Chapter 2

HARDWARE INSTALLATION

2.1 Central Processing Unit: CPU

2.1-1 Processor Installation Procedure

Step 1: Install the Retention Mechanism.

Attach the Retention Mechanism to the Mainboard. Push the Plastic lock to secure the Retention Mechanism into the mainboard.

Step 2: Install the Processor. Insert the Processor like inserting a PCI or an ISA card.

Step 3: Lock the Processor.

Lock the processor by pulling up the Retention Mechanism processor lock shown above.

2.1-2 CPU Core Speed Derivation Procedure

The Mainboard can auto-detect the processor speed. Just insert the AMD Athlon processor into Slot A.

CPU Clock	=	100MHz
Core/Bus ratio	=	5
CPU core speed	=	Host Clock x Core/Bus ratio
	=	100MHz x 5
	=	500MHz
		Core/Bus ratio=CPU core speed===

2.1-4 Fan Power Connectors: J9, J12, & J6

These connectors support system cooling fan with + 12V. It supports three pin head connector. When connecting the wire to the connector, always take note that the red wire is the positive and should be connected to the +12V, the black wire is Ground and should be connected to GND. If your mainboard has System Hardware Monitor chipset on-board, you must use a specially designed fan with speed sensor to take advantage of this function.

Note: For fans with fan speed sensor, every rotation of the fan will send out 2 pulses. System Hardware Monitor will count and report the fan rotation speed. This is an optional function for System Hardware Monitor.

2.2 Clear CMOS Jumper: JBAT1

A battery must be used to retain the mainboard configuration in CMOS RAM. Short 1-2 pins of JBAT1 to store the CMOS data.

Note: You can clear CMOS by shorting 2-3 pin, while the system is off. Then, return to 1-2 pin position. Avoid clearing the CMOS while the system is on, it will damage the mainboard. Always unplug the power cord from the wall socket.

2.3 Memory Installation

2.3-1 Memory Bank Configuration

The mainboard supports a maximum memory size of 512MB for SDRAM: It provides two 168-pin **unbuffered** DIMMs (Double In-Line Memory Module) sockets. It supports 8 MB to 256 Mbytes DIMM memory module.

2.3-2 Memory Installation Procedures

A. How to install a DIMM Module

Double Sided DIMM

- 1. The DIMM slot has 2 Notch Keys "VOLT and DRAM", so the DIMM memory module can only fit in one direction.
- 2. Insert the DIMM memory module vertically into the DIMM slot. Then push it in.

3. The plastic clip at the side of the DIMM slot will automatically close.

2.3-3 Memory Population Rules

- 1. Supports only PC100 SDRAM DIMM.
- 2. To operate properly, at least one 168-pin DIMM module must be installed.
- 3. This mainboard supports Table Free memory, so memory can be installed on DIMM1 or DIMM 2 in any order.
- 4. Supports 3.3 volt DIMM.
- 5. The DRAM addressing and the size supported by the mainboard is shown below:

DRAM	DRAM	DRAM	Addres	ss Size	MB/D	ІММ
Tech.	Density & Width	Addressing	Row	Column	Single no. Side(S) pcs.	Double no. Side(D) pcs.
16M	1Mx16	ASYM	11	8	8MBx4	16MBx8
	2Mx8	ASYM	11	9	16MBx8	32MBx16
64M	2Mx32	ASYM	11	9	32MBx2	64MBx4
	2Mx32	ASYM	12	8	16MBx2	32MBx4
	4Mx16	ASYM	11	10	32MB	64MB
	4Mx16	ASYM	13	8	32MB	64MB
	8Mx8	ASYM	13	9	64MB	128MB
64M	2Mx32	ASYM	11	8	16MB	32MB
	4Mx16	ASYM	12	8		
	8Mx8	ASYM	12	9		

Table 2.3-1 SDRAM Memory Addressing

2.4 Case Connector: JFP1

The Keylock, Power Switch, Reset Switch, Power LED, Speaker, and HDD LED are all connected to the JFP1 connector block.

2.4-1 Power Switch

Connect to a 2-pin push button switch. This switch has the same feature with JRMS1.

2.4-2 Reset Switch

Reset switch is used to reboot the system rather than turning the power ON/ OFF. Avoid rebooting while the HDD LED is lit. You can connect the Reset switch from the system case to this pin.

2.4-3 Power LED

The Power LED is lit while the system power is on. Connect the Power LED from the system case to this pin. There are two types of LED that you can use: 3-pin single color LED or 2-pin dual color LED(ACPI request).

- **a.** 3 pin single color LED connect to pin 4, 5, & 6. This LED will lit when the system is on.
- **b.** 2 pin dual color LED connect to pin 5 & 6.

GREENColor:Indicate the system is in full on mode.**ORANGE**Color:Indicate the system is in suspend mode.

2.4-4 Speaker

Speaker from the system case is connected to this pin. If on-board Buzzer is available: Short pin 14-15: On-board Buzzer Enabled. Open pin 14-15: On-board Buzzer Disabled.

2.4-5 HDD LED

HDD LED shows the activity of a hard disk drive. Avoid turning the power off while the HDD led is lit. You can connect the HDD LED from the system case to this pin.

2.4-6 Keylock

Keylock allows you to disable the keyboard for security purposes. You can connect the keylock to this pin.

2.5 Floppy Disk Connector: FDD

The mainboard also provides a standard floppy disk connector FDD that supports 360K, 720K, 1.2M, 1.44M and 2.88M floppy disk types. This connector supports the provided floppy drive ribbon cables.

2.6 Hard Disk Connectors: IDE1 & IDE2

The mainboard has a 32-bit Enhanced PCI IDE and Ultra DMA/66 (ICH)/ Ultra DMA/33(ICH0) Controller that provides PIO mode 0~4, Bus Master, and Ultra DMA/33 function. It has two HDD connectors IDE1 (primary) and IDE2 (secondary). You can connect up to four hard disk drives, CD-ROM, 120MB Floppy (reserved for future BIOS) and other devices to IDE1 and IDE2. These connectors support the provided IDE hard disk cable.

IDE1(Primary IDE Connector)

The first hard drive should always be connected to IDE1. IDE1 can connect a Master and a Slave drive. You must configure second hard drive to Slave mode by setting the jumper accordingly.

IDE2(Secondary IDE Connector)

IDE2 can also connect a Master and a Slave drive.

2.7 Power Supply

2.7-1 ATX 20-pin Power Connector: JPWR1

This connector supports the power button on-board. Using the ATX power supply, functions such as Modem Ring Wake-Up and Soft Power Off are supported by this mainboard. This power connector supports instant power on function which means that system will boot up instantly when the power connector is inserted on the board.

PIN	SIGNAL	PIN	SIGNAL
1	3.3V	11	3.3V
2	3.3V	12	-12V
3	GND	13	GND
4	5V	14	PS_ON
5	GND	15	GND
6	5V	16	GND
7	GND	17	GND
8	PW_OK	18	-5V
9	5V_SB	19	5V
10	12V	20	5V

Warning: Since the mainboard has the instant power on function, make sure that all components are installed properly before inserting the power connector to ensure that no damage will be done.

2.8 IrDA Infrared Module Connector: IR

The mainboard provides one infrared (IR) connector for IR modules. This connector is for optional wireless transmitting and receiving infrared module. You must configure the setting through the BIOS setup to use the IR function.

2.9 Serial Port Connectors: COM A and COM B

The mainboard provides two 9-pin male DIN connector for serial port COM A and COM B. These port are 16550A high speed communication port that send/receive 16 bytes FIFOs. You can attach a mouse or a modem cable directly into this connector.

Serial Port (9-pin Male)

PIN DEFINITION

PIN	SIGNAL	
1	DCD(Data Carry Detect)	
2	SIN(Serial In or Receive Data)	
3	SOUT(Serial Out or Transmit Data)	
4	DTR(Data Terminal Ready)	
5	GND	
6	DSR(Data Set Ready)	
7	RTS(Request To Send)	
8	CTS(Clear To Send)	
9	RI(Ring Indicate)	

2.10 Parallel Port Connector: LPT1

The mainboard provides a 25 pin female centronic connector for LPT. A parallel port is a standard printer port that also supports Enhanced Parallel Port(EPP) and Extended capabilities Parallel Port(ECP). See connector and pin definition below:

Parallel Port (25-pin Female)

PIN DEFINITION

PIN	SIGNAL	PIN	SIGNAL
1	STROBE	14	AUTO FEED#
2	DATA0	15	ERR#
3	DATA1	16	INIT#
4	DATA2	17	SLIN#
5	DATA3	18	GND
6	DATA4	19	GND
7	DATA5	20	GND
8	DATA6	21	GND
9	DATA7	22	GND
10	ACK#	23	GND
11	BUSY	24	GND
12	PE	25	GND
13	SELECT		

2.11 Mouse Connector: JKBMS1

The mainboard provides a standard $PS/2^{\otimes}$ mouse mini DIN connector for attaching a $PS/2^{\otimes}$ mouse. You can plug a $PS/2^{\otimes}$ mouse directly into this connector. The connector location and pin definition are shown below:

PS/2 Mouse (6-pin Female)

2.12 Keyboard Connector: JKBMS1

The mainboard provides a standard $PS/2^{\otimes}$ keyboard mini DIN connector for attaching a keyboard. You can plug a keyboard cable directly to this connector.

PS/2 Keyboard (6-pin Female)

2.13 USB Connectors

The mainboard provides a **UHCI**(**Universal Host Controller Interface**) **Universal Serial Bus root** for attaching USB devices like: keyboard, mouse and other USB devices. You can plug the USB device directly to this connector.

PIN	SIGNAL
1	VCC
2	-Data0
3	GND
4	+Data0

2.14 Joystick/Midi Connectors

You can connect joystick or game pad to this connector.

2.15 Audio Port Connectors

Line Out is a connector for Speakers or Headphones. **Line In** is used for external CD player, Tape layer, or other audio devices. **Mic** is a connector for the microphones.

1/8" Stereo Audio Connectors

2.16 USB Front Connector

The mainboard provides a **front Universal Serial Bus connector**. This is an optional USB connector for Front Panel.

2.17 Wake-Up on LAN Connector: JWOL

The JWOL connector is for use with LAN add-on cards that supports Wake Up on LAN function. To use this function, you need to set the "Wake-Up on LAN" to enable at the BIOS Power Management Setup.

Note: LAN wake-up signal is active "high".

Note: To be able to use this function, you need a power supply that provide enough power for this feature. (Power supply with 750mA 5V Stand-by)

2.18 Power Saving Switch Connector: JSLP1

Attach a power saving switch to **JSLP1**. When the switch is pressed, the system immediately goes into suspend mode. Press any key and the system wakes up.

2.19 Modem Wake Up Connector: JMODEM

The JMODEM connector is for use with Modem add-on card that supports the Modem Wake Up function. To use this function, you need to set the "Power On By Ring" to enable at the BIOS Power Management Setup.

Note: Modem wake-up signal is active "low".

Note: To be able to use this function, you need a power supply that provide enough power for this feature. (Power supply with 750mA 5V Stand-by)

2.20 Modem-In: J16

The connector is for Modem with internal voice connector.

SPK_IN is connected to the Modem Speaker Out connector. MIC_OUT is connected to the Modem Microphone In connector.

2.21 CD-In Connector: J14

This connector is for CD-ROM Audio Connector.

2.22 Aux Line In Connector: J15

This connector is used for DVD Add on Card with Line In connector.

