CaC Comvuten ns

N82-BASIC

REFERENCE MANUAL

POS POWER PRESET

PRESET
FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

The electrical power of the PC-8300 is promptly turned off when a
POWER OFF instruction is executed. It returns to the MENU mode
when the power switch is turned on again. If the optional

“ RESUME" is also appended, when the PC-8300 is turned on
again, the configuration in which it was automatically turned off is
reinstated. The contents of the variables are also maintained.

After a POWER CONT (Continuous Power) instruction is executed,
the automatic power shut off function is deactivated until the
POWER <timer> instruction is input again.

It is not recommended to execute the POWER CONT instruction
unless an AC Adapter is used, otherwise the batteries may be
severely drained.

In the sample statement, the POWER 200 instruction will cause the
PC-8300 to shut off in 20 minutes, if nothing is input or output
during that time. The, calculation of time for the sample statement
is as follows:

200 units x 6 seconds (per unit) = 1,200 seconds or 20 minutes.

This instruction resets the desired dot pattern on the LCD screen.
PRESET (< horizontal coordinate>, <vertical coordinate >
{,<function code> })

PRESET (80,32)

The PRESET instruction resets dots on the screen at the
designated coordinates. The <vertical> and <horizontal>
coordinates must range from 0 to 255, or else an error occurs.
The system for the dot coordinates for the LCD display is 239 x
63. If the <horizontal coordinate > is greater than 239, it is
converted to 63.

When the <function code> is an even number, the PRESET
instruction reverses, and operates exactly the same way as the

PSET instruction.

If the <function code> is an odd number the command operates
the same way as when it is omitted.

PSET.

103

N82-BASIC Reference Manual

SAMPLE
PROGRAM:

10 PRINT" THIS SENTENCES WILL"
20 PRINT

30 PRINT" DISAPPEAR SLOWLY"

40 PRINT

50 PRINT" BY THE EFFECTS OF"
60 PRINT

70 PRINT" PRESET.";

80 FOR ¥=0 TO 55:FOR X=30 TO 160
90 PRESET(X,Y):NEXT X,Y

100 END

PRINT/LPRINT

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

NOTE:

SAMPLE
PROGRAM:

104

These instructions output information to the display screen or to a
printer.

PRINT (“}{ <expression>...}{"}
LPRINT

PRINT "ABC"
LPRINT "PC-8300"

The PRINT instruction outputs the value of a designated
expression or a string to the display screen, while the LPRINT
instruction outputs to a printer.

A PRINT instruction by itself (without expression), will cause a line
feed carriage return to be executed. If a comma is used to
separate each individual item, it causes these items to be printed
in columns 14 spaces apart called print zones.

A question mark (?) can be used as the abbreviated form cf the
PRINT instruction.

A comma (,), semicolon (), or blank space can be omitted, except
for punctuation within a string (where a variable is enclosed by
quotation marks).

Single precision numbers can be displayed without loss of
precision in six columns (excluding exponential format). Double
precision numbers can be displayed without loss of precision
(excluding exponential format) in sixteen columns.

10 PRINT "IF YOU DO NOT WANT AN INDENTAT
ION, "

20 PRINT "THEN",

30 PRINT "USE A SEMICOLON."

40 END

PRESET PRINT/LPRINT PRINT USING/LPRING USING

PRINT USING/LPRINT USING

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

These instructions output formatted data to the display screen or to
a printer.

LPRINT
{ [, }<numeric expression list> }

[PHINT] USING <formatting string>; <numeric expression>

PRINT USING "## #H#H";2.3;4567

The PRINT USING instruction outputs numeric data in a
designated format. 1t formats numbers in several ways, making it
easier to read and interpret the output on the screen.

LPRINT USING outputs data to a printer in the same manner.

PRINT USING/LPRINT USING aflows you to specify:

* Number of significant digits.

e Location of decimal point.

* Exponential format.

* inclusion of symbols (asterisk, dollar sign, comma, leading
Zeros).

¢ Indicate negative values.

The output of a <numeric expression> field will always be the
same length as the length of the <formatting string>, unless there
is insufficient space and an error occurs.

If the field specified by the <formatting string> is not large
enough for the <numeric expression>, the number that is printed
includes a "%" symbol at the beginning.

The <formatting string> may include the following:

1. The “#" <symbol> pound sign reserves space for one digit
and indicates that leading zeros are to be suppressed. For
example:

PRINT USING "###";3
PRINT USING "###'" ;3333

will result in:

3
%3333

2. The *.”, (decimal poirt) specifies the number of digits to the left
and right of the decimal point. The digits to the left of “." will
always be printed, even if zeros are required.

105

N82-BASIC Reference Manual

106

Rounding will occur when the number of specified spaces to
the right of “.” is less than the <numeric expression>. Only
one “.” may be specified. A second “.” will cause a ?SN Error.
If a comma is used, or in the third sample beiow, it indicates
the end of the old format field and the beginning of a new one.
For example:

PRINT USING"###. ##";2.5
PRINT USING"### ##'";2.555
PRINT USING"#HH# #.#";2.34,45

will result in:

2.50
2.56
2.3%45.0

. The *," symbol (comma), used anywhere within the

< formatting string>, after the first character and before the
decimal point, punctuates the printed number with a comma "
appearing every third digit, starting from the decimal point and

heading left. For example:

PRINT USING"#, H#iH# Hi#";2222.2
PRINT USING"#, #### . ##" ;123456
PRINT USING"#HH#HHE. #";1234.5

will result in:

2,222.200
%123,456.00
1235.,

. The “+” symbol (plus sign) used at the beginning or at the end

of the <formatting string> specifies the sign (+ or —) of the
< numeric expression>. For example:

PRINT USING"+##. ##";2

PRINT USING"##.#+;34.5

PRINT USING"+## ##";-3

PRINT USING"### . #+";-34.5
PRINT USING"# #### .#+";12345.6

will result in:

+2.00
34.5+

-3.00

34.5-
12,345.6+

PRINT USING/LPRINT USING

5. The “—* symbal (minus sign), used only al the end of
the <formatting string>, indicates the sign (+ or —) of
the < numeric expression> after the number itself. For
example:

PRINT USING"###.#-";-123
PRINT USING"##.#-";12.3
PRINT USING"#, #H###H# #-";-12345.6

will result in:

123.0-
12.3
12,345.6-

6. The “A” symbd (exponent), which is used at the end of
the <formatting string>, and outputs the exponential
format of a <numeric expression>.

For example:

PRINT USING warfil HE-";-2.2
PRINT USING "**#H##H#+";-123
PRINT USING "*+## #HAHH H-";-12345.6

will result in:

12.3456E+04
0.123€+07
-.123E+07

7. The “**" symbols (aslerisks) used at the beginning of
the <formatting string> provide the number with
leading asterisks instead of with leading zeros.

For example:

PRINT USING "x«### #H#-";-2.2
PRINT USING "**#####+;_123
PRINT USING “*x## ###HH . H#-";-12345.6

will resutt in:

k%x2 20—
*kk*x123 -
*%%12,345,6-

NOTE When characters that are not described above are used,
they will be printed before or after the numeric values.

SEE ALSO: PRINT/LPRINT, PRINT #, and PRINT# USING.

107

N82-BASIC Reference Manual

SAMPLE
PROGRAM:

PSET

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

108

10 PRINT "LET'S CREATE TWO HUNDRED RANDO
M NUMBERS OF FOUR COLUMNS EACH."

20 FOR I=1 TO 200

30 R=RND(1)*10000

40 PRINT USING"##HH#";R

50 NEXT I

60 END

This instruction sets a desired dot pattern on the LCD screen of
tne PC-8300.

PSET (< horizontal coordinate>, <vertical coordinate>
{, <function code>})

PSET (80,32)

The PSET instruction sets dots on the screen at the designated
coordinates. The <vertical> and <horizontal > coordinates of the
< function code> must be within the range from 0 to 255, or else
an error occurs.

The LCD display has 240 dots horizontally and 64 dots vertically.
If the <horizontal coordinate> is greater than 239 it is converted
to 239, and, similarly, if the < vertical coordinate> is greater than
63 it is converted to 83.

When the <function code> is an even number, the PSET
instruction reverses, and operates exactly the same way as the
PRESET instruction. IF the <function code> is an odd number,
the instruction operates the same as if it was omitted.

PRESET.

10 SCREEN 0,0:CLS

20 A=150:B=.05:C=11

30 FOR T=-15 TO 72 STEP .13

40 X=EXP(-T*B)*COS(160*3.14*T/180-A)
50 Y=EXP(~-T*B)*COS(160*3.14*T/180-C)
60 X=X*120+120:Y=Y*32+32

70 IF X>=0 AND X<256 AND Y>=0 THEN PSET(
X,Y)

80 NEXT

90 BEEP

100 END

PRINT USING/LPRINT USING PSET READ REM

READ

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

FUNCTION:

This instruction is used to read a value from a DATA instruction
and assign data to a variable.

READ <variable list>

READ A,Z,HS$

The READ instruction is always used in conjuction with the DATA
instruction. The READ instruction is used to accept data from the
DATA instructions and assigns corresponding data to a variable.
Numeric or string variables may be contained in the READ
instruction.

A single READ instruction may access one or more DATA
instructions (accessed in order). In addition, multiple READ
instructions may access a single DATA instruction. If the number
of data items in the DATA instruction is iess than the variables
spedified in the <variable list>, an “?0D Error” (Out of Data)
message is displayed.

When the number of designated variables in the <variable list> is
less than the number of data items in a DATA instruction, the next
READ instruction accesses data not read previously. If no more
READ instructions are coded in the program, any unused data is
ignored.

The RESTORE instruction sets the counter which cantrols the
reading of data items back to the start of the data.

RESTORE and DATA.

10 CLS:LOCATE 8,3
20 FOR I=0 TO 8

30 READ RS

40 PRINT RS;" "
50 NEXT

60 END

70 DATA Please, read, this, manual.
80 DATA I, (PC-8300), am, reading, data.

A REMark instruction is used to put nonexecutable lines such as
remarks or comments in a program.

109

N82-BASIC Reference Manual

FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

SAMPLE
PROGRAM:

RENUM

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

110

[REM] [<remark>}

REM THIS IS A TEST PROGRAM
'THIS IS A TEST PROGRAM

A REM instruction is used to include explanatory remarks or
comments in a program. It is not an executable statement.

There is a single quotation mark on the keyboard, used as an
apostrophe. An apostrophe (‘) can be used as a substitute for the
keyword “REM” in a remark statement.

When the program is listed, all the REM instructions are output
unchanged. REM instructions may be used in multi-statement lines
only as the last statement. This is because all statements that
foliow the REM instruction in the multi-statement line would be
treated as the <remark>, and they would not be executed.

10 REM ** REM **
20 REM A REMARK statement is included as
an explanation in a program.

30 'An apostrophe can be substituted for
the keyword "REM" in a REM statement.
40 REM The PC-8300 disregards anything i
n a REM statement that follows the keywo

rd "REM".

50 REM Any commands that follow a REM st
atement in the same line will also be di
sregarded.

60 PRINT "HOWEVER, THE REVERSE WITH A RE

M STATEMENT AFTER ANOTHER STATEMENT IN A
LINE IS POSSIBLE.: REM This is useless.
"

70 END

This instruction is used to reorganize the line numbers of a
program.

RENUM { <new line number> }{, <old line number> }
{,<increment>}

RENUM
RENUM 101,50
RENUM ,,6

s T e

REM RENUM RESTORE

DESCRIPTION:

RESTORE

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

The < new line number> is the line number replacing the <old
line number> when renumbering, with a default value of 10. The
<old line number> is the first line to be renumbered as <new
line number>, with its default value being the first line number of
the current program. The optional <increment> is the difference
between the line numbers, with the default value being 10.

The RENUM instruction can renumber lines used in conjunction
with GOTO, GOSUB, ON...GOTO, ON...GOSUB, THEN, RESTORE
and ERL instructions. If a non- existent line is designated by one
of these statements, an “Undefined line (M) in YYYY’ error
message appears on the screen. In such cases, the erroneous line
number (filf) cannot be modified via the RENUM instruction, but
line number (yyyy) can be altered.

The PC-8300 returns to the Direct Mode after the RENUM
instruction is executed.

The RENUM instruction cannot be used to change the sequence
of program lines, for exampie, using RENUM 15,30 with three
lines numbered 10,20, and 30 in a program.

Line numbers greater than 65529 cannot be used, or else an
“?FC Error” (llegal Function Call) message will occur.

The RESTORE instruction is used to reset the data list pointer back
to ‘he start of the data, and thus preoare the data for re-use.

RESTORE { <line number> }

RESTORE 80

The RESTORE instruction is used when the same data elements
(from the DATA statement) are needed to be utilized more than
once.

If <line number> is omitted, the first DATA instruction in the
program is accessed by the next READ instruction.

lf<line number> is specified, the first item of the DATA instruction
(designated by <line number>) is the next item to be accessed.

N82-BASIC Reference Manual

SAMPLE
PROGRAM:

RESUME

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

SEE ALSO:

112

10 FOR I=0 TO 19

20 READ AS$:PRINT AS$" ",

30 RESTORE 70

40 NEXT I

50 RESTORE 80

60 READ AS$:PRINT AS

70 DATA Anything

80 DATA "can be read as data."
90 END

This instruction is used to continue program execution after
performing an error processing routine.

RESUME [<0> 1
<NEXT>
<line number>/
RESUME
RESUME NEXT
RESUME 100

The RESUME instruction terminates an error handling routine and
the parameter specifies NEXT action when program execution
continues. This instruction functions in a manner similar to the
RETURN statement, but may only be used in an error processing
routine, and then returns control to BASIC after an errar
processing routine has been performed.

Depending on the location where program execution is to continue
after an error processing routine, one of the following three formats
is selected:

1. RESUME or RESUMEQ - continues execution at the statement
that caused the error.

2. RESUME NEXT - continues execution at the statement
immediately after the statement where the error occurred.

3. RESUME <line number> - continues execution but control is
transferred to the line specified.

ON ERROR GOTO.

RESTORE RESUME RETURN

RETURN

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

The RETURN instruction terminates execution of a subroutine and
returns control to the statement following the GOSUB (call)
instruction.

RETURN {<line number> }

RETURN
RETURN 200

A RETURN instruction atl the end of the subroutine transfers
control to the first statement which follows the GOSUB instruction
in the main program.

If an optional <line number> is included in the RETURN
instruction, program execution control is transferred to the line
number specified, instead of the statement following the GOSUB
instruction.

A GOSUB instruction is used to transfer control to a subroutine. If

RETURN is encountered without first being sent to a subroutine by
a GOSUB command, a (RETURN without GOSUB) error message

“?RG Error” will be displayed.

A subroutine can have more than one RETURN instruction, but
only the first RETURN instruction is executed each time the
subroutine is called.

If a CLEAR instruction is executed in a subroutine, the line number
to which the subroutine is to return is removed from the memory.
An “?RG Error” (RETURN without GOSUB) error message results
when the RETURN instruction is reached.

CLEAR, GOSUB...RETURN, and ON...GOSUB.

10 GOsuUB 200

20 A%=A%+1: PRINT A%;

30 IF A%<6 THEN GOSUB 200
40 END

200 IF A%<5 THEN RETURN 20
210 RETURN

113

N82-BASIC Reference Manual

RIGHTS$

FUNCTION:

FORMAT:

 SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

RND
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

114

This function is used to access a specific number of characters
from a string, starting from the right-most position of the string.

RIGHT$ (< character string>, < numeric expression>)

BS=RIGHTS$(AS,4)

The <character string> can be a string constant or a string
variable. The <numeric expression> is a value ranging from O to
255, which specifies the number of characters to be read,
beginning from the right-most character.

The full <character string> is returned when the < numeric
expression> is greater than or equal to the total number of
characters in the <character string>. The RIGHT$ function
returns a null string when the <numeric expression> is 0.

LEFT$ and MIDS.

10 A$="CONTEST"

20 B$=RIGHTS(AS,4)

30 PRINT "THE ";RIGHTS("ALRIGHT",5):"$ F

UNCTION PASSED THIS " ;BS;" "
40 END

The RND function generates a random number between 0 and 1.

RND (< numeric expression>)

PRINT RND(9.9)

RIGHT$S RND RUN

DESCRIPTION:

SAMPLE
PROGRAM:

RUN

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

The BRND (random) function is used to pick a number, fiip a coin,
draw a card, etc.

The random number that is returned by the RND function is a
floating point (real number) between 0 and 1, and it depends upon
the <numeric expression>. The following cases apply to the RND
function:

e |f the < numeric expression> is positive, an ordinary random
number is generated.

e If the <numeric expression> is zero, the most recently
generated random number is repeated.

e If the <numeric expression> is less than zero (negative
number), a new random series is established by changing
the random seed.

10 X=120:¥=32

20 SCREEN 0,0:CLS

30 X=X+INT (RND(1l)*3)-1

40 IF X<0 OR X>255 THEN X=120
50 Y=Y+INT (RND(1)*3)-1

60 IF Y<O OR Y>63 THEN Y=32
70 PSET (X,Y)

80 GOTO 30

90 END

This instruction is used to execute a program already in memory,
or to load a program and execute it.

RUN { <line number> }
RUN " { <device name>:} <program name>"{ R}

RUN 100
RUN "GAME"

115

N82-BASIC Reference Manual

DESCRIPTION:

NOTE:

SAMPLE
PROGRAMS:

116

The format of RUN { <line number> } is used to execute a
program (which is already in memory) from a designated <line
number>. Program execution starts from the first line if the <line
number > is not specified.

When a parameter is not specified with the RUN instruction, the
program currently in the memory is executed starting from the first
statement of that program. If a program does not exist in the
memory, the PC-8300 will display an “Ok” message and no
execution is performed.

The format RUN ”{ < device name>:} < program name>"{,R}
loads a program fite from the RAM if <device name> is omitted.
When "CAS:” is designated, a program file from a cassette tape in
a data recorder is loaded and executed. If option “R” is included,
it will open all data fites.

When a RUN instruction is executed ail open files are closed, and
the contents of the BASIC area is cleared when the program is
loaded.

The PC-8300 reverts back to the Direct Mode after program
exection is completed.

The loading of a program in response to RUN "CAS:" can be

interrupted by pressing [SHIFT [STOP |.

10 ' SAVE THIS PROGRAM UNDER THE NAME "R
UN 1"

20 ' ** RUN 1 **

30 ' It's tricky to use a "RUN" command
from within a program.

40 PRINT "WHEN IT RUNS, THE PROGRAM WILL
NOT STOP"

50 PRINT

60 PRINT "PRESS THE STOP KEY"
70 PRINT

80 RUN "RUN 2"

90 END

10 ' SAVE THIS PROGRAM AS "RUN 2"

20 ' ** RUN 2 **

30 PRINT "NOW, RUN 2 IS RUNNING."

40 PRINT

50 PRINT "NEXT, LET'S RETURN TO RUN 1."
60 PRINT

70 RUN "RUN 1"

80 END

SAVE

SAVE
FUNCTION:
FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

NOTE:

This instruction is used 1o save a program on a designated device.

SAVE "{ <external device name>:} <file name>"{,A}

SAVE "ENERGY",A
SAVE "CAS:ENERGY'",A

This instruction saves a program currently in the memory into the
RAM or onto an external device. The designated <file name>
can be up to six characters long. When a <file name> specified
is the same as an existing filename the original file's contents will
be overwritten by the new file’s contents. After the command is
executed, the PC-8300 returns to the Direct Mode.

The PC-8300 saves a program file to the RAM if <external device
name> is omitted. “CAS:" is used as < external device name>
for a cassette data recorder, while “COM" is used for an RS-232C
devce, and “LPT:" is used to designate a printer.

For more details, please refer to the CSAVE instruction for “CAS:”
the OPEN instruction for “COM:”, and the LLIST instruction for
“LPT-"

File type “.BA” is automatically selected if no file-type is specified.
If file type “.DO” is designated for a “.BA” file, or if option “A” is
assigned, then a “,DO” file in ASCII format is created.

Once a program file is saved, t is maintained as a file unless
another program is saved with the same filename, or until a KILL
instruction specifying it as the file to be killed or erased is
executed, or when a cold start is performed.

An "?FC Error” (llegal Function Call) message will be displayed if
a program is saved twice with the same file name.

A program file in the RAM cannot be saved if it is retrieved into
the BASIC area by a LOAD instruction.

The LIST instruction can be executed before the SAVE instruction.
This is to display the program contents before saving, and any
required changes can then be made.

If screen editing is performed while a program is in the access
mode (indicated by an asterisk when the FILES instruction is
executed), the original statement(s) is overwritten by the newly
input statement(s).

117

N82-BASIC Reference Manual

SEE ALSO:

SCREEN
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

118

A program should be saved as a “.DO’ file if adequate memory
capacity is available. If this is not possible, try saving the program
on cassette tape as a “.BA" file. Use the option "A” when saving a
“.DO" (ASCIl format) file on cassette. can be pressed
to interrupt the SAVE “CAS:” instruction.

CSAVE, LOAD, LLIST, BSAVE, OPEN “COM:", and Chapter 5,
Files.

This instruction establishes the display mode.

SCREEN 0, <function key display switch>

SCREENO,0

The SCREEN instruction establishes the display mode. When the
< function key display switch> is 0, the function key assignments
are not displayed, and the 8 lines of the screen are available to
you.

The first parameter is dummy data and can be omitted, but a
comma is always needed. For example:

SCREEN 0,1 (function key assignment displayed)
SCREEN 0, O (function key assignments hidden)

The <function key device switch> must range between 0 to 255,
or else an error occurs.

CLS.

10 FOR I=0 TO 21

20 SCREEN 0,I MOD 2
30 NEXT

40 END

SAVE SCREEN SGN SIN

SGN
FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

SIN

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

This function determines whether a number has a negative or
positve sign.

SGN (< numeric expression>)

PRINT SGN (-245)

The SGN function returns 1 if the <numeric expression> is posi-
tive, 0 if the <numeric expression> is 0, but —1 if the <numeric
expression> is negative.

10 READ X

20 IF X=999 THEN END

30 PRINT X, SGN(X)

40 GOTO 10

50 DATA 55,2,0,-3,4,18,5,999
60 END

This function provides the sine of an angle expressed by a nu-
meric expression.

SIN (< numeric expression>)

PRINT SIN(3.14159/2)

The SIN function has many practical uses such as trigonometric
applications. The <numeric expression> is an angle expressed
in radians.

To convert an angle from degrees to radians, multiply it by
.0174533.

ATN, COS, and TAN.

10 SCREEN 0,0:CLS

20 X=0:N=0:F=1

30 Y=SIN(N/25)*32+33
40 PSET(X,Y)

50 IF X<1 THEN F=1
60 IF X>239 THEN F=-1
70 X=X+F:N=N+1

80 GOTO 30

90 END

119

N82-BASIC Reference Manual

SOUND
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

This instruction produces a designated sound.

SOUND <tone> , <length>

SOUND 5586,50

This instruction designates a tone and length, and produces a
sound. The integer for the tone ranges from 0 through 16383,
with the higher numbers producing a higher pitch tone. Length is
comprised of integers between 0 through 250, where the length
of a single unit is 0.02 seconds.

The designation of 5586 in the example produces a sound of 440
Hz.

MUSICAL SCALE TABLE:

CODE

OCTAVE

— 1 2 3 4 5 6
C — 9394 4697 2348 1171 587
C# — 8866 4433 2216 1103 554C
D — 8368 4184 2092 1045 5230
D# 15800 7900 3950 1975 987 493D
E 14912 7456 3728 1864 932 466E
F 14064 7032 3516 1758 879 439
F# 13284 6642 3321 1660 830 415
G 12538 6269 3134 1567 783 —
G# 11836, 5918 2954 1479 733 —
A 11172 5586 2793 1396 693 —
A# 10544| 5272 2636 1316 653 —
B 9952 4968 2486 1244 622 —

120

SIN SOUND SPACE$

SEE ALSO:

SAMPLE
PROGRAM:

SPACE$
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

BEEP.

10 DIM S(17):Z#=4697

20 FOR I=1 TO 17

30 S(I)=Z#

40 ZH#=ZH/1.0594639#

50 NEXT

60 FOR I=1 TO 16

70 SOUND S(15),32/1I:SOUND S(17),32/I
80 SOUND S(13),32/I:SOUND S(1),32/1
90 SOUND S(8),48/1:SOUND S(0),16/I
100 NEXT I

110 END

This function provides spaces (blanks) of a desired length.

SPACES$ (<numeric expression>)

PRINT "A"+"B"+SPACES(5)+"C"

The SPACES$ function is used in spacing output for reports and
forms. It will provide a string of spaces determined by the
designated < numeric expression>. The value of the <numeric
expression> must range from 0 to 250.

TAB.
10 FOR Z=1 TO 12
20 PRINT "*"+SPACES(Z)+"*"

30 NEXT Z
40 END

121

N82-BASIC Reference Manual

SQR
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

sTOP

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

122

This function provides the square root-of a number.

SQR (<numeric expression>)

PRINT SQR (16)

The SQR function is used tc compute the square root of a positive
<numeric expression>. If the <numeric expression> is negative,
the message “?FC Error” (lllegal Function Call) will be displayed.

10 INPUT "WHAT'S YOUR NUMBER":X

20 IF X=0 THEN END

30 PRINT "THE SQUARE ROOT IS";SQR(X)
40 GoTO 10

50 END

The STOP instruction is used to halt program execution and return
to the Direct Mode.

STOP

STOP

When a STOP instruction is executed, the PC-8300 halts the
execution of a program, and the following message is displayed
on the screen. “Break in lll” with “Ill” representing the line number
at which the STOP command stopped execution.

A STOP instruction differs from an END instruction because STOP
does not close the file. This instruction is useful for debugging
programs. The execution of the program can be resumed by
using the CONT (CONTinue) instruction, unless the program has
been altered while stopped.

CONT.

10 PRINT "Use a STOP command for debuggi
ng."

20 PRINT "Use a CONT command to continue
the execution of the program."

30 STOP 'USE CONT TO CONTINUE

40 1=1:PRINT I;"Resume execution."

50 GOTO 20

60 END

SQR STOP STR$ STRINGS

STR$
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

STRING$

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

This function converts a numeric value to a numeric string.

STR$ (< numeric expression>)

AS"STR$(123)

The STR$ function converts the value of the <numeric
expression> to a string. It is useful for programming a sort routine
that includes both numbers and characters. If the <numeric
expression> contains a non-numeric character, then a 0 will be
returned.

VAL and STRINGS.

10 PRINT "ENTER A 1 OR 2 DIGIT NUMBER"
20 INPUT "NOW, WHAT HOUR IS IT" ;H:H$=MI
DS(STRS(H),2)

30 IF LEN(HS$)=1 THEN HS$="0"+HS$

40 INPUT "HOW MANY MINUTES" ;M:M$=MIDS (
STRS(M), 2)

50 IF LEN(M$)=1 THEN M$="0"+MS$

60 INPUT "HOW MANY SECONDS";S:S8$=MIDS(ST
R$(S),2)

70 IF LEN(S8S$)=1 THEN S$="0"+S$

80 TIMES=HS+":"+MS$+":"+S§

90 PRINT "THE TIME HAS NOW BEEN SET AT "
;TIMES:;"."

100 END

This function provides a string which contains the specified
character, repeated a designated number of times.

STRINGS$ (< numeric expression>), | <character string>
<ASCll code>)

PRINT STRING$(10,'"*")
PRINT STRING$(10,45)

123

N82-BASIC Reference Manual

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

TAB

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

124

The STRINGS function returns a string which contains the desired
< character string> or <ASCIl code>, repeated the number of
times designated by < numeric expression>.

The <numeric expression> must be in the range from 0 to 250.
if it is not within this range, a “?TM Error” (Type Mismatch)
message is displayed. The <ASCIl code> is converted to its
equivalent character code and then it is returned by this
command.

If the <character string> is more than one character, only the first
character is returned.

STRS.

10
20
30
40
50
60

PRINT
PRINT
PRINT
PRINT
PRINT
END

STRINGS$ (20, "*"); "HEADING" ; STRINGS(10, "%

STRINGS$(20,"-");"LINE ONE"
STRINGS(20,"*"); "LINE TWO"
STRINGS(20,45); "LINE THREE"

The TAB function is used to space out or separate data to be
printed or displayed on a line.

TAB (< numeric expression>)

PRINT "A';TAB(10);"B"

This function is useful for printing reports, tables, and forms, and
to organize the screen display for maximum readability.

It spaces out or separates data to be printed or displayed on the
current line. Before the printing begins, the cursor or the print-
head skips to the position specified by the <numeric
expression>. The <numeric expression> must be in the range of
0 to 255, or else an “?FC Error” (ilegal function call) message will
be displayed on the screen.

Under these conditions, the cursor cannot move backward, so if
the position specified by the <numeric expression> is to the left
of the cursor, the TAB function will start displaying from the right
side of the cursor.

The TAB function is only used with PRINT and LPRINT statements.

STRINGS TAB TAN TIME$

NOTE:
SEE ALSO:

SAMPLE
PROGRAM:

TAN
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

TIME$

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

You can use more than one TAB function on the same line.
SPACES.

10 FOR I=1 TO 21 STEP 4

20 PRINT STRINGS(I,"#"):TAB(22-1);"*"

30 NEXT
40 END

This function returns the tangent of an angle.

TAN (< numeric expression>)

PRINT TAN(3.14159/4)

The TAN function is used in trigonometric applications. It computes
the tangent of an angle expressed in radians.

To convert an angle from degrees to radians, multiply it by
.0174533.

ATN, COS, and SIN.

10 INPUT "ENTER AN ANGLE IN DEGREES";D
20 PRINT "THE ";D;" DEGREES ANGLE 1IS";D*
.0174533; "RADIAN AND ITS TANGENT IS";TAN
(D*.0174533)

30 END

This reserved variable provides the time from the internal real-time
clock of the PC-8300.

TIME$ " < hour>: <minute > : < second>"

TIME$="15:30:20"
PRINT TIMES

125

TAN TIMES VAL

DESCRIPTION:

SEE ALSO:

VAL
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM: .

126

The TIME$ is used to set the current time. The <hour>

is a number between 00 and 23. Both the <minute> and
<second> values are numbers ranging from 00 through 59, used
when the time is set. Resetting the time is not necessary, unless a
Cold Start has been performed.

DATES.

This function returns the numeric value of a numeric string.

VAL (< numeric string>)

PRINT VAL("123")

The VAL function returns the numeric value of a numeric string.

The “+" or “—" sign can be used as the first character of the
< numeric string>.
For example:

VAL("-1234.567") = -1234.567

Any spaces in the < numeric string> are disregarded.
For example:

VAL("12 12'") =~ 1212

If any other character not mentioned above is used within the
< numeric string>, anything after that character is ignored. Far
example:

VAL("123a4™) — 123
VAL("ab") - 0

STR$ and CHRS.

10 A$="123":B$="456,7":Cs="—8.9"
20 X=VAL(AS$):Y=VAL(BS$) : Z2=VAL(CS)
30 D$=AS$+BS+CS

40 N=X+Y+Z

50 PRINT AS$, BS, C$, DS

60 PRINT X,Y,Z,N

70 END

TIME$ VAL XOR

XOR
FUNCTION:
FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

NOTE:

EXAMPLE:

SEE ALSO:

This logical operator is used to test multiple relations.

<operand 1> XOR <gperand 2>

IF A=5 XOR B=5 THEN 200
PRINT 5+3 XOR 4+4

The logical operator XOR (exclusive OR) performs tests on multiple
relations, kit manipulation, and Boolean operations. It returns either
a non-zero (true) or zero (false) value.

For the operation to return a non-zero (true) value, one of them
has to be true and the ather must be false. Otherwise, if both of
them are true, or both are false, the operation returns a zero (false)
value.

The following truth table indicates the evaluation process:
-1 XOR -1.— 0 (TRUE XOR TRUE — FALSE)
-1 XOR 0 — -1 (TRUE XOR FALSE — TRUE)

0 XOR -1 ——1 (FALSE XOR TRUE — TRUE)

0 XOR 0 — O (FALSE XOR FALSE — FALSE)
The XOR command performs in exactly the opposite way
compared to the EQV command.

Logical operators work by converting their <operands> to sixteen
bits binary integers. Therefore, the <operands> must be in the
range from —32768 to +32767. If the <operands> are not
within this range, an “?0V Error” (Overflow) message will be
displayed on the screen.

Integer Binary bits

25 0000 0000 0001 1001
13 0000 0000 0000 1101

After inputting the statement PRINT 25 XOR 13, the integer 20
appears on the screen, whose binary form is 0000 0000 0001
0100. By looking at the table in the DESCRIPTION section notice
that the computation is correct.

AND, EQV, IMP, NOT, and OR.

127

CHAPTER 5

N82-BASIC Reference Manual

A file is a collection of records in the RAM of the PC-8300 or external storage devices,
such as a data recorder. Each record consists of a group of logically related
characters. For example, an N82-BASIC program line is one record. The PC-8300
uses the record unit to read or write into a file, and each file is assigned a distinct file
name when it is created.

5.1 FILE NAMES

A file name consists of three parts:
* The main name, up to 6 characters in length.
e A period, used as a connector in the middle of the file name.

* The file-type extension, added to the end of the file name, which is 2 characters
long.

A file name can consist of any combination of characlers, but the use of letters instead
of numbers or symbols is recommended. You run the risk of getting the error message
“?NM Error” (File Name Mismuch) when using characters other than ordinary letlers. A
legal file name must be entered if this error message is displayed.

An example of a legal file name with a file type extension:

PC8300.8A

“.BA" is the extension which was added by the PC-8300 when the file was saved, in
accordance with the correct mode.

The file name may be input in either lower or upper case characters, and will be
saved and displayed on the screen exactly as typed. The extension will always be
displayed as upper case characters, so it does not matter which way it is typed, if it is
input by you.

The file-type extensions represent specific file types:

¢ “.BA” BASIC files. BASIC programs in Binary format.

* “.DO” TEXT files. TEXT and BASIC programs in ASCII format.

* “.CO” Machine Language files. Programs and data in machine language format.
The filetype extension can be input by you, or the PC-8300 will assign one according

to the mode you are using. For the BASIC moce, the file type extension assigned by
the PC-8300 would be “.BA".

130

FILES

The file names are displayed on the MENU screen in the following order:

Machine language files
TEXT files
BASIC ‘iles

You can also display the file nemes within the specific bank when in the BASIC mode
by using the “FILES” instruction. It is possible to execute BASIC programs from the
MENU mode.

EXAMPLE:

The progrem you created earlier in section 1.5 (page 10) s now saved in the RAM.
From the BASIC mode, oress [SHIFT | and (Menu) to returr to the MENU. You
will then see the file name RADIUS.BA.

Move the cursor onto the file name “RADIUS.BA” and then press. The PC-8300
is now in the BASIC mode and the previously created BASIC program 'RADIUS.BA" is
executed. The screen will appear as shown:

Radius of circlie? B

Load " . Save " ‘Files List Run

5.2 BUFFERS

Buffer memory is reserved RAM area that is used by the PC-8300 to store transmitted
and received data. Each time you OPEN a file in BASIC you reserve a buffer area.
The maximum number of OPEN files that can be open at the same time is 15. This
means that the maximum number of buffers that you can reserve is also 15.

5.3 FILE HANDLING

In order to read or write to a file you will first have -0 open the file. This is done by the
use of the OPEN instruction, wnich utlizes the file number in corjunction with the file
descriptor 0 assign a specific buffer area to that file.

After a file has been OPENed you can use the READ instruction to read records from
it and the PRINT instruction to write records to it. When you have completed your
processing you will have to close the file by the use of the CLOSE instruction.

131

CHAPTER 6
MACHINE LANGUAGE PROGRAMMING

6.1 CREATING MACHINE LANGUAGE PROGRAMS 134

N82-BASIC Reference Manual

5.4 PRECAUTIONS FOR FILE CREATION

When accessing files within the RAM of the PC-8300, the extensions are checked
during the process. This means that you can use identical file names for different files
if the extensions of those names are different. The PC-8300 will recognize the
difference between each of these fles during loading and saving, because it will check
for an external device descriptor and file-type extension, as well as for the file name.

* The maximum number of files that can be stored in each of the three memory banks is
21, depending on the size of the individual files. If an attempt is made to store more
than the maximum allowable in a bank, an error will occur, and the message “?FL
Error” (Filing Limit) is displayed.

When a machine language file is saved using the BASIC language command
“BSAVE", it can then be run directly from the MENU. However, when a file created
does not have a designated execute address, the machine language file is loaded into
the memory, but will not run directly.

132

N82-BASIC Reference Manual

Machine language programming is a collection of meaningful coded instructions that
the PC-8300 can execute. All other programming languages must be compiled or
translated into machine language before they can be executed. Machine language is
also known as assembler language or code.

Machine language programs execute much faster than any other programs, such as
BASIC. They take less memory, and there is virtually no limit to what they can be
programmed to do.

With machine language programs you have the abilty to get into any memory
location of the PC-8300. If you alter vital memory locations, such as the programs that
operate the PC-8300, you could get the PC-8300 “hung-up”, meaning that it does not
respond, no matter what you input. Thus, it is necessary to save important programs
or files on external devices, such as a data recorder, because a simpie mistake can
easily wipe out files in RAM. In the case of such a problem, you will have to perform
a cold start, after which cnly the primary programs of BASIC, TEXT and TELCOM are
displayed on the screen. The rest of the files are destroyed. That is why it is so
important to save your other files before attempting to run your machine language
programs.

See the User’s Guide for more details on how to perform a cold start.

6.1 CREATING MACHINE LANGUAGE PROGRAMS

In order to write machine language programs you will have to know the 8085
Assembler Language. An assembler program can be written in the TEXT mode and
then the optional assembler language compiler can be used to create machine
language code, or the POKE instruction can be used to actually create a machine
language routine in the PC-8300 RAM.

Since creating a machine language program is tedious work, make sure you save it
using the BSAVE instruction before attempting to test it, which avoids the loss of
effort. When debugging (testing) your machine language programs you can use the
PEEK function to check the value stored at a specific memory location.

See Chapter 4 for how to use the BSAVE, PCKE, and PEEK instructions.

Once the machine language routine has been tested and saved, the BLOAD
instruction can be used to load your program into the PC-8300 RAM. The EXEC
instruction is then used from within BASIC made to run it. Before loading a machine
language routine, enough space must be reserved within the RAM for it.

For more details on BLOAD and EXEC instructions, please refer to Chapter 4.

All machine tanguage programs should include a RET instruction at the end of the
routing, so control can be returned to the BASIC mode.

134

CHAPTER 7
N82-BASIC PROGRAMMING AIDS

7.1 RECOVERY FROM CRITICAL SITUATIONS 136
7.1.1 Word Wraparound and Screen Scrolling........... 136
7.1.2 Spontaneous Program Execution Errors............ 136
7.1.3 Logical Errorsccccoveeviiviiiiie e 137
7.1.4 Loss of Program Controlcccoevvicvieennnnnee. 138
7.1.5 Return to BASIC from TEXT is Impossible......... 138

7.2 PROGRAMMINGHINTS...................oooviieiine, 139
7.2.1 Hints for Detecting Errors:ccccocoevveveiiininnns 139
7.2.2 Hints for Speeding Up Program Execution: 139
7.2.3 Hints for Saving Memory Space:..........cccceeen. 140

N82-BASIC Reference Manual

This chapter is designed to provide enough information to make programming easier
for beginning programmers. It will aid in the creation of your own programs, as well as
help to resolve problems within those programs.

7.1 RECOVERY FROM CRITICAL SITUATIONS
7.1.1 Word Wraparound and Screen Scrolling

Situation:
Scrolling occurs whenever characters are input on the bottom line of the screen, or the
space between characters is not what is expected.

Explanation:
The cursor in the BASIC mode is described as a flashing box ; its position is very
important when you input or print on the screen display.

Wraparound is a process when characters continue on to the next line of the screen.
When characters are input past the 39th position of the current line, they are moved
onto the first position of the next line.

« Wraparound is executed when a field longer than 40 characters is printed, or the semicolon
«.» is used when printing more than one field on the same line with the total length over 4Q.

o When you print a field with less than 40 characters in length and the semicolon *;” is not
used, the cursor skips to the beginning of the next line when the operation is completed.

Scroling up means all of the lines of the screen display move up one line, with the top
line moving off the screen and a new line appearing at the bottom. Scrolling up occurs
if the cursor is on the last line and wraparound occurs.

7.1.2 Spontaneous Program Execution Errors

Situation:
A program started to operate incorrectly but executed previously without any difficulty.

Explanation:

In this situation, the program was somehow modified. This primarily happens when a
“ BA” file has been loaded and modified. When programs are loaded into the
temporary working area of the PC-8300, they can be modified and stored in the RAM
or on external devices, such as a data recorder.

136

N82-BASIC Programming Aids

When a program is loaded from the RAM and needs modification, this program should
be saved again in the RAM and not on extemal devices. If a program has been
loaded from a cassette tape, do not save it in the RAM unless it is free of errors and
operates the way it should.

When files loaded from tape are moditied and SAVEd in the RAM, the display of the
file name includes an asterisk (*) after the filetype extension, when the FILES
instruction is used. When attempting to LOAD the original file from tape, it is important
to recognize that these modified programs may contain potential errors and the bad
file could mistakenly be loaded.

7.1.3 Logical Errors

Situation:
When the program result is different from what was expected.

Explanation:

This type of situation is hard to resolve, because it is difficult to determine all the
underlying causes. You will have to go through your program statement by statement,
and determine the operation of each statement. By doing so, the logical flow of your
program may be established.

You have to be persistent, because even if the program initially appears to be in order,
it may actually have a problem at some point. Keep in mind that the PC-8300 is
executing your commands to the letter, exactly as they were input, and it will do

. exaclly what you ask of it.

EXAMPLE:
Assume that you have the following program:

20 DATA 10,13,2,5,6,33
30 FOR I=0 TO 5

40 READ A(I)

50 NEXT

60 FOR I=1 TO 6

70 B=B+A(I)

80 NEXT

90 PRINT B

In this program we want to add the numbers 10, 13, 2, 5, 8, and 33, and print the
result of this calculation. If you RUN the program, the result printed is 59, which is
incorrect. The logical error must be found, which is actually in statement 60. Statement
20 defines values for six different numbers, with statement 30 reading the values of the
numbers into statements 40 and 50. The array is A, so A (0) will have the value of 10,
A(1) a value of 13, A(2) a value of 2, etc. Statements 60, 70, and 80 will add the
values of A(1) through A(6) into B, and then statement 90 will print the value of B.

137

N82-BASIC Reference Manual

The logical error occurs in statement 60 because we added elements 1 to 6 instead of
0 to 5. We do not add element O which has the value of 10, instead we add element 6
which has not been initialized, and therefore it has the value of zero. In order to
demonstrate this, change statement 60 to read:

60 FOR I=0 TO 5

Type RUN and press and you will see that the correct result, 60, is now
returned.

7.1.4 Loss of Program Control

Situation:
STOP is ineffective and you have no control over a program.

Explanation:

in this situation you may have temporarily overlaid vital routines through the use of a
POKE instruction or through your own machine language programs. These vital
routines include the information that the PC-8300 utilizes for its operation.

The only option you have at this point is to turn the power switch OFF. Files stored in
the RAM are erased when this situation is encountered. When the power is turned ON
again, no files are displayed on the MENU screen except the primary ROM-resident
files called BASIC, TEXT, and TELCOM.

if the PC-8300 still does not operate correctly in some way, perform a cold start. To do
this, hold and " and then press and release the RESET switch on the
back of the PC-8300. If necessary, refer to the User's Guide.

7.1.5 Return to BASIC from TEXT is Impossible

Situation:
When editing a BASIC program within the TEXT mode, it may be impossible to exit
from this mode.

Explanation:

In this situation, the message “Text ill-formed” is displayed on the screen whenever
you try to exit and return to the BASIC or MENU mode. This happens because a
statement within the program is longer than 255 characters, or the statement format is
llegal.

The PC-8300 locks you out, and pressing or have no effect except to
display the error message. To resolve this problem, it is necessary to find the long
statement and make it shorter, or re-format the statement. Exit from the TEXT mode
should then be possible.

138

N82-BASIC Programming Aids

7.2 PROGRAMMING HINTS
7.2.1 Hints for Detecting Errors:

1.

A flowchart (a chart depicting the course of program operations) should be carefully
constructed. This is especially useful when beginning programmers are suddenly
confrorted with a major error in the middle of a program.

The PC-8300 User’s Guide and this N82-BASIC Reference Manual should be carefully
read and you should understand and try out the commands and functions utilized by
the PC- 8300.

A record of the variables you have assigned‘should be kept to avoid any duplication
in the names of variabies.

Make it a point to use REM statements to write remarks for your own use within a program,
and avoid multiple statements as much as possible; make the program easy to
understand.

If a particular line does not work at all, isolate it by wriing REM at its beginning, (to
make the computer ignore it) rather than eliminating it. You can easily modity it later.

Use a STOP instruction to confirm any changes in the value of a variable. A CONT
instruction can be used to resume after STOPping.

7.2.2 Hints for Speeding Up Program Execution:

1.

2.

Spaces and REM instructions should be eliminated.

Integer variables should be used whenever possible.

Omit a control variable designation within NEXT statements when possible.

Multiple statements should be used as much as possible.

Use the format A=0 at the beginning of a program for any frequently used variables.
Frequently used subroutines should be placed at the beginning of a program.
Make sure that the region reserved for string use is adequate.

Try to simplify frequently used loops.

139

NB82-BASIC Reference Manual

7.2.3 Hints for Saving Memory Space:
1. Use multiple statements whenever possible.
2. Remove spaces and REM statements from the program.

3. Constants should be held as variables, no matter how many times a constant appears
within a program.

4. Utilize old variables no longer being used within a program, instead of defining new
variables.

5. When there are numerous situations where the same process is used, write it as a
subroutine.

6. Any array variable used should be declared. If it has not been declared, it is automatically
declared to 10.

7. Integer variables should be used whenever possible.

8. Keep the memory area reserved for strings to a minimum.

140

CHAPTER 8
ERROR MESSAGES

N82-BASIC Reference Manual

This chapter outlines causes and what action you should take when error messageé
are displayed on your screen. There are 43 messages programmed into the PC-8300.
Many more error messages could be defined by you, using a BASIC program.

If an incorrect system command, statement, or function is encountered while a BASIC
program is running, the program will terminate abnormally and an error message will

be displayed.

NB2-BASIC has a built-in error trap function. To simplify the process of determining the
source of errors within a program, the explanations of error messages listed are in

alphabetical order.

MESSAGE:

POSSIBLE
CAUSES:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSES:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

142

2A0 Error File is Already Open

1. The execution of an OPEN instruction for a file already open.

2 The execution of a KILL instruction for an open file.

Close the file using the CLOSE instruction before trying to KILL it

or OPEN it again.

2BN Error Bad file number is used.

1. When a PRINT instruction is used with a file number not
previously designated by an OPEN instruction.

2. When an OPEN instructicn is used to assign a file number
larger than the maximum number designated by a MAXFILES
instruction.

1. OPEN the fie.

2. Use the MAXFILES instruction to assign the desired number of
files.

2BO Error Buffer is Overflowed.

An attempt is made to input more characters than the buffer can

hold.

Adijust the program that creates the file to shorten the length of the
records.

Error Message

MESSAGE:

POSSIBLE
CAUSES:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSES:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

?BS Error Bad subscript

1. When the subcript of an element of an array is incorrect.

2. When the subscript of an element of an array is outside the
dimensions of the array.

1. Correct the number of elements specified for arrays within the
program.

2. Increase the size of the array dimensions if necessary.

?CF Error Closed File

An attempt is made to access an unopened file.

Open the ‘ile properly before trying to access it.

?CN Error Continue Nct possible

1. When a CONT instruction is used after a break occurs in
program execution and the program is then edited.

2. When a CONT instruction ‘s written as a statement within a
program.

3. When a CONT instruction is used after a break occurs in
program execution, following a CLEAR instruction.

1. Rerun the program by using a RUN instruction.

2. Eliminate the CONT instruction from the program.

3. Rerun the program from the beginning.

?DD Error Duplicate Definition

An attempt is made to redefine an array previously designated by
use of the DIM instruction.

Use the CLEAR command within the program to clear all arrays

so that they can be redefined. When the NEW or RUN instruction
is used, all arrays will be cleared automatically.

143

N82-BASIC Reference Manual

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

NOTE:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSES:

144

2D$ Error Direct Statement in File

When loading a file using the LOAD instruction with a file-type
extension “.DO", the file contains a statement without a line
number.

Enter the “.DO" file while in the TEXT mode and add line numbers
to all lines within the file.

?DU Emror Device Unavailable

When there is something unusual or incorrect for a device
designation.

An “?FC Error” (lllegal Function Call) occurs if no external devices
are connected to the PC-8300.

?EF Error End of File

When using the INPUT instruction or LINE INPUT instruction
beyond the end of the file.

Use the EOF function in conjunction with INPUT or LINE INPUT
instructions to detect the end of the file and avoid going past it.

2FC Error lllegal Function Call

A parameter that is out of range is passed to a math or string
function. May also occur as the result of:

1. A negative or unreasonably large subscript.

A negative or zero argument for LOG

A negative argument for SQR or CLEAR

When “.BA” files are combined with a MERGE instruction.

o &~ 0N

When a RENUM instruction is used incorrectly and line
sequence is changed.

6. When a device is used that is not connected or is incorrectly
connected to the PC-8300.

7. When parameter values are not within the proper range for a
CLOSE, ERR, LOCATE, MOTOR, GOTO, GOSUB, OUT,
POKE, POWER, PRESET, SCREEN, CHR, EOF, INP, INPUT,
INST, LEFT$, MID$, RIGHTS, SPACE, STRING, TAB, KEY,
MAXFILES, or SOUND.

Error Message

USER ACTION:

MESSAGE:

POSSIBLE
CAUSES:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

1. Be sure all peripheral devices used with the PC-8300 are
attached correctly.

2. Correct all parameter designations entered into the program
incorrectly.

See Chapter 4 for legal parameter desgnations of system
commands, statements, and functions.

?FF Error File Not Found

1. When a file used with a LOAD, KILL, or OPEN instruction is
not on a designated device. If the device designated is a data
recorder, the PC-8300 will continue searching for the file until
the end of the tape is reached.

2. When a file with a type extension other than “.CO" is loaded
using the BLOAD instruction.

1. Be sure all files loaded with the BLOAD instruction are “.CO”
files.

2. Use STOP| to interrupt the searching and try the
command with the correct name.

?FL Error Filing Limit

When the MENU directory is filled with file names, and no space is
available for display of a new filename although some memory
may still be available.

Move some files to external devices and KILL unwanted files, to
create space for more directory entries.
?IE Error Internal Error

An error occurs within BASIC itself.

Consult your Authorized NEC Dealer.

145

N82-BASIC Reference Manual

MESSAGE:

POSSIBLE
CAUSES:

* USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSES:

146

210 Error Input-Output Error

1. When are pressed to forcibly stop input or output
to/from an external device.

2. When peripheral equipment is in need of maintenance.

Check equipment if error occurred spontaneously. It may need

maintenance such as cleaning of recording heads.

2LS Error Long String

An attempt is made to designate a string longer than 255

characters.

Use multiple variables to break down string length to avoid

exceeding the limit of 255 characters. If the string was made too
long in error, simply change the length designated in the program.

20M Error Missing Operand

A necessary operand is missing.

Check the program and insert the omitted operand.

See Chapter 4 for full explanations of statement format.

?NE Error NEXT without FOR
1. A program attempts to execute a NEXT instruction without the
previous execution of a corresponding FOR.

2. When a GOTO or GOSUB subroutine causes a program to
jump into a FOR NEXT loop.

3. When a FOR NEXT loop is incorrectly nested.

Error Message

USER ACTION:

MESSAGE;

POSSIBLE
CAUSES:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:
MESSAGE:

POSSIBLE
CAUSES:

USER ACTION:

3.

Check that the program has the same number of NEXT and
FOR statements.

Check the GOTO and GOSUB subroutine operations included
in the program, and correct them if necessary.

Correct incorrect nesting of FOR NEXT loops.

See Chapter 4 for rules regarding nested loops.

?NM Error File Name Mismatch

File name conventions described in Chapter 5 were not
followed.

An attempt is made to access “.CO” files using commands
other than BLOAD or BSAVE.
Use correct file name and follow the rules exactly.

Be sure that the appropriate commands for loading and saving
of files are used for different file types.

?NR Error No Resume

When an error processing subroutine has no RESUME statement.

Add RESUME, END, or ON Error GOTO to error processing
subroutines.

?0D Error Out of Data

The elements read by using the READ instruction do not
correspond to the number of elements within the DATA
instructions.

When a RESTORE instruction is not used at all, or is
incorrectly used.

Check the program to be sure the number of elements
designated for READ and DATA instructions correspond.

Be sure the program includes a RESTORE instruction in the
appropriate place, before trying to read DATA clements that
have been previously read.

See Chapter 4 for correct use of the RESTORE instruction.

147

N82-BASIC Reference Manual

MESSAGE:

POSSIBLE
CAUSES:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSES:

148

20M Error Out of Memory

1. When a program is too long to be stored in the memory.

2. When sufficient memory is available for storage of a program
but there is not enough available to run it.

3. When an array is too large for the available memory.
4. When a string is too large for the available memory space.

5. When nesting becomes excessively deep with FOR or GosuB
instructions.

6. When you are creating of expanding a file and there is no
memory available.

7. When memory area required for a machine language
application is too small.

Move files to external devices, such as a data recorder, or KiLL
unwanted files to create memory space.

208 Error Out of String Space

Sufficient working memory area for string handling has not been
created.

Utilize the CLEAR instruction to reserve enough RAM space for
string operations. The default value for the working area is 2565
characters. You can use combined (concatenated) strings totaling
255 characters in length. If more area is needed, you will have to
use the CLEAR instruction to reserve more space.

20V Error OVerflow
1. When results of an integer operation or substitution are not
within the range of —32768 through +32767.

2. When the results of a real number operation are not between
—1.70141E+38 and 1.70141E +38.

3. When parameters used with POKE, OUT, and DIM instructions
are not within the proper range.

Error Message

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

Rearrange operations within the program so that they are within
the legal ranges.

See Chapter 4 for descriptions of legal ranges for statements, and
Chapter 3 for ranges of integer and real number operations.

?PC Error PC-8001 format

When a BASIC program, which cannot be executed in N82-BASIC
(a program for PC-8001), is loaded into the PC-8300.

The program will need to be written and modified into an

N82-BASIC program. This error will usually not occur because an
“?SN Error” or “?FC Error” will occur first.

?RG Error RETURN without GOSUB.

An attempt is made to execute a RETURN instruction without a

corresponding GOSUB instruction.

1. Make sure you are not using a GOTO to execute a subroutine.

2. Make sure to use an END statement, so the program does not
fall through any possible subsequent subroutines.

?RW Error Resume Without Error

A RESUME instruction is encountered before an error trapping

routine is entered.

1. Check for any other GOTO or GOSUB instructions which send
control to errar trapping routines, without using the ON
ERROR instruction.

2. Check that you have used an END instruction, so that at the
end the program does not fall through any possible

subsequent error trapping routines.

See Chapter 4 for more information about the ON ERROR
instruction.

149

N82-BASIC Reference Manual

MESSAGE: 2?SN Error SyNtax Error

POSSIBLE

CAUSES: 1. When a statement does not agree with the grammer of
N82-BASIC.

2. When there is only a function or mathematical expression on
the left side of a substitution formula (although it can normally
be used alone in a statement).

3. When the name of a variable does not begin with a letter,
when a reserved word is included, etc.

4. When a colon is missing as a punctuation mark between
multiple statements.

5. When line numbers are not within the range from O to 65529.
6. When a variable is used to designate a line number.

7. When an ELSE instruction is used without a THEN in an
IF...THEN...ELSE instruction.

8. When the number of dummy variables in a function or the
parameters of a command are insufficient or in excess.

9. When two lines become joined together during the screen
editing process.

USER ACTION: 1. Use the LIST instruction. In most cases, the number of the line
in which the error has occurred will be displayed, after is
pressed.

2. If two lines are joined together, split this excessively long line
in the TEXT mode.

3. Check for an accidental substitution, (1 for |, a period for a
comma, a colon for a semicolon, etc.).

4. Check names of variables that might contain a reserved word
(a keyword), for instance, COST, SHIFT, etc.

5. Check for compound numeric formulas that are not properly
enclosed by punctuation marks.

150

Error Message

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSES:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSE:

USER ACTION:

MESSAGE:

POSSIBLE
CAUSES:

USER ACTION:

?ST Error String formula is Too complex

When an expression is too long or too complex.

The expression should be broken into smaller expressions.

?TM Error Type Mismatch

1. When a string variable name is assigned a numeric value or
vice versa.

2. When a function that requires a numerical argument is given a
string argument, or vice versa.

3. When a double precision real number is used as the control
variable in a FOR instruction.

Correct the incorrectly assigned value.

?UF Error Undefined User Function

When an undefined user function has been called up.

This error cannot occur in N82-BASIC.

?UL Error Undefined Line number

1. When a reference is made to a nonexistent line number.

2. When no line exists with the fline number designated by a
RESTORE or RUN instruction.

3. When a program has no line with the line number designated
in a GOTO or GOSUB instruction.

Correct program references for line numbers.

151

N82-BASIC Reference Manual

MESSAGE: 2/0 Error Division by zero
POSSIBLE
CAUSES: 1. When division is performed with an undefined variable, (and its

initial value has been set at zero).
5 When the variable used as the divisor of an operation is zero.
3. When the dummy variable of a TAN function is w/2.

4. When multiplication is performed on zero by a negative
exponent.

USER ACTION: Have the value of the variable displayed by the PRINT instruction.
Investigate to find where the ilegal use occurred.

152

CHAPTER 9

SAMPLE PROGRAMS

9.1
9.2
9.3
9.4
9.5
9.6

PSET ROUTINE. ..ot 154
CHARACTER DEFINITION PROGRAM 156
MUSIC PROGRAMcccooiiiiiiiiineie e 158
RANDOM DISPLAY PRINTING PROGRAM 164
GAME PROGRAMcoocoiniiiniiiincnee e, 166
SCORE RANKING PROGRAMccocevvnnnnn. 168

NB82-BASIC Reference Manual

9.1 PSET ROUTINE

The PSET routine is used to draw lines and functions. It specifically draws boxes and
circles. You should feel free to use required segments from this program by
themselves to function as subroutines when creating new programs.

10 ' LINE BOX CIRCLE
20 SCREEN 0,0:CLS

30 PRINT

40 PRINT " PSET PRACTICE"

50 PRINT

60 PRINT " 1 LINE"

70 PRINT " 2 BOX"

80 PRINT " 3 CIRCLE"

90 PRINT

100 INPUT " WHAT DO YOU WANT TO DRAW";AS
110 ON VAL(AS$) GOTO 130,210,290

120 BEEP:GOTO 20

130 LINE COODINATES

140 CLS:PRINT

150 INPUT "COORDINATE FOR POINT X";XO:IF
X0<0 OR X0>239 THEN BEEP:GOTQ 150

160 INPUT "COORDINATE FOR POINT Y";Y0: I
F YO<O OR YO0>63 THEN BEEP:GOTO 160

170 INPUT "COORDINATE FOR ENDPOIKNT X";X
1:IF X1<0 OR X1>239 THEN BEEP:GOTO 170
180 INPUT "COORDINATE FOR ENDFOINT Y" ;Y1
:IF Y1<0 OR Y1>63 THEN BEEP:GOTO 180

180 CLS:GOSUB 370

200 FOR I=0 TO 1000:NEXT:BEEP:GOTOC 20
210 BOX COODINATES

220 CLS:PRINT

230 INPUT "X COORDINATE";X0:IF X0<0O OR X
0>239 THEN BEEP:GOTO 230

240 INPUT "Y COORDINATE";YO:IF YO<O0 OR Y
0>63 THEN BEEP:GOTO 240

250 INPUT "SECOND X COORDINATE";X1:IF X1
<0 OR X1>239 THEN BEEP:GOTO 250

260 INPUT "SECOND Y COORDINATE";Y1:IF Y1
<0 OR Y1>63 THEN BEEP:GOTO 260

270 CLS:GOSUB 510

280 FOR I=0 TO 1000:NEXT:BEEP:GOTO 20
290 ' CIRCLE COODINATES

300 CLS:PRINT

310 PRINT "CENTER COORDINATES:"

320 INPUT "X COORDINATE";XO:IF X0<0 OR X
0>239 THEN BEEP:GOTO 320

330 INPUT "Y COORDINATE";YO:IF YO<O OR Y
0>63 THEN BEEP:GOTO 330

340 INPUT "RADIUS";R:IF R<O THEN BEEP:GO
TO 340

154

Sample Programs

350 CLS:GOSUB 590

360 FOR I=0 TO 1000:NEXT:BEEP:GOTO 20
370 ' SUB LINE

380 XD=ABS(X1-X0):YD=ABS(Y1-Y0)

390 XS=SGN(X1-X0):YS=SGN(Y1-YO0)

400 IF XD>YD THEN 450

410 F=-1:T=X0:X0=Y0:Y0=T

420 T=X1:X1=Y1l:Y1l=T

430 T=XD:XD=YD:YD=T

440 T=XS:XS=YS:YS=T

450 R=XD/2
460 IF F THEN PSET(YO,X0) ELSE PSET(XO,Y
0))

470 IF X0=X1 THEN RETURN

480 X0=XO0+XS:R=R+YD

490 IF R>=XD THEN R=R-XD:Y0=Y0+YS
500 GOTO 460
510 ' SUB BOX

520 FOR I=X0 TO X1 STEP SGN(X1-X0)
530 PSET(I,Y0):PSET(I,Yl)

540 NEXT

550 FOR I=Y0 TO Y1 STEP SGN(Y1-YO)
560 PSET(XQ,I):PSET(X1,I)

570 NEXT

580 RETURN

590 ' SUB CIRCLE
600 FOR I=0 TO 1 STEP 1/(R*2)
610 II=I*I

620 X=R*I*2/(II+1)

630 Y=R*(1-II)/(II+1l)

640 X2=X0-X:IF X2<0 THEN X2=0
650 Y2=Y0-Y:IF Y2<0 THEN Y2=0
660 X1=X0+X:Y1=Y0+Y

670 PSET(X1,Y1):PSET(X1,Y2)
680 PSET(X2,Y1l):PSET(X2,Y2)
690 NEXT

700 RETURN

155

N82-BASIC Reference Manual

9.2 CHARACTER DEFINITION PROGRAM

There are many characters that can be defined by you through the character definition
function. When you type in the following program, such composition is greatly
simplified because up to 125 individual graphic characters can be created at one time
using the screen editing process. A group of characters that have been defined at one
time as a character set can be loaded one set after another by means of a BLOAD
instruction, to give you a hundred or even a thousand graphic characters to work
“with,if so desired.

Since characters can be skipped over when and the “E” key are used, you can
even replace individual characters in a given set without erasing or altering others that
you wish to retain (and if nothing new is defined, it is also possible to eliminate all).

The newly defined characters are stored into a machine language program. The value
of the character corresponds to the ASCII character code represented on the

keyboard. The graphic characters are accessed by holding and pressing some
other key at the same time.

10 REM COPYRIGHT (C) NEC 1983

11 REM Updated for the PC-8201A

12 REM NEC Home Electronics, 11/4/1983
13 REM NEC Corp. Tokyo 11/25/1983
100 REM CHARACTER GENERATOR

110 REM USING ADDRESS F091-F37F

120 CLEAR 256,61584! :DIM M(5,7):DEFINTB-

z

130 REM ***%% INITIALIZE **%%x*

140 SCREEN 0,0:CLS

150 POKE 65215!,145:POKE 65216!,240
160 H=131:C=0:AD=61585!

170 REM *%*** MAIN LOOP1 *¥xx%

156

180 LOCATE 15,0:PRINT " KEY
FUNCTION"

190 LOCATE 15,2:PRINT " SPACE = Mode"
200 LOCATE 15,3:PRINT "CURSOR = Move"
210 LOCATE 15,4:;PRINT " 'ESC' = Next"”
220 LOCATE 15,5:PRINT " = Define
Character"

230 LOCATE 15,6:PRINT " E = End"
240 LOCATE 10, 7:PRINT "CHRS(";

250 PRINT MIDS(STRS(H),2);")BEING

DEFINED";

260 X=0:Y=0:MX=0:MY=0:H=H+1

270 FOR Y1=0 TO 63:PSET(36,Y1):NEXT:
280 REM ***%%x MAIN LOOP2 *kkkk

290 IF T=0 THEN C$="ERASE" ELSE

C$="WRITE"

Sample Programs

300 LOCATE 29,2:PRINT "<("C$">"

310 LOCATE X,Y:IS=INPUTS(1)

320 IF IS$=CHR$(27) THEN 450

330 IF I$=CHR$(28) THEN X=X+1:IF X=6
THEN X=5 ELSE MX=MX+1

340 IF I$=CHR$(29) THEN X=X-1:IF X=-1
THEN X=0 ELSE MX=MX-1

350 IF I$=CHR$(30) THEN Y=Y-1:IF Y=-1
THEN Y=0 ELSE MY=MY-1

360 IF I$=CHR$(31) THEN Y=Y+1:IF Y=8
THEN Y=7 ELSE MY=MY+1

370 IF I$=CHR$(32) THEN T=NOT T

380 IF IS$S="E" OR I$="e" THEN 600

390 IF IS$=CHR$(13) THEN GOSUB 490:GOTO
450

400 M(MX,MY)=-T:LOCATE X,Y

410 IF T THEN PRINT"#"; ELSE PRINT" ";
420 PSET(MX+40,MY+30, -T)

430 GOTO 290

440 REM ***%* END OF LOOP**#%%

450 IF H=256 THEN 600

460 C=C+1:CLS

470 GOTO 180

480 REM ****%* DATA POKE **%%*

490 FOR X=0 TO 5

500 FOR Y=0 TO 7

510 M=M+M(X,Y)*2°Y

520 NEXT Y

530 POKE AD+C*6+X,M

540 M=0

550 NEXT X

560 FOR Q=0 TO 5:FOR R=0 TO 7:M(Q,R)=0
570 NEXT R,Q

580 RETURN

590 REM **%%% LISTING **%*%

600 CLS:PRINT "DEFINED CHARACTER(131-
255)"

610 FOR I=131 TO 255

650 PRINT CHRS(I):" ";:NEXT

660 PRINT"

BSAVE(Y/N)?"; :¥$=INPUT$(1) :PRINT ¥$;
670 IF Y$="Y" OR Y$="y" THEN LOCATE
15,8:INPUT" FILE NAME";N$ ELSE END
680 REM ***%* FILE SAVE *%%%%

690 BSAVE N$,61585!,750

700 END

157

N82-BASIC Reference Manual

9.3 MUSIC PROGRAM

The SOUND instruction in N82-BASIC can be used to create sophisticated music
compositions consisting of simple half notes. The number 1 parameter determines the
precise musical step. The SOUND instruction will also work quite effestively in
programs where a composition is to be performed. The program that follows is
exclusively for musical composition.

" The keyboard of the PC-8300 is tumed into an actual keyboard of a musical
instrument in terms of input. This keyboard input is organized in the following order:

a) Length of note (the “L" key + a length designation between 1 and 9 with a
default of “5);

b) Octave (the “O” key + an octave designation between 1 and 4 with a default of
ugn).

o Note the keys “Z", *X”, *C”, V", “B", "N", and “M” on the keyboard correspond
to the whole notes “do”. “re”, "mi", “fa”, “so”, “1a”, and “ti” in the key of C, while
keys “S”, “D", “G”, “H" and “J” located obliquely above the first group on the
keyboard correspond to half notes. The designated length of a note consists of the
following. A rest is input by the space bar.

1= N 2=ﬁ3=) a=) 5=
6=J‘ 7=) 8=/ o

The length of a note and the octave can be omitted if these are not to be modified
because they will automatically be set at the default values indicated above. A single
note at a time can be modified by using escape sequences.

]
Q

It is useful practice to press the “E” key after every 20 or so notes have been input
because this will cause an immediate review of those input notes and will define that
series of notes as a ‘Part’ before a prompt is displayed inquiring whether you want to
redo or save that series of notes.

If you dislike what you heard during the playback review, the entire series can be

discarded and you can begin again. The input will be displayed on the screen as

capital letters “A” through “G” the sharps displayed as lower case letters that

correspond to “1a” through “so” (in the key of C). The input process can be stopped
_at any time by pressing the “Q" key.

The program can be executed after the data has been input at any time that you
desire, once this data has been converted into a file. Tempo and transposttion
functions are also available during playback. You simply have to follow carefully the
instructions in the program.

158

Sample Programs

If you desire to compose longer compositions, useful modifications can be made to the
input and editing methods by manipulating the data as string arrays (the original data)
and numerical arrays (data for the performance of a composition). In addition, the
structure of the original data itself can be directly rewritten while that data is open to
editing in the TEXT mode.

10 REM COPYRIGHT(C) 1983 NEC

20 REM The explanations and prompts are
changed on 6. 5. '86 (1lines 390, 580,
1380, 1420, 1470, 1480, 1490, 1500,
1520, 1530, 1540, 1560, 1590, 1610,
1620).

100 REM *** MUSIC ***

110 CLEAR 2000!:MAXFILES=1

120 DEFINT A-T:DEFSNG U-Y:DEFDBL 2Z
130 DIM A(48),MS$(49),8(999),L(999)
140 SCREEN 0,0:Z=9394#

150 FOR I=0 TO 47

160 A(I)=2:2=Z/1.0594639%%

170 NEXT I

180 FOR I=1 TO 9:READ LN(I):NEXT

190 DATA 4,8,16,24,32,48,64,96,128
200 REM *** MENU ***

210 CLS:PRINT" #*%* MUSIC **%*

220 PRINT:PRINT" --- Play or Input ---"
230 PRINT:INPUT"(P/I)":;Y$

240 IF Y$="P" OR YS$="p" THEN 280

250 IF Y$="I" OR ¥Y$="i" THEN 790

260 PRINT"??7?7?":BEEP:BEEP:GOTO 210
270 REM *** PLAY **%*

280 CLS:PRINT" =~~~ PLAYER ---"

290 PRINT:PRINT"Type music data."

300 INPUT"File name ";N$

310 OPEN N$ FOR INPUT AS #1

320 S=0:E=0

330 IF EOF(1) THEN 360

340 LINEINPUT‘#I,MS(E)

350 E=E+1:GOTO 330

360 CLOSE:PRINT"End of load."

370 PRINT"Data conversion."”

380 PRINT"You may transpose for music
from OlG to O4F."

390 PRINT"You may change the tempo (but
Ll=4)."

400 INPUT"Do you want to change the key
(Y/N)"; I8

410 IF 1$="Y" OR IS$="y" THEN GOTO 430
420 IF IS="N" OR IS$="n" THEN GOTO 430
ELSE BEEP: CLS:GOTC 360

159

N82-BASIC Reference Manual

430 INPUT"Do you want to change the
tempo (Y/N)";¥$

440 IF ¥S$S="Y" OR Y$="y" THEN GOTO 460
450 IF Y$="N" OR ¥YS$="n" THEN GOTO 460
ELSE BEEP: CLS:GOTO 360

460 IF IS<>"Y" AND IS<>"y" THEN 500
470 INPUT"Change transposition from -7
to 7 ":D:IF D<-7 OR D>7 THEN 470

480 IF D>0 THEN FOR I=0 TO
41:A(I)=A(I+D):NEXT:GOTO 500

490 FOR I=47 TO 7 STEP -
1:A(I)=A(I+D):NEXT

500 IF ¥$="Y" OR Y$="y" THEN INPUT"V
(From .25 to 2)";V ELSE V=1

510 PRINT" --- Wait for a moment please

520 C=0:FOR I=0 TO E-1

530 TS$=MS(1):GOSUB 690

540 NEXT I

550 BEEP:CLS

560 PRINT N$;" End of change data.”
570 LOCATE 10,3:PRINT N$:LOCATE 10,4
580 PRINT"Press any key."

590 IF INKEYS$<>"" THEN 590

600 IF INKEYS$="" THEN 600

610 LOCATE 10,4:PRINT SPACES(14)
620 FOR I=0 TO C-1:SOUND
S(I),L(I)*V:NEXT I

630 INPUT"Once more (Y/N)";¥$

640 IF Y$="Y" OR Y$="y" THEN 570
650 IF YS$="N" OR ¥$="n".THEN GOTO 660
ELSE BEEP: CLS: GOTO 560

660 IF IS="Y" OR I$="y" THEN PRINT"I
must reinitialize." :RUN

670 GOTO 210

680 REM *** DATA COMPILER *kk

690 FOR T=1 TO LEN(TS)

700 N=INSTR("CcDdEFfGgAaB

LO" ,MIDS(TS,T,1))

710 IF N>13 THEN GOSUB 750:GOTO 700
720 M=N+M:S(C)=A(M-1):L(C)=L:M=M-N
730 IF N=13 THEN S(C)=0

740 C=C+1:NEXT T:RETURN

750 IF N=15 THEN
M=12%(VAL(MIDS$(TS,T+1,1))-
1):T=T+2:RETURN

760 L=VAL(MIDS(TS,T+1,1)):L=LN(L)
770 T=T+2:RETURN

780 REM *** INPUT ***

790 CLS:PRINT" ~-- INPUT ---"

800 S=0:E=0:C=0

160

Sample Programs

810 INPUT"Append or New data (A/N)";YS$
820 IF YS$="N" OR ¥Y$="n" THEN GOTO 840
830 IF Y$="A" OR YS$="a" THEN GOTO 840
ELSE BEEP: CLS: GOTO 800

840 INPUT"File name ";N$

850 IF Y$="A" OR Y$="a" THEN OPEN N$ FOR
APPEND AS #l1 ELSE 880

860 PRINT"Please input to continue
data.":GOTO 900

870 REM *** NEW DATA ***

880 OPEN NS FOR OUTPUT AS #1

890 PRINT"Please input new music data."
900 INPUT"Do you want to see the input
explanation (Y/N)";¥Y$

910 IF Y$="Y" OR Y$="y" THEN GOSUB 1460
920 IF YS$="N" OR ¥Y$="n" THEN GOTO 930
ELSE BEEP : CLS: GOTO 890

930 REM

940
CLS:L$="L5":08="02":8S=C:M$(E)="":B=0:TS$=
"":F=1:L=32

950 LOCATE 0,0:PRINT LS

960 LOCATE 3,0:PRINT 0S

970 LOCATE 6,0:1$=INPUTS(1)

980 P=INSTR("ZSXDCVGBHNJIM
LOE"+CHR$(27)+"Q", IS)

990 IF P=0 THEN 970

1000 I$=MIDS$("CcDdEFfGgAaB ",P,1)

1010 IF F=1 THEN TS$=L$+0$+1$

1020 IF F=2 THEN T$=0$+IS

1030 IF F=3 THEN TS=LS$+1$

104Q IF F=0 THEN TS$=IS$

1050 IF B=0 THEN TS$=LS+0S$+I$

1060 IF P=17 THEN IF F<>0 OR B=0 THEN
950 ELSE B=0:GOTO 1290

1070 IF P=18 THEN IF S=C THEN E=E-1:GOTO
1320 ELSE 1320

1080 IF P>13 THEN 1140

1090 X$=T$:B=1

1100 PRINT IS;:MS(E)=MS(E)+TS$

1110 LOCATE O, 5:PRINT MS(E)+SPACES(10);
1120 GOSUB 690:SOUND S(C-1),L(C-1):F=0
1130 GOTO 950

1140 ON P-13 GOTO 1150,1180,1210

1150 IF S=C THEN F=1 ELSE IF F=2 THEN
F=1 ELSE F=3

1160 LOCATE
0,0:Y$=INPUTS(1):P=INSTR("123456789",Y$)
:IF P=Q THEN 1150

1170 L$="L"+Y$:GOTO 950

1671

N82-BASIC Reference Manual

162

1180 LOCATE
3,0:YS=INPUTS(1):P=INSTR(“1234",Y$):IF
P=0 THEN 1180

1190 IF S=C THEN F=1 ELSE IF F=3 THEN
F=1 ELSE F=2

1200 0$="0"+Y$:GOTO 950

1210 LOCATE O, 3:PRINT "End of part";E;
1220 FOR I=S TO C-1:SOUND S(I),L(I):NEXT
1230 INPUT"OK(Y/N)";Y$:IF ¥Y$S="Y" THEN
1270

1240 IF ¥$="N" OR ¥YS$="n" THEN GOTO 1260
ELSE BEEP: CLS: GOTO 1210

1250 IF ¥$="Y" OR Y$="y" THEN GOTO 1260
ELSE BEEP: CLS :GOTO 1210

1260 C=S:PRINT"Try again.":BEEP:GOTO 940
1270 S=C:IF E<49 THEN
E=E+1:M$(E)="":F=1:B=0:CLS:GOTO 950

1280 BEEP:PRINT"Out of data space.":GOTO
1350

1290 MS(E)=LEFT$(MS(E),LEN(MS(E))-
LEN(XS))

1300 C=C-1:BEEP:LOCATE 0,3:PRINT"1 step
back." :BEEP

1310 LOCATE 0, 3:PRINT SPACES$(12);:GOTO
950

1320 PRINT:PRINT"End of music."

1330 C=C+1

1340 REM #**%* END *%**

1350 PRINT"Your music.":FOR I=0 TO

200 :NEXT

1360 FOR I=0 TO C-2:SOUND S(I),L(I):NEXT
1370 CLS:PRINT"Save to start."

1380 PRINT"File name
":NS;".":PRINT"Press any key."

1390 IF INKEYS$S="" THEN 1390

1400 FOR I1=0 TO E:PRINT #1,MS$S(I):NEXT I
1410 CLOSE:BEEP

1420 PRINT"End of save. Press any key."
1430 IF INKEYS$="" THEN 1430

1440 GOTO 210

1450 REM *** EXPLAIN ***

1460 PRINT " EXPLANATIONS "

1470 PRINT"1 Please press 'CAPS' key."
1480 PRINT"2 'ZSXDCVGBHNJIM' keys are
music keyboard."

1490 PRINT"3 'ZSXDCVGBHNJM' keys changed
'CcDAEF£fGgAaB'keys."

1500 LOCATE 0,7:PRINT" Press any key.":;
1510 IF INKEY$="" THEN 1510

Sample Programs

1520 PRINT:PRINT"4 Press 'E' key to end
one block."

1530 PRINT"5 Pressing 'Q' key ends data
input.”

1540 PRINT"6 Press 'ESC' key to reenter
last note."

1550 PRINT"7 Space is a rest."

1560 LOCATE O, 7:PRINT" Press any key.";
1570 IF INKEYS$="" THEN 1570

1580 PRINT:PRINT"8 L=LENGTH(1l-
9),0=0CTAVE(1-4)"

1590 PRINT"9 Press 'E' key after
inputting about 20 keys to go to next
step.”

1600 PRINT"10 Maximum 49 parts to be
input.”

1610 PRINT"11 You can change 'L' and 'O’
keys as many time as you want, if you do
not press 'ESC' key."

1620 LOCATE O, 7:PRINT" Press any key.";
1630 IF INKEYS$="" THEN 1630

1640 RETURN 930

163

N82-BASIC Reference Manual

9.4 RANDOM DISPLAY PRINTING PROGRAM

Data that is placed in an

array can be easily used for calculation or for display. If data

is properly combined with the RND function the results are very interesting. It is even
possible to intergate this type of process with the Character Definition program

introduced previously.

Please use any alphabetical or numerical characters when you run the program.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
N
170
N

180
190
200
210
220
230
1)

240
250
260
270
280
290
NT

300
310
TB
320
330

164

' DEMO
SCREEN 0,0:CLS
DIM C%(39,7),X%(319,1):C=0
PRINT "READING DATA"
FOR X=0 TO 39
FOR Y=0 TO 7
X3(Y*40+X,0)=X:X%(Y*40+X,1)=Y
READ C%(X,Y)
NEXT Y, X

' MAKE DATA
SCREEN 0, 0:CLS:PRINT

PRINT "DATA SCRAMBLING"

FOR I=0 TO 200

R=RND(1)*319

R1=RND(1)*319
N=X%(R,0):X%(R,0)=X%(R1,0):X%(R1,0)=

N=X%(R,1):X%(R,1)=X%(R1,1):X%(R1,1)=

NEXT

! PRINT
BEEP:CLS:PRINT CHRS$(27)+"V"

PRINT "TYPE ANY KEY";:A$=INPUTS$(1)
PRINT AS:PRINT

PRINT "TYPE ANOTHER KEY"; :BS=INPUTS(

PRINT BS$:CLS

FOR N=0 TO 319

X=X%(N,0):¥Y=X%(N,1)

SOUND X*200+200,3

LOCATE X,Y

IF C%(X,Y)=1] THEN PRINT AS$; ELSE PRI
BS;

NEXT

BEEP: LOCATE 0,0:PRINT AS$; ELSE PRIN
$;

FOR I=0 TO 500:NEXT

LOCATE 0,0:GOTO 120

Sample Programs

,1,1,1,1
,1,0,0,0
,0,0,1,0
,0,0,1,0
,0,0,0,0
,1,0,0,1
,0,1,0,1
,0,0,0,0
,0,0,0,1
,1,1,1,1

HOOOOHO0OO0OOHOOOAO0OH0O0O~HO

E N S S T e e e NN

HFOHOHOHOOO0OO0OO0O0OQOOO0OAHO

L N N T T T T S N T U

HHOOO0OO0OO0OO0OO0OO0OHO-HOOOHOHO

L T S N N S

0000000 A0HOOOHOOOOOO

LSRN T L T T A L S ~ s N

COO000O0OHOOO0OHOHOHOHOHO

L e N L T N N N NN

[eJoNoNoRoNoJooJoJoRooR oNoJooNooNoNeo]

llllllllllllllllllll

OO 00000000000

L N T T T S N S N e N N NN

CO0OO0O0HOOOHOHOOOOOOOOO

0C000HHOOOO0OO0OO0OHAHOOOOH
Leerineeerere I Afeee

0000000000 HAO0OHHOHAHOAHAO
NI Y RS
Ord1000HOOAt+HOOOAH0O0

CEH B AEH NEH O NEH B CE NE

A <A A A ~A A A A A ~QA -~

— (w] (] o o o — (o] o o
O ~0O O «O 0O O 0O ~O O ~O -~
FONOVWONODVOOO0OOHONOMO
M A AM M <M M < ot ¢ .

165

N82-BASIC Reference Manual

9.5 GAME PROGRAM

The missle base is moved by using the left and right cursor movement keys; pressing
the space bar shoots a missile. As presently set, the game will end after one minute,
but play can easily be extended by simply modifying the TIME$ function in line 130.

166

10 ! GAME

20 DEFINT A-Z

30 SCREEN 0,0:CLS

40 TIMES$="00:00:00"

50 SC=0

60 ' START

70 X=RND(1)*35+1

80 LOCATE X,0:PRINT " >0< ";

90 I$=INKEYS

100 IF I$=CHR$(28) THEN M=M+1l
110 IF I$=CHRS$(29) THEN M=M-1
120 IF I$=" " THEN GOSUB 230

130 IF TIMES>"00:01:00" THEN 460
140 IF M<0 THEN M=37:LOCATE O,6:PRINT "

150 IF M>38 THEN M=1:LOCATE 38,6:PRINT "
160 LOCATE M, 6:PRINT " M " ;

170 LOCATE 2,7:PRINT TIMES;

180 LOCATE 18,7:PRINT SC;"POINTS";

190 P=INT(RND(1)*3)-1:X=X+P

200 IF X<l THEN X=1

210 IF X>35 THEN X=35

220 GOTO 80

230 ! MISSILE SUB
240 FOR Y=6 TO O STEP -1
250 LOCATE M+l, Y:PRINT "!";
260 SOUND Y*1000+1000,1

270 LOCATE M+l1,Y:PRINT " " ;
280 NEXT

290 IF M=X OR M=X+2 THEN SC=SC+1:BEEP:GO
SUB 330:RETURN 70

300 IF M=X+1 THEN GOSUB 390

310 RETURN

320 ' MISS

330 FOR I=0 TO 10

340 LOCATE X,0:PRINT "OOPS!"

350 FOR J=0 TO 20:NEXT:LOCATE X,0:PRINT
360 SOUND 16000, 1:NEXT

370 RETURN

380 ' SOLID HIT

390 SC=SC+5:SOUND 440,10

Sample Programs

400 FOR I=0 TO 10

410 LOCATE X-1,0:PRINT "HOLIDAY!"

420 SOUND 1760,1

430 NEXT I

440 LOCATE X-1,0:PRINT " "

450 RETURN

460 LOCATE 10,4:PRINT "END OF GAME":END

167

N82-BASIC Reference Manual

9.6 SCORE RANKING PROGRAM

This program uses the sequential file management function of N82-BASIC, in order to
manipulate results, scores, ranks, etc. It can be used in a variety of applications if the
kinds of items and number of items are appropriately adjusted to suit the specific
requirements.

10 SCREEN 0,0:CLS

20 PRINT "*** RANKING SCORES ***x"

30 PRINT

40 PRINT "PLEASE INPUT SCORE TITLE "
50 PRINT,":";

60 LINE INPUT TIS$

70 PRINT

80 INPUT "NUMBER OF ITEM ":NC

90 INPUT "NUMBER OF PERSONS";NR

100 DIM D(NC,NR), IT$(NC),NAS(NR),RSUM(NR), RMEAN(NR)
, SUM(NC), SSM(NC),MEAN(NC), SD(NC)

110 CLS

120 PRINT "NAME OF ITEMS:"

130 FOR I=1 TO NC

140 LOCATE 0,2:PRINT SPACES(40)

150 LOCATE 0,2:PRINT "NAME OF ITEM";I;
160 INPUT ITMS(I)

170 NEXT

180 CLS

190 PRINT "INPUT THE DATA "

200 FOR J=1 TO NR

210 LOCATE 0,2:PRINT SPACES(20)

220 LOCATE 0, 2:PRINT "NO.";J;"NAME";
230 INPUT NAS(J)

240 FOR I=1 TO NC

250 LOCATE 0,4:PRINT SPACES(40)

260 LOCATE 0,4:PRINT ITM$(I);" POINTS";
270 INPUT DA

280 D(I,J)=DA:RSUM(J)=RSUM(J)+DA

290 SUM(X)=SUM(I)+DA

300 SSM(I1)=SSM(I)+DA"2

310 NEXT 1

320 LOCATE 0,4:PRINT SPACES$(40)
330 RMEAN(J)=RSUM(J)/NC

340 NEXT J

350 FOR I=1 TO NC

36Q MEAN(I)=SUM(I)/NR

370 SD(I)=SSM(I)/NR-MEAN(I)"2
380 NEXT I

390 ' QUTPUT

400 PRINT "PLEASE PRESS THE SPACE BAR TO HOLT SCROL
LING."

168

Sample Programs

410 OPEN "LCD:" FOR OUTPUT AS #1

420 FOR 1=0 TO 1000:NEXT:BEEP:CLS

430 TT=200:GCSUB 600

440 CLOSE #1:PRINT

450 PRINT "DO YOU WANT TO CREATE A FILE (Y/N)";
égoszg=INPUT$(l):PRINT YS:IF Y$<>"Y" AND Y$<>"y" TH

470
480
490
500
510
520
530
540

ON ERROR GOTO 540

INPUT "NAME OF FILE";AS
OPEN A$ FOR OUTPUT AS #1
ON ERROR GOTO O

TT=0:GOSUB 600

CLOSE #1

PRINT

PRINT "DC YOU WANT TO PRINT IT (Y/N)";

550 Y$=INPUTS(1):PRINT YS:IF YS<>"Y" AND Y$<>"y" TH
EN END

560 OPEN "LPT:" FOR OUTPUT AS #l1

570 TT=0:GOSUB 600

580 CLOSE #1:END

590 RESUME 480

600 ' OUTPUT SUBROUTINE

610 PRINT #1,SPACE$(12);LEFTS$(TIS,30)
620 PRINT #1,

630 PRINT #1,SPACES(9);

640 FOR I=1 TO NC

650 PRINT #1,LEFTS$(ITEMS(I)+SPACES(12)
,12);

660 NEXT I

670 PRINT #1,"TOTAL MEAN"

680 FOR J=1 TO NR

690 PRINT #1,LEFTS$(NAS(J)+SPACES(10),1
0):

700 FOR I=1 TO NC

710 PRINT #1,USING"##### ":D(I
720 NEXT I

730 PRINT #1,USING"#### ####.#";RSUM(J
); RMEAN(J)

740 IF TT<>0 THEN IF INKEYS$=" " THEN A
$=INPUTS(1)

750 FOR T=0 TO TI:NEXT

760 NEXT J

770 PRINT #1,

780 PRINT #1,"TOTAL"

790
800
810
I):
820
830

PRINT #1,"POINTS ";
FOR I=1 TO NC
PRINT #1,USING "####### "2 SUM(
NEXT
PRINT #1,

169

N82-BASIC Reference Manual

840 PRINT #1, "MEAN ",

850 FOR I=1 TO NC

860 PRINT #1,USING "####### " ;MEAN
(1):

870 NEXT

880 PRINT #1,

890 PRINT #1,"DEVIATION";

900 FOR I=1 TO NC

910 PRINT #1,USING "######.# " ; SQR(
SD(I1)):

920 NEXT

930 PRINT #1,

940 RETURN

Student Achievement

Mathematics English History TOTAL MEAN
John 71 78 73 222 74.0
Tom 53 78 80 211 70.3
Mike 83 62 80 225 75.0
Ken 78 91 54 223 74.3
Bab 73 46 43 162 54.0
Ed 100 90 65 255 85.0
Frank 68 89 65 222 74.0
Ann 90 78 75 243 81.0
TOTAL
POINTS 616 612 535
MEAN 77 77 67
DEVIATION 13.4 14.6 12.2

170

APPENDICES
TABLE OF CONTENTS

ATABLES ... 172
A.1 Reserved WOrdSuviviveeriieeieieeieiiieensiceieinincnens 172
A2 EIror COAESiiiiiiieieiiiiiiieeie e eee et 174
A.3 Control COAES........cuevvvviieeiiiiieeeieeee e 177
A.4 Character Codes..........uviiviveiiieiieieeiicreieee e 178
B MEMORY MAPSottt e e s ee e 179
CESCAPE SEQUENCES ... 181

D GLOSSARY ... 183

R

N82-BASIC Reference Manual

A TABLES
A.1 RESERVED WORDS

ABS

AND IF

ASC IMP
ATN INKEY$
BEEP INP
BLOAD INPUT
BLOAD? INPUTS
BSAVE INPUT #
CcDBL INSTR
CHR$ INT
CINT KEY
CLEAR KILL
CLOAD LEFTS
CLOAD? LEN
CLOSE LET
CLs LINE
CcCOM LIST
CONT LLIST
Ccos LOAD
CSAVE LOCATE
CSNG LOG
CSRLIN LPOS
DATA "~ LPRINT
DATES MAXFILES
DEFINT MENU
DEFDBL MERGE
DEFSNG MID$
DEFSTR MOD
DM MOTOR
EDIT NAME
ELSE NEW
END NEXT
EOF NOT
EQV OFF
ERL ON

ERR OPEN
ERROR OR
EXEC ouT
EXP PEEK
FILES i POKE
FIX POS
FOR POWER
FRE PRESET
GOSsuUB

GOTO

172

Appendix

PRINT
PSET
READ
REM
RENUM
RESTORE
RESUME
RETURN
RIGHT$
RND
RUN
SAVE
SCREEN
SGN
SIN
SOUND
SPACES$
SQR
STEP
STOP
STR$
STRINGS
TAB
TAN
THEN
TIME$
TO0
USING
VAL
XOR

173

N82-BASIC Reference Manual

A.2 ERROR CODES

174

Error N-BASIC

Message Code Message Meaning

?AO Error | 53 [File Already Open | That file is already open.

?BN Error [51 |Bad file Number |The file number is
inceorrect.

?BO Error | 23 | Communication The input buffer has

buffer overflow overflowed.
(Buffer Overflow)
?BS Error | 9 | Subscript out of Array subscript is
range incorrect.
{Bad Subscript)

?CF Error | 58 |File not open The file is not yet open.
(Closed File)

?CN Error{ 17 |Can’'t ContiNue Program execution
cannot be resumed by
means of a CONT
command.

?DD Error | 10 [Duplicate The same array has

Definition been declared twice.

?DS Error | 56 |Direct Statement | An ASCIl format won’t

in file load.

?DU Error | 25 | Device The designated device is

Unavailable not accessible.
?EF Error | 54 |Input past end No more data in the file.
(End of File)
?FC Error | 5 [lllegal Function Attempts to use
Call Commands or Functions
are incorrect.

?FF Error | 52 [File not Found The designated file
cannot be located.

?FL Error | 57 [Filing Limit There are too many files.

?ID Error | 12 |lllegal Direct The specified command
cannot be used in the
direct mode.

?IE Error | 50 [Inteat Error An error within BASIC.

?10 Error | 24 (/O error An error during input or
output.

?LS Error | 15 | String too long Over 255 characters in a

(Long String)

string variable.

Appendix

Error N-BASIC

Message Code Message Meaning

?MO Error | 22 | Missing Operand | A required parameter is
missing

?NF Emror | 1 [NEXT without There is no FOR

FOR statement to match the
NEXT statement.
?NM Error | 55 |[Bad file name The name of the file is
(File Name inappropriate far the
Mismatch) operation attempted.

?NR Error | 19 [No RESUME There is no RESUME
statement present in an
error processing routine.

?0D Error | 4 [Out of Data There is no more data.

?0M Error| 7 [Out of Memory There is not enough
memory.

?0S Error | 14 | Out of String The memory region

space available for string
storage is inadequate.

?0V Error | 6 | Overflow A numeric value is too
big.

?PC Error | 59 |PC-8001A This command is for use

Command only on the PC-8001A.

?RG Error| 3 |RETURN without [A RETURN statement is

GOsuUB present without a
matching GOSUB
statement.

?RW Error | 20 |RESUME without [A RESUME is met

Error before an error
processing routine is
entered.

?SN Error | 2 | SyNtax error The grammar of a
statement is incorrect.

?ST Eror | 16 | String formula Too | The string formula is too

complex complex

?TM Error | 13 | Type Mismatch The types of variables
and integers are
inconsistent.

?UE Error | 21 | Unprintable Error | An error that has not
been designated in a
message occurred.

?UF Error | 18 | Undefined user An undefined user

Function

function has been read.

175

N82-BASIC Reference Manual

176

Error N-BASIC
Message Code Message Meaning
?UL Error | 8 |Undefined Line A designated line has
number not been defined.
?/0 Error 11 | Division by Zero | A division by O is

attempted.

Appendix

A.3 CONTROL CODES

CHARACTER
OPERATION CODE FUNCTION
or 3 Interrupts program execution
5 Deletes after the cursor position
to the end of the fle
7 Sounds bell
[CTRL[H] or 8 Deletes one character to the left
':’B'ESL of the cursor
or 9 Moves the cursor to the next tab
setting
11 Moves the cursor to the home
position
12 Clears the screen
or 13 Moves the cursor to the
biginning of a new line
[CTRLIN] 14 Shift OUT
CTRL[O] 15 Shift IN
CTRL]Q] 17 Authorizes reopening on
transmissions (XON)
19 Requests an interrupt of
transmissions (XOFF)
27 Begins an ESCape sequence
<] 28 Moves the cursor one character
to the right
& 29 Moves the cursor one character
to the left
Wi 30 Moves the cursor up one line
A a1 Moves the cursor down one line

177

N82-BASIC Reterence Manual

A.4 CHARACTER CODES

Higher 4 bits Higher 4 bits
DECIMAL| O | 16 | 32|48 | 64| 80 | 96 | 112 128|144 |160 (176|192 | 208 224|240
HE X o 1 2 3 4 S 6 7 8 L] A B C o} E F
BINARY [0000 [0001 | OC10| 2011 [0100 | 0101 | 0110|0111 1000 1001
o @ | e R
0 |omo | 0 | @ | P P
V Ten [en
! T Jooot] sim | e ! ! A Q@i a
-
2 B | em "
2 looto| s | & - 2 B | R) b
3 cie | e :
3 ool | svop # 3 ¢ s © s
oo (%2
4 om0 absla o1 alt
[C/E (o) ! [
5 1S Y %5 ET U el
C/F oy -
5 lonol o &6 F . V|t v
7 c/6 | crw ’ i
% 7 lom cn 7 G W ig'w
-« 8 crn | e
§ 3 |1000| es (8 H . X h : X
Slo | 2“1y o vy + y
P
NP
10 100 % * vz
11 IOEH] ese + ;0K C k .|
k R T
cre I !
12 |1 100 =, p<ib Ny
oM G T
;
B - == M]3 om0
2] M2
14 \1E‘0 o ' > N " n -
F [=2+3 r ’ ’CEL
‘ 5 1111 ‘ / ? O —
Higher 4 bits Decimal Hexadecimal

Binary

Notes:

Lower 4 bits

. C/r means hold while pressing “r”

. S/r means hold while pressing “r’

1
2
3. G/r means hold while pressing “r”
4

. GSir means hold and while pressing “r”

Example:

or to HEX 40.
Thus the character code of “A” is 65 DEC or 41 HEX
(01000001 BINARY).

Code:

1 00H — 1FH: Unique code that cannot be outpJt as
characters (See p.175 Control Codes)
83H — DFH: User-defined characters (Can be input from
the keyboard)
B 0+ — FFH: User-defined characters (Can be output by
using the CHR$ function)

178

To find the character code of “A”, add 1 to DECimal 64,

Appendix

B MEMORY MAPS

The PC-8300's 8-bit CPU (80C85) can access 64K bytes of memory at a time. The
address is allocated from address 0 to address 65535 (FFFF hexadecimal).

The lower half 32K bytes (address 0 to 32767) are assigned to the ROM area, and the
higher half 32K bytes (address 32768 to 65535) are for RAM.

You have 32K x 4 byte ROM in the standard PC-8300. The PC-8300's software
(MENU, BASIC, TEXT, and TELCOM) is in two of these 32K byte ROM areas, and
remander is reserved for the PC-8300 system. The software automatically switches
between these two banks of ROM.

You can also install optional user ROM into the PC-8300.

The standard PC-8300 has two banks of RAM, selectable by the MENU’s BANK
command. By using optional RAM Cartridge, a third RAM bank is available.

(Optional RAM
Cartridge)
RAM | 1 RAM RAM
32K 32K 32K
bank# 1 bank#2 bank#3
ADDRESS
65535
RAM
AREA
32768
32767
ROM
AREA
00000
User
ROM
32K
(Option)

179

N82-BASIC Reference Manual

Each RAM bank is as explained in the figure below:

65535
Work area
62336
Changes according to BASIC's
CLEAR statement’s second
/ parameter
: Changes according to
File control block } MAXFILES command of BASIC
Changes according to BASIC's
String region CLEAR statement’s first
parameter
FOR/GOSUB stack
System stack
Array region
Pure variable region
Machine language program file
.CO
ASCII code text file
.DO
BASIC program file
.BA
32768

180

Appendix

C ESCAPE SEQUENCES

CHARACTER
ESC| + CODE FUNCTION
27,65 Moves the cursor one line up
B 27,66 Moves the cursor one one line
down
Cc 27,67 Moves the cursor one character
(one column) to the right
D 27,68 Moves the cursor one character
(one column) to the left
E 27,29 Clears screen and moves the
cursar to the top left corner of
the screen (the home position)
J 27,74 Erases characters from the
cursor position to the end of the
display
K 27,75 Erases characters from the
cursor position to the right end of
the current line
L 27,76 Insert a line
27,77 Deletes the line where the cursor
is located
T 27,84 Displays Function Keys
U 27,85 Erases Function Keys display
\ 27,86 Inhibits scrolling (freezes the
display)
W 27,87 Scrolling is permitted
Y<y> <x> * Moves the cursor to the
designated location
j 27,106 Clears the screen
p 27,112 Changes the screen to reverse
display
q 27,113 Restores display to normal (back
from reverse display)

*ESC+Y<y> <x>

The cursor position is designated by the vertical and horizontal
coordinates (y and x) respectively.

181

N82-BASIC Reference Manual

Characters and capital letters beginning at ASCIl code 32 are
used in the coordinate designation. A space corresponds to 0,
the excaimation point (l) corresponds to 1, etc. Refer to an ASCI!
code chart for the complete list.

To move the cursor to the home position (coordinate 0,0), for
example, you would input the following string:

[ESC][Y] [SPACE

182

Appendix

D GLOSSARY

ABSOLUTE

VALUE The unsigned form of any given number.

ARRAY A set of values arranged in a regular pattern such as in single file
or in two dimensions.

ASCII American Standard Code for Information Interchange.

BASIC Beginner’s All-purpose Symbolic Instruction Code. Easy-to-
understand programming language.

BOOLEAN A type of algebra which deals with binary mathematics.

CONDITIONAL A statement that requires a test to be made. An IF statement is a
conditional statement since the computer will take one of two
paths, depending on the outcome of the IF statement.

COSINE In a right triangle, the value obtained when the side adjacent to an
angle is divided by the hypotenuse.

DATA Information such as numbers, names, etc., that a computer must
have in order to solve a given problem, or do a given job.

DELIMIT Separate.

DIMENSION The number of elements in an array and their configuration (one or

more dimensions).

EXPONENTIATIONRaising a number to some power.

EXPRESSION

FILE

INCREMENT

INITIALIZATION

INPUT

INTEGER

In an assignment statement, the value to the right of the equal
sign.

A collection of data to be used with a computer program. The
program itself is often called a file.

To increase the value of a counter.

Giving first values to a data name. In loops, counters are normally
initialized to 1.

The values that a program must have in order to solve a given
problem.

A whole number.

183

N82-BASIC Reference Manual

LINE NUMBER

LOG (NATURAL)

LOOP

MEMORY

NULL
OUTPUT

PROGRAM

READ

RELATIONAL
SYMBOLS

RAM

RETURN KEY

An identifying number that is placed at the start of each BASIC
statement in a program.

The number to which “e” must be raised in order to obtain a
given value.

A set of statements that is executed over and over.

A computer can store electronically several million characters of

information at any given moment. In back-up devices, computers
can store up to several trilion characters for relatively immediate
use.

Empty set or empty string: {}

The answers given by a computer program.

A set of instructions telling a computer how to solve a given
problem or do a job. The instructions are given in a programming
language such as BASIC.

To obtain data from a DATA statement.

The symbols >, =, and < that may be used to indicate whether
one value is larger, smaller, equal, or not equal to another.

Relational symbols are used in IF statements.

Random Access Memory. The type of memory that can be
altered, by means of saving files or new programs, or by running
programs.

A key on your terminal’s keyboard that is used to enter a BASIC
statement.

RESERVED WORDIn BASIC, words that have special meanings and uses, such as

ROM

SEARCH

SINE

SQUARE ROOT

184

commands.

Read Only Memory. The type of memory that stays intact even
when the PC- 8300’s power is turned off.

The finding of a particular value in an array table.

in a right triangle, the value obtained when the side opposite the
angle is divided by the hypotenuse.

The number which, when multiplied by itself gives the specified
value. Thus, the square root of 64 is 8.

Appendix

STATEMENT

SUBSCRIPT

SYSTEM
COMMAND

TANGENT
TEST

TRUNCATE

ZONE

A single instruction to the computer such as: 10 LET P=7
A number, name, or expression that tells which one element of an

array is specified.

A command directly to the computer telling it to do something with
a program you have created or wish to create. Some system
commands are SAVE, LIST, RUN, NEW.

In a right triangle, the value obtained when the side opposite the
angle is divided by the side adjacent to the angle.

To check such as the value of a counter, a condition, a program,
etc.

Drop the decimal digits of a number (round off).

An Area.

185

INDEX

A

ABS 41
aids to programming 135-140
AND 41
appendices 171-185
escape sequences 181
glossary 183
memory maps 179
tables 172-178
arithmetic expressions 30
array, rules for elements 25
arrays 23, 25
ASC 42
ATN 43

BASIC programming aids 135-140
BEEP 44

BLOAD 44

BLOAD? 45

BSAVE 46

buffers 131

C

CDBL 46

character constants 27
definition program 156

CHR$ 47

CINT 48

CLEAR 48

CLOAD 49

CLOAD? 50

CLOSE 50

CLS 51 .

COM OFF 52

COM ON 52

COM STOP 52

comparing strings 36

concatenating 35

connecting strings 35

constants 25
character 27
integer 27
numeric 26

CONT 52

control characters 14

COS 53

CSAVE 53

CSRLIN 54

D

DATA 55

DATES 56

DBL 56

DEF 56

DIM 24, 57

direct mode 7, 9

double precision format 23

E

EDIT 58

END 59

EOF 60

EQV 60

ERL 61

ERR 61

ERROR 62

error messages 14, 142-152

errors
in program execution 136
logical 137

EXEC 63

187

EXP 64

expressions
and operations 18-37
arithmetic 30
logical 30, 32
relational 32
string 35

external features 6

F

features
external 6
internal 6
file
handling 131
names 130
fles 129-132
FILES 64
FIX 65
FOR-TO-STEP-NEXT 66
format
double precision 23
single precision 22
FRE 69

functions, mathematical 36

G

game program 166
general information 11-17
GOSUB-RETURN 69
GOTO 71

H

hints
detecting errors 139
saving memory 140

speeding programs 139

188

IF-GOTO-ELSE 71
IF-THEN-ELSE 71

IMP 74

information, general 11-17
INKEYS 75

INP 75

INPUT 76

INPUT# 78

INPUTS 77

INSTR 79

instructions of N82-BASIC 38-127

INT 586, 80

integer constants 27
variables 22

internal features 6

introduction 1-3

K

KEY 80
KILL 81

L

LEFT$ 81

LEN 82

LET 83

LINE INPUT 83

line numbers 13

LIST 84

LLIST 84

LOAD 85

LOCATE 85

LOG 86

logical errors 137
expressions 30, 32

LPOS 87

LPRINT 104

LPRINT USING 105

machine language 134
mathematical functions 36
MAXFILES 87
memory saving hints 140
MENU 87
MERGE 88
messages, error 14, 142-152
MID$ 88
MOD 89
mode

direct 7

program 8
modes, program editing 14
MOTOR 90
music program 158

N

N82-BASIC:
aids 135-140
instructions 39-127
overview 1-10
starting 8

NAME 91

names, file 130

NEW 91

NOT 92

numeric constants 26
variables 22

0

ON COM GOSUB 94

ON ERROR GOTO-RESUME 94
ON-GOSUB 92

ON-GOTO 92

OPEN 95

OPEN “COM” gg
operating modes 6
operations 19.37
hierarchy 37
OR 99
OUT 100
overview of N82-BASIC 1-10

P

PEEK 101

POKE 101

POS 102

POWER 102

PRESET 103

PRINT 104

PRINT USING 105

program
character definition 156
copying 17
editing with TEXT 17
editing modes 14
execution errors 136
game 166
loss of control 138
mode 8, 10
music 158
random printing 164
samples 153-170
screen editing 15
score ranking 168

programming hints 139-140

PSET 108

PSET routine 154

189

random printing program 164
READ 109

real number variables 22
relational expressions 32
. REM 109

RENUM 110

reserved variables 20
RESTORE 111

RESUME 112

RETURN 113

RIGHT$ 114

RND 114

RUN 115

S

sample programs 153-170
SAVE 117
score ranking program 168
SCREEN 118
screen display 12

editing 15

scrolling 136

scrolling, screen 136

SGN 119

SIN 119

single precision format 22

SNG 56

SOUND 120

SPACES$ 121

special symbols 13, 14

SQR 122

statements 13

STOP 122

STR 56

STR$ 123

string expressions 35
variables 22

STRINGS$ 123

190

T

TAB 124

TAN 125

TIMES$ 125

type conversion 28
types of variables 21

\'}

VAL 126
variable names 14
variables 20
integer 22
numeric 22
real number 22
string 22
types 21

w
word wraparound 136

X
XOR 127

NEC

Printed in Japan
78118292

NEC
PC-8300

N82-BASIC
REFERENCE MANUAL

©1986 NEC Home Electronics (U.S.A.), inc.
NEC Corporation

All rights reserved. No part of this publication may be reproduced in whole or
in part without the prior written permission of NEC Home Electronics (U.S.A.),
Inc. or NEC Corporation.

The policy of NEC being that of cortinuous product improvement, the
contents of this manual are subject to change, from time to time, without
natice.

All efforts have been made to ensure that the contents of this manual are
correct; however, should any errors be detected, NEC would greatly
appreciate being informed.

NEC can assume no responsibility for errors in this manual or their
consequences.

Microsoft is a registered trademark of Microsoft Corporation.

TABLE OF CONTENTS

INTRODUCTIONoooiiiiiii i 1

CHAPTER 1 N82-BASIC OVERVIEW

1.1 INTERNAL AND EXTERNAL FEATURES............... 6

1.2 TWO OPERATING MODES, DIRECT AND
PROGRAM ...ttt
1.2.1 Direct Mode.....coooevieeeeiiiiiiii s
1.2.2 Program Modeccoviieiiiinnnin

6
7
8
1.3 GETTING STARTED WITH N82-BASIC 8
1.4 USING THE DIRECTMODE ... 9
1.5 USING THE PROGRAM MODEoceenn 10

CHAPTER 2 GENERAL INFORMATION

2.1 SCREEN DISPLAYccoooviiiiiniiiiiiiiirir e 12
2.2 STATEMENTS AND LINE NUMBERS 13
2.3 SPECIAL SYMBOLSccooooiiiiiiini 13
2.4 SPECIAL SYMBOLS FOLLOWING VARIABLE
NAMES ..ottt ar e 14
2.5 CHARACTERSoooiiiieer e 14
2.6 ERROR MESSAGES..................ccoiiiriinieenn, 14
2.7 PROGRAM EDITING MODEScooceiine 14
2.7.1 Screen Editing of Programsccccovveeicnennne 15
2.7.2 Other Keys Used for Screen Editing................. 16
2.7.3 Editing Programs Using the TEXT Mode 17
2.7.4 Copying a Section of a Program Using the
TEXT MOAE ..oveie e 17

CHAPTER 3 EXPRESSIONS AND OPERATIONS

3.1

3.2

3.3

3.4

3.5

3.6
3.7

VARIABLES ... 20
3.1.1 Examples of Reserved Variables...................... 20
3.1.2 Types of Variables...........c..ccoooviviiiniirn, 21
3.1.3 String Variables..........ccooecoviiiiiivi 22
3.1.4 Numeric Variablescccccociiiiiiiiniiininnn, 22
3.1.5 Integer Variables..........ccooovveiiiiieiiniiiiiiae 22
3.1.6 Real Number Variables...........cocccoviviiinnennnn, 22

3.1.6.1 Single Precision Format........................ 22

3.1.6.2 Double Precision Format..................... 23
ARRAYS ... 23
3.2.1 DIM Statement...........cccceiiiii i 24
3.2.2 Rules for Elements of an Arrayccveueeee... 25
CONSTANTS ... 25
3.3.1 Numeric Constants.......ccccccceeiiiiiiinieciiieeec e 26
3.832 Integer Constants........ccoovvereiivinniiniienee e 27
3.3.3 Character String Constants...........cccceevcvinvinnnnn 27
TYPE CONVERSIONcoooooiiiiiiccecce e 28
LOGICAL EXPRESSIONSooooiiiiicnin 30
3.5.1 Arthmetic EXpressionsccccceevveeiiiniiiciienenn, 30
3.5.2 Relational EXpressions.........c.ccccceeeveerivineniinnn, 32
3.53 Logical EXPressionS.........ccccovvveevirriireennnineens 32
3.54 String EXpressions.......cccoooeveiiiieeicniiieiiniieen 35

3.5.4.1 Concatenating (Connecting Strings)...... 35

3.5.4.2 Comparing Strings........c.cceeevvvenennenn. 36
MATHEMATICAL FUNCTIONS ..o, 36
HIERARCHY OF OPERATIONSccceeoeneen 37

i

CHAPTER 4

DATESoovevviiieiinnns

v

N82-BASIC INSTRUCTIONS

58
59
60
60
61
61
62
63
64
64
65
66
69
69
GOTO ..o 71
1
IF - THEN - ELSE/IF -
GOTO - ELSE 71
IMP 74
INKEYS ..o 75
INP..o 75
INPUT .o 76
INPUTS .o 77
INPUT# oo 78
INSTR. ..o, 79
INT 80
K
KEY ..o 80
KILL oo 81

LOAD ...,

MENU ..o

ON - GOTO/

ON - GOSUB..................
ON COM GOSUB...........
ON ERROR GOTO~

P
PEEK ... 101
POKE.....cooiiiiiiiinin 101
POS .. 102
POWER........oooeiiiiinn, 102
PRESETc.ccoviiriiinnnns 103
PRINT/LPRINT 104
PRINT USING/
LPRINT USING............... 105
PSET ...ooiiiiiieieiicce 108
R
READ......coooiiiiiiei 109
REM ..o 109
RENUM.........ccooiiinns 110
RESTORE............cceiiens 111
RESUME ..o 112
RETURN ..o 113
RIGHTS ..o 114
RND ..o 114
RUN ... 115
117
118
119
119
120
121
122
122
STRE ..o 123
STRINGS........cocvvviiis 123
T
TAB. .o 124
TAN. ..o, 125
TIMES ..o 125
v
VAL ..o, 126
X
XOR ..o, 127

CHAPTER 5 FILES

5.1
5.2
5.3
5.4

FILENAMES ..., 130
BUFFERS. ... 131
FILE HANDLING............cocooiiiiic i 131
PRECAUTIONS FOR FILE CREATION................... 132

CHAPTER 6 MACHINE LANGUAGE PROGRAMMING

6.1

CREATING MACHINE LANGUAGE PROGRAMS 134

CHAPTER 7 N82-BASIC PROGRAMMING AIDS

7.1 RECOVERY FROM CRITICAL SITUATIONS 136
7.1.1 Word Wraparound and Screen Scrolling........... 136
7.1.2 Spontaneous Program Execution Errors............ 136
7.1.3 Logical EMOrscocovrveenneiieeneeeie e 137
7.1.4 Loss of Program Controlcoccevreniniirnnn 138
7.1.5 Return to BASIC from TEXT is Impossible 138

7.2 PROGRAMMING HINTS..............cooiiiiiiicnceie s 139
7.2.1 Hints for Detecting Errors:cccccoceeevvvecriinnene 139
7.2.2 Hints for Speeding Up Program Execution: 139
7.2.3 Hints for Saving Memory Space:.........cccccceeenne 140

CHAPTER 8 ERROR MESSAGES 142

CHAPTER 9 SAMPLE PROGRAMS

vi

9.1
9.2.
9.3
9.4
9.5
9.6

PSET ROUTINE ..., 154
CHARACTER DEFINITION PROGRAM 156
MUSIC PROGRAM ... 158
RANDOM DISPLAY PRINTING PROGRAM 164
GAME PROGRAM ..o 166
SCORE RANKING PROGRAMccoooeeiiees 168

APPENDICES

ATABLES ...t 172

A1 Reserved WOrdseeeeeeiicce e, 172

A2 Error COUES......vvvviiiiiiiiieie et 174

A3 CoNntrol COABS.....uvuvieiieeeeeee e 177

A.4 Character Codes..........coommiiiieioeieee e, 178
BMEMORY MAPS ... e 179
CESCAPE SEQUENCESoooiiiieeeeen 181

D GLOSSARY ... 183
INDEX oo e et v et e e een e 187

vii

Introduction

INTRODUCTION

The N82-BASIC Reference Manual is a guide to the programming language used for
the PC-8300 personal computer. Microsoft's N82-BASIC language, developed
specifically for the PC-8300, offers a wide range of commands and functions, making it
very useful and versatile.

This Reference Manual was designed for people of all levels, from beginners to
professional programmers. It is intended to be used in conjunction with the PC-8300
User's Guide.

This Manual is divided into nine chapters:

Chapter 1 is an overview of the N82-BASIC language. You will learn about the
special features unique to N82-BASIC and its operating modes. This
chapter also gets you started using N82-BASIC.

Chapter 2 includes all the general information about the BASIC language that
you wil need to know, such as definitions of statements and symbols
used for programming. A description of the PC-8300 LCD screen
display is included.

Chapter 3 explains how programming expressions are formed specifically for the
N82-BASIC language.

Chapter 4 includes complete explanations of the purpose and use of system
commands, statements, and functions available with N82-BASIC.

Chepter 5 outlines information needed for proper file handiing.
Chapter 6 describes machine language programming.
Chapter 7 is a guide to actual programming problems that may be encountered,

especially with beginning programmers. Programming hints and
solutions to programming problems are included.

Chapter 8 explains the causes of errors and what action should be taken when
error messages are displayed.

Chapter 9 contains a variety of sample programs written in the N82-BASIC
language.
Appendix includes quick reference tables and guides, memory maps. etc.

The PC-8300 is a very specia personal computer. It has its own specialized built-in
BASIC language, along with more easy-to-read special function keys than any other
portable computer available. Another unique feature of the PC-8300 s its full screen
editing capability which is extremely powerful for a compact portable computer.

N82-BASIC Reference Manual

In order to fully utilize the capabilities of the PC-8300, you should become familiar with
the N82-BASIC language outlined in this Reference Manual.

It is best for beginning programmers to read this manual thoroughly, and actually input
the sample programs into their PC-8300. More advanced programmers can use this

manual as a reference.

The system commands, statements, and functions in chapter 4 are presented in
alphabetical order for easy referance. The explanations are all written in the following

format:

FUNCTION:

FORMAT:

Gives a brief description of the use of a command or function.

Describes how the instruction is actually written. The following
points apply to the format description of all of the commands
and functions:

1

2.

. Al capitalized words are BASIC Reserved Words.

All lower case words contained within angle bracket < >
symbols are parameters, which must be supplied by you.

The three types of parameters:

a. Line numbers: only whole numbers are allowed.

b. Strings: enclosed by quotation marks. Any combinations
of letters, numbers or other symbols are allowed.

c. Variables: constants, numerical values, or mathematical
formulas are allowed.

. Parentheses () must be typed in as shown in the format.

. Braces { } indicate that the enclosed clause is optional, so

you may choose to omit it.

. Brackets [] denote that one of the enclosed items must be

used.

. Punctuation marks such as commas, periods, semicolons,

etc., must be included in the format exactly as written.

. tems enclosed by a pair of the “...” symbols can be

repeated any number of times as long as they do not go
over the maximum length of a line, which is 255 characters.

. Placement of spaces between reserved words or parameters

within the format of a command or function is not necessary.

Introduction

SAMPLE
STATEMENT:
DESCRIPTION:
NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

KEYS

FUNCTION KEYS:

USER INPUT
NOTATION

This is a sample of the correct format of system commands,
statements, and functions.

Explains important points about the use of system commands,
statements, and functions.

Describes situations in which problems may arise if you do not
fully understand the uses of a command or function.

Consists of cther items relevant to the command or function
being described.

When included, a sample program demonstrates the actual use
in a program of the system commands, statements, or
functions described.

Keys that must be pressed together require special notation.
Here is an example:

Press [CTRL] A]. This means “While halding down [TTRL],

press A"

If you see a written direction in text: “Press
all you have to do is press the key marked

Press this means “Hold down

:
then press

Remember the following:

is the shift of
is the shift of
is the shift of
is the shift of

is the shift of

Whatever the user should type is shown in bold print.
Here's an example:
Type CAS:CALC.BA

Press .

SYMBOLS USED IN THIS REFERENCE MANUAL

f

Remember this tip to avoid errors and problems!

CHAPTER 1
N82-BASIC OVERVIEW

1.1 INTERNAL AND EXTERNAL FEATURES................ 6
1.2 TWO OPERATING MODES, DIRECT AND
PROGRAM ... 6
1.2.1 Direct MOde........coooiiiiiiiiiiicceie e 7
1.2.2 Program Modeccoeeiiieieniieniiicieceeeen 8
1.3 GETTING STARTED WITH N82-BASIC 8
1.4 USING THEDIRECTMODE ..., 9

1.5 USING THE PROGRAM MODE 10

N82-BASIC Reference Manual

N82-BASIC has been designed to fully utilize the many features of the PC-8300
personal computer. The language that is used is similar to many other forms of BASIC.
In ceriain ways, it differs since the hardware features of the PC-8300 are different from
those of other computers.

All of the hardware and software features of the PC-8300 are related to the N82-BASIC
language:

1.1 INTERNAL AND EXTERNAL FEATURES

The LCD screen of the PC-8300 can handle high resolution graphics of 240 x 64
pixels (dots); amazing for a computer this size.

You can easlly create and modify (edit) BASIC programs using the PC-8300’s powerful
screen editor. You also have the option to write and edit programs while in the TEXT
mode, and to load them into the BASIC mode of the PC-8300. This TEXT feature
transforms your PC-8300 into a powerful and versatile word processor.

Direct computer-to-computer communication from your PC-8300 to other types of
computers is simple, convenient and is accomplished effectively through the RS-232C
interface. This is done by using the TELCOM software feature, along with BASIC
operation instructions, such as ON COM GOSUB, etc.

Large BASIC programs may be written on the PC-8300, because of its memory size.
The PC-8300 comes equipped with 64K bytes of RAM installed, with two memory
banks (#1 & #2) available for use. A third memory bank of 32K bytes (bank #3) is
available if an additional RAM Cartridge is installed in the unit.

The PC-8300 can store up to 21 different files in each memory bank. This allows for
18 of your own customized files, along with the three primary files of BASIC, TEXT,
and TELCOM. These files can be accessed faster and easier than with a disk drive on
other computers.

Battery power of the PC-8300 is conserved as efficiently as possible because of the
automatic shut-off feature. This feature is operated by the POWER instruction, which
can be written into the PC-8300 programs.

Data stored within the RAM of the PC-8300 is protected from loss by a back-up power
system. This means that a minimal amount of battery power is used even when the
power switch is turned off. allowing the files and programs stored in the RAM to
remain intact, as long as the battery power lasts.

1.2 TWO OPERATING MODES, DIRECT AND PROGRAM

The N82-BASIC of the PC-8300 has two operating modes, the Direct Mode and the
Program Mode, and they are both used in the BASIC mode.

Overview

As cescribed in the PC-8300 User’'s Guide, the BASIC mode is entered by maving tre
directory cursor onto the word BASIC on the screen on the start-up menu called
MENU, which is the first thing to appear on the screen, after turning on the PC-8300.

1986/12/25 13:00:46

o - Lt ey

Load save Name

nist 28758

After pressing [« |, the message “Ok” will be displayed:

NEC: PC-8201 BASIC Ver 1.1 (C) Microsoft
28758 Bytes free

Ok

[|

Load " Save " Files List Run

You can now utilize either the Direct Mode or the Program Mode of BASIC. The lines
must conform to syntax equirements of the N82-BASIC language. The statements
used in the Program mode must conform to command format requirements of
N82-BASIC.

1.2.1 Direct Mode

The Direct Mode of BASIC allows an individual program statement, writlen in the
N82-BASIC language, to be executed immediately. This is done by typing in the
statement and then pressing . The statements used in the Direct Mode do not
have a line number. The Direct Mode is useful for testing a particular statement. You
can then see if the statement gives the result you expect it to, or if it performs a
function correctly, without you having to write and run an entire program or set of
statements.

Variables used in the Direct Mode are “held” in the memary temporarily, while you are
working wih them. They may be erased from the memory by typing NEW or CLEAR
and then pressing [€ |. Statements written in the Direct Mode cannot be saved in
RAM or onto external storage devices.

N82-BASIC Reference Manual

1.2.2 Program Mode

The Program Mode is entered by starting each statement with a line number, such as
10, 20, or 30.

The Ine number and the statement can then pe saved and stored in the RAM, or on
external storage devices such as RAM Cartridges, disk drives, and data recorders.
Such numbered statemerts are “held” in the working memory but are not executed
until a RUN command is keyed in, followed by . This way, multiple

statements can be written to create a program. This differs from the Direct Mode
because thase unnumbered statements cannot be “SAVED” in the RAM or on external
devices (disk drives or a data recorder). Line numbers used in the Program Mode can
range from O to 65529.

Once a program has been created, it can be executed by a RUN command. The
PC-8300 returns to the Direct Mode after a program has ended. This means that it
switches back to the Direct Mode if a program finishes running normally, if a program
terminates abnormally due to an error, or if [STOP Jor [CTRL [C]is pressed while a
program is running.

The PC-8300 is device independent, allowing you to program on :he PC-8300 without
any peripheral devices attached. You Fave the option of attaching a data recorder, a
RAM Cartridge, or a disk drive for the ourpose of saving your programs, but it is
certainly not necessary.

1.3 GETTING STARTED WITH N82-BASIC

To begin using the N82-EASIC language, put the PC-8300 into the BASIC Mode. Your
screen should appear as illustrated:

NEC PC-8201 BASIC Ver 1.1 (C) Microsoft
28758 Bytes free

Ok

|

Load " Save " Files List Run

The “"Ok” massage with the flashing cursor appearing on tre next line indicates that
the PC-8300 is ready for use and is waiting fcr instructions from you. The PC-8300 is
now in the Direct Mode, meaning that you can enter system commands or statements.

Wher in the Direct Mode, commands and statements are always executed as soon as
is pressed after they are typed. See Chapter 4 for a complete list of system
commands.

Statements can be entered using either the Direct or the Program mode.

8

Overview

1.4 USING THE DIRECT MODE

The Direct Mode of N82-BASIC allows an individual statement to be executed
immediately. Statements used in the Direct Mode are typed without line numbers, and
is then pressed to immed ately execute them.

An example of using the Direct Mode:
Type in: INPUT "Radius of circle";R[¢]

This statement causes the question: "Radius of circle?” to be printed on the screen,
waiting for your answer to be input. Input the numoer for the radius and [& |.

(For examole type 5, then [¢].)
Type in: PRINT "Diameter = ";2*R[& |

This statement calculates the diameter of a circle with the radius you have already
input and prints (for example):

[Diameter=-10

on the screen.
Type in: PRINT "Area =";3.14159%R"2

g?“h 3.14159 is the value of .

NS

This statement calculates the area of a circle, and prints:

Area= 78.5397]

on the screen.
Typein: PRINT "Circumference =";2%3.14159%R

This statement calculates the circumference of the circle and prints:

] Circumference= 31.4159]

on the screen.

While in the Direct Mode, the PC-8300 prints an “Ok” message on the screen each
time is pressed at the end of a statement.

The Direct Mode is useful for testing particular statements, or for performing simple
calculations. Most program statements can be entered in the Direct Mode, but not alt
can be executed. This is because some statements need to be executed in
conjunction with other statements.

NB82-BASIC Reference Manual

The PC-8300 retains the value of Radius (R) by holding it in a temporary working area
of the memory. Values will remain until a CLEAR or NEW command is used, the
power switch is turned off, another program is executed, or until the value is redefined.

Whenever you execute NEW or CLEAR, the value you had assigned to
radius is cleared to zero, as are the values of all variables.

1.5 USING THE PROGRAM MODE

Assure that you wanted 1o know the diamete’, area and circumference of a circle with
a different redius, Lsing the Direct Mods, you would have to repeat the whole process
descrbed. This is where the Program Mode comes in handy.

Type in the “ollowirg:
10 INPUT "Radius of circle ";R[¢]
20 PRINT "Diameter = ";2*R[€ |

30 PRINT "Area = ";3.14159%xR "2 ¢ |
40 PRINT "Circumference =";2+*3.14159*R

50 END
Now type RUN and press [€ |.

If you typed the program correcily, the question "Radius of circle?” will appear on your
screen. Type in a radius value and press (for example: 12).

Now you see the answers:

Diameter= 24
Area= 452,389
Circumference=. 75.3982

Congratulations, you have written your first program. Now SAVE it in the RAM. Press
[72]and then respond to the prompt Save '* by typing:

RADIUS.BA' and press[€ |
Press (hold down and press [£5 |) to go to the MENU and you

will see your program name among the other file names in the directory.

By pressing [SHIFT |, you change . , , [F5].to
[f6].[017].[f8].[19]. and respectively.

10

CHAPTER 2

GENERAL INFORMATION

2.1
2.2
2.3
2.4

2,5
2.6
2.7

SCREEN DISPLAYooiiiiii e 12
STATEMENTS AND LINE NUMBERS 13
SPECIAL SYMBOLSooooiiiiiiicee 13
SPECIAL SYMBOLS FOLLOWING VARIABLE

NAMES ... 14
CHARACTERS ..., 14
ERROR MESSAGES...............cccooviiiiceei, 14
PROGRAM EDITING MODES ... 14
2.7.1 Screen Editing of Programscceceviniinn, 15
2.7.2 Other Keys Used for Screen Editing................. 16
2.7.3 Editing Programs Using the TEXT Mode........... 17

2.7.4 Copying a Section of a Program Using the
TEXT MOAE .. 17

N82-BASIC Reference Manual

2.1 SCREEN DISPLAY

The Liquid Crystal Display (LCD) screen can display 8 lines of 40 characters per line.
The first 7 lines are usually available for your use, depending on the mode in which
the 2C-8300 is in. The last line usually displays the names of the functions currently
assigned to the five function keys, marked to [£.5], which are just above the
main keyboard.

The columns on the screen are numbered horizontally 0 through 39 and vertically O
through 7 from top to bottom:

07 - » 397

Each of the positions is addressable by using the LOCATE (x,y) statement, in which x
gives the horizontal position (0-39) and y the vertical position (0-7).

Dot graphics may be displayed on the screen of the PC-8300. The display consists of
240 pixels (dots) across from left to right, numbered 0 through 239. There are 64
pixels from top to bottom on the screen, numbered O through 63:

0,0 - > 239,0

0,63 - L Lt : : » 239,63

Each dot is addressable using the PSET statement.

12

Genoral Information

2.2 STATEMENTS AND LINE NUMBERS

BASIC programs consist of numbered statements, which give the PC-8300
instructions in ascending order of line numbers, starting at the lowest. These
statements can perform arithmetic operations, assign values, input data, output data,
transfer the sequence of execution of certain program functions, test certain
conditions within a program, etc.

A program line consists of one or more statements. If there are more statements than
one in a line, the group of statements is called a compound statement. Statements
within compound statements must be separated by a colon ().

For example:

10 X=5:PRINT X

“X=5" is a statement, and PRINT X is another statement, so they must be separated
by a colon.

Eacn program line begins with a line number, which indicates the sequence in which
it is to be executed and stored in the memory. Program execution starts with the
lowest numbered line and then continues in sequence. Line numbers can range from
0 to 65529. No program line can exceed 254 characters in length.

EXAMPLE OF A PROGRAM LINE FORMAT:
20 LET A=1:LET B=2:LET C=3

The above program line is a compound statement, starting with the no. 20, and with
the three individual statements separated by colons.

LET A=1
LET B=2
LET C=3

2.3 SPECIAL SYMBOLS

In addition to the arithmetic symbols, such as + (addition), — (subtraction),
* (multiplication), and / (division), N82-BASIC reserves several symbols for special
purposes:

e Period () is used to reference the last program line inptt. It is also used to point to the
line in which an error has occured during program execution.

e Hyphen (-) indicates a range, in place of the word “to,” such as 1-~19. The hyphen
is the same character as the minus sign.

¢ Comma (,) separates variables or data within a PRINT command into separate columns
called Space Zones.

e Colon () is used to separate statements within one program line, which saves memory
space.

13

N82-BASIC Reference Manual

* Semicolon (;) is usually used in the PRINT or INPUT statement as a non-spacing
separator. Two items in a PRINT statement separated by a (;) will be printed without
a space between them.

* Apostrophe (') is used to precede non-executable lines such as remarks or comments.

¢ Double quotation mark (") is used to enclose character strings. The strings cannot be
more than 255 characters long.

* Question mark (?) is the abbreviation for the PRINT command.

¢ Blank spaces are generally ignored by the PC-8300, unless enclosed by * *

2.4 SPECIAL SYMBOLS FOLLOWING VARIABLE NAMES

Symbol Format Variable

Percent (%) (variable)% Integer

Exclamation (!) (variable)! Single Precision Real Number
Sharp (#) (variable) # Double Precision Real Number
Dallar ($) (variable)$ Character String

2.5 CHARACTERS
The characters recognized by N82-BASIC include:

Upper case alphabet characters AtoZ

Lower case alphabet characters atoz

Numeric characters Oto 9

Special symbols PM"ASXE () *+, = [/ ;<=>
PALNT~A_M {2

Graphics characters 4 ¢ and up to a total of 125

programmable graphics characters
2.6 ERROR MESSAGES

It an error occurs during program execution, the PC-8300 will terminate the program,
return to the Direct Mode, and display an error message.

The error message is displayed on the screen if the PC-8300 is in the Direct Mode of
BASIC. While in the Program Mode, the line number where the error occurred is
displayed along with the error message. See Chapter 7 for the list of error messages
and their. explanations.

2.7 PROGRAM EDITING MODES
The two editing modes featured by the PC-8300 are the Direct Mode in BASIC and

the TEXT mode. You can edit your programs in either mode, depending upon your
preference.

14

General Information

2.7.1 Screen Editing of Programs

Editing programs in the BASIC mode is done by modifying program lines. When you
edit in this manner, must be pressed after your changes have been made in ord-
er for them to be entered into the memory. Remember that a program line cannot ex-
ceed 254 characters long, which is more than 6 full lines on the screen. It is
recommended that lines have less than 200 characters, so they may be LISTed and
edited.

The following operations are used to edit (modify) program lines. First list the line by
typing LIST and then the line number following by .

INSERT:

1. Using the cursor keys, move the cursor to the place where onhe or more characters
are to be inserted.

2. Press| PAST
INS

3. Type the character(s) to be inserted.

4. If other insertions are needed on the same program line, move the cursor to the desired
positions, again using the cursor keys, then press and insert the character(s).

5. Press to enter your changes into the memory.

6. Keep in mind that when INSERTion editing in the Direct Mode of BASIC is used, the
INSERT is active until or a cursor key is pressed.

DELETE:

To delete characters that precede the cursor in a program line, LIST the line, by typing
LIST followed by the last number, then press .

1. Move the cursor to the right of the character to be deleted.

2. Press[DEL |.
BS

3. Press once for each character to the ieft to be deleted.
BS

4. Press to store the changes.

To delete characters that follow the cursor in a program line, LIST the line by typing
LIST followed by the last number, then press .

1. Move the cursor onto the first character to be deleted.

15

N82-BASIC Reference Manual

2. Press and hold and then press .

BS

3. Repeat the same process once for each character to be deleted. This converts the
cursor position to a deletion site, deleting the character inthe cursor position and pulis
the other characters lock to it.

4. Press to store the changes.

To delete an entire line:

1. Type only the line number of the line to be deleted.

2. Press [€].

Another way to delete an entire line is to LIST the line then:

1. Move the cursor to the space between the line number and the body ofthe statement.

2. Press , then press .

>

DD:
A new line can be added at any point in the program.

The PC-8300 executes programs in ascending order of line number, starting at the
lowest line number, regardless of what order the lines were typed in.

To rewrite a line, just type the old line number foliowed by the new contents; this new
line will automatically replace the oid one. As stated above, the PC-8300 will put the
lines in order when the program is LISTed.

2.7.2 Other Keys Used for Screen Editing
TAB Moves the cursor directory to columns, 8, 16, 24, and 32 of the line
in which the cursor is positioned.
STOP Terminates the EDIT mode. Same as

CTRL . Erases characters from the position directly to the right of the cursor,
all the way to the end of the program line.

CTRL [H Same as [DE-
BS

CTRL [1] Same as

-
(=]

General Information

CTRL [K Moves the cursor to the “home” position, in the upper left corner of
the screen.

CTRL Clears the screen and moves the cursor to "home” pasition, the upper

left corner of the screen.

same as [

[CTRL] O] Continues the scrolling of a program listing on the screen by the LIST
instruction.

CTRL Interrupts the scrolling of a program listing on the screen by the LIST
instruction.

CTRL [R | Same as
INS

CTRL ' Erases aline displayed on the screen. The internal memory is not altered.

2.7.3 Editing Programs Using the TEXT Mode

Programs can be edited in the TEXT mode by entering EDIT and then pressing :
To exit the TEXT editing mode, press [ESC]twice or ().

In this mode, any characters typed are inserted at the location of the cursor. Uniike
editing in the Direct Mode, every modification that you make in a program line is
entered into the memory of the PC-8300 immediately, even before you press .

Use of while in the TEXT editing mode will indent the line being typed.
must be used to end a program line being typed or modified in this made, or else the
line will not appear in the program in the cofrect sequence.

The PC-8300 will check a newly input program line in the TEXT editing mode. If only a
line number or a line which does not contain a line number is input, the PC-8300 will
not store it in the memory. When this type of line is input the message “Text it-formed”
will be displayed on the screen and a “BEEP” sound will be generated. You will have
to type in a correct program line or delete the line number from the screen to avoid
this error message.

2.7.4 CO%ying a Section of a Program Using the TEXT
Mode

The TEXT editing mode is most usefu if you want to copy a section of a program into

another program by using the PASTE buffer. The string searching function of the FIND
command is also very helpful in locating certain words, strings, €etc., when you are
editing programs. PASTE and FIND are described fully in the TEXT Manual.

17

CHAPTER 3
EXPRESSIONS AND OPERATIONS

3.1

3.2

3.3

3.4

3.5

3.6
3.7

VARIABLES ... 20
3.1.1 Examples of Reserved Variables.................... 20
3.1.2 Types of Variables..............cccceveiiiininnns 21
3.1.3 String Variablesccoceiiceniiii 22
3.1.4 Numeric Variablesccccoooiiiiiiin i 22
3.1.5 Integer Variables.........c.ccccooeiviiiiiniiiiinnns 22
3.1.6 Real Number Variablesc.cccccooiiiiinnnnn 22

3.1.6.1 Single Precision Format..................... 22

3.1.6.2 Double Presicion Format.................... 23
ARBAYS ..o 23
3.21 DIM Statement.........ccocooieiiiiiini 24
3.2.2 Rules for Elements of an Arrayccccone. 25
CONSTANTS ... 25
3.3.1 Numeric Constants............cccciinieiieiniiiinns 26
3.3.2 Integer Constantscccoeveeeivnieiiniin e 27
3.3.3 Character String Constants..............cccoevvvennn 27
TYPE CONVERSIONoooiiiiiceins 28
LOGICAL EXPRESSIONSccccccoiririrec 30
3.5.1 Arithmetic EXpressionscccveviiiiiiiiinnne. 30
3.5.2 Relational EXpressions.......c.ccoveveveviiiniinninns 32
3.56.3 Logical EXpressions.............ccocoiiiiininiiiecincnn, 32
3.5.4 String EXPressions..........ccvvevcevciieiiiiiieeane e, 35

3.5.4.1 Concatenating (Connecting Strings).... 35

3.5.4.2 Comparing Strings.........ccccccmvvieennnnnne 36
MATHEMATICAL FUNCTIONScooricin, 36

HIERARCHY OF OPERATIONSc.cociens 37

N82-BASIC Reference Manual

3.1 VARIABLES

Variables are distinct quantities for different types of elements within your N82-BASIC
programs that are represented by unique names. The two types of variables used are
numeric and string variables.

An example of a numeric variable is when you want to use the element AGE within a
program, and 40 items are needed. You can then assign the name “AGE” to
represent the gquantity of 40 items of that variable.

When you assign variable names, try to use names that are meaningful 1o you, and
related to the element that they represent. The N82-BASIC language utilizes only the
first two characters of the variable name to distinguish between variables, A variable
type specified character placed at the end of the variable name, indicates whether a
variable is string or numeric.

Variable names may be any length up to 255 characters; however keep in mind that
the langer the variable names the less RAM available for your subsequent use. The
recommended characters to use for a variable names are letters and numbers.

The first character for the variable must be a letter. There are also certain words that
are reserved for use within N82-BASIC that are not available for your use, such as all
the N82-BASIC reserved words.

3.1.1 Examples of Reserved Variables

TIMES$ -This variable holds the time in hours, minutes, and
seconds (HH:MM:S§)
DATES -This variable holds the year, month and date (YY/MM/DD) .
ERL -This variable holds the line number where an error
occured during program execution.
ERR -This variable holds the error code which caused the
interruption.

See Appendix A.1 for a complete listing of N82-BASIC Reserved Words.

20

Expressions and Operations

3.1.2 Types of Variables

The last character of a variable name determines the type of variable. The four types
of variables are: integers, single precision real numbers, double precision real
numbers, and string variables. If the variable type is omitted, it is assigned single
precision () by default.

Following is a table of the different types of variables:

1
String Numeric
Variable Variable
]
{ |
Real Number Integer
Variable Variable
|
[]
Single Double
Precision Precision
Fixed Floating Fixed Floating
Decimal Decimal Decimal Decimal

Variable type can be designated by using declaration statements.

Examples of different types of variable designations:

AS String variable

Al or A Single precision real number variable (default)
A# Double precision real number variable

A% Integer variable.

As you can see in the above example the variable name “A” in conjuction with special
characters represent four different types of variables.

Please refer to DEFINT, DEFSNG, DEFDBL and DEFSTR statements in Chapter 4.

21

N82-BASIC Reference Manual

3.1.3 String Variables

String variables are a collection of characters with a non-numeric value. They are
composed of letters (both upper and lower case letters), numbers, or special symbals.
If double quotations are needed within the string, CHR$(34) should be used to enter

these double quotations. The maximum length of a string variable is 255 characters.
They cannct be used in an arithmetic operation.

3.1.4 Numeric Variables

Numeric variables are integers or real numbers, represented by a numeric variable
name such as age, salary, etc.

3.1.5 Integer Variable

In N82-BASIC, integers are numbers that have the following characteristics:

e Numbers with no decimal point.
e Numbers ranging from —32768 to +32767.

e Numbers followed by % (percentage sign).

EXAMPLES: NUMBERX=1234
NUMBERZ%Z=123X.

3.1.6 Real Number Variables

Real numbers are subdivided into single precision format and double precision format.
Both single and double precision can have the numbers expressed in ether fixed
decimal form or floating decimal form.

A fixed decimal form number may or may not show a decimal point (a decimal point is
assumed at the end of the number if it is not specified).

A floating decimal number is displayed in scientific notation.

3.1.6.1 Single Precision Format

A floating decimal single precision number has two parts, the magnitude and the
exponent.

The magnitude is stored in seven significant (high order) digits .internally. When

displaying the numeric value, the seventh digit is rounded off and trailing zeros are
deleted to show six digits or less on the screen.

22

Expressions and Operations

The exponent portion is attached to the magnitude. It consists of the letter E, a sign,
and a two digit number. Valid exponent numbers range from 01 to 38.

Single precision numbers have the following characteristics:

e Real numbers of up to 7 digits.

¢ Real numbers followed by an optional exclamation mark (!).
e Real numbers range from —1.70141E+38 to 1.70141E + 38.
* The exponent indicated by the letter E.

EXAMPLES: Fixed decimal: NUMBER=1.23
NUMBER!=3_.14!

Floating decimal: NUMBER=-7.06E+06
NUMBER!=1.23E+10!
3.1.6.2 Double Precision Format

A double precision floating decimal number consists of two parts, the magnitude and
the exponent as in the single precision format.

The magnitude is stored with a precision of 17 significant digits and can be displayed
by up to 16 digits, with the 17th digit rounded off. The exponent is displayed starting
with the letter D, followed by a sign and a two digit number. Valid exponent numbers
range from 01 to 38. :

Double precision numbers have the following characteristics:

e Numbers containing from 8 to 16 digits.
e Exponent indicated by the letter D.
¢ Numbers followed by a sharp sign (#).

EXAMPLES: Fixed decimal: NUMBER#=123456789012345
NUMBER#=0657036.1543976

Floating decimal: NUMBER#=-1.09432D}06
NUMBER#=0.31415926530+01.

3.2 ARRAYS

A group of logically related variables designated by the same variable name is called
an array. The items of an array are called elements. Each element is assigned a
unigue number called the subscript, to distinguish it.

23

N82-BASIC Reference Manual

Each array value is indexed by a subscript value. More than one subscript may be
designated, thus specifying the dimension of the array. A single dimension array has
one subscript index:

Subscripts: 0 1 2 3 4 5

Values: 11 91 36 12 19 50

When the elements of an array are designated with two subscripts then the array has
two dimensions. This is explained by the following example. Let the array “ITEMS%”
be two-dimensional, consisting of 4 rows by 8 columns. To reserve memory space for

the array, the statement DIM ITEMX(3,7) would be used. Following is the layout
of the location of each element of an array ITEM%:

Columns

— 0 1 2 3 4 5 6

0 8| 12 | 99 0| 70 | 88 j 123 9
Rows| 1 23 | 88 | 56 | 91 87 | 72 1192 | 23
2 43 | 71 92 3 9| 62 | 11 10
51 82 | 95 | 64 | 93 | 57 | 26 4

As shown in the table, in order to access the fourth element of the second row, you
will have to use the name ITEMS%(1,3), this element contains the value 91.

3.2.1 DIM Statement

The subscripts are always enclosed in parentheses and they have a numeric integer
value greater than or equal to zero. Numeric variables that follow the above rules can
also be used when designating subscripts.

N82-BASIC requires information such as the maximum number of elements within each
dimension of an array, so storage space can be allocated for the entire array. This is
possible through the use of a DIM statement.

Sample format: DIM ITEMSX(I,T)
In this exarhple, "I represents the ROWS and "T" represents the COLUMNS. Notice
that atthough there are 4 rows and 8 columns for each row, DIM(3,7) was specified.

This is because counting of ROWS and columns start at O for the DIM statement. If we
started with row 1 and column 1, memory space would have been wasted.

24

Expressions and Operations

The layout for the array with dimensions (3,7) is addressed by subscripts according to
the following tabile:

Columns

— 0 1 2 3 4 5 6 7

0 |(00)](01)](02](03)](0.4) |05 |08 {(©O7
Rows| 1 |(10)|(1,)02 (3004|015 |18 |17
2 [@o|@h]|@E2]@3) |24 |25 |(28) |27
3 [(30)|(B1)|(B2|(33)|(34)]|(35)|(36) @7

An array cah be expanded to include over 100 dimensions, (sub-elements of each
element). The number of elements of an array is limited by the amount of memory
space available.

3.2.2 Rules for Elements of an Array

The array names, like the four different variable names, could represent the same
types of information. The same rules as in the variables govern the different types of
arrays. In addition to those rules, all the elements of an array can be of only one type.
Also, if the array is a character array, no element should be longer than 255
characters.

3.3 CONSTANTS

Constants are values that you assign to variable names for use throughout your
program or while in the Direct Mode. Constants are elements that do not and cannct
change during the execution of a program.

25

N82-BASIC Reference Manual

Constants could represent the same types of information as variables. The same rules
regarding designation of variables apply to constants. The following table illustrates

types of constants used in BASIC:

[1
String Numeric
Constant Constant
]
l L
Real Number Integer Number
1
[1
Single Precision Double Precision
X . Floating : : Floatin
Fixed Decimal Decimal Fixed Decimal Decimgl

3.3.1 Numeric Constants

A numeric constant has between 1 and 16 digits, either positive or negative. Numeric
constants cannot contain any spaces. When numeric constants of more than 16
characters are used, the least significant digits are rounded off by N82-BASIC, and the
number is displayed in floating decimal format. The following numeric constants are

valid:
25. 234567
-1234.01 32760
1112345678901.23 .1234567890123
3.14159
.0000002

it is possible to enter numeric constants which are longer than 16 characters using the

following format:

(FOr =)X.xxXXxxXXXxxxxxxxD(+ or -)nn

26

Expressions and Operations

where:

(+ or-) is the sign of the number. The minus sign is required with negative numbers.
If no sign is used, + is assumed (default).

X is the number with up to 16 significant digits.

D represents the Exponent (the power of 10).

nn is the exponential value ranging from —38 to +37.

The Exponent in this format can be any number, including 0, but cannot be blank. The
following are valid numeric constants in the D format:

1.2568010 8.2546813252570-30
-1.234567890123D-12 2358.256247980D2
12350-30 1.2020

3.3.2 Integer Constants

An integer constant is a special type of numeric constant that is a whole number
written without a decimal point, ranging from — 32768 to +32767. For example, the
following numbers are all integer constants:

1 0 -1234
25 -15 100
32767 -32767 10000

3.3.3 Character String Constants

A character string constant is one or more alphanumeric and/or special characters,
endosed in double quotation marks (*). Include both the starting and ending delimiters
(quotation marks) when typing a character string constant in a program. A character
can be a letter, a number, a space, or any ASCII character except a control character
or quotation marks. (In such cases, use the CHR$ function and concatenate (connect)
them into the string with the + sign).

27

N82-BASIC Reference Manual

The following is an example of acceptable character string constants:

Character String Constant

""Another"+CHR$(34)+"Constant"+CHR$(34)

Internal Representation

Another'Constant’

3.4 TYPE CONVERSION

Numeric variables can be converted from one type to another in N82-BASIC.
Character string constants can be converted into numeric types and vice versa. The
following are rules for type conversions:

1.

28

When assigning variables, the type of numeric value being transferred depends upon
the type of receiving variable.

EXAMPLE:

Statement Variable Value
ABCX=1.234 ABCX 1
ABC=1.234 ABC 1.234

Numeric types are arranged in the following order of precedence:

Integer

Single Precision

Double Precision

As shown above, the integer. is the lowest degree of precision. Arithmetic operations
are performed in numeric values with the same degree of precision. If different types
of numeric values are involved in an operation, the lower ordered values are converted
into the higher ordered format first, before the operation is performed.

EXAMPLE:

10#/3 is first converted to 10#/3 #

Expressions and Operations

All numeric values used in logical operations are converted into integers. The result
of the operation is in integer form.

EXAMPLE:

Statement Variable Content

A#=12.34 A# 12.34000015258789
B=NOT A# B -13

Digits after a decimal point are omitted when real numbers are converted to integers.
In such case, the number is rounded down to the nearest whole number.Numbers
converted outside the valid range for integers (- 32768 to +32767) would cause an
overflow error.

EXAMPLE:

Statement Variable Content
A%=34.4 A% 34
B%=34.5 B% 34

Values of Double Precision real numbers are rounded to 7 significant digits when con-
verting to Single Precision numbers. An overflow error could occur if rounded values
exceed the valid Single Precision range of —1.7014E+38 to +1.70141E+38.

EXAMPLE:

Statement Variable Content
A#=1.23456789# A# 1.23456789
B!=A# B! 1.234567

Numbers within strings can be converted 1o numeric variables by using the VAL function.
EXAMPLE:

Statement Variable Content

A#=12.34 A# 12.34000015258789
error factor

Al=12.34 Al 12.34

A#=VAL(STR$(A!)) AH# 12.34

no error factor

29

N82-BASIC Reference Manual

7. Numeric variables can be converted into strings by using the
STR$ function.

EXAMPLE:
Statement Variable Content
A1=1.234 Al 1.234
A$=STRS(A!) AS "1.234"

3.5 LOGICAL EXPRESSIONS
A Logical Expression is the specification of a series of operations to be performed on
variables, constants. and functions, resulting in one value. The types of logical
expressions used in N82-BASIC are:

e Arithmetic expressions

* Relational expressions

e [ogical expressions

e String expressions

3.5.1 Arithmetic Expressions

Priority Operator Function

Number

1 (high) ~ Exponentiation
2 - Negative sign
3 * Multiplication
3 / Divsion
4 ! Integer division
5 MOD Module division

. (Remainder)

6 + Addition

6 (low) - Subtraction

An arithmetic expression is defined as:

< arithmetic term > < arithmetic operator > < arithmetic term>.

30

Expressions and Operations

The following are examples of valid arithmetic expressions:

NOT A% Integer result

A%X+23 Integer resuit

SUB+CURRENT*PRICE Single precision
OX%X*THREE Single precision
+1/-4 Single precision
3.14159%*RADIUSA+2 Single precision
3x4/(PIH*R"2) Double precision

Rules for arithmetic expressions:

1.

When there are different operators with the same priority, calculation is performed from
left to right.

2. All arithmetic expressions are calculated from left to right with the highest priority (the
lower priority number) operations being calculated first, followed by the lower order ones.
3. Lower priority expressions enclosed in parentheses in an arthmetic expression are
performed before the higher pricrity expressions (outside the parentheses).
4. Priority order is also in effect inside parentheses.
5. Any division by zero will cause an error. Also, if zero is raised to a power of a negative
number (for example 04 -6) will cause an error.
6. An overflow error occurs whenever the results of an operation exceed the assigned
variable type limits.
Example:
Statement Meaning Result
ZxX+Y ZX+Y (Z multiplied by X) plus X
X/Y+2 X+2 (X diviced by Y) plus 2
(X+Y) /2 X—;Y (X plus Y) divided by 2
XA2+42%X+1 X2 +2X+1 (X multiplied by X) plus X plus X
plus 1
XACYA2) X’ X multiplied by Y multiplied by Y
XAYA2 x"y? (X multiplied by X Y-Times) and the

result multiplied by itself

31

N82-BASIC Reference Manual

X*(-X) Y (=X) Y multiplied by minus X

2/0 % ?10 Error caused by division by zero
0/-1 —T 0

10\3 INT 12 3

15M0D4 15—4(INT(14—5)) 3

3.5.2 Relational Expressions

A Relational Expression is defined as:

< arithmetic term > < relational operator > < arithmetic term >

or

< string term > < relational operator > < string term >

The following are all acceptable Relational Expressions:

CHARACTERSS$>"HELLO"
NUM1<=NUM2
NUMBERX<>225+*(5-TWO)

539=THWO

3.5.3 Logical Expressions

String relation
Numeric relation
Numeric relation with arithmetic sub-expression

Numeric relation

A Logical Expression operates on integer values and produces an integer value.

A logical expression is defined as:

< arithmetic term > < logical operator > < arithmetic term >

32

Expressions and Operations

A logical operator is any of the following:

Operator Function

NOT Invert bits (ON to OFF; OFF to ON) in one term

AND Tests for bit ON in both terms

OR Tests for bit ON in either term

XOR Tests for bit ON in either but not both terms

IMP Tests both terms, it returns bit OFF if the first term bit is ON
and the second term bit is OFF

EQVY Tests for equality, it returns bit ON only it both bits are ON or
both OFF

% The binary representation of ON is — 1, and 0 is the binary representation
of OFF,

Logical Expressions are comparisons between the corresponding “bits" of the two
terms of the expression. A bit is a binary (either ON or OFF) piece of information. An
integer value is composed of sixteen bits. A decimal integer is expressed in bits by
converting the number 1o base 2 notation and adding any leading binary zercs, if
necessary. The following is a list of some equivalent values in decimal and binary:

Decimal Binary Bits
0 0000000000000000
1 0000000000000001
5 0000000000000101
23 0000000000010111
100 0000000001100100
-1 1111111111111

Note that a decimal zero (0) has all zero bits and a decimal -1 has all one bits. This
relationship between decimal and binary is used in the result of relational expressions.
Logical expressicns are valid wherever arithmetic expressions are allowed, however,
both terms must be integers. The following tables are called truth tables. They show
graphically the results of the logical operations for every possible combination of two
bits:

33

N82-BASIC Reference Manual

NOT OR
A% Not A% A% B% A% or B%
0 -1 0 0 0
-1 0 0 -1 -1
-1 0 -1
-1 -1 -1
AND XOR
A% B% A% AND B% A% B% A% XOR B%
0 0 0 0 0 0
0 -1 0 0 -1 -1
—1 0 0 -1 0 -1
-1 —1 -1 -1 -1 0
IMP EQV
A% B% A% IMP B% A% B% A% EQV B%
0 0 -1 0 -1
0 -1 -1 -1 0
-1 0 0 -1 0
-1 -1 -1 -1 -1 -1

Examples of logical expressions

NUM1% OR NUM2%

I% AND 23

IX AND (A XOR B) IMNP C%

(A AND B) OR (A AND C)

CHARACTERSS$>="A'" AND CHARACTERS$<="2"

34

Expressions and Operations

Logical expressions are normally used to evaluate terms that are the result of relational
expressions (bits all ON or all OFF). However, since the logical expression compares
all sixteen bits of each of the terms there are many other uses for logical expressions.
One of the more common of these other uses is binary coded information, or “bit
switches”.

Some examples will illustrate how the logical operators work on non-relational values:

15 AND 14 0000 6000 0000 1111 (15)
AND 0000 0000 0000 1110 (14)
0000 0000 0000 1110 (14) (TRUE)
10 OR 23 0000 0000 0000 1010 (10)
OR 0000 0000 0001 0111 (23)
0000 0000 0001 1111 (31) (TRUE)
NOT 153 NOT 0000 0000 0001 1001 (153)
1111 1111 11100110 (—154) (TRUE)
25 XOR 13 0000 0000 0001 1001 (25)
XOR 0000 0000 0000 1101 (13)
0000 0000 0001 0100 (20) (TRUE)
234 EQV 3429 0000 0000 11101010 (234)
EQV 0001 1101 01100101 (34299)
111100100111 0000 (—3472) (TRUE)
56 IMP 720 0000 0000-0011 1000 (56)
IMP 0000 0010 1101 0000 (720)
1111 1111 1101 0111 (—41) (TRUE)

As you can see, there does no: appear to be a relationship between the decimal terms
and the decimal result of the expression. However, using the binary representations of
the integers, there is a definite Boolean relationship. This can be utilized to make an
integer value contain sixieen binary (ON/OFF) switches. When using birary switches
the logical expressions can be utilized to set or mask the number to expose the bit
switch desired.

3.5.4 String Expressions

Character ‘strings can be joined together, broken down into shorter strings, and sorted
into order.

3.5.4.1 Concatenating (Connecting Strings)

A string can be concatenated (connected end to end) with another string by the “ +"
operator. The resulting string cannot be more than 255 characters long.

35

N82-BASIC Reference Manual

EXAMPLE:

Statement Variable Content

AS="NEC" AS NEC
B$=CHRS$(34)+"PORTABLE" B$ "PORTABLE
C$='"COMPUTER"+CHRS$(34) C$ COMPUTER"

D$=A$+BS+C$ bE 3 NEC'"PORTABLECOMPUTER"

3.5.4.2 Comparing Strings

When sorting strings, relational operators are used for the comparision of letters and
numbers. Strings are compared one character at a time, starting from the beginning
until there are no more related conditions.

Two strings are equal if they have all the same characters in the respective positions,
and both strings have the same number of characters. Otherwise, they are not equal.

EXAMPLES:
Relational Testing Resuit
"AAM"<"ABY TRUE

"BASIC"="BASIC" TRUE

Y"PENX"<"PEN" FALSE
"em''=MCMY FALSE
Ueoem''>UCM TRUE

""DESK'"<'""DESKS" TRUE

3.6 MATHEMATICAL FUNCTIONS

Mathematical functions are designated by enclosing the numeric value or numeric
variable in parentheses and placing the value or variable after the function name.
Most functions do calculations in single precision format. For integer functions all real
numbers are converted into integers before function operation is performed.

36

Expressions and Operations

EXAMPLES:
A=SIN(3.14)+C0S(3.14)

PRINT2,2%*2,SQR(2)
% See Chapter 4 for a complete listing of functions available with N8§2-BASIC.

Mathematical formulas are a combination of numbers and variables related by
arithmetic operators.
EXAMPLES:

"NB2'"+"BASIC"

3.14159%2

10+3/5

A+8/C-D

TAN(DO)+COS (DO)

10\3/2

13M0D2

3.7 HIERARCHY OF OPERATIONS

N82-BASIC operations are performed in the following order:

Precedence

1 Expressions enclosed by parentheses
2 Functions

3 Exponential arithmetic (*)

4 Negative sign (-)

5 Multiplication and division (*, /)

6 Integer division (\)

7 Modulus arithmetic (MO D)

8 Addition and subtraction (+. =)

9 Relational operators =, <, >, <>,<=,=> etq)
10 Logical operaior NOT

11 Logical operator AND

12 Logical operator OR

13 Logical operator XOR

14 Logical operator IMP

15 Logical operator EQV

37

CHAPTER 4
N82-BASIC INSTRUCTIONS

E
41 EDIT.....coiin, 58
41 END.....ccoooiiiiiii, 59
42 EOF......coomiiiiininn, 60
43 EQV ..., 60
ERL .o, 61
B ERR.....ccooviiiniiin, 61
BEEP ..o 44 ERROR.........ccovvveinnne, 62
BLOAD.........ccovrrarann 44 EXEC ..., 63
BLOAD? ..o 45 EXP..i 64
BSAVE ... 46 F
FILES ..o 64
Cc FIX oo, 65
CDBL....ccccoviirriecea 46 FOR- TO - STEP ~
CHRS......ocoeiis 47 NEXT....ooiiiiiin, 66
CINT. ..o 48 FRE ..., 69
CLEAR ..ot 48
CLOAD ..o 49 G
CLOAD?.......ooevieee 50 GOSUB~RETURN......... 69
CLOSE.....cooivvivirrnns 50 GOTO ...covviiviieinn, 71
CLS...iiiceiecrcie 51
COM ON/CFF/STOP........ 52 1
CONT....cvvvrirevrciene 52 IF - THEN - ELSE/IF -
COS ..o 53 GOTO - ELSE.................. 71
53 74
54 75
75
76
... 55 77
DATEScoocovvviiann, 56 78
DEF/INT/SNG/DBL/STR... 56 INSTR.........cccevvverirnennnn 79
DIM ..o, 57 INT .o, 80
K
KEY .., 80

LET
LINE INPUT ..o
LISTILLIST ...

ON - GOTO/

ON - GOSUB..........cc...
ON COM GOSUB..........

ON ERROR GOTO ~

40

PEEK ... 101
POKEcoovviiiiiiiiinins 101
POS ..o, 102
POWER.....cccocoveiiiiinnns 102
PRESETcccoiiiiinnin, 103
PRINT/LPRINT 104
PRINT USING/

LPRINT USING 105
PSET ..o 108
R

READccoviviiii 109
REM ..., 109
RENUM. ..o 110
RESTORE........ccccovveniann. 111
RESUME........c..oovein. 112
RETURNccooviviiin, 113
RIGHTS ..o, 114
RND ..., 114
RUN ..., 115
S

SAVE. ..o 117
SCREENccoceiii 118
SGN ..o, 119
SIN. o 119
SOUND......ccovrviieriine, 120
SPACES ... 121
SQR ..., 122
STOP...ooiriricciii 122
STRE ..o 123
STRINGS........ccccoviiiinnn 123
T

TAB. ..o, 124
TAN. .o 125
TIMES .o 125
\)

VAL oo, 126
X

XOR ..o, 127

ABS AND

ABS
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

AND
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

This function returns the absolute value of a number.

ABS (< numeric expression>)

PRINT ABS(-8+7.9)
An ABS function is used to determine the absolute value of a

< numeric expression>, e.g. without a “+” or “—" sign.

10 FOR X=-3 TO 3

20 PRINT "THE ABSOLUTE VALUE OF ";X;" IS
":ABS(X)

30 NEXT X

40 END

This logical operator is used to test multiple relational expressions.

< operand 1> AND <operand 2>

IF A=5 AND B=6 THEN 30

And is a logical cperator that performs tests on multiple relational

expressions, bit manipulation, or Boolean operations. It relurns

either a non-zero (true) or zero (false) value.

For the conditional operation to be true, both <operands> must

be true. If one or both is false, then the conditional operation is

false. The table below indicates the evaluation process:

-1 AND -1-—1 (TRUE AND TRUE —TRUE)

-1 AND 0— 0 (TRUE AND FALSE —FALSE)
0 AND -1— 0 (FALSE AND TRUE—FALSE)
0 AND 0— 0 (FALSE AND FALSE—FALSE)

For more details on logical operations and relational expressions
see Chapter 3.

41

N82-BASIC Reference Manual

NOTE:

SEE ALSO:

EXAMPLE:

SAMPLE
PROGRAM:

ASC
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

42

Logical operators work by converting their <operands> to
sixteen-bit binary integers. Therefore, the <operands> must be
within the range of —32768 to +32767. If operands are not within
this range, an “?0V Error"(Overflow) message will appear on the
screen.

NOT, OR, XOR, EQV, IMP, and Chapter 3.

integer Binary bits
15 0000 0000 0000 1111
14 0000 0000 0000 1110

After you input the statement PRINT 15 AND 14, the integer 14
appears on the screen, whose binary representation is 0000 0000
0000 1110. By looking at the above table in the DESCRIPTION
section, notice that the computation is correct.

10 A=5:B=6:C=7

20 IF A=5 AND B=6 THEN 40

30 PRINT "A IS NOT 5, OR B IS NOT 6"

40 IF A=5 AND C>6 THEN 70

50 PRINT "A IS NOT 5, OR C IS NOT GREATE
R THAN 6"

60 END

70 PRINT "A IS 5, B IS 6, AND C 1S GREAT
ER THAN 6"

80 END

This function provides the ASCIi value of a character.

ASC (< string>)

PRINT ASC("AB')

An ASC function determines the ASCII code of a character, or the
ASCIi code of the first character in the specified <string>. If the
<string> is null (an empty string) the “?FC Error” (lllegal function
call) message will be displayed on the screen.

CHR$ and Appendix A.4 Character Codes.

AND ASC ATN

SAMPLE
PROGRAM:

ATN
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

10 PRINT "THE ASCII VALUE OF D IS ";ASC(

'ID")
20 PRINT "THE ASCII VALUE OF DAY IS ALSO
";ASC("DAY")

30 PRINT "PRESS ANY KEY TO CONTINUE . .
"

40 IF INKEY$="" THEN 40

50 FOR X=32 TO 122

60 PRINT "THE ASCII VALUE OF ";CHRS$(X);"
IS ";ASC(CHRS$(X))

70 NEXT X

80 END

This function provides the inverse tangent of an angle.

ATN (< numeric expression>).

PRINT ATN(.05)

An ATN function, used in trigonometric application, computes the
inverse tangent (arc tangent) of an angle. The <numeric
expression> is the angle expressed in radians, not in degrees.

The value obtained is within a range from —«/2 to /2 (-90 to
+90 degrees).

To convert values from degrees to radians muitiply the degrees by
.0174533. To convert values from radians to degrees multiply the
radians by 57.29578.

TAN, COS, and SIN.

10 FOR I=1 TO 5

20 PRINT "ENTER THE TANGENT OF AN ANGLE’
30 INPUT R

40 PRINT "THE ANGLE IS ";ATN(R);"RADIANS
, WHICH IS ";ATN(R)*57.2958;" DEGREES"
50 NEXT

60 END

43

N82-BASIC Reference Manual

BEEP

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

BLOAD

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

44

This instruction is used to generate a "BEEP” sound from the
PC-8300.

BEEP

BEEP
The duration of the beep is approximately 0.12 second.

The BEEP has no parameter.
PRINT CHR$(7) has the same function as the BEEP instruction.

SOUND.

10 FOR I=0 TO 6

20 READ W:BEEP

30 FOR J=0 TO W:NEXT J

40 NEXT I

50 DATA 10,100,10,10,100,300,100,100
60 END

This instruction is used to load a machine language file into the
memory.

BLOAD “{ <external device name>:} <file name>"

BLOAD ""MACHLG"
BLOAD "CAS:HEXCAL"

The BLOAD instruction loads a machine language program file
specified by <file name> into the memory. The PC-8300 loads a
machine language flle from RAM if <external device name> is
omitted.

Loading is not possible if a file in RAM is stored via the BSAVE
instruction without specifying the file type. However, file type may
be omitted when the actual loading process is executed.

If an execute start address is designated when a “.CO” file is
created, this ".CO” file is executed as a subroutine immediately
after it is loaded. Therefore, an additional EXEC instruction is not
required after a “.CO" file is loaded.

BEEP BLOAD BLOAD?

NOTE:

SEE ALSO:

BLOAD?

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

The PC-8300 returns to BASIC from the subroutine by using a
RET machine language instruction. It loads from a data recorded if
“CAS:” is designated for <external device name>. The PC-8300
loads the first file it locates if <file name> is omitted.

interrupts the execution of a BLOAD “CAS:”

instruction.

Be certain to clear a memory region by using a CLEAR statement
before a BLOAD instruction is executed. Otherwise, an “?OM
Error” (Out of Memory) message is displayed and the PC-8300
reverts to the Direct Mode.

BSAVE, CLEAR, BLOAD?, EXEC, Chapter 5 Files, and Chapter 6
Machine Language Programming.

This instruction is used to compare/verify a machine language
program currently in the memory with another program saved on
cassette tape.

BLOAD? “{ <external device name>:} <file name>"

BLOAD?'"CAS:MACHLG"

A machine language program in the memory and another
machine language program on cassette tape can be compared
and verified. This process is used to determine if a program file
has been saved properly.

Execute a BLOAD?" < CAS:file name>" instruction only when a
data recorder is connected to the PC-8300. If the contents of both
programs are identical, the PC-8300 displays an “Ok” message.
Otherwise, if any error has occured during the loading process,
the PC-8300 will display the message “BAD" and execution is
terminated.

The BLOAD? instruction should be used immediately after the
BSAVE instruction has been executed.

interrupts the execution of a BLOAD?“CAS:"

instruction.

45

N82-BASIC Reference Manual

BSAVE

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

SEE ALSO:

CDBL

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

46

This instruction is used to save a machine language program from
the memory into a designated file.

BSAVE “{ <external device name>:} <file name>", <star
address>, <length> {,<execute start location> }

BSAVE''MACHLG",61000,256
BSAVE'"CAS:MACHLG",61000,256

The BSAVE instruction saves a machine language program or the
contents of memory to a file designated by <file name>. The
number of bytes specified by <length> is saved as the machine
language program beginning at <start address>. BSAVE and
BLOAD may be used for such a program only if it can be
executed from <start address> (execution entry point).

The PC-8300 saves a machine language file to RAM if <external
device name> is omitted. To specify a data recorder for the
device name, “CAS:” is used.

If an <execute start location> option is designated, the contents
can be stored as a “.CO"” file. It is executed as a machine
language subroutine when it is loaded by using the BLOAD
insturction.

The <file name> cannot be omitted. In the sample statement, the
contents are saved from memory location 61000 to 61255.

interrupts the execution of a BSAVE “CAS:”

instruction.

BLOAD, Chapter 5 Files, and Chapter 6 Machine Language
Programming.

This function converts integers or single precision real numbers to
double precision real numbers.

CDBL (< numeric expression>)

PRINT CDBL(454.67)

BSAVE CDBL CHRS

DESCRIPTION:

NOTE:
SEE ALSO:

SAMPLE
PROGRAM:

CHR$

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

The CDBL function converts a < numeric expression > to a
Double Precision real number without changing the effective
number of digits.

Refer to Type Conversion in Chapter 3.

CINT and CSNG.

10 DEFDBL D

20 A%=875

30 B1=45.3442

40 D1=CDBL(A%)

50 D2=CDBL(B1)

60 PRINT A%;TAB(20);D1
70 PRINT B1;TAB(20);D2
80 END

This function allows the PC-8300 to change a single value ASCII
code to its matching character.

CHR$ (< numeric expression>)

A$=CHR$(65)

This function returns a character specified by < numeric
expression>. The ASCII character code represented by < numeric
expression> can correspond to a letter, number, or any special
character. The value of the <numeric expression> must be
between 0 and 255, or an “?FC Error” (lllegal Function Call)
message will be displayed.

Real numbers may be included in the <numeric expression> but
the value is rounded off at the decimal point, to change them to
integers.

ASC, and Appendix A.4 Character Codes.

10 FOR I=0 TO 28

20 READ C:PRINT C;" = ";CHRS$(C):NEXT
30 DATA 36,32,130,68,79,94,100,125

40 DATA 95,63,129,64,85,80,102,126

50 DATA 33,122,111,125,99,81,38,55,96
60 DATA 117,37,63,77

70 END

47

N82-BASIC Reference Manual

CINT

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

CLEAR

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

48

This function converts single or double precision real numbers to
integers.

CINT (< numeric expression>)

CINT(4578)

The CINT function rounds off (truncates) the value of a < numeric
expression> at the decimal point, and returns an integer.

An “?0V Error” (overflow) message is displayed if the < numeric
expression> is not between —32768 and +32767.

CDBL, CSNG, FIX, and INT.

This instruction is used to reset all variables to null or zero, to
establish the size of a string region, and to set the memory
boundary.

CLEAR { <string area size> } (, <maximum memory area used in
BASIC> }

CLEAR 300,60000

This instruction initializes all numeric variables to zero and all string
variables to null strings. If parameters are omitted, the previous
value is unchanged.

If large character string arrays are used, or a large number of
character string operations are performed, designate only the first
parameter.

The second parameter sets the maximum memory area used for
BASIC and maintains the memory capacity used for machine
language programs.

In the sample statement given above, the maximum memory area
specified is 59999, thus a machine language program can be
placed within the area ranging from 60000 to 62335. The locations
beyond 62337 cannot be designated because they are reserved
for internal functions of the PC-8300.

CINT CLEAR CLOAD

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

CLOAD

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

When both parameters are omitied, only the initialization of the
variables is executed, but the establishment of memory location
remains unchanged. If the first parameter is specified, the string
region is altered. The establishment of a region in the memory is
not altered until a new CLEAR instruction is executed. Therefore, if
a large string region is not secured in the program, an “?CS
Error" (Out of String space) error message may occur during
execution. When a CLEAR instruction is executed, all data in the
PASTE buffer will be erased.

BLOAD, EXEC and DIM.

10 AS="ATW":B=486:C=7111

20 PRINT "AS = ";AS;" B = ";B;" C =
30 PRINT "CLEAR 1" :BEEP

40 CLEAR

50 PRINT "A$ = ";AS;" B = ";B;" Cc =
u;c

60 END

This ‘nstruction is used tc load a recorded program from cassette
tape into the memory.

CLOAD “<file name>"

CLOAD "DEMO"

If a <file name> is specified, the PC-8300 will retrieve that

" program file from the cassette tape and load it into memory.

However, when a <file name> is not specified, the PC-8300
loads the first program encountered from the cassetie tape. A
maximum of six characters can be used for a <file name>.

When a specific file is being sought, the system outputs a “Skip:
filename" message during the searching process. The PC-8300 will
continue to scan the cassette tape until it finds the specific file, at
which time it outputs a “Found: filename" message. An “Ok”
message is displayed when the loading process is compieted.

If the remote lead of the cassette cable is properly connected to

the data recorder, the PC-8300 can automatically turn the recorder
ON and OFF during the LOAD process.

49

N82-BASIC Reference Manual

NOTE:

SEE ALSO:

CLOAD?

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

CLOSE

FUNCTION:

FORMAT:

50

IF <file name> exceeds 6 characters (not including the file type
extension), or if a file of the specified <file name> does not exist
on the tape, the CLOAD instruction will search for the file name
until the end of the tape is reached.

Even after an “Ok™ message has appeared, it is possible that this
loaded program may not operate properly, usually due to incorrect
settings of the data recorder.

The CLOAD process can be interrupted by pressing
[SHIFT] STOP]

CSAVE, BLOAD, BLOAD?. BSAVE, NEW, LOAD, CLOAD?, and
SAVE.

This instruction is used to compare/verify the program currently in
memory with another program saved on cassette tape.

CLOAD? “<file name>"

CLOAD?"DEMO"

The CLOAD? command is used to verify whether a previously
CSAVED program (saved onto a cassette tape) matches the
program currently residing in the memory. The <file name>
refers to the program recorded on tape. If the contents of both
programs are the same the system displays “Ok”, but if the
programs are not identical, the system displays “Bad” and
execution is terminated.

This verification is useful to check that the program in the memory
has been recorded correctly to tape. The CLOAD? instruction is
normally used immediately after the CSAVE instruction.

CSAVE, CLOAD, BLOAD, BLOAD?, BSAVE, NEW, LOAD, and
SAVE.

This instruction is used to close files.

CLOSE {{#) <file number> }, { { #}.<file number>}...

CLOAD CLOAD? CLOSE CLS

SAMPLE

STATEMENTS:

DESCRIPTION:

SEE ALSO:

CLS
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SAMPLE
PROGRAM:

CLOSE
CLOSE #1,#2

This instruction is used to terminate input/output between a BASIC
program and the data file(s). It closes the file corresponding to
<file number>. If more than one <file number> is specified, as
in the format explained above, the files are closed simultaneously.
All currently opened files are closed if <file number> is omitted.

Before performing an input/output operation on a closed file, it
must first be opened.

The CLOSE instruction writes out all data remaining in the file
buffer. These files must be closed properly in order to correctly
terminate file output.

OPEN, END, and NEW.

This instruction erases the display from the screen.

CLs

CcLS

The CLS instruction clears all alphanumeric characters and
graphics characters from the screen. If the currently assigned
function key is on display, it will not be cleared by this instruction.

This instruction has no parameter.

10 FOR I = O TO 40

20 X=RND(1)*35:Y=RND(1)*7

30 XP=RND(1)*240:YP=RND(1)*64
40 PSET(XP,YP)

50 LOCATE X,Y:PRINT "GARBAGE";
60 NEXT

70 LOCATE 0,0:PRINT " PRESS RETURN TO
CLEAR THE SCREEN "

80 IF INKEY$<>CHRS$(13) THEN 80
90 CLS

100 END

51

N82-BASIC Reference Manual

COM ON/OFF/STOP

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

CONT

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

52

This instruction establishes, prohibits, or gives information about
the interruption by a data transmission circuit.

ON
COM OFF
STOP

COM ON

The COM instruction informs BASIC that data may be input from
an external device through the communication port (the RS-232C
circuit).

The COM ON instruction establishes the possibility of a BASIC
program being interrupted by data, from a data transmission
circuit. Interruption by such communication from a data
transmission circuit may then occur after this instruction is
executed. The BASIC programming flow will then be diverted as a
process routine designated by an ON COM GOSUB instruction.

The COM OFF prohibits interruption of a BASIC program by
communications input.

The COM STOP signals BASIC to warn about the occurrence of
data, from a data transmission circuit. No diversion to any process
routine will occur after this command is executed though the signal
of the occurrence of the transmission is retained. After a
subsequent COM ON instruction, diversion occurs to the ON COM
GOSUB process routine.

ON COM GOSUB.

The CONT instruction restarts the execution of a program that was
interrupted, either by the STOP instruction, or by pressing
STOP |.

CONT

CONT

COM ON/OFF/STOP CONT COS CSAVE

DESCRIPTION:

cos
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

CSAVE

FUNCTION:

FORMAT:

This instruction is normally used in conjunction with STOP

(or [CTRLT C]) to debug a program.

The CONT instruction is used to re-start the program after variabje
values, statements, etc., have been investigated in the Direct
Mode. A complete program can also be listed on the screen when
execution is interrupted.

By input of the CONT instruction or by pressing
([SHFTT¥2]), the program will resume execution from where the
stop occurred. If the program has besen altered while execution
was stopped, then execution cannot be continued using this
instruction and the error message “?CN Error” will be displayed.

This function returns the cosine of an angle.

COS (< numeric expression>)

PRINT C0S(3.14159)

The COS function is used in trigonometric applications. It
computes the cosine of a given angle. The <numeric
expression> for the angle size is expressed in radians.

To convert an angle from degrees to radians multiply the degrees
by .0174533, or divide by 57.3, since one radian — 57.3 degrees,

SIN, TAN, and ATN.

10 INPUT "ENTER AN ANGLE EXPRESSED IN DE

GREES" ;D

20 PRINT "THE ANGLE EXPRESSED IN RADIANS
Is ";

23 PRINT D*.0174533;" AND ITS COSINE IS
"COS(D*.0174533)

30 END

This instruction is used to save a copy of the program which is in
the memory to a cassette tape, using a data recorder.

CSAVE " <file name>"

53

N82-BASIC Reference Manual

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

CSRLIN

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

54

CSAVE "DEMO"

This instruction saves a program currently in the memory onto
cassette tape. The file name is specified using up to 6 characters.
The PC-8300 will return to the Direct Mode after the CSAVE
instruction has been executed.

A program file cannot be SAVEd to RAM once it has been shifted
to the BASIC area by using a LCAD instruction. This is due to the
fact that any modifications to the MENU-displayed program that is
LOADed into BASIC automatically updates the program shown in
the MENU. The LIST instruction should be used for final inspection
before a CSAVE (to cassette tape) instruction is executed.

If interruption is necessary during the execution of a CSAVE

instruction, press [SHIFT [STOP |.
CLOAD, SAVE, LOAD, BSAVE, and BLOAD.

The CSRLIN functicn determines the line number of the current
cursor position, and returns this line number.

CSRLIN

PRINT CSRLIN

The CSRLIN (cursor line) function returns the line number of the
current cursor positon (vertical position).

The top line of the screen is always “0". Therefore, the value that
is returned will be within the range of 0 to the number of lines of
the screen minus 1. The number of the lines of the screen is either
7 or 8, depending on the mode. If the cursor is on the last line of
the screen the CSRLIN function will return 6 or 7 as the result,
depending on the mode.

POS.

CSAVE CSRLIN DATA

SAMPLE
PROGRAM:

DATA

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

10 CLS

20 PRINT "LINE 1 IS USED AS THE CURSOR L
INE:";CSRLIN

30 LOCATE 1, 1:PRINT "LINE 2 IS USED AS T
HE CURSOR LINE:";CSRLIN

40 LOCATE 2,2:PRINT "LINE 3 IS USED AS T
HE CURSOR LINE:";CSRLIN

50 LOCATE 3,3:PRINT "LINE 4 IS USED AS T
HE CURSOR LINE:";CSRLIN

60 LOCATE 4, 4:PRINT "LINE 5 IS USED AS T
HE CURSOR LINE:";CSRLIN

70 LOCATE 5,5:PRINT "LINE 6 IS USED AS T
HE CURSOR LINE:";CSRLIN

80 LOCATE 6,6:PRINT "LINE 7 IS USED AS T
HE CURSOR LINE:";CSRLIN

90 LOCATE 7,7:PRINT "LINE 8 IS USED AS T
HE CURSOR LINE:";CSRLIN

100 LOCATE 8,8:PRINT "LINE 9 IS USED AS
THE CURSOR LINE:";CSRLIN

110 END

This instruction holds the constants which are loaded into the
variables by a READ instruction.

DATA < constant> {, <constant> }...

DATA 1,CBA,1465

A DATA instruction is used to define information to the READ
instruction, and it can be inserted anywhere in the program. A
program can have as many DATA instructions as needed with a
maximum of 255 characters in each data statement.

READ instructions input constants from DATA instructions, starting
from the DATA instruction with the smallest line number. However,
READing will start again at the first data item after execution of the
RESTORE instruction.

Arithmetic expressions used for reading in numeric constants are
not permitted in DATA instruction. Constants are separated by
commas on the data line. Their types should match the
corresponding variable types in the READ instruction. Numeric
constant type is converted into numeric variable type if the
numeric types do not match. String constants are not type
converted, so they must be read into a string variable.

When a string data element includes significant spaces (leading or
trailing), or embedded commas, it must be enclosed by double
quotation marks.

55

N82-BASIC Reference Manual

SEE ALSO: READ and RESTORE.

SAMPLE

PROGRAM: 10 CLEAR 256:DIM AS$(5),A(5):CLS
20 FOR 1=0 TO 5
30 READ AS(I),A(I)
40 NEXT I
50 FOR I = O TO 5
60 LOCATE A(IL),I:PRINT AS(I)
70 BEEP:NEXT 1
80 LOCATE 0,0
90 DATA THIS,5,18,11,How,16,TO,21,6USE,25
,DATA, 30
100 END

DATES$

FUNCTION: This reserved variable provides the data on the date for the
internal real-tme clock and calendar of the PC-8300.

FORMAT: DATE$ =" < year>/<month>/<day>"

SAMPLE

STATEMENTS: DATE$="83/03/18"
PRINT DATES

DESCRIPTION: Using a double-digit format YY/MM/DD, the DATES is used to set
year, month, and day. The values for <year>, <month>, and
<day> are designated for the current date, or any desired date.
Once the date has been set correctly, reset of the date is not
necessary, unless a cold start has been performed.

NOTE: The <year> value must be re-designated when the year
advances because otherwise the timer repeats the same year.

SEE ALSO: TIMES.

DEF/INT/SNG/DBL/STR

FUNCTION: This instruction defines the format of a variable.

FORMAT: DEF INT < character range>

56

SNG
DBL
STR

DATA DATES DEF/INT/SNG/DBL/STR DIM

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

DEFINT A,I-K

By using the DEFINT instruction, a variable name that begins with
a character designated by a <character range> can be
designated as integer type.

In single precision real number format a DEFSNG instructon is
used, in double precision real number format a DEFDBL
instruction is used, while in string format a DEFSTR instruction is
used.

Only one character may be used to specify each variable name,
with its range designated by joining cnaracters with a hyphen if
contiguous characters are to be specified. (i.e., DEFINT X, Y, Z
can be entered as DEFINT X-2).

Variable names followed by type declaration characters are given
priority over variable names type-designated by the DEF
instruction. All variables starting with characters which have not
been type designated by a DEF instruction are assumed to be
single precision type.

10 DEFINT A-J,L:DEFSNG N-T

20 DEFDBL U-W:DEFSTR S,X-Z

30 A=53.9314558#:T=53.9314558#
40 W=53.9314558#:SE=" END"
50 PRINT A,T,W,SE

The DIM (DiMension) instruction is used to allocate memory space
for storing an array.

DIM <variable name> (<maximum subcript value>
{,<maximum subscript value >...})

DIMA(C12,2)

This instruction allocates memory space for the array area and
sets the maximum subscript values for array variables. When an
array variable is used and the DIM instruction is not defined, the
maximum subscript value is set at the default 10. Any reference to
an array beyond the allocated size will display a "?BS Error” (Bad
Subscript, out of range) error message.

If the same array is defined more than once, a "?DD Error”
(Duplicate Definition) error message will be displayed. By
executing the CLEAR instruction this problem can be eliminated.

57

N82-BASIC Reference Manual

SEE ALSO:

SAMPLE
PROGRAM:

EDIT

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

58

Chapter 3.2 Arrays.

10 PRINT "RND(1) 20 TIMES AND SORT THESE
NUMBERS"

20 DIM R(19)

30 FOR I=0 TO 19:R(I)=RND(1):NEXT I
40 FOR I=0 TO 18:L=R(1):N=I

50 FOR J=I+1 TO 19

60 IF R(J)<L THEN L=R(J):N=J

70 NEXT J:T=R(I):R(I)=L:R(N)=T:

80 NEXT I

g0 FOR 1I=0 TO 19

100 PRINT USING nH O HBHHBH" S R(I)
110 NEXT I

120 END

This instruction changes the PC-8300 from the BASIC mode into
the TEXT mode.

EDIT {<line on which to start ediing>} { — <line on which to
stop editing>}

EDIT 20-80

The instruction changes the PC-8300 into the TEXT mode and
formats program edting. if a parameter, such as a line number or
range, is not designated for editing, the entire program text is
open for editing. Other combinations are also permitted, as
explained below:

Parameter Specified Line(s) Available

For Editing

No parameter
specified

First parameter
only (ine no)

First parameter
and hyphen (start
line no. & hyphen)

Hyphen and
second parameter
(hyphen and end
line no.)

All

Only that line

That line and all
following lines

For the first line to
the line specified
by that parameter

DIM EDIT END EOF

SEE ALSO:

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

First parameter, The range consisting
hyphen, and second of all the lines bet-
parameter ween and including
(first line no. — end the two specified
line no.)

Section 2.7.3.

The END command is used on the last line of a program to
terminate program execution.

END

END

This instruction terminates program execution, closes all files, and
returns the PC-8300 to the Direct Mode.

The END instruction is inserted into the program at the location(s)
at which it should terminate program execution. The final END
instruction may be omitted from a program, but if so, the files are
not closed.

STOP and CLOSE.

10 PRINT "PRESS ANY KEY"

20 IF INKEY$ = "" THEN 20

30 CLS:LOCATE 1,3

40 FOR I=0 TO 10:READ S,L,PS$

50 PRINT P$;" ";:SOUND S,L:NEXT

60 END

70 PRINT "THIS SECTION CANNOT BE EXECUTE

80 DATA 11172,16,THIS,11172,32,1s,11172
,16,THE, 11172

90 DATA 64,END,0,32,.,9394,32,MY,9952,32
,ONLY, 12538

100 DATA 32,FRIEND,11172,48,.,9394,16,.,
11172, 64, .

Kl

59

N82-BASIC Reference Manual

EOF
FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

. DESCRIPTION:

SAMPLE
PROGRAM:

EQV
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

60

This function determnes if the end of a sequential file has been
reached.

EOF(<file number>)

IF EOF(3) THEN CLOSE >1 ELSE GOTO 100

An EOF (End Of File) function determines if the end o’ a
sequential file, (designated by the <file number>), has been
reached.

The function returns a non-zero (true) value if the end has been
reached, but it returns a zero (false) value if the end has not been
reached yet.

20 OPEN "TSTEOF" FOR OUTPUT AS #1

30 INPUT "HOW MANY TIMES DO YOU WANT TO

WRITE IN DATA?":N

40 FOR I=1 TO N

50 PRINT #1,1I;

60 NEXT

70 CLOSE

80 OPEN "TSTEOF" FOR INPUT AS #1

90 IF EOF(1) THEN PRINT "END OF FILE HAS
BEEN REACHED" : END

100 INPUT #1,N

110 GOTO 90

This logical operator tests multiple relations.

< operand 1 > EQV < operand 2 >

PRINT 5 EQV 6

The EQV (Equivalence) logical operator performs tests on multiple
relations, Boolean operations, and bit manipulation. It returns either
a non-zero (true) value, or a zero (false) value.

For the operation to be true, both <operand 1 > and < operand
2 > must be true(— 1), or both of them must be false. But if one
of them is true and the other is false then a zero (false) value is
returned.

The following table indicates the evaluation process:

-1 EQV -1 - —1 (TRUE EQV TRUE - TRUE)

-1 EQV 0 — O (TRUE EQV FALSE — FALSE)
0 EQv -1 — O (FALSE EQV TRUE — FALSE)
0 EQV 0 — —1 (FALSE EQV FALSE — TRUE)

EOF EQV ERL ERR

NOTE:

SEE ALSO:

EXAMPLE:

ERL

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

EQV performs exactly the opposite to XOR. Logical operators
convert their < operands > to sixteen bit binary integers.
Therefore, each < operand > must be within the range of
—32768 to +32767. If they are not within this range, an “?0V
Error” (Overflow) error message will be displayed.

The AND, IMP, NOT, OR, XOR commands and Chapter 3.

Integer Binary bits
234 0000 0000 1110 1010
3429 0000 1101 0110 0101

After you input the statement PRINT 234 EQV 3429 the integer
—3472 is returned, whose binary value is 1111 0010 0111 0000.
By looking at the table under DESCRIPTION notice that the
computation was done correctly.

‘The ERL reserved variable provides the line number where an

error occurs.

ERL

A=ERL

The ERL is a reserved variable used in error processing routines.
It is used for displaying the line location of an error. it has the
value of 65535 if an error occurs in the Direct Mode.

The content of ERL changes each time an error occurs during
program execution. The value of ERL can be accessed, but
cannot be assigned. The PC-8300 assigns the value to ERL when
an error occurs.

The ERL reserved variable has no parameters.

ON ERROR GOTO and ERROR.

The ERR reserved variable provides the error code when an error
occurs.

ERR

B=ERR

61

N82-BASIC Reference Manual

DESCRIPTION:

NOTE:

SEE ALSO:

ERROR

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

62

When an error occurs in the Direct Mode or during program
execution, a message is displayed to indicate the cause of the
error. Each error message is associated with a different error
code.

The ERR is a reserved variable which contains the error code of
the error detected. The content of ERR can be accessed but the
values cannot be designated. The PC-8300 assigns a value to
ERR when an error occurs.

The ERR has no parameter.

ON ERROR GOTO and ERROR.

The ERROR instruction is used to simulate the occurrence of an
existing error.

ERROR < integer >

ERROR 200

The value designated for < integer > must be between 0 and
255. When a specified value has been defined as a BASIC error
code, the ERROR instruction simulates the ocurrence of that error
and prints the corresponding message.

The ERROR instruction may be used as a user-defined or
undefined error code. Under certain conditions, a program will
branch to an error routine specified with the ON ERROR GOTO
instruction.

ON ERROR GOTO, the ERL/ERR, and Appendix A.2 Error Codes.

ERR ERROR EXEC

SAMPLE
PROGRAM:

EXEC
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

20 ON ERROR GOTO 500

30 A=1/0

40 GOTO O

50 NEXT

60 PRINT SQR(-2)

70 ERROR 255

80 END

500 PRINT "ERROR" ERR " IN LINE NUMBER "
ERL

510 IF ERR=11 THEN PRINT "A DIVISION BY
ZERO";

520 IF ERR=8 THEN PRINT "AN UNDEFINED LI
NE NUMBER";

530 IF ERR=1 THEN PRINT "NEXT WITHOUT FO
R";

540 IF ERR=5 THEN PRINT "AN ILLEGAL FUNC
TION CALL";

550 IF ERR=255 THEN PRINT "AN UNDEFINED"

560 PRINT" ERROR HAS OCCURRED.":PRINT
570 RESUME NEXT

This instruction executes a machine language subroutine.

EXEC <initial location>

EXEC 61000

The EXEC instruction tranfers control to a machine language
subroutine in the memory. The <initial location> is designated by
integers ranging from 33468 to 65535. A negative number, if used
for <initial location> should be subtracted from 65536 (thus a
negative 1 is 65536 —1, or 65535).

If values are POKEd into the following locations, they can be
transferred to the A, L, and H registers, respectively. After the
system returns to BASIC from the subroutine, it is possible to
obtain results by investigating the same locations using the PEEK
function.

A Register Location 63911

L. Register Location 63912

H Register Location 63913

The PC-8300 can return to BASIC from a machine language
subroutine via the RETurn instruction.

63

N82-BASIC Reference Manual

NOTE:

SEE ALSO:

EXP

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

FILES
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

Select <initial location> carefully to avoid erratic operation.

BLOAD, PEEK, and POKE.

“

This function calculates the value of “e”(base value of natural
logarithm = 2.71828) raised to the power specified in the
parameter.

< arithmetic expression>

EXP { |<numeric constant>
< numeric variable >

A=EXP (1)
This function returns the value of “e” raised to the specified power

in single precision format. An “?0V Error” (Overflow) error
message will result if the power is greater than 87.33655.

This instruction displays all the names of the files in the RAM.

FILES

FILES

This instruction displays all of the file names (including file type
extensions) stored in the RAM.

The file type “.BA” denotes a BASIC program file, “.DO" denotes
a TEXT file, and “.CO” denotes a machine language program.
When an asterisk (*) is displayed directly after the file type
extension “.BA”, this means that it is currently accessible.

Chapter 5, Files.

EXEC EXP FILES FIX

SAMPLE
PROGRAM:

FIX
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

10 REM THIS PROGRAM MAY BE DESTROYED UPO

N EXECUTION,

20 REM SO SAVE IT BEFORE RUNNING IT

30 ON ERROR GOTO 170

40 PRINT "TO USE IN ONE OF THE FOLLOWING
PROCESSES--LOAD, OPEN, BLOAD--"

50 FILES

60 INPUT "WHICH FILE NAME + FILE TYPE DO
YOU WANT TO SELECT";N$

70 K$=RIGHTS$(NS,3)

80 IF K$=".BA" THEN 120

90 IF K$=".DO" THEN 130

100 IF KS$=".CO" THEN 140

110 PRINT "THE FILE NAME THAT YOU DESIGN

ATE DOES NOT EXIST!":BEEP:GOTO 40

120 LOAD NS

130 OPEN N$ FOR INPUT AS #1:GOTO 150

140 BLOAD NS

150 INPUT #1,AS$:PRINTAS:IF NOT (EOF(1))
THEN 150

160 END

170 RESUME 110

This function returns the integer portion of a number.

FIX (< numeric expression>)

PRINT FIX(9.9)

The FIX function returns the integer portion of the <numeric
expression>. It will omit the digits after the decimal point.

This function does not round off the number.

INT and CINT.

10 PRINT " 1 FIX INT"

20 FOR I=-2 TO 2 STEP .5

30 PRINT USING "###.H## HE##4 HH#H48"
I,FIX(I),INT(I)

40 NEXT

50 END

65

N82-BASIC Reference Manual

FOR...TO...STEP ~ NEXT

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

66

This instruction repeats a series of instructions a designated
number of times.

FOR <variable name> = <initial value> TO
<final value> {STEP<increment> }

NEXT: { < variable name > {, <variable name list> } }
where:
<initial value>: <numeric expresson>
<final value>: <numeric expression>

<increment>: <numeric expression>

FOR J=0 T0 100 STEP 10

EXT J

The FOR...TO...STEP ~ NEXT instruction executes a series of
statements a given number of times. This is one type of loop.

The <variable name> is used as a counter, which at the
beginning is set to the <intial value>. Each time the sequence is
completed and the NEXT instruction is encountered, the <variable
name> increases or decreases as specified by the <increment>
in the STEP parameter.

The value of the <variable name> is compared with the <final
value>, and the loop will stop executing when the terminating
condition is met or exceeded. Once the value of the <variable
name> exceeds the <final value>, program control is passed to
the statement following the NEXT instruction.

The <variable name> in the NEXT instruction may be omitted.
NEXT always terminates the last unmatched FOR instruction. If a
< variable name list> is used and the variable list is not in proper
sequence, the nested loops will not terminate correctly.

FOR...TO...STEP ~ NEXT

if the STEP parameter is omitted the default value <increment> is
+1. A negative value may also be specified as an <increment>.

The loop is executed only once in the following cases:

e When <increment> is positive, and <initial value> is greater than
<final value>.

e When <increment> is negative, and <initial value> is less than
<final value>.

e When <initial value> is equal to <final value>, no matter what
the <increment> is.

e When there is not a matching NEXT instruction.

If <increment> is zero then the loop is executed continuously
(infinite loop), press | STOP | for interruption.

FOR-NEXT loops may be nested to any depth. In such cases different <variable
names> must be used, and the second loop must be completely located within the
first loop. An “?NF Error” (Next without For) occurs if there is an illegal form of nesting.

The loop may be exited with a GOTO instruction. The loop will remain open until
another loop is executed using the same <variable name>, or when the loop is re-
entered.

After a loop is terminated the < variable name> has the value of the <final value>
+1.

67

N82-BASIC Reference Manual

NOTE:

SAMPLE
PROGRAM:

68

A common practice to determine whether or not the nested loops
are legal is to draw lines between the matching FOR and NEXT
instructions. If the lines cross each other, then the nesting is illegal.
For example:

——10 FOR I=1T0 10
20 FOR J=10T0 20 STEP 2

86 NEXT J

0 FOR K=30 TO 10 STEP -5

N
N esenssen

200 NEXT K

cerasens (Dastanres

——300 NEXT I
The above is an example of legal nesting.

——10 FOR X=10T0 20

—50 FOR Y=1T0 20

L1 100 NEXT X

L200 NEXT Y

The above is an example of llegal nesting.

10 FOR I=1 TO 5

20 FOR J=16000 TO 1000 STEP -1000
30 SOUND J,I

40 NEXT J,1I

50 END

FRE GOSUB ~ RETURN

FRE
FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

This functicn reports the amount of unused or free memory area.
FRE (<expression>)
where:

<character string>

<expression> = | <character variable >
< numeric expression>
< numeric variable >

PRINT FRE(A)
PRINT FREC(AS)

The FRE function caiculates the amount of free string memory or
the amount of free program memory. The value returned is the
number of unused, available bytes of memory.

If the <expression> is a <character string> or a <character
variable >, the FRE function returns the amount of string space
available.

If the <expression> is a <numeric expression> ¢r <numeric
variable >, the FRE function returns the amount of memory space
available.

SAMPLE

PROGRAM: 10 PRINT "INITIAL AMOUNT = ";FRE(O)
20 PRINT "STRING AREA = ";FRE(AS)
30 CLEAR 500
40 PRINT "AMOUNT OF PROGRAM NOW = " ;FRE(
0)
50 PRINT "STRING SPACE NOW = ";FRE(AS)
60 END

GOSUB ~RETURN

FUNCTION: The GOSUB instruction transfers control to a specified line number

: (beginning of the subroutine). The RETURN branches back to the

next statement after the GOSUB instruction in the main program
when the executicn of the subroutine is completed.

FORMAT: GOSUB <line number>

SAMPLE

STATEMENT: Gosus 1000

69

N82-BASIC Reference Manual

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

70

The GOSUB instruction is used to eliminate repeating frequently
used routines. The subroutine is a portion of the main program,
and it starts with a specific line number and terminates with a
RETURN instruction. However, a subroutine can have more than
one RETURN instruction, depending on the specific subroutine.

Subroutines are called by the GOSUB instruction, in order to
perform the same sequence of instructions at different points of the
program.

Subroutines usually reside at the end of a BASIC program, and
the instruction GOSUB is used to call the subroutines. When a
RETURN instruction is reached in the subroutine, control is passed
to the main program and execution continues from the first
statement following the GOSUB instruction.

The procedure of one subroutine calling another subroutine is
called “subroutine nesting’. Such a procedure can take place as
long as the memory stack is not overflowed. (Seven stack bytes
are used for each GOSUB. The RETURN wili put the stack back
to nomal).

RETURN.

10 GOsSUB 30:GOSUB 50:GOSuUB 70

20 END

30 FOR I=0 TO 9:PRINT "FIRST ROUTINE":NE
XT I

40 BEEP:RETURN

50 FOR I=0 TO 9:PRINT "SECOND ROUTINE":N
EXT I

60 BEEP:RETURN

70 FOR I=0 TO 9:PRINT "THIRD ROUTINE":NE
XT I

80 BEEP:RETURN

GOSUB ~RETURN GOTO IF...THEN...ELSE IF...GOTO...ELSE

GOTO

FUNCTION: This instruction branches the program execution to a designated
line number.

FORMAT: GOTO

GO TO } <line number>

SAMPLE

STATEMENTS: GOTO 500
GO TO 500

DESCRIPTION: This instruction uncondtionally branches to the specified <line
number> in the program.

NOTE: This instruction may be written either as “GOTO” or “GO TO”. If
two or more blank spaces are entered between the words “GO”
and “TO”, then N82-BASIC does not interpret it as the GOTO
instruction.

SEE ALSO: IF and GOSUB.

SAMPLE

PROGRAM: 20 GOTO 60
30 PRINT " SPAGHETTI.":GOTO 70
40 PRINT " CALLED";: GOTO 30
50 PRINT " NOT MAKE";: GOTO 90
60 PRINT "THIS IS";:GOTO 40
70 PRINT:PRINT " DO";:GOTO 50
80 PRINT " PROGRAM."; :GOTO 100
90 PRINT " THIS KIND OF A";:GOTO 80
100 END

IF...THEN...ELSE

IF...GOTO...ELSE

FUNCTION: These instructions are used to evaluate a logical expression and

then perform a conditional process.

71

N82-BASIC Reference Manual

FORMAT: F < . THEN <then clause>
expression>| goto <goto clause>
{ELSE <else clause> }
where:
<expression> = <arithmetic expression >
P ~ | <logical expression>
<relational expression>
<then clause> = <statement>
~ | <multiple statement>
<line number>
< goto clause> = <line number>
<else clause> = [<statement>
< line number >
SAMPLE

STATEMENTS: IF A$="Y" THEN BEEP ELSE 120
IF A+B=C AND A>E GOTO 200 ELSE PRINT A;8

DESCRIPTION: The IF..THEN...ELSE!IF...GOTO...ELSE instructions control the
program execution based on conditions established by the
evaluation of the <expression>. If the evaluation of the
< expression> is non-zero (true) the <then clause> or <goto
clause> is processed. If the evaluation is zero (false) the <else
clause> is processed.

When the ELSE option is omitted, and the evaluation of the
< expression> is zero (false), the next line following the IF
statement is processed.

Multiple nested IF instructions are allowed. When nesting is used
the ELSE option will be matched with the most recent unmatched
IF instruction.

The <then clause> can be made up of multiple statements,
separated by a colon(:).

The complexity of a multiple statement is limited to the maximum
length line, which is 255 characters long.

For more details on the evaluation of a <logical expression>,
<relational expression> or <arithmetic expresson> see Chapter
3.

72

IF...THEN...ELSE IF...GOTO...ELSE

NOTE:

SAMPLE
PROGRAM:

Tabs are not considered in matching IF, THEN, GOTO or ELSE

clauses; they are used only as programming aids in the structure
of the code.

10 M=10000:CLS

20 PRINT " YOU HAVE $";M;"."

30 PRINT "$";M;".";"HOW MUCH DO YOU WANT
TO BET ON THIS DIE?":INPUT K

40 K=INT(K):PRINT

50 REM ** This is the nesting of the ty
pe of IF statement of 1line 70

60 REM ** when the input is not the righ
t input ...

70 IF K>M THEN PRINT "IMPOSSIBLE WITH ON
LY";M:BEEP:GOTO 30 ELSE IF K<O THEN PRIN
T "SNEAKY!":BEEP:GOTO 30 ELSE IF K>M/2 T
HEN PRINT "GENEROUS!" ELSE IF K<M/100 TH
EN PRINT"CHEAPSKATE!"

80 INPUT " NOW WHAT.DO YOU THINK WILL CO

ME UP ON THE DIE(1-6)";N

90 N=INT(N):PRINT

100 IF N<1 OR N>6 THEN PRINT"IMPOSSIBLE

WITH AN ORDINARY DIE.":BEEP:GOTO 80

110 SOUND 3000,20:R=INT(RND(1)%*6)+1

120 PRINT:PRINT "SO, ";R;"SPOT(S) CAME UP
ON THE DIE.":PRINT

130 IF N=R THEN SOUND 4000, 10:M=M+K*6:P
RINT"YOU WERE SUCCESSFUL!" ELSE PRINT "Y

OU LOST THIS TIME!":SOUND 16000,10:M=M-K
140 IF M<1 THEN PRINT "YOU'RE BANKRUPT N

OW!" ELSE IF M>1E+06 THEN PRINT "YOU ARE
A MILLIONAIRE!" ELSE 30

150 END

73

N82-BASIC Reference Manual

IMP
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

EXAMPLE:

74

This logical operator is used to test multiple relations.

<operand 1> IMP <operand 2>

PRINT 2 IMP 2
The logical operation IMP (Implication) performs tests on multiole
relations, Boolean operations, and bit manipulation. It returns either
a non-zero (false) value or a non-zero (true) value.
The operation returns zero (false) whenever <operand 1> is true
and <operand 2> is false. Otherwise it returns a DELETE zero
(frue) value.
The following table indicates the evaluation process:
-1 IMP -1—-—1 (TRUE IMP TRUE—TRUE
-1 IMP 0— O (TRUE IMP FALSE—FALSE)

0 IMP -1- —1 (FALSE IMP TRUE—TRUE)

0 IMP 0- -1 (FALSE IMP FALSE—TRUE)

For more details on logical operations see Chapter 3.

IMP performs the same way as NOT (<operand 1>) OR
(<operand 2>). A IMP B is the same as NOT (A) OR B.

Logical operators convert their operands to sixteen bits binary
integers. Therefore, <operand 1> and <operand 2> must be
within the range of 32768 to +32767. If not, an overflow errcr will
occur, and the error message “?0V Error” will be displayed.

AND, EQV, NOT, OR, XOR, and Chapter 3.

Integer Binary bits
23280 0101 1010 1111 0000
11853 001011100100 1101

After you input the statement PRINT 23280 IMP 11853, the integer
— 20657 appears, whose binary code is 1010 1111 0100 1111.
BY looking at the table in the DESCRIPTION section, notice that
the computation is correct.

IMP INKEYS$ INP

INKEY$

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

INP
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

INKEY$ function is used to check if a character has been entered
through the keyboard.

INKEY$

AS=INKEYS$

INKEY$ returns a null string if :he keyboard buffer is empty. When
the keyboard buffer contains any characters, the first character in
the buffer is returned. Any key that is not included in the Character
Codes Table will be ignored.

Appendix A.3 Character Codes.

10 SCREEN 0,0:CLS:X=20:Y=5

20 PRINT " TRY TO MOVE THE CURSOR IN DIF
FERENT DIRECTIONS"

30 PRINT " U=UP, D=DOWN, R=RIGHT, L=LEFT

40 PRINT " HIT ANY OF THE ABOVE KEYS"
50 GOTO 120

60 AS=INKEYS$:IF AS$="" THEN 60

70 LOCATE X,Y:PRINT " ";

80 IF AS$="U" AND Y>O THEN Y=Y-1
90 IF AS$="D" AND Y<7 THEN Y=Y+1
100 IF AS$="R" AND X<39 THEN X=X+1
110 IF AS$="L" AND X>0 THEN X=X-1
120 LOCATE X,Y:PRINT "";

130 GOTO 60

140 END

This function obtains a value from an input port.

INP (< port number>)

A=INP(15)

75

N82-BASIC Reference Manual

DESCRIPTION:

SEE ALSO:

INPUT

FUNCTION:
FORMAT:
SAMPLE

STATEMENT:

DESCRIPTION

76

The INP (Input from a Port) function reads a byte from the input
port specified by the <port number>, and it returns that byte as
the function value.

The <port number> must be an integer ranging from O to 255,

OouT.

The INPUT instruction allows data to be entered through the
keyboard during program execution.

INPUT {” < prompt statement>";} < variable 1> {, <variable
2>1}..

INPUT ""NAME ,NO.'"';N$,AS

The INPUT instruction is used to display a prompt message and
then to accept one or more fields of data input from the keyboard.

When the INPUT instruction is executed, the < prompt statement >
is disptayed with a question mark following it, and the PC-8300
waits for data to be entered through the keyboard. If no prompt
statement is used, the question mark alone will be displayed.

The input <variable(s)> are separated by commas, containing a
mixture of variable types (integer, string, numeric, array), and may
be as long as the line allows. Data elements entered are also
separated by commas, and each data element corresponds to a
variable in the INPUT instruction.

If the number of data elements is less than the number of
variables indicated, a double question mark (??) is displayed. This
asks for more input until there is sufficient data for the variables.

On the other hand, if data entered is more than needed, program
execution continues with the next statement following the INPUT
instruction, disregarding the extra data. The message “?Extra
ignored” is then displayed.

The type of data input should match the corresponding variable
type. The screen displays “?Redo from start” if, for example, a
character string is input to a numeric variable. Data must then be
input again, starting from the first variable.

N82-BASIC Reference Manual

SAMPLE
PROGRAM:

INPUT #

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

SEE ALSO:

78

10 CLS:INPUT "DESIGNATE A PASSWORD";PW$S
20 WL=LEN(PW$)

30 REM PROGRAM STARTS FROM HERE

40 CLS:PRINT "ENTER PASSWORD:";

50 N$=INPUTS(WL)

60 IF N$=PWS THEN PRINT "WELCOME USER!":
SOUND 3000, 20:GOTO 10

70 LOCATE 0,3:PRINT "INVALID PASSWORD!"
80 PRINT "PLEASE TRY AGAIN"

90 SOUND 5000, 8:SOUND 1000, 8

100 CLS:G0TO 40

110 END

This instruction is used to read data from an opened input file into
variable(s) contained in the instruction.

INPUT # <file number>,<variable 1> { <variable 2> }...

INPUT #1,A
INPUT #1,8B,C$

This instruction inputs data from a designated file (in RAM,
cassette tape, etc.) and functions similar to the INPUT instruction
except that a question mark (?) is not displayed.

The contents of the specified data file (file type “.DO”) are read
into the variables in the INPUT # instruction. The <file number>
is the number designated in the OPEN instruction. The file should
be opened for input.

The <variable(s)> are assigned from left to right, starting from the
beginning of the input file. The number of <variable(s)> in the
INPUT# instruction is the number of data elements used each
time the instruction is executed. Each time the INPUT # instruction
of the same file number is executed, it starts reading in data from
where it terminated previously.

Data in the input file should be the appropriate type for the
corresponding variable. The message “?EF Error*(End of File) will
be displayed when an INPUT # instruction is reached and
insufficient data is available. The EOF function is used to test for
end of file condition before an INPUT # statement is executed.

PRINT #, INPUT, LINE INPUT #, and EOF.

INPUTS$ INPUT # INSTR

INSTR

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE: -

This function searches for a character string within a string and
returns its position.

INSTR { <numeric expression>,} <character string 1>,
< character string 2>

PRINT INSTR(6,"THIS IS A TEST","TEST')

INSTR locates a substring in a string and returns its position.
< Character string 1> is the original string which is searched
through to find a match for <character string 2> substring.

The <numeric expression> is designated by an integer, that
specifics the position in < character string 1>, where the search
begins.

If the <numeric expression> is omitted the searching begins at
position 1. The INSTR function returns the position where the
match occurred. It returns zero if <character string 1> does not
contain <character string 2> (no match).

If <character string 2> contains more than one character and a
perfect match is made, the INSTR function returns only the
position of the first character in <character string 1> where the
match begins.

When a null string (empty string) is designated for < character
string 2>

1. If the <numeric expression> is omitted then “1” is returned.
2. If <numeric expression> is less than or equal to the length of
< character string 1> then the <numeric expression> is

returned.

or else O is returned if <numeric expression is larger than the
length of <character string 1>.

The <numeric expression> must be an integer from 1 to 255. If
not, an “FC Error” (lllegal Function Call) message is displayed on
the screen. When a number is read, just its integer portion is used.

The length of <character string 2> must be less than or equal to
(< =)<character string 1> or else a zero will be returned.

79

N82-BASIC Reference Manual

INT

FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

KEY
FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

80

This function rounds numbers to their integer value.

INT (< numeric expression>)

PRINT INT(9.9)
PRINT INT(-9.9)

INT rounds the <numeric expression> to its integer (whole
number) value. If the <numeric expression> is positive, INT
truncates it (drops its decimal part).

If the <numeric expression> is negative, INT returns the next
smallest whole number. For example:

INT(-3.1)=-4
INT(-3.9)=-4

The value of a negative that is returned is always less than or
equal to (< =) <numeric expression>.

FIX and CINT.

10 PRINT " 1 FIX INT"

20 FOR I=-2 TO 2 STEP .5

30 PRINT USING "#i#t#.## HHH#H 1:2:2:3: 2 A

I,FIX(I),INT(I)
40 NEXT
50 END

This function is used to assign functions to the orogrammable
function keys.

KEY <key number>," <character string>"

KEY1,"LOAD"

Up to ten programmmable functions can be defined by using the
five function keys (five accessible by pressing the five function
keys labelled to on the keyboard, with another five
being accessible by holding while pressing these five
function keys. The function keys are numbered from to[f5]
but the additional five functions 6 to 10 are accessible by the use
of as explained above.) Each function key can be
assigned with a character string or a control statement of up to 15
characters. Characters that.cannot be input from the keyboard are
entered by using the plus sign “+" and the CHR$ furction.

INT KEY KILL LEFT$

SEE ALSQ:

SAMPLE
PROGRAM:

KILL
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

LEFT$

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

See the Appendix A.3 Character Codes for use with the CHR$
function.

10 As(o)___u"

20 A$(1)="LOAD "+CHRS(34)

30 A$(2)="SAVE "+CHRS(34)

40 AS(3)="FILES "+CHRS$(13)

50 AS(4)="LIST "

60 AS(5)="RUN "+CHRS$(13)

70 FOR I=1 TO 59

80 KEY (I MOD 5)+1,A$(I MOD 6)
90 NEXT

100 END

This instruction is used to erase a designated file.

KiLL " <file name file type>"

KILL "SAMPLE.BA"

The KILL instruction deletes a specific file designated by a file
name with or without a device name. The file to be deleted must
be closed. Any opened file is indicated by an astersk (*) when the
FILES instruction is executed. Only one file may be deleted with
each KILL instruction.

The file name must always include its file type extension (*.BA”,
“DO”, or “.CO") when the KILL instruction is executed. The
PC-8300 returns 1o the Direct Mode after the execution.

LOAD, SAVE and Chapter 5, Files.

This function is used to designate a specific number of characters
from a string, starting from the left-mast position of a string.

LEFT$ (< character string>, <numeric expression >)

BS=LEFTS$ (AS,4)

81

N82-BASIC Reference Manual

DESCRIPTION:

SEE ALSO:

SAMPLE
PROGRAM:

LEN

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

82

A <character string> can be a string constant or a string
variable. The value of the < numeric expression> must be within
the range of O to 255, which specifies the number of characters to
be read, beginning from the left-most character.

The full <character string> is returned when the <numeric
expression> is greater than or equal to the total number of
characters in the < character string>. LEFT$ returns a null string
when the <numeric expression> is 0.

RIGHT$ and MID§.

10 AS="+++++t+++t++ i+ r R R R R R R R4

++++++"

20 PRINT " INPUT DATA FOR EACH LINE."

30 FOR I=1 TO 5:PRINT I;

40 INPUT "INPUT THE BAR LENGTH (0O TO 39)

";A(I)

50 IF A (I)<0 OR A(I)>39 THEN BEEP:PRINT
"ILLEGAL NUMBER"; :PRINT I:GOTO 40

60 PRINT LEFTS(AS,A(I))

70 NEXT I

80 END

This function returns the number of characters that are contained
in a string.

LEN ([<character string>)
< character variable>

PRINT LEN("123456789')

The LEN (LENgth) function returns the length of a <character
string> or <character variable>. It counts all characters including
the ones that cannot be printed (control codes 1-31).

To determine the length of a number, double quotation marks
must be placed around it.

LEFT$ LEN LET LINE INPUT

SAMPLE
PROGRAM: 10 INPUT "INPUT ANY COMBINATION OF LESS
THAN 36 CHARACTERS" ; N$
20 CLS:L=LEN(NS$):GOSUB 50
30 PRINT "+ ";N§" +"
40 GOSUB 50: END
50 FOR I=1 TO L+4
60 PRINT "+"; :NEXT
70 PRINT:RETURN
80 END
LET
FUNCTION: This instruction is used to assign values to variable names.
FORMAT: {LET} < variable name > = <value>
SAMPLE

STATEMENT: LET A=10+5

DESCRIPTION: The BASIC Reserved Ward (keyword) LET is optional, so the
statement: LET A=10+5 could also be entered as A=10+5.
The < variable name> is assigned the evaluated <value> which
may be a number, a string, an equation, or a function.

SAMPLE
PROGRAM: 10 BE=26:1IT=810
20 LET IT=BE
30 PRINT IT,BE
40 END
LINE INPUT
FUNCTION: The LINE INPUT instruction is used to allow the input of an entire
line of data.
FORMAT: LINE INPUT {” <prompt string>";} <string variable >
SAMPLE

STATEMENT: LINE INPUT "WHAT?";AS

DESCRIPTION: A <prompt string> is a sentence that displays a query for a
specific input. A maximum of 255 characters, including delimiters
(quotation marks, comma, etc.), can be entered and assigned to a
< string variable>. All input from the keyboard (after the prompt
string) and up to the carriage return, is substituted for the <string
variable>.

83

N82-BASIC Reference Manual

SEE ALSO:

SAMPLE
PROGRAM:

LIST/LLIST
FUNCTION:

FORMAT:

SAMPLE
STATEMENTS:

DESCRIPTION:

84

Any punctuation marks and symbols can be input in the <string
variable>. [CTRL [C] or [STOP | can be pressed to interrupt the
LINE INPUT instruction. This will stop program execution and
return the PC-8300 to the Direct Mode. The LINE INPUT
instruction can be continued by executing the CONT instruction.

INPUT.

10 PRINT "INPUT (ANYTHING UP TO 255 CHAR
ACTERS IN ALL,";

20 PRINT " INCLUDING A COMMA OR QUOTATIO
N MARKS)"

30 LINE INPUT A$

40 FOR I=1 TO LEN (A$)

50 PRINT MIDS(AS,I,1):;

60 FOR T=0 TO 200:NEXT

70 NEXT I

80 END

These instructions are used to list either a portion of a program or
the entire program which is currently in the memory.

LIST { <line number 1>} [— <line number 2> }
LLIST

LIST 70-120
LLIST 70-120

The LIST instruction is used to list a program on the screen; the
LLIST instruction outputs the listing to the printer. The PC-8300

returns to the Direct Mode after the LIST or LLIST instruction is

executed.

When both <line number>s are omitted, the entire program is
listed. may be pressed at any time to interrupt listing on
the sc interrupts listing to the printer.

If only <line number 1> is designated, only that specific line is
listed (if it exists). If <line number 1> and a hyphen (-) are
specified, all lines starting from <line number 1> are listed. When
a hyphen is followed by a designated <line number 2>, the
listing starts from the beginning and continues up to and including
<line number 2>. When a hyphen is used between both <line
number 1> and <line number 2>, all lines included between

these <line number > s, inclusive will be listed. The <line number
2> must be greater than or equal to <line number 1>,

The LLIST instruction is identical to the LIST instruction with the
exception that it outputs the list to a printer as “hard copy” printed
on paper.

LINE INPUT LIST/LLIST

LOAD
FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

LOCATE

FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

This instruction is used to load a program file into memory.

LOAD "{ <external device name>:} <file name>"{,R}

LOAD "CAS:SAMPLE.BA",R

This instruction loads the program specified by <file name> and
optional <external device name> into the memory. When
executed, the LOAD instruction closes all open files and deletes
variables.

RAM is selected if the <external device name> is omitted, but
<file name> must be specified. The PC-8300 loads from cassette
tape if “CAS:" is designated for <external device name>. If file
name is omitted, the first program file that it detects on the

cassette tape is loaded. interrupts the execution of
the LOAD "CAS:” command.

The intended device is the RS-232C serial interface when “COM:"
is designated for < external device name>. Data transmission
format can be indicated but <file name> cannot be used.
(Please refer to the OPEN “COM:” instruction for details on this
specific application.)

The file must be a “.BA” or “.DO" file. File type extension can be
omitted during loading. If the “R” (Run) option is specified, the
program is run or executed immediately after loading.

The program currently in the memory-is preserved until the
specified file is found and the program loading has begun. The
PC-8300 returns o the Direct Mode when the loading process has
been completed.

A NEW instruction should be executed before the actual execution
of a LOAD instruction occurs, so that all existing variables and
programs can be cleared. Otherwise you may end up with a
garbage mixture of part of your new program mixed with parts of
the program that was already in the memory.

BLOAD, CLOAD, SAVE, and Chapter 5, Files

This instruction designates the location of the screen cursor.

LOCATE <horizontal coordinate>, <vertical coordinate >

LOCATE 20,5

85

N82-BASIC Reference Manual

DESCRIPTION:

NOTE:

SAMPLE
PROGRAM:

LOG
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

86

This instruction moves the cursor to a designated location on the
display screen. The range of the <horizontal coordinate> is 0
through 39, and for the <vertical coordinate> the range is 0
through 7. The home position is at the coordinates (0.0).

Any number greater than 39 will be set as 39 for the < horizontal
coordinate >, while any number larger than 7 will be set as 7 for
the <vertical coordinate> (or 6 when the Function Keys are
displayed on the battom line of the screen).

A LOCATE instruction designates character coordinates and has
absolutely no connection with the dot matrix structure of the
screen itself.

10 SCREEN 0,0:CLS

20 LOCATE 10,7:PRINT "X=";X;

30« LOCATE 20, 7:PRINT "Y=";Y;

40 X=INT(RND(1)*39):Y=INT(RND(1)*7)

50 LOCATE X,Y:SOUND 200,5:PRINT "HOP";
60 FOR I=0 TO 300:NEXT

70 LOCATE X,Y:PRINT " b

80 GoTO 20

90 END

This function returns the natural logarithm of a number.

LOG (< numeric expression>)

PRINT L0OG(2.7182818)

A LOG function is useful in trigonometric applications, and it
returns the natural logarithm of a number based on “e” (exponent).

The <numeric expression> must be greater than zero. If it is zero
or less an “?FC Error” (lllegal Function Call) message is displayed
on the screen.

10 READ I

20 IF I=999 THEN END

30 X=LOG(I)

40 PRINT I,X

50 GOTO 10

60 DATA 34,1,06,44,8976,146,35,677,999
70 END

LOCATE LOG LPOS MAXFILES MENU

LPOS
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

MAXFILES

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

MENU
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

This function determines the current column position of the printer.

LPOS (<numeric expression>)

LPRINT "ABCDE'"; LPOS(O)

A LPOS function determines the current column position of the
printer head within the buffer. It keeps track of the number of
characters printed until a carriage return appears, which resets it
to zero.

The value of the <expression> is only used as a dummy
expression, used for the value that is returned by the LPOS
function.

POS.

This instruction establishes the maximum number of files that can
be opened.

MAXFILES = < number of file(s)>

MAXFILES=3

The maximum number of files that can be opened is set to 1 when
a Cold Start is performed. The maximum number of files that can
be opened at one time is designated by a MAXFILES instruction.
The range of <number of file(s)> is from O through 15. Once this
value has been.designated, it will be protected until it is
redesignated, or until the'next Cold Start.

OPEN, CLOSE, and Chapter 5, Files.

This instruction returns the MENU.

MENU

MENU

87

N82-BASIC Reference Manual

DESCRIPTION:

NOTE:

MERGE

FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

MID$

FUNCTION:

88

The MENU instruction clears all variables and returns the screen to
the MENU mode. Files in access mode (indicated by an asterisk
when the FILES instruction is executed), are closed when the
MENU instruction is executed. The program is maintained in the
BASIC area and execution is possible by entering the BASIC
mode.

MENU does not use any parameters.

This instruction is used to merge two programs together.

MERGE " { <external device name>:} <file name>"

MERGE "CAS:DEMO.DO"

A program file within the RAM or from an external device can be
merged with a program currently in the memory. The PC-8300
returns to the Direct Mode after the MERGE instruction has been
executed.

RAM is selected when the <external device name> is not
specified. When “CAS:” (cassette tape) is designated for external
device and the <file name> is omitted, the first program detected
is used in the merging process. When “COM:” {the RS-232C port)
is designated, the file name cannot be used but the designation of
data transmission format is possible. (Refer to the OPEN instruction
for more details.) The MERGE instruction will close all files after it
has been completed.

In all cases, the designated program must have been saved in
ASCII code (must be a “.DO” file). if it is not, an error occurs.

Use with caution, because if the two programs have identical line
numbers, you will end up with a meaningless mixture of two
programs; before running MERGE, the line numbers of the two
programs to be merged should be renumbered using the
RETURN instruction, so that they will end up in the correct position
relative to each other in the final merged program.

SAVE and RENUM.

This function returns a specified number of characters from a
desired position within a string.

MENU MERGE MID$ MOD

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SAMPLE
PROGRAM:

MOD
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

MID$(< character string>, < numeric expression 1> {, <numeric
expression 2> })

PRINT MIDS('*ABCD",2,2)

The MID$ (MIDdle) function returns a substring of a specified
length from a desired position within the < character string>.

The <numeric expression 1> specifies the position within the
<character string>, while <numeric expression 2> determines
the length of the substring.

When < numeric expression 2> is omitted, or when the number
of characters to the right of the <numeric expression 1> position
within the < character string> is less than <numeric expression
2>, all characters to the right of the <numeric expression 1>
position are returned.

If <numeric expression 1> is greater than the length of the
< character string> a null string is returned.

< Numeric expression 2> must be an integer from 0 to 255, while
< numeric expression 1> must be an integer from 1 to 255. If
not, an “?FC Error” (lllegal Function Call) message is displayed.

10 AS$="JANUARY XX, 19"

20 D$="1234567890"

30 P$=MIDS$(AS,1,8)+MIDS(DS,1,1)+MIDS(DS,
10, 1)+MIDS$(AS,11)+MIDS(DS,9,2)

40 PRINT P$

50 END

This operator provides the remainder of an arithmetic division.

< numeric expression 1> MOD < numeric expression 2>

PRINT AMOD 7

Values for both numeric expressions can be positive integers that
are less than 32767.

When a negative value is used for <numeric expression 2>, it will
be processed as an absolute value. If a negative value is specified
for < numeric expression 1>, a negative value is returned as the
result.

89

N82-BASIC Reference Manual

SAMPLE
PROGRAM:

MOTOR

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

90

Also note, a zero cannot be used in <numeric expression 2>.
Any decimal fraction included is rounded to the decimal point.

10 SCREEN 0,0:CLS

20 LOCATE 5,0:BEEP:INPUT" A NUMBER"; A:A
=INT(A)

30 IF A<32768! THEN 50

40 PRINT"IF IS TOO LARGE.":FOR I=0 TO 10
00:NEXT:GOTO 10

50 CLS:LOCATE 6,2:PRINT "THE DECIMAL NUM
BER";A;" WILL BE "

60 LOCATE 6,4:PRINT "IN BINARY"

70 N=0O

80 LOCATE 30-N*2,6

90 PRINT A MOD 2:A=INT(A/2):N=N+1

100 IF A<>0 THEN 80

110 GOTO 20

120 END

This instruction turns the motor that drives the cassette recorder on
and off.

MOTOR < switch>

MOTOR O

The cassette recorder motor is turned off when the < switch>
value is set to 0. Any numeric value ranging from 1 to 255 turns
the motor on. An error occurs if a value greater than 255 is
designated to turn the motor on.

10 MOTOR O

20 PRINT "SELECT CASSETTE TAPE WITH MUSI
C THAT YOU LIKE"

30 PRINT "PLUG ONE END OF THE CABLE INTO
THE PC-8300 AND ";

40 PRINT "INSERT THE BLACK PLUG INTO THE
REMOTE CONNECTOR ";

50 PRINT "SET RECORDER TO ON"

60 PRINT "PRESS ANY KEY TO START"

70 IF INKEYS$="" THEN 70

80 MOTOR 1

90 PRINT "PRESS ANY KEY TO STOP"
100 IF INKEYS$="" THEN 100

110 MOTOR 0:GOTO 60

120 END

MOD MOTOR NAME NEW

NAME
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

NEW

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SAMPLE
PROGRAM:

This instruction is used to reNAME files in the RAM.

NAME “<old file name>*“ AS ” < new file name>

NAME '"OLD.BA' AS ""NEW.BA"

The NAME (rename) instruction renames the RAM file <old file
name> as <new file name>. The designated file name must
include the file-type extension for both the old and the new file
names, and both of these must be identical.

An error message appears on the screen if one of the following
OCCurs:

1. A non-existent file name is designated as an <old filename>.

2. A file name which is already currently in use is designated as a
< new filename>.

3. File-types for the two files are different.

Chapter 5, Files.

This instruction erases any program or data currently in the BASIC
memory area and clears all variables, It is normally used before
writing a new program.

NEW

NEW

The NEW instruction is used in the Direct Mode prior to the input
of a new program. When executed, it closes all opened files.
Furthermore, a file which is in access mode (indicated by an
asterisk when the FILES instruction is executed) will be terminated.

This instruction does not use any parameter and it returns control
to the Direct Mode after execution is completed.

10 REM This program will self-destruct w
hen you run it.
20 PRINT"YOU HAVE DESTROYED THE PROGRAM!

30 BEEP:BEEP

40 NEW
50 END

91

N82-BASIC Reference Manual

92

NOT

FUNCTION: This logical operator is used to test multigle relations, bit
manipulation, and Boolean operations.

FORMAT: NOT <operand>

SAMPLE

. STATEMENT: PRINT NOT 5

DESCRIPTION: The logical operator NOT converts its <operand> to a sixteen bit
binary integer, and then it inverts (negates) each bit of the
<operand>. It returns -1 (true) if the bit is O (false), and vice
versa.
The following table shows the negated calculations:
NOT -1 — 0 (NOT TRUE — FALSE)
NOT 0 — -1 (NOT FALSE —~ TRUE)

NOTE: Because of the <operand> conversion to sixteen bit binary, the
<operand> must range from —32768 tc +34767. Otherwise, an
Overflow message “?0V Error” is displayed.

SEE ALSO: AND, EQV, IMP, OR, XOR, and Chapter 3.

EXAMPLE: Integer Binary bits

153 0000 0000 1001 1001

-154 11111111 0110 0110
To negate, just replace O with 1, and vice versa. If you input the
statement PRINT NOT 153, the PC-8300 responds — 154, whose
binary is 1111 1111 0110 0110, which is the correct result,
according to the table in the DESCRIPTION section.

ON...GOTO/ON...GOSUB

FUNCTION: These instructions transfer control (branch) to one of several
specified lines/subroutines based on the evaluation of the
statement.

FORMAT: ON <numeric variable> [GOTO | <line number>

GOSuB

<line number list>

SAMPLE

STATEMENT: ON A GOTO 100, 140, 200, 400

NOT ON...GOTO/ON...GOSUB

DESCRIPTION: The ON ... GOTO/ON ... GOSUB instructions branch to a specific
<line number> based on the evaluation of the <numeric
variable>.

After the <numeric variable> is evaluated it is converted to an
integer; if this is 1, then the first <line number> is selected; if it is
2, then the second <line number> is selected, etc.

An “?FC Error in line” occurs if the value of the <numeric
variable> is negative. But if it is zero or greater than the number
of <line number> then contral continues on to the next logical
line (following the ON...GOTO/GOSUB instruction).

The <line number>s following the GOTO or GOSUB must be
separated by commas, or else an syntax error message “?SN
Error” is displayed on the screen. There may be any number of
<line numbers> in a list, as long as the line does not go over the
maximum line length (up to 255 characters per ling).

When ON ... GOSUB is used and control is transferred to the
subroutine, a RETURN instruction is needed as the last statement
in the subroutine, in order to return control to the main program
when the subroutine execution is completed. Control returns to the
next statement following the ON ... GOSUB instruction in the main
program (containing the GOSUB command).

NOTE: These statements save time and program lines when they are
used in place of the IF ... THEN statement. For example:

IF L=1 THEN GOSUB 150

IF L=2 THEN GOSUB 80 ON L GOsuB 150, 80, 200 . . .

IF L=3 THEN GOSUB 200

SEE ALSO: ON ERROR, GOTO, GOSUB and RETURN.

93

N82-BASIC Reference Manual

SAMPLE
PROGRAM:

10 INPUT "ENTER A NUMBER FROM O TO 5":A
20 ON (A AND 1) +1 GOSUB 120,130

30 PRINT "YOUR NUMBER IS ";

40 ON A+l GOTO 60,70,80,90,100,110

50 PRINT "OUT OF RANGE.":GOTO 10

60 PRINT "ZERO":END

70 PRINT "ONE":END

80 PRINT "TWO":END

90 PRINT "THREE":END

100 PRINT "FOUR":END

110 PRINT "FIVE":END

120 PRINT A "IS AN EVEN NUMBER":RETURN
130 PRINT A "IS AN ODD NUMBER":RETURN
140 END

ON COM GOSUB

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

This instruction establishes the initial line of the subroutine to
branch to when an interruption occurs from the RS-232C
communications port.

ON COM GQSUB <line number>

ON COM GOSuB 2000

This instruction designates <line number>, which branches
control to the first line of a subroutine used to perform some
communications process when an RS-232C interrupt occurs.

A return from the process routine is conducted by a RETURN
instruction, just the same as for normal subroutines.

When <line number> is specified, the program is restarted from
the specified line.

COM ON/OFF/STOP, OPEN and RETURN.

ON ERROR GOTO ~ RESUME

FUNCTION:

FORMAT:

94

The ON ERROR GOTO instruction is used to specify an error
subroutine used for trappable errors.

ON ERROR GOTO |<line number>
<0>

ON...GOTO/ON...GOSUB ON COM GOSuUB
ON ERROR GOTO ~ RESUME OPEN

SAMPLE
STATEMENTS:

DESCRIPTION:

SEE ALSO:

OPEN
FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

ON ERROR GOTO 100
ON ERROR GOTO O

The ON ERROR GOTO ~ RESUME instruction creates an error
handling routine, which takes controi from N82-BASIC if an error is
detected during program execution.

The ON ERROR GOTO instruction is used to instruct the PC-8300
that an error processing subroutine is in effect. When an error
occurs, control will be transferred to the <line number>indicated,
which should be the beginning of the error handling routine. If a
line specified in <line number> does not exist, a “?UL Error”
(Undefined Line number) message will be displayed.

The ON ERROR GOTO 0 command is used when an error
trapping function is not possible, which signals BASIC to handle all
errors. BASIC proceeds with normal system error handling by
displaying error messages and stopping program execution. It is
advisable to execute an ON ERROR GOTO 0 instruction for error
processing routines so that any failure in the routines can be
trapped.

RESUME and ERROR.

This instruction is used to open a file for input or output.
OPEN "{ <external device name>:} <file name>"

INPUT
FOR | OUTPUT | AS {#} <file number>
APPEND

OPEN "SESAME" FOR OUTPUT AS #1
OPEN ""CAS.SESAME'" FOR OUTPUT AS #2

The OPEN instruction opens a file specified by <file name> for
use with the buffer number <file number>. A range from 1
through 15 can be designated for <file number>. A <file
number > previously used to open a file cannot be subsequently
used to open ancther (a second) file. Input and output of an
opened file are conducted by subsequently specifying its file
number.

95

N82-BASIC Reference Manual

SEE ALSO:

SAMPLE
PROGRAM:

Three different <modes> are used to specify the access methods
to a file. “INPUT" assigns sequential input from a device or an
existing file “OUTPUT” designates sequential output to a device or
a file. “APPEND” specifies addition to a RAM file.

The PC-8300 opens a file from RAM if <external device name>
is omitted, but in the case of a RAM file, the file name must be
supplied. When device name is specified, “CAS:" is designated for
a data recorder. File name may be omitted when using a data
recorder with cassette tapes as the storage medium, and if so, the
PC-8300 opens the first tape file it detects if it is in input.

is pressed to interrupt the execution of an OPEN
“CAS:” instruction.

OPEN reserves the buffer space required for input/output and
uses it only for the specified file while it is open.

Any file name designated in the output mode means that a new
fle is being created. If an existing file name is used for output, its
content is erased when the file is open. Care should be exercised
when selecting a file name for OPEN OUTPUT.

CLOSE, OPEN “COM”, Chapter 5 Files.

20 OPEN "SESAME" FOR OUTPUT AS #1

30 PRINT #1,"OPEN SESAME!"

40 PRINT #1, "CLOSE SESAME!"

50 CLOSE

60 OPEN "SESAME" FOR INPUT AS #1

70 INPUT #1,AS$:PRINT AS$:SOUND 2000,20
80 INPUT #1,A$:PRINT A$:SOUND 5000, 20
90 CLOSE

100 PRINT "THE SESAME FILE IS NOW ARRANG
ED."

110 PRINT "FILES":FILES

120 END

OPEN “COM”

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

96

This instructicn opens the RS-232C serial circuit.

OPEN “COM:{ <CPBSXS>}" FOR |INPUT
OUTPUT

AS {(#] <file number>

OPEN ""COM:9N82XN' FOR INPUT AS #1

OPEN NOTE: OPEN “COM”

DESCRIPTION:

This command establishes the RS-232C serial circuit data

transmission format and opens it as a file. <Mode> and <file

number> perform the same way as in the OPEN statement.
However, appended output mode cannot be designated.

The designated parameter that follows the COM: requires six
characters to establish a data transmission circuit format. The
designations are as follows.

"COM:<CPBSXS>"

where CPBSXS stands for:

C

X

S

Communications speed (BAUD RATE)
Parity

Word length

Stop bit

Control according to “X" parameter

Control according to SHIFT IN/OUT sequence.

Each different character of the parameter is controlled by a
different feature of the communications format.

97

N82-BASIC Reference Manual

The following are the values for each different feature of the
communications format:

VALUE

Communication Speed (Bits per second)

1 75 bps

2 110 bps

3 300 bps

4 600 bps

5 1200 bps
3] 2400 bps
7 4800 bps
8 9600 bps
9 19200 bps
Parity

N : No parity
E : Even parity
0] : Odd parity
1 : parity bit Ignored
Word length

6 : 6 word length bits
7 : 7 word length bits
8 : 8 word length bits

Stop bit

1 : 1 stop bit

2 : 2 stop bits
X affects control

N does Not affect control

The “X" parameter controls communications transmission by using

to start and [CTRL | Q | to stop transmission.

Control according to SHIFT IN/OUT sequence

S affects control
N does Not affect control

98

OPEN “COM”

NOTE:

SEE ALSO:

OR
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

If the value of <CPBSXS> is omitted, then the previously
established value is in effect.

When the RS-232C circutt is used in BASIC, ‘wo separate files
must be opened to send transmitted data. The OPEN instruction
(at etther end of the transmission) that was established last is used
to set the data transmission format.

The [CTRL [S] and [CTRL | @ | functions can be transmitied
although only the input/output of a file is opened.

The RS-232C circuit cannot be used while the data recorder is in
use.

OPEN, COM ON/OFF/STOP and the TELCOM Manual. ‘

This logical operator is used to test multiple relations.

<operand 1> OR <operand 2>

IF A=5 OR B=5 THEN 200

The logical operator OR performs tests on multiple relations, bit
manipulation, and Boolean operations. It returns either a non-zero
(true) or zero (false) value.

For the operation to return a non-zero (true) value, the condition of

at least one <operand> has to be true, or else the operation
returns zero (false).

The following truth table indicates the evaluation process:
-1 OR -1 = —~1 (TRUE OR FALSE — TRUE)
-1 OR 0 — -1 (TRUE OR FALSE - TRUE)

0 OR -1 - —1 (FALSE OR TRUE — TRUE)

0OR O — O (FALSE OR FALSE — FALSE)

99

N82-BASIC Reference Manual

NOTE

SEE ALSO:

EXAMPLE:

ouT
FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

100

Logical < operators> work by converting their <operands> to
sixteen bit binary integers. Therefore, <operand 1> and
<operand 2> must range from —32768 to +32767. if not, an
“?20V Error” (Overflow) message will be displayed.

AND, EQV, IMP, NOT, XOR, and Chapter 3.

Integer Binary bits
23280 0101 1010 1111 0000
11853 0010 1110 0100 1101

After you input the statement PRINT 23280 OR 11853, the integer
32509 appears, whose binary is 0111 1110 1111 1101. By
looking at the table in DESCRIPTION, you will see that the
computation is correct.

This instruction sends data to a specific port.

OUT < port number>, <data>

ouT 1,32

The OUT instruction sends data to a designated output port. The
< port number> must be an integer ranging from 0 to 255, while
<data> is the data that is output through the port.

If the OUT instruction is not used correctly, BASIC might not
operate normally.

OR OUT PEEK POKE

PEEK

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

SEE ALSO:

POKE

FUNCTION:

FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

This function loads the contents of a designated location in the
memory.

PEEK (<address>)

A = PEEK(61400)

The PEEK function returns the memory contents of
a designated <address>. Any value from O through 65535 may
be designated for <address>.

Any numbers (specified for <address>) that contain decimal
fractions are rounded off to integers.

POKE.

This instruction writes the specified data to a designated memory
address.

POKE <address>, <data>

POKE 61400,201

This instruction is used to write one byte (8 bits) of data into a
designated location in the memory. The <address> is designated
with 2 byte integers between 0 and 65535. The <data> is
designated by one byte integers between 0 and 255. The POKE
instruction is used in conjunction with the PEEK function to
perform the inverse operation. It is used when the numeric values
of a machine language subroutine are to be accessed.

The POKE instruction changes the current contents of the
specified address in memory. Therefore, it should only be used
after checking the memoary to ensure that data in the BASIC work
area is not destroyed. It is quite easy to destroy programs and
files if you do not adequately understand machine language. If the
PC-8300 operates abnormally after the POKE instruction is used,
the Reset Switch may be pressed to restore normal operation.

PEEK, and Chapter 6 Machine Language Programming.

101

N82-BASIC Reference Manual

POS

FUNCTION:
FORMAT:

SAMPLE
STATEMENT:

DESCRIPTION:

NOTE:

SEE ALSO:

SAMPLE
PROGRAM:

POWER

FUNCTION:

FORMAT:

SAMPLE

STATEMENTS:

DESCRIPTION:

102

This function determines the current cursor horizontal position.

POS (< expression>)

PRINT "123456";P0S(0)

The PCS (POSition) function determines the current horizontal
position on the screen.

The <expression> is only used for the value that is returned by
the POS function. Therefore, it does not make any difference what
value is used for the <expression>.

Since there are 40 possible horizontal positions on the screen, the
returned value is always between 0 through 39.

CSRLIN.

10 CLS

20 PRINT:PRINT"PC-8300";
30 PRINT POS(X)

40 LOCATE 2,2

50 PRINT POS(X)

60 LOCATE 4,4

70 PRINT POS(X)

80 END

This instruction automatically turns off the electrical power of the
PC-8300 immediately, or after the designated time period.

POWER [<timer>
OFF ,RESUME
CONT

POWER 200
POWER OFF
POWER CONT

The designated value for <timer> can be from 10 through 255,
at increments of approximately 6 seconds per unit. Keyboard input
is not accepted once the designated <timer> is reached and the
electrical power is automatically turned off. Once the value for the
<timer> has been established, it remains at that value until it is
reset or modified.

