and return to the
parent. .

100 DEFDBL A-Z:CLOSE:CLEAR:RETURN

Other areas that may need reversal are interrupts, screens,
and function key labels which may require a more elaborate
close.

100 SCREEN 0,0: COM OFF: ON COM GOSUB O

105 KEY OFF: ON KEY GosUB 0,0,0,0,0,0,0,0

110 GOSUB 200 'Routine to reset Function Keys
120 DEFDBL A-Z:CLOSE:CLEAR:RETURN

It may require some experimentation to determine what is
affecting other programs in the family.

Table 16-1 includes a list of inheritance.

Multiple Programs on One ROM
Chapter 16, Page 3

Table 16-1 Parent-Child Inheritance

P->C Parent will pass on to child
C->P Child will Pass back to parent
Cc->C Child will pass through parent to another child.

Action P->C C->P c->C
COM Interrupts T T T
MDM Interrupts T T T
KEY Interrupts T T T
OPEN FILES F T F
Variables F T F
SCREEN T T T
Label Enable F T F
FKey Defs F T F
String Usage F T F
DEFs T T T
DIMs F T F

Multiple Programs on One ROM
Chapter 16, Page 4

Differences in a Child Program.

A child program differs from a normal RBASIC program in
several areas. ’

1. It should exit with a RETURN verb instead of MENU
or END or STOP. The RETURN will cause a RETURN to the
PARENT process.

2. It can pass characteristics back to the parent.
3. A child process is always compiled with no ORG
address.

4. A child process must use a labeling method that

avoids clashing with the labels used in the parent or other
child programs in the system. The child/descendant switch
must be followed by a single letter used to modify the
standard labels that are generated by the compiler. For
example if a system were to include three child programs,
each would be compiled with a separate letter.

RBASIC PROGA /DA Descendant using 'A' for labels
RBASIC PROGX /DB Descendant using 'B' for labels
RBASIC PROGA /DC Descendant using 'C' for labels

The alpha letter must be unique among all the children to
be included on one ROM. This limits a ROM to 26 children
using A through Z.

4. The code of a child program may include

MAXFILES = nn

CLEAR string space
and/or

CLEAR ,himem

but they are all ignored. A child program assumes that
MAXFILES, string space and himem are all taken care of by
the parent. In developing a multiple program ROM, take the
highest of all the MAXFILES, the highest string space and
the lowest HIMEM of all the child programs, and use those
values in the parent program.

Multiple Programs on One ROM
Chapter 16, Page 5

5. When a child program is compiled none of the
support code is added to the .ASM file.

6. A child progrém is not assembled separately. All
child .ASM files are intended to be used in a MERGE verb in
the parent program. :

7. A child program must exit at the correct level. A
child program acts as if it has been started by a GOSUB,
and the RETURN to get back to the parent must be located as
if the whole child program were just a subroutine.

Differences in Parent Progranms.

A parent program is very similar to a normal RBASIC program
with a few simple differences.

1. The parent should include a MAXFILES, and CLEAR
statement that encompass all the MAXFILES and CLEAR
statements of all the children.

2. The parent will include all the support code for
all routines. Usually an RBASIC program only includes
support code for routines that are used within the body of
the program. Since an RBASIC parent has no way of knowiling
what.support the children will need, it includes all
roucines.

3. The parent will call any child program by using the
MERGE and GOSUB technique described in the chapter on
MERGE.

4. A parent can inherit characteristics from the most
recently run child.

Multiple Programs on One ROM
Chapter 16, Page 6

The listing of MENU.BA illustrates a parent program that
calls one of three child programs, FILER.BA, GCM.BA or
SYSDAT.BA.

The three children are MERGED at lines 1000, 2000 and 3000
as GCM.ASM, SYSDAT.ASM and FILER.ASM. The program has been
constructed to allow for 7 programs to be run from the menu
by pressing Function keys.

MENU.BA would be compiled with a parent switch as follows
RBASIC MENU /P (other switches)

Before this could be done, all three of the children
processes would have to be compiled.

SYSDAT.BA is the listing for one of the three children.
Note at line 60 that the program exits by using RETURN
rather than END.

Each of the three programs would have to be compiled with a
separate letter to allow the labels to be created uniquely.

RBASIC /DA SYSDAT [other switches]
RBASIC /DB FILER [other switches]
RBASIC /DC GCM [other switches]

Once these three have compiled successfully the parent
program MENU.BA can be compiled and assembled.

Multiple Programs on One ROM
Chapter 16, Page 7

MENU. BA

10 'simple Parent MENU

20 CLEAR 1000 'Use largest values of all children
25 MAXFILES=4 'Ditto ,

30 GOSUB 200 'Init and Clear Interrupts

40 GOSUB 100 'Do a menu

50 GOSUB 620:MENU 'Restore F keys and exit

60 'Init Menu Prompts

70 MT$="Options Menu" 'Set up A Menu

80 M1$(1)=%"GC Comm": M1$(2)="System Date"

82 M1$(3)="Filer": M1$(4)="" .

85 M1S$(5)="": M1$(6)="": M1S$(7)="": M1S$(8)="Exit"
90 RETURN

100 ' Issue a menu get pick dispatch and loop

110 GOSUB 300

130 IF LF%=8 THEN RETURN

140 ON LF% GOSUB 1000,2000,3000,4000,5000,6000,7000
150 GOSUB 200:GOTO 100

180 RETURN

200 'Reset everything and Reinit Menu prompts
210 GOSUB 9000:GOSUB 60
230 RETURN

300 'Display and Read Menu

310 GOSUB 600 'Init Function Keys
320 GOSUB 340 'Display Menu

325 GOSUB 420 'Read Menu

330 RETURN

340 ‘'Display Menu

360 CLS:? CHR$(27) ;"Y";CHRS$ (3+31) ;CHRS (1+31) ;
362 ? "Please Select:";

365 FOR M1% = 1 to 8

370 IF M1$(M1%) <> "" THEN GOSUB 390

380 NEXT M1%:RETURN

Multiple Programs on One ROM

Chapter 16, Page 8

MENU.BA (continued)

390
395
398
400
405
410

420
430
440
450

500
510
520
530
540
550

600
610

620
630
640
650
660
670

'Display One Menu Prompt

L1% =INT((M1% +1) / 2):L1% = L1% + 3

L2% = (((M1% -1) MOD 2) * 20) +1

? CHR$(27) ;"Y";CHRS$ (L1%+31) ;CHRS (L2%+31) ;

? M"FY4+CHRS (M1%+48)+", ";M1S(M1%)

RETURN

'*‘Read Key and check if Valid

GOSUB 500

M1% = LF%:IF M1$(M1%) = "" THEN BEEP:GOTO 430
RETURN

'Get F key input

LY$ =INKEYS$:IF LY$ ="" THEN GOTO 510
LF%=ASC(LYS)

IF LF%<129 THEN GOTO 510
LF$=LF%-128:IF LF%<9 THEN RETURN
GOTO 510

'Init Function Keys
FOR A%=1 TO 8:KEY A%,CHR$(128+A%) :NEXT A% :RETURN

'Restore Function Keys

KEY 1,"Files"+CHR$(13):KEY 2,"Load "+CHRS$(34)
KEY 3,"Save "+CHRS(34):KEY 4, "Run"+CHRS$ (13)
KEY 5,"List "+CHR$(13): KEY 6,""

KEY 7,"":KEY 8, "Menu"+CHRS$ (13)

RETURN

Multiple Programs on One ROM
Chapter 16, Page 9

MENU.BA (continued).

999 'Put each child program here
1000 MERGE GCM.ASM

2000 MERGE SYSDAT.ASM

3000 MERGE FILER.ASM

4000 RETURN

5000 RETURN

6000 RETURN

7000 "RETURN

9000 ‘'Disable All Interrupts & Clean

9001 ‘'Characteristics that may be inherited
9002 'From the last child.

9010 KEY OFF:ON KEY GOSUB 0,0,0,0,0,0,0,0
9020 COM OFF:ON COM GOSUB 0

9030 TIMES OFF: ON TIMES$ GOSUB 0

9040 CLEAR:CLOSE:DEFDBL A-Z

9050 SCREEN 0,0:RETURN

Multiple Programs on One ROM

Chapter 16, Page 10

SYSDAT.BA

150
160
180
190
200
205
210
212
214
220

'Copyright (c)1988

'King Computer Services, Inc.

'SYSDAT vers 1.0

'set Date, Time and Day Using ON ERROR Logic
CLEAR 500:GOSUB 70:GOSUB 100
CLEAR:CLOSE:RETURN 'Child program must RETURN
MTS$="Date Menu" 'Set up A Menu

Mi$(1)="Set System Date": M1$(2)="Set System Time"
M1S$(3)="Set System Day": M1$(4)="": M1$(5)=""
M1$(6)="": M1S$(7)="": M1$(8)="Exit"

RETURN

GOSUB 1210:GOSUB 600:IF LF%<>8 THEN GOSUB 120
GOSUB 1220

RETURN

'Dispatch and then redisplay the menu

IF LF%=1 THEN GOSUB 190 'Set Date

IF LF¥=2 THEN GOSUB 350 'Set Time

IF LF%=3 THEN GOSUB 470 'Set Day

GOSUB 600:IF LF%<>8 THEN GOTO 120

RETURN

GOSUB 200:GOSUB 220:RETURN 'Set Date

CLS:? CHR$(27):;"Y";CHRS$(2+31) ;CHRS (5+31);
"current System Date is "+DATES:

CHR$ (27) ;"Y" ;CHRS$ (3+31) ;CHRS (1+31) ;

"Enter New System Date";

CHRS (27) :"Y";CHRS (8+31) ;CHRS$ (35+31) ;:? "Exit";:RETURN
LE%=0:L1%=5:1L2%=16:LN%=8: GOSUB 840

LAV RV VIRV)

225 IF LF%=8 THEN RETURN
230 IF LD$="" THEN RETURN

240

GOSUB 1270

250 IF LE%=0 THEN RETURN

252
254

? CHRS (27) ;"Y";CHRS$ (7+31) ;CHRS (1+31) ;
? "Invaliad ".:BEEP

260 GOTO 220
350 GOSUB 360:GOSUB 380:RETURN 'Set Time

Multiple Programs on One ROM
Chapter 16, Page 11

SYSDAT.BA (Continued)
360 CLS:? CHR$(27);"Y";CHR$(2+31) ;CHR$(5+31);

362 ? "Current System Time is "+TIMES;
370 ? CHR$(27) ;"Y";CHRS$ (3+31) ;CHRS (1+31) ;
372 ? "Enter New System Time";

374 ? CHR$(27);"Y";CHRS (8+31) ;CHRS (35+31);:? "Exit";:RETURN
380 LE$=0:L1%=5:1L2%=16:LN%=8: GOSUB 840

385 IF LF%=8 THEN RETURN

390 IF LD$="" THEN RETURN

400 GOSUB 1430

402 IF LE%=0 THEN RETURN

410 ? CHR$(27) :"Y";CHR$(7+31) ;CHRS$ (1+31);

412 ? "Invaliad " . :BEEP

420 GOTO 380

470 GOSUB 480:GOSUB 500:RETURN '!'Set Day

480 CLS:? CHRS$(27):"Y";CHRS (2+31) :CHRS (5+31) ;

482 ? "Current System Day is "+DAY$;
490 ? CHR$(27):"¥Y";CHRS$(3+31) ;CHRS (1+31);
492 ? "Enter New System Day";

494 ? CHR$(27) ;"Y";CHRS$ (8+31) ;CHRS (35+31) ;:? "Exit";:RETURN
500 LE$=0:L1%=5:1L2%=16:LN%=3: GOSUB 840

502 IF LF%=8 THEN RETURN

510 IF LD$="" THEN RETURN

520 GOSUB 1550

530 IF LE%=0 THEN RETURN

532 ? CHR$(27);"Y";CHR$(7+31);CHR$(1+31)7

534 ? "Invalid " . :BEEP

540 GOTO 500

Multiple Programs on One ROM

Chapter 16, Page 12

SYSDAT.BA (Continued)

590
600
610
612
614
620
630
640
642
650
652
654
660
662
670
680
690
700
702
710
720
722
730
740

'MENU. INC
GOSUB 1210 :LK%=1"
H1$=DATES$: H2$=TIMES$
H1% = INT((INSTR("MonTueWedThuFriSatSun",DAYS$)) / 3)
H3$=DAY$
GOSUB 640 :GOSUB 730
RETURN
CLS:? CHR$(27) ;"Y";CHR$ (1+31) ;CHRS$ (1+31);:? H1$;
? CHR$(27);"Y";CHRS (1+31) ;CHR$ (16+31) ;:? H2$;
CHRS (27) ;"Y";CHRS (1+31) ;CHR$ (35+31) ; :? H3$;
CH§$(27):"Y";CHR$(2+31):CHR$(20-(LEN(MT$)/2)+31);
MTS:
CHRS (27) ;"Y";CHRS (3+31) ;CHRS (1+31) ;
"Please Select:";:FOR M1% = 1 to 8
IF M1$(M1%) <> "" THEN GOSUB 690 :GOSUB 710
NEXT M1%:RETURN
L1$=INT((M1%+1)/2) :L1%=L1%+3:L2%=(((M1%-1)MOD2) *20)+1
? CHR$(27) ;"Y";CHRS (L1%+31) ;CHRS (L2%+31) ;
? WFY4+CHRS (M1%+48)+"."; :RETURN
L1% =INT((M1%+1)/2):L1%=L1%+3:L2%=(((M1%~1)MOD2)*20)+4
? CHR$(27) ;"Y";CHRS (L1%+31) ;CHRS (L2%+31) ;
? M1$(M1%) ; :RETURN
GOSUB 1080 :IF LF%=13 THEN BEEP:GOTO 730
M1% = LF%:IF M1$(M1%) = " THEN BEEP:GOTO 730
RETURN
'SCRNIO.INC
LR%=0:LO%=1:RETURN
RETURN
IF LV$=1 THEN PRINT CHR$(27):"p":
GOSUB 830
IF LV%=1 THEN PRINT CHRS$(27):"q":
LV$=0:RETURN
? CHR$(27) ;"Y";CHRS (L1%+31) ;CHRS (L2%+31) ;
PRINT LD$;:RETURN
LF%=0:? CHR$(27) ;"Y";CHRS (L1%+31) ;CHRS (L2%+31);
IF LVS <>"" THEN GOSUB 870
? CHRS(27) ;"Y";CHRS (L1%+31) ;CHRS (L2%+31) ;
GOSUB 880:LC%=0:RETURN
? CHR$(27) :"Y";CHRS (L1%+31) ;CHRS (L2%+31) ;
? CHRS(27) ;"p"; LV$;CHR$(27):"q";:LVS$="":RETURN
ID$ ="":1.S$=CHRS$ (13) :GOSUB 1140
? CHRS$(27);:"P";

o) o) o) o) o) @

Multiple Programs on One ROM
Chapter 16, Page 13

SYSDAT.BA (Continued)

900

950

952

970

980

990

1000
1010
1020
1022
1024
1030
1040
1042
1044
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1142
1144
1150
1160
1170
1180
1190
1200

LY$ =INKEY$:IF LY$ = "" THEN GOTO 900
LP%=LEN (LD$)

IF LY$ >CHR$(128) OR LY$ <" " THEN GOTO 1020

IF LYS$="," THEN BEEP :GOTO 900

IF LY$S="\" THEN BEEP :GOTO 900
IF LP%<LN% THEN LD$ = LD$ + LY$:PRINT LYS$;

IF LP%=LN% THEN BEEP

GOTO 900

IF INSTR(LS$,LY$) = 0 THEN GOTO 1030
LF$=ASC(LY$) :? CHR$(27) :"Q";

IF LF$<128 THEN RETURN ELSE LF$=LF%-128:RETURN
IF LY$ =CHR$(8) THEN IF LP%=0 THEN BEEP:GOTO 900
IF LY$ <>CHRS$(8) THEN GOTO 1050

PRINT CHRS$(8):" ";CHR$(8):

LD$ =LEFT$(LD$,LP%-1):GOTO 900

IF LYS <" " OR LY$ >CHR$(127) THEN BEEP:GOTO 900
IF LP$=LN% THEN BEEP:GOTO 900

LD$ = LD$ + LY$:PRINT LY$;:GOTO 900
LS$="":GOSUB 1140:IF LS$="" THEN BEEP:LF%=0:RETURN
? CHR$ (27);"Q";

LY$ =INKEYS$:IF LY$ ="" THEN GOTO 1100
LF%=INSTR(LS$,LY$) :IF LF$ = 0 THEN BEEP:GOTO 1100
LF$=ASC(LY$) : IF LF%>128 THEN LF$=LF$%-128

RETURN

IF LK%=0 THEN GOTO 1150

LS$=LS$ +CHRS (129)+CHRS (130)+CHRS (131)+CHRS (132)
1LS$=LS$+ CHRS (133)+CHRS (134)+CHRS (135)+CHRS (136)
IF LU%=1 THEN LS$ = LSS +CHR$(30)+CHRS (31)

IF LW$=1 THEN LS$ = LS$ +CHRS (28)+CHRS (29)

IF IM%=1 THEN LS$=LS$+"0123456789"
RETURN

LY$ =INKEY$:IF LY$ ="" THEN GOTO 1190
RETURN

Multiple Programs on One ROM
Chapter 16, Page 14

SYSDAT.BA (Continued)

1210 FOR A%=1 TO 8 .

1212 KEY A%,CHRS (128+A%)

1214 NEXT A%

1218 RETURN

1220 KEY 1,"Files"+CHRS$ (13) :KEY 2,"Load "+CHRS$(34)
1222 KEY 3,"Save "+CHR$(34):KEY 4, "Run"+CHR$(13)
1230 KEY 5,"List "+CHR$(13): KEY 6,"":KEY 7,""

1232 KEY 8,"Menu"+CHRS$ (13)

1240 RETURN

1260 !

1270 ON ERROR GOTO 1330

1280 DATES=LD$

1290 ON ERROR GOTO 1310

1300 RETURN

1310 ? "Error ";ERR; " at ";ERL

1320 END

1330 LE%=1

1340 RESUME NEXT

1400 'The assignment statements that require trapping
1410 'are placed at the end of the code so that error
1420 'trapping logic is generated at the end of the prog
1430 ON ERROR GOTO 1330

1440 TIMES$=LD$

1450 ON ERROR GOTO 1310

1460 RETURN

1550 ON ERROR GOTO 1330

1560 DAY$=LD$

1570 ON ERROR GOTO 1310

1580 RETURN

Compiling for the Model 200
Chapter 17, Page 1

Compiling for the Model 200
APPLIES TO VERSION 5.0 ONLY

If you have acguired the Model 200 version of the compiler,
your distribution diskette will contain 3 extra files,
ROMHEAD;200, SYSAD.200 and RCO200.ASM.

These two files along with some compiler options make it
possible to compile programs for the Tandy Model 200.

The RBASIC compiler starting with version 3.00 supports a
/2 switch that informs the compiler that the program is to
be compiled for the Model 200. This causes the compiler to
include the SYSAD.200 file instead of SYSAD.100 at compile
time. If the program is being compiled for ROM development,
then the ROMHEAD.200 file will be included instead of
ROMHEAD. 100.

The Al100 assembler starting with version 3.00 includes a /2
switch that informs the assembler to use maxram values for
the 200 instead of the 100 when it does the final
calculations of highest possible org address and checks
whether a program has gone in to high memory.

Please note that the compiler does NOT translate CALLS
within the program. If a program for the Model 102
contained a line to call the routine to connect the phone
for the Model 102, neither the compiler nor the assembler
will attempt to translate that value to the Model 200
equivalent. Those translations are up to the programmer.

200 CALL 21200 'Connect the phone

Compiling for the Model 200
Chapter 17, Page 2

If a program PROGA.BA does not contain machine specific
calls, it can be compiled and assembled for the Model
100/102 with

RBASIC PROGA
Al100 PROGA

The same program will compile and assemble for the Model
200 by using the /2 switch.

RBASIC PROGA /2
A100 PROGA /2

Compiling for the Model 200
Chapter 17, Page 3

Receiving on the Model 200

RCO200.ASM is a modified version of RCO.ASM designed to
work with the Model 200. It is used just like RCO.ASM for
the Model 100/102.

In order to get a .HEX file onto the 200 as a machine
language program, a program must exist on the Model 200
that can receive and load this type of file. This .HEX
loadér should be as efficient as possible. A HEX loader
could be written in BASIC, but BASIC runs very slowly when
you are trying to load large files. The answer is to create

a HEX loader that is written in machine language.
COLOADER.EXE handles this nicely. COLOADER is a program
that runs on the PC. It will write a BASIC program that can
be downloaded to the Model 200. The BASIC program is not
the HEX loader, but when it is run on the Model 200 it will
create a machine language program that is a HEX loader.

This sounds complicated, but it simple to use.

Using COLOADER.EXE

It is easiest to describe COLOADER.EXE using a real
example. Assume you have created a BASIC program PROGA.BA
that must be ORGed at 57000 to fit in to Model 200 memory.

The program would be compiled and assembled using that
address.

RBASIC PROGA /057000 /2
A100 PROGA /2

Compiling for the Model 200
Chapter 17, Page 4

The output from these two steps will be a file named
PROGA.HEX.

Now we're ready to use COLOADER.
1. Ensure that the files COLOADER.EXE, Al100.EXE and
RCO200.ASM are available in the current directory.
2. - Calculate a second ORG address that is 500 bytes
below the address of your program.
57000 - 500 = 56500
3. Using this address, start COLOADER.EXE with the
following command.
COLOADER RC0O200 /056500
This will create a BASIC program named RC0200.BA.
4. Load and run RCO200.BA on the Model 200. On the
Model 200 type
RUN "COM:88N1ENN" <ENTER>
Oon the PC type
SND RCO200.BA <ENTER>
5. While RCO200.BA is running it will display the
message "Creating RC0200.CO Program". This should

only take a few seconds, and the 'Ok' Prompt will
appear.

6. The BASIC program that was just loaded and run has
now done its job and you may delete it by typing
"NEW" and pressing ENTER.

7. Press F8 to return to the Model 200. The menu will
now contain the program RC0200.CO. This program is
the HEX loader and can be used to load your program
as described in the following steps.

Compiling for the Model 200
Chapter 17, Page 5

10.

11.

12.

Position the cursor over RC0200.CO and press enter.
The Model 200 Screen will clear, and the loader is
now waiting for you to send your program file.

Oon the PC type

'SND PROGA.HEX <ENTER>

While your program is loading, RC0200.CO will
display dots ('.') on the screen indicating that
HEX records are being received and poked into the
Model 200 Memory.

When the load is complete, you will return to the
Model 200 System Menu.

To start running your program, enter BASIC and type

CALL 57000 <ENTER>

As long as your program's original ORG address does
not change, you may edit, recompile and reload
using RC0200.CO as many times as needed. If your
program must be ORGed at a lower address because of
an increase in size, then go back to Step 1 and
create a new version of RCO200.BA and download and
run it.

Version 5 Enhancements

Chapter 18, Page 1

Version 5 Enhancements

There have been several improvements in version 5 beyond
those discussed in the preceding two chapters. These are
advanced programming concepts and are mainly aimed at
tightening the code generated by RBASIC when special
circumstances exist.

New Switches
Resume Jump Switch - /J

ON ERROR handling allows for three types of RESUME
statements.

RESUME causes the program to re-execute the the line that
caused the problem. '

RESUME NEXT causes the program to to resume execution at
the next statement after the statement that caused the
error.

RESUME (line) as in RESUME 1540, causes the program to
resume control at a specific line number.

If an error occurs during execution, the running program
has to have been prepared for the error handling by saving
the address of the current statement in the event of a
RESUME command, and the address of the next statement in
the event of a RESUME NEXT.

As you can imagine, the process of saving the current
program line and the next program line before each line is
executed causes the size of the code to be increased.

Some programs only use, or only require a RESUME (LINE)
directive to recover from an error. If this is the case, it
is not necessary to save current and next lines. If you use
this type of error recovery, then use the /J switch on the
command line instead of the standard /E switch.

The /E switch also turns on line numbering, but the /J
switch does not, so if you do need to retain line numbering
then use both switches /J and /L.

The combination of /J and /L is still smaller and executes
slightly faster than the /E switch.

The /J switch must NOT be used if you use RESUME or RESUME
NEXT for error recovery. Use the /E switch for these. The
compiler does not check this, and will assume a RESUME
(LINE) type recovery if you use the /J switch.

Version 5 Enhancements

Chapter 18, Page 2

Non-KEY Interrupts /X.

Under version 4 of RBASIC ON COM, ON TIME$ and ON KEY
interrupts were all treated in the same way. If your
program contained any one of these interrupts, or was
compiled with the /I switch, then all three interrupts were
enabled. This caused an unexpected side effect. The normal
compiled code for RBASIC disables the Break Key checking.
This .break key checking could be turned back on by using
the /B switch, but many developers liked the idea of
disabling the key.

The problem was that ON KEY logic would turn the break
check back on. The result was that if you wanted to disable
the break key, but used an ON TIMES$ or ON COM interrupt,
the break key was enabled to as part of the ON KEY check.

Version 5 recognizes the difference between ON KEY and the
other two types of interrupts. ON KEY interrupt checking is
only turned on if the /I switch is used, or an ON KEY is
countered in the program. The /X switch can be used as an
alternative to the /I switch to enable ON COM and ON TIMES
checking only.

If you want to allow the compiler to turn on checking, then
do not use either switch. If you are using only ON COM
and/or ON TIMES$ then use the /X switch. If you are using ON
KEY then use the /I switch.

Further information is available in the chapter on
Interrupt processing.

Version 5 Enhancements

Chapter 18, Page 3

Compiler Control Directives.

Version 5 has taken advantage of another unused BASIC ke
word, CONT, to implement compiler control statements. This
command is used to change the way the compiler behaves, and
does not act as a BASIC command. You can consider the CONT
keyword to be a mnemonic for CONTROL.

Compiler directives are useful for debugging and error
trapping.

The compiler control directives are:.

CONT LINE ON Start Line numbering
CONT LINE END Stop Line Numbering

CONT TRACE ON Start including Trace logic
CONT TRACE OFF Stop including trace:logic.

CONT SLOW ON Start including slow trace logic
CONT SLOW OFF Stop including trace logic.

The uses of line numbering, trace and slow trace logic are
described in the chapter on compiler switches. The
advantage of compiler directives is that you can control
the behavior over a smaller range of lines than the whole
program.

For example if you are trying to debug one section of code,
use the TRACE ON and END around the code to to provide a
limited trace.

100 'ORIGINAL ROUTINE

110 ‘'DID SOMETHING HERE

120 'DOES SOMETHING ELSE AND FINALLY
130 RETURN

becomes

100 CONT TRACE ON: 'ORIGINAL ROUTINE
110 'DID SOMETHING HERE

120 'DOES SOMETHING ELSE AND FINALLY
130 CONT TRACE END: RETURN

Version 5 Enhancements

Chapter 18, Page 4

The LINE directive is ver¥ useful. In most programs it is
not necessary to retaln ne numbering for the entire
program, rather it is usually only needed for a few
critical routines.

Use CONT LINE ON and END around these routines to ensure
that line numbers are available in the vent of errors.

The compiler CONTROL directives override compile time
switches.

For example:
10 CONT LINE END

If a program started with line 10 above and were compiled
with

RBASIC /1 prog

Line numbering would be turned off by the first line of the
program.

This can be most effectlvely used with the /Error switch.
If ON ERROR loglc is needed, but line numberlng is not, or
line numbering is only needed in certain critical areas
then

10 CONT LINE OFF
20 ' PROGRAM here

500 °‘CRITICAL ROUTINE STARTS HERE
510 CONT LINE ON

590 RETURN
595 CONT LINE END

Version 5 Enhancements

Chapter 18, Page 3

Compiler Control Directives.

Version 5 has taken advantage of another unused BASIC key
word, CONT, to implement compiler control statements. This
command is used to change the way the compiler behaves, and
does not act as a BASIC command. You can consider the CONT
keyword to be a mnemonic for CONTROL.

Compiler directives are useful for debugging and error
trapping.

The compiler control directives are:.

CONT LINE ON Start Line numbering
CONT LINE END Stop Line Numbering

CONT TRACE ON Start including Trace logic
CONT TRACE OFF Stop including trace-logic.

CONT SLOW ON Start including slow trace logic
CONT SLOW OFF Stop including trace logic.

The uses of line numbering, trace and slow trace logic are
described in the chapter on compiler switches. The
advantage of compiler directives is that you can control
the behavior over a smaller range of lines than the whole
program.

For example if you are trying to debug one section of code,
use the TRACE ON and END around the code to to provide a
limited trace.

100 'ORIGINAL ROUTINE

110 'DID SOMETHING HERE

120 'DOES SOMETHING ELSE AND FINALLY
130 RETURN

becomes

100 CONT TRACE ON: 'ORIGINAL ROUTINE
110 'DID SOMETHING HERE

120 'DOES SOMETHING ELSE AND FINALLY
130 CONT TRACE END: RETURN

Version 5 Enhancements

Chapter 18, Page 4

The LINE directive is very useful. In most programs it is
not necessary to retain line numbering for the entire
program, rather it is usually only needed for a few
critical routines.

Use CONT LINE ON and END around these routines to ensure
that line numbers are available in the vent of errors.

The compiler CONTROL directives override compile time
switches.

For example:
10 CONT LINE END

Iftg program started with line 10 above and were compiled
wi

RBASIC /1 prog

Line numbering would be turned off by the first line of the
program.

This can be most effectively used with the /Erxrror switch.
If ON ERROR logic is needed, but line numbering is not, or
line numbering is only needed in certain critical areas
then

10 CONT LINE OFF
20 ' PROGRAM here

500 °‘CRITICAL ROUTINE STARTS HERE
510 ZONT LINE ON

590 RETURN
595 CONT LINE END

ROMS and HEX Files

Appendix A, Page 1

ROMS and HEX Files

Selecting and Using EPROMs.

If you have no experience with ROMS/EPROMS there are
several good books on the general problem of EPROM burning.
One such is "Experiments With EPROMS" by Dave Prochnow
published by Tab Books, Blue Ridge Summit, PA 17294.

The EPROM (Erasable Programable Read Only Memory) that
should be used for the Model 100/102 is the 27C256. The C
denotes low power CMOS. This is a 32K ROM. There are
smaller ROMs such as the 16K, 27C128 and the 8K 27C64 but
the price difference between them is so small that it has
never seemed worth the effort to stock up of three
different sizes.

The other factor that comes up in choosing EPROMS is memory
speed. The Model 100/102 is very slow and apparently will
not tax even the slowest EPROM. I have used 250 ns (nano-
second) EPROMS and I have been told by an engineer that
units as slow as 300 or 350 ns would still work. The 250 ns
speed is fairly common.

It is ok to use faster EPROMS if that is all you can get
but it will not make youir program run faster and once
access rates go below 150 nanoseconds, prices start to
rise. The speed of an EPROM is frequently incorporated in
the part number by including a dash followed by the speed
in tens of nano-seconds thus

27C256-15 150 nanoseconds
27C256-25 250 nanoseconds
27C256~-5 50 nanoseconds

27C256-10 100 nanoseconds

ROMS and HEX Files

Appendix A, Page 2

Burn voltage is usually 12.5 volts. Ask your supplier to be
certain.

Once the EPROM is burned it cannot fit directly into a ROM
socket because the pin out is different between the socket
and the chip.

Radio Shack sells an adapter that will change the pin outs.
The EPROM chip must be soldered to the adapter. The adapter
can be ordered through your local Radio Shack and is Part
Number AXX-7113 and is called the Tandy 100/200 EPROM
Adapter.

It costs just over $10.00 and comes complete with soldering
and installation instructions.

Intel HEX format..

The .HEX files created as output by the A100 assembler are
a modified Intellec 8/MDS Code 83 format.

Strictly speaking this format is supposedﬁto use a final
record formatted as follows: . 7
ok

:00000001FF

' The assembler generates a CPM style all zeroes final record
of

:$ 0000000000

This format has been used with several different ROM
burners and none of them have failed to recognize the last
record.

King Computer Services, Inc.
1016 North New Hampshire
Los Angeles, CA 90029
(213) 661-2063

September 27, 1988
~ ROM CARRIAGE ASSEMBLY

The ROM may be soldered directly to the circuit board.

Alternatively, a removable circuit board may be created by
soldering special pins to the circuit board, so that the ROM
can be easily inserted and removed.

The ROM or pins are inserted into the side of the circuit
board marked "component side" and are soldered on the
reverse.

Pin 1 is marked on the circuit board on the edge of the card
away from the two protusions used as insertion guides. These
reverse notches are used for inserting into the molex socket
which has guide channels.

The circuit board requires a spacer of approximately 1/10"on
the circuit side.

The grey plastic strips are used to create spacers by cutting
off two lengths about 1/4" shorter than the carriages and
gluing them to the circuit side of the board so that the
space the carriage about 1/10" from the molex socket on the
M100. They should be glued with super glue or crazy glue.

Place Eprom legs through holes .
in Circuit board as shown. & Peot

Solder legs to boards
Super Glue the spacer board to
the bottom of the unit,

The ungler sidg IS
Mmack e “Auto Ebch "

SPACER BoARD |

-y,

EPROM
Enduiew .
Bonrp

