Insert the hardtab labeled “Locate
Mode” here and discard this page.

Locate Mode

Chapter 1. Overview 1-1
Qperational Characteristics 1-3
Command and Control-Block Delivery 1-6
Control-Block Structure 1-10
Termination Status Block Structure 1-11
Indirect-List Structure 1-12
Delivery Structure 1-13
/O Address Space 1-15
Physical Interface Description 1-15
Port Descriptionso L 1-18
CommandPort 1-18
AttentionPort 1-18
Subsystem Control Port 1-20
Interrupt Status Port 1-21
Command Busy/Status Port 1-24
Device Interrupt IdentifierPort 1-28
Memory Address Space 1-29
Control Structures 1-29
Command ControlBlocks 1-29
CommandWord, ... 1-31
EnableWord1 1-33
Memory Address 1, 1-39
Memory Address 2 o 1-39

Byte Count1 1-40
Termination Status Block Address 1-40
Chain Address 1 1-40
Chain Address 2 1-41
Device DependentSize 1-41
ChainID 1-41
EnableWord2 1-41
ByteCount2 1-42
Termination Status Blocks 1-43
End Status Word1 1-46
EndStatusWord 2 1-50
Residual Byte Count1 1-50
Residual Buffer Address1 1-51
Residual ByteCount2 1-51
Residual Buffer Address 2 1-52
Device DependentDataSize 1-53

© Copyright IBM Corp. 1991 1

Device DependentData Area 1-53

Indirect-List Structure 1-53
Commands e e 1-55
Control-Block Commands 1-55
Initialize Device L. 1-55
Options 1-57

No Operation 1-57
Read 1-58
Read CompletionStatus 1-60
Read Configuration 1-63

Run DiagnosticTest 1-70
Write 1-71
Immediate Commands 1-72
No Qperation (Noop) 1-76
ResetDevice 1-77
Reset Interrupt Status Port 1-79
Reset Control Block Interrupt 1-80
Reset Subsystem (Software Controlled) 1-82
Resume 1-86

Run Immediate Diagnostic Test 1-87
Suspend 1-88
Reset Subsystem (Hardware Controlled) 1-90
Chapter 2. PhysicalLevel 2-1
Structure e e 2-1
System-Master Hardware Support 2-3
Subsystem Hardware Support 2-3
SupportLogic 2-4
Memory Address Space 2-4
I/O Address Space 2-4
Physical-Level Services 2-6
PushandPull 2-6
Interrupt 2-8
Data Delivery e 2-9
Physical-Level Protocols 2-9
Chapter 3. Dellverylevel 3-1
Structure e 341
Immediate-Command Delivery 3-4
Control-Block Command Delivery 3-6
Delivery-Level Services 0. 3-7
Immediate-Command Delivery Service 3-7
Hardware-Controlled Command Delivery Service 3-8

Control-Block Delivery Service
Delivery-Level Protocols
Command-Delivery Protocol
Signalling Protocol
Interrupt Identification
Physical and Logical Interrupts
Physical-Interrupt Enablement
Interrupt Queuing within the Subsystem
Interrupt Types
Non-DIP Interrupts (Simple Form)
DIIP Interrupts (Multiple Form)
Resetting Interrupts L

Chapter 4. Processinglevel

Command Chaining
Conditional Command Chaining
Command-Chaining Options
Control-Block Execution

Data Chaining
Reading with a Base Control Block and Indirect Lists
Reading with an Extended Control Block and Indirect Lists
Writing with a Base Control Block and Indirect Lists
Writing with an Extended Control Block and Indirect Lists
Writing Physical Data Blocks and Indirect Lists

Chapter 5. Design Considerations
Locate Mode Setup and Initialization
Locate Mode Configuration
Locate Mode Ports
Device Interrupt ldentifier Port
Obtaining Configuration Information
Exception and Error Handling,
Device Level
Subsystem bLevel L
Exception Conditions
Short-Length Exception
Long-Length Exception
Specification Exception
Device-Overrun Exception
Major Error on Data Transfer
Locate Mode Residual Data Values
Residual Byte Count
Residual Buffer Address

Number of Bytes Transferred 5-21
Summary — Residual Buffer Address and Residual Byte Count 5-22

Figures

1-1.
1-2.
1-3.
1-4.
1-5.
1-8.
1-7.
1-8.
1-9.
1-10.
1-11.
1-12.
1-13.
1-14.
1-15.
1-16.
1-17.
1-18.
1-19.
1-20.
1-21.
1-22.
1-23.
1-24,
1-25.
1-26.

1-27.
1-28.
1-29.
1-29.
1-30.
1-31.
1-32.
1-33.
1-34.
1-35.
1-36.
1-37.

Control-Block Delivery Structure Example
Request-Delivery Flow
Control Block Format
Termination Status Block Format
Indirect-List Format
L.ocate Mode Delivery Structure
IO Address Map—Type 1
IO Address Map—Type 2
CommandPort
AttentionPort
AttentionCodes
Subsystem ControtPort
Interrupt Status Port
Interrupt-identitierCodes
Command Busy/Status Port
Command Busy/Status Port — Status Bit Encoding
Busy-Bit And Reject-Bit Settings
Device Interrupt Identifier Port
Command Control Block Structure
Command Word Format
ArchitectedOpCodes
Enable Word 1t Format
Memory-Addressing-Control Encoding
Chain-Condition-Specification Encoding
Chaining-Bit Settings
Enable Word 2 Format (Extended Command Control
Block)
Termination Status Blocks
Base Termination Status Block
Extended Termination Status Block
Extended Termination Status Bleck
End Status Word 1 Format
TSB-Available BitEncoding
End Status Word2 Format
Indirect-List Format
Initialize Device Control Block
No-Operation Control Block
Read Control Block
Read Completion-Status Control Block

© Copyright IBM Corp. 1991

vi

1-38.
1-39.

1-40,
1-41.
1-42.
1-43.
1-44.
1-45.
1-46.
1-47.
1-48.
1-49.
1-50.
1-51.
1-52.
1-563.
1-54.
1-55.
1-56.

21,
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.

4-3.

4-4.
4-5.

Command for Completion Status Field Encoding 1-61
Completion-Status Data Block for Immediate

Commands 1-62
Completion-Status Data Block for Base Control Blocks 1-63
Read Configuration Control Block 1-64
Read Configuration DataBlock 1-65
Time-Field Specifier, 1-67
Run-Diagnostic-Test Contra! Block 1-70
Write Control Block, 1-71
Immediate-Command Formats 1-73
Operation-Code Bits—Format1 1-75
No-Operation Command Structure 1-76
Reset Device Command Structure 1-77
Reset Interrupt Status Port Command Structure 1-79
Reset Control Block Interrupt Command Structure . .. 1-81
Reset Subsystem Command Structure 1-84
Resume Command Structure 1-86
Run Immediate Diagnostic Test Command Structure . 1-87
Suspend Command Structure 1-89
Subsystem Control Port (Hardware-Controlled
SubsystemBReset) 1-91
Locate Mode Physical Level 2-2
Overall Delivery-Level Structure 3-2
Command Port—Immediate Commands 3-4
8-Bit Attention Port—immediate Commands 3-5
Command Port— Control-Block Commands 3-6
8-Bit Attention Port —Control-Block Commands 3-6
Command-Delivery Flow 3-11
Control Blocks without Command Chaining 4-3
Control Blocks with Command Chaining 4-4
Command Chaining with Conditional and Chain No Error
Enabled 4-6
Indirect List 4-11
Control-Block Command with Indirect List 4-12
Residual Status Data after Control-Block Execution . . 5-22

Chapter 1. Overview

The Locate mode defines a control structure that allows the coupling
of commands, status, and data to represent a request from a client to
a server. A client delivers requests, one at a time, in one of two
forms: as an immediate command or as a command control block. A
client initiates a request by passing either an immediate command or
the address of a command control block to a server through a set of
I/O ports in 1/0 address space. The foliowing figure shows an
example of the structure of control-block delivery.

Data
Client Control
T e
First H
: Command :
H : [’ Buffer
: Indirect
Command J List e
Control H Buffer
R Block |~—»
e R Status
q e [:—————————] Block
u P
e 1 Command :
B y Control »
t Block |—» H Buffer
Status
Block
Channel
Control
L]
Address of
Shared First Command
1/0 Address|———— [Server
Space +————
Completion

Figure 1-1. Control-Block Delivery Structure Example
A server uses the information passed in the 1/O ports to determine

whether the request is an immediate command or the address of a
control block containing a command.

© Copyright IBM Corp. 1991 1-1

If the request is in the form of an immediate command, the server
uses the information contained in the set of /0 ports directly and
returns a reply to the client through the same 1/O ports and an
interrupt. If the request is in the form of a command-control-block
address, the server uses the information contained in the I/0 ports to
fetch the command control block. Upon completion of the command,
the server puts the completion status into the status block and returns
a reply to the client, using the /O ports and an interrupt.

The following information explains the operational characteristics and

the flow of the delivery support. This information is necessary to
understand the overall operation of the Locate mode.

1-2 Overview —January 1991

Operational Characteristics

The operational characteristics of the Locate mode are as follows:

Unidirectional delivery.

The flow of requests is from a client in a system masterto a
server in a subsystem. The server cannot send requests to a
client.

Multiple devices attached to a subsystem,

A subsystem can support more than one device attached to it.
Requests are directed to a specific entity, which supports an
attached device. All entities within a subsystem use a single set
of delivery resources in the subsystem to communicate with the
system master.

Shared delivery control areas.

A subsystem has a single set of control areas in 1/O space that
are used by the system master to send requests to any of its
devices and to receive status from any of its devices. The
Command port and the Attention port are used to deliver
requests. Sending a request to a device on the subsystem makes
these shared delivery-control areas busy until the request is
accepted by the subsystem. The busy indication is provided in
the Command Busy/Status port. A rejected request causes the
subsystem delivery space to be put into the reject state. inthe
reject state, the system-master delivery support needs to issue a
special subsystem command to clear it before additional requests
can be sent to any device on the subsystem.

Delivery support in the system manages the subsystem’s control
areas as a set of serially-reusable resources used for the delivery
of one request at a time.

Device use.

A device executing a request does not accept a new request untii
any current request, other than an immediate command such as
the Reset command or the Suspend command, has been
completed. Once a request has started, a device indicates
busy-reject status if it receives another request (unless it has
been issued a Suspend or Reset command) and puts the
subsystem’s delivery space into a reject state. To avoid this, the

Operational Characteristics —January 1991 1-3

entity in the system master must manage devices on subsystems
as serially-reusable resources. Interrupts sent by a completed
{or staged) request can be used to pace requests to a device.

Signalling of request or command completion through interrupts.

After a request or a particutar command is completed by the
device or subsystem, the subsystem optionally signals the system
master of the completion by presenting an interrupt request to the
system master. Interrupt status from the subsystem is stored in
the Interrupt Status port, which supports only one interrupt at a
time. When an interrupt is presented to the system master,
another interrupt cannot be presented until the Interrupt Status
port is cleared with a command from the system master. Other
devices must enqueue their interrupts within the subsystem until
the port is cleared.

Handling interrupts from an adapter.

Request-delivery support in the subsystem services requests to
all of the devices attached to the subsystem. Interrupts from the
devices are handled by a single shared-interrupt-request handier
and serialized through a single set of subsystem interrupt
resources.

The system interrupt-handling logic that receives the interrupt
from the subsystem interrupt handler must determine which
instance of request-delivery support in the system should be
notified of the interrupt. This can be done in the system by using
a layered approach to interrupt handling consisting of shared
first-level support and instances of second-level support that are
unigue to request delivery for a specific device.

First-level support determines which subsystem has an interrupt.
If an interrupt is present, it clears the interrupt and notifies the
instance of the request delivery, which is waiting for an interrupt
from this device. It also disables any further interrupts from this
device until the device is enabled by the second-level support.
The delivery support uses certain immediate commands to
disable and enable device-level interrupts.

For certain versions of Locate mode operation, the interrupt can
indicate multiple device-level interrupts through the Device
Interrupt identifier port. For these, the first-level support notifies
each instance that has a device-level interrupt.

14 Operational Characteristics —January 1991

The instance of the request delivery {the second level of support)
typically has its execution blocked and is waiting for an interrupt
from a device to which it has issued a request. When the
second-level support has been notified, the first-level support is
free to service another interrupt from a subsystem.

Second-level support in a request-delivery instance handles
request-completion interrupts from the specific device attached to
a subsystem. It determines which command control blocks have
been completed and returns this information to the send
interface.

Operationai Characteristics — January 1991 1-5

Command and Control-Block Delivery

The following figure shows the flow of requests from the system
master to a subsystem.

1-6 Command and Control-Block Delivery —January 1991

Entity Entity Entity
o Implemerdation
[TF] Defired
[intorfacss ;
2
= Send Interface Logic
=
] ' 4
[
L Intermupt Delivery Suppon "TTTTITIA)
(7 Handier | Logic : i
Lagic {per request) ! !
(shared) . :
————————— ! '
; E 4 : :
: : o l / " : :
: - VO Space — H
! T T I ' '
v /O Space ! , Shared |
' : Channel i Memory |
o .
; ' i '
| I R T
! 1 ! PPl ¢ Physical Support : pustvPur H :
' | i VOSees ! Loglc ™ '
! : . A 1 [l
] : ‘\ P : :
] 1
[} 3
Interrupt Delivery Support , '
| o
])
uEJ (shared) : (per request) [
=
7 by
% Recelve Interface Logic
(7 Implementation
Defined BY
Inerfacas
Entity Entity Entity
(Device) (Devica)

Figure 1-2. Request-Delivery Flow

The following information describes the flow through the various
parts of a client in the system master sending a request to a server in
a subsystem.

Command and Control-Block Delivery —January 1991 1-7

-

1. The send interface handles the transiation of the local form of
send, and its parameters, from the client into the request control
block, as seen in shared memory.

2. The request delivery has an instance for each entity sending a
request to an entity in the subsystem. The following functions are
provided by the request-delivery support:

* Management of access to the control areas in I/0 address
space shared among all request-delivery flows to the same
subsystem

¢ Coordination of the request flow with interrupt handling for a
particular subsystem or device.

3. After the request delivery obtains access to control areas, it
performs the read and write operations to the controi areas to
pass contrel parameters to the request delivery in the subsystem.

4. When all parameters have been written to the control areas, the
reguest delivery writes a specific value to the Attention port,
¢causing an interrupt of the subsystem,

5. When this interrupt occurs in the subsystem, the request-delivery
support in the subsystem passes the request to the
processing-level support, through the receive interface.

6. When the processing leve! completes the request, it can request
that the subsystem schedule an interrupt to the system master,

7. When the system-master interrupt occurs, the interrupt handler in
the system master determines which subsystem and device are
interrupting and notifies the corresponding request-delivery
instance.

8. The request-detivery support determines the completion status of
the request and returns that information to the send interface.

8. After being notified that the request was completed, the client can
issue the next request or continue to process the notification for
ather control blocks in a chain.

Because multiple subsystems of the same type or of different types
can be used in the system, the base address for the /0 space of each
subsystem must be defined during configuration. The FQ ports used
by a Locate mode type of subsystem are defined in “I/O Address
Space” on page 1-15.

1-8 Command and Control-Block Delivery —January 1991

The following are general descriptions of the control areas used by
Locate mode delivery. A port is a byte or set of contiguous bytes in
11O space.

Subsystem Control port

The Subsystem Control port is used to directly control the
subsystem-to-system interface.

Request ports

There are five ports that are used in the delivery of requests to a
device and the delivery of replies (interrupts) from a device.

— The Command port is used to pass either the address of a
control block or an immediate command.

— The Attention port contains an attention code and a device
identifier. The attention code informs the subsystem that the
Command port contains either the address of a control block
or an immediate command. The device identitier indicates
which device on the subsystem the request is directed to.

— The Interrupt Status port is used to identify the interrupting
device and to indicate any exception that occurred during
command processing.

— The Command Busy/Status port is used in the subsystem to
serialize access to the shared logic of the control-block
delivery service. This port contains the following indicators:

— Busy—indicates that the subsystem is busy (using the
shared logic) and will therefore ignore submitted
commands.

— Interrupt Valid — indicates that the contents of the
Interrupt Status port are valid and that the subsystem has
an interrupt pending.

— Reject—indicates that the subsystem has rejected a
request (a Reset Reject command is needed to clear a
reject and allow the subsystem to resume accepting
reguests).

— Status —indicates the reason for the reject.

Command and Control-Block Delivery —January 1991 1-9

— The Device interrupt Identifier port is an optional method of
reporting control-block interrupts. When this port is used,
only the interrupt status for immediate commands is reported
through the Interrupt Status port. All other interrupts are
reported through the Device Interrupt Identifier port.

This optional port allows the interrupt handler to process
multiple control-block interrupts through a single system
interrupt. For more information on interrupt handling, refer to
“Signalling Protocol” on page 3-13.

Control-Block Structure

The following figure shows the structure and content of a typical
command control block. There are two formats for command control
blocks: base and extended. Both formats contain ali the fields shown
in solid lines. The remaining fields (shown in dashed lines) are
present only in the extended control-block structure. The
device-dependent area is in both formats; however, the actuai
location of the device-dependent area within each controi block
depends on whether the base or the extended control block is used.

1-10 Command and Control-Block Delivery — January 1991

Enable Word 1 Command Word

Memcry Address 1

Memory Address 2

Byte Count 1

Termination Status Block Address

Chain Address |

Chain Address 2

Chain 1D l Reserved lExtended Length
oo Ee;e;v;d ______ N o En;b?e N;ra ; _____
} Byte Count 2 Extended
T e T 1
J Device Dependent Area J
{ 4

Figure 1-3. Control Biock Format
Termination Status Block Structure

In addition to the compietion indication in the Interrupt Status port,
status information can be reported for each command control block,
using the termination status block. A termination status block is
always stored if an exception occurs during control-block processing,
optionally, it can be stored for each control block processed. A field
in the command control block points to the area in shared memory
where the termination status block is stored. The format of the
termination status block is shown in the following figure.

Command and Control-Block Delivery —January 1981 1-11

In Command
Control
Block

Termination

Status
BTock

Figure

Termination Status Block Address

End Status Word 2

End Status Word 1

Residual Byte Count 1

Residual Buffer Address 1

Device Dependent
Data Size

Device Dependent Data Area

Indirect-List Structure

An indirect list is a variable-length list consisting of the address-count
pairs used to support data chaining. Both the location of the indirect
list and its length are specified in the control block. Within the
indirect list, the Address field and the Count field are each
doubleword fields. The format and content of an indirect list is shown

in the following figure.

In Command
Control
Block

Indirect
List

Figure

1-12 Command and Contro!-Block Delivery — January 1991

1-4. Termination Status Block Format

Start Address of I[ndirect List

Length of Indirect List

Buffer 1 Start Address

Buffer 1 Byte Count

Buffer n Start Address

Buffer n 8yte Count

1-5. Indirect-List Format

Delivery Structure

The following figure shows how the various levels relate to each
other and to the control areas in I/O address space and control biocks
in shared memory. It also shows the send and receive interfaces
between the delivery level and the entity level. There is no
unit-to-unit protocol associated with this support.

Command and Control-Biock Delivery — January 1891 1-13

Send / Receive Interface

Sharaed Memory
Delivery - T T T T T T T -
Interrupt Suppont Mgrrlt | |
Logic Logic Logic | f
| i
Data | !
l : cea| T Indirect|# s I
Physical Support Logic | Ust |
IO Space l] Data| |
-------- I
! ! 1 TSB
! T Hardware ! |
| Port Set | |
1 i
' o | Channel | I
o | |
. | Port Set || | |
: — Hardware | |
_______ | | |
— I
Physical Support Logic | l
| |
I | :
Delive l
Interrupt Suppoz Mgmt l |
iLogic Logic Logic Vo |
s |) CCB = Command Control
; Send / Receive Interface Block
........... [TSB = Termination Status
Block
Entity 000 Entity

Figure 1-6. Locate Mode Delivery Structure

1-14 Command and Control-Block Delivery — January 1991

I/0 Address Space

The SCB architecture defines support for two different physical
interfaces: Type 1 and Type 2. The registers used in these interfaces
perform the same functions; the difference between the intertaces is
the location and size of required ports.

The interface used by a subsystem is determined by the number of
physical devices that can be attached to it. When 16 or more devices
are supported, the Type 2 interface is used.

Physical Interface Description

Both Type 1 and Type 2 physical interfaces use the following control
areas in /0 address space:

Command port

Attention port

Subsystem Control port
Interrupt Status port
Command Busy/Status port
Device Interrupt identifier port.

Because multiple subsystems of the same type can be present on the
channel, the addresses within the I/O address space are shown as
offsets from the base /0 address. The base I/0 address used by
each subsystem is determined during system configuration.

I/O Address Space— January 1991 1-15

-
:

The following figure shows the Type 1 interface.

Base 1/0 Address

Figure

1-16

+0

+4

+5

+6

+7

+8

1

Command Port

1
7 0

Attention Fort

Subsystem Control Port

Interrupt Status Pert

7]

Command Busy/Status Port

1-7. WO Address Map— Type 1

170 Address Space — January 1991

The following figure shows the Type 2 interface.

Base [/0 Address

3
1 0
I
— +0 —» Command Port
i
1
5 a
— +4 —» Attention Port
7]
f— +6 —@ Subsystem Control Port
1
5]
F— +7 —» Interrupt Status Port
7
— +9 —» Command Busy/Status Port
1
— 5 0
r--" - ---- === -
F— +10 —» Device Interrupt ldentifier Port #1
j-—-—-—===-- 1
1
5]
r-——=----=--- fmm=m—=- -1
— +12 —» L Device Interrupt ldentifier Port #2
_________ //_ —— e —— — —

Figure 1-8. 1/0 Address Map—Type 2

IO Address Space — January 1991

117

Port Descriptions

The following information describes the ports for the Type 1 and Type
2 interfaces.

Command Port —

This 32-bit port is used to deliver a 32-bit immediate command or the
physical address of a control block to a subsystem. The immediate
command, or the control block pointed to by the address in the
Command port, specifies an operation to be performed by the
subsystem or the device.

The format and content of the Command port are shown in the
following figure.

Immediate Command or Address of Control Block

Figure 1-9. Command Port

Attentlon Port

This port signals the subsystem or device associated with the
subsystem. The signal can interrupt and notify the subsystem that the
Command port contains either an immediate command or the
address of a control block. This port is also used to reset an interrupt
and can be used to issue a software reset.

The size of the Attention port is determined by the number of devices
supported; however, the two fields that make up this port serve the
same function, regardless of the number of devices. The Attention
port is an 8-bit port if there are fewer than 16 devices supported by
the subsystem; it is a 16-bit port if 16 or more devices are supported.

1-18 /O Address Space —January 1991

Fewer

than 16 Devices

7

a

3 B

Attention Code

Device Mumber

16 Devices or More
15 12 11 0

Figure

Attention Code

Device Number

1-10. Attention Port

Attention Code Fleld: The attention codes identify the specific
operations for a device. These codes typically specify an operation
that is a single-purpose signal to the device. For example, attention
code hex 1 specifies that the Command port is loaded with an
immediate command, and attention code hex 3 specifies that the port
contains the address of a control block. The following is a summary
of the valid attention codes, their names, and a brief description of

each.

Code Name Description

0 Reset command Requests the subsystem to perform a device reset
for the specified device,

1 Immediate Requests the subsystem to execute the command

command contained in the Command port.

2 Reserved

3 Start Control Requests the subsystem to process the control

Block command block pointed to by the address in the Command
port.

4 Device See note.

dependent

5-C Reserved

D Move mode Used 1o signal a request for Move mode command

delivery delivery.

E End of interrupt Requests the subsystem to perform one of the two
interrupt-resetting commands. This is a hybrid
command that requires both the subsystem
hardware and software to clear the interrupts
presented to the system unit.

F Device See note.

dependent
Note: The device-dependent codes shoutd not duplicate a function that is already
defined by the architecture. Although the command or controi block
associated with these attention codes is device dependent, implementers
must not redefine the basic architecture.

Figure

1-11. Attention Codes

/0 Address Space —dJanuary 1991 1-19

Device Number Fleld: This field specifies which device receives the
attention code. The Type 1 interface can select one of 16 devices
from 0 to 15; the Type 2 interface can select one of 4096 devices from
0 to 4095. Device 0 is reserved for the subsystem and is used to
direct commands or control blocks to the subsystem, rather than to
any attached device, allowing the subsystem to act as the focal point
for all devices.

Subsystem Control Port

This B-bit port provides direct control of the subsystem hardware.
The following is a description of the Subsystem Control port.

7 6 5 4 3 2 1 0

RST R RR R DD ()] DMA | EI

Figure 1-12. Subsystem Control Port

Bit7 The subsystem-reset (RST) bit provides a
hardware-controlled reset of the subsystem and ail
attached devices. The bit does not affect
programmable-option-select data. See “Reset Subsystem
(Hardware Controlled}” on page 1-90 for more details on
the use of the subsystem-reset bit.

Bit6 This bit is reserved.

Bit5 The reset-reject (RR) bit restores the subsystem to a state
in which it can receive commands. When this bit is set to
1, the reject state is cleared, and the busy bit and the
reject bit in the Command Busy/Status port are reset to 0.
if the subsystem is not in the reject state, setting this bit to
1 has no effect. The reject state is always cleared after a
reset of the subsystem or after a power-on reset. (See
“Command Busy/Status Port” on page 1-24 and
“Delivery-Level Protocols” on page 3-10 for more details
on the reject state.)

Bit4 This bit is reserved.

Bits 3,2 These device-dependent bits can be used by subsystems
to meet their specific needs. If the bits are used, they
must be defined in the technical documentation for the
specific subsystem.

1-20 I/O Address Space —January 1991

Bit1 The enable-DMA (DMA) bit controls enabling and
disabling of the DMA operations. When this bit is set to 1,
DMA operations are enabled. When this bit is setto 0,
DMA operations are disabled. DMA operations are
always disabled after a reset of the subsystem or after a
power-on reset,

BIt 0 The enable-subsystem-interrupts (El) bit controls physical
interrupts to the system master that are generated by the
subsystem. When this bit is set to 1, the interrupts are
enabled. When this bit is set to 0, the interrupts are
disabled. Interrupts are always disabled after a reset of
the subsystem or after a power-on reset. (See “Signalling
Protocol” on page 3-13 for a description of interrupts.)

Interrupt Status Port

This port is used by a subsystem to present interrupt information for
the subsystem or device to the system master. It can be an 8-bit port
or a 16-bit port, depending on the number of devices supported by the
subsystem.

Because this port can contain interrupt information for only one
command at a time, an interrupt for another command cannot be
presented to the system master through the Interrupt Status port until
the previous interrupt has been reset by the Reset Interrupt Status
Port command,

When a subsystem does not support the Device Interrupt Identifier
ports, all interrupt information is presented through this port. When
the Device Interrupt Identifier port is supported, only the interrupt
information for immediate commands or for commands with
hardware failures are presented through this port.

When the Device Interrupt Identifier port is supported, interrupt
information for control block commands is presented in the Device
Interrupt ldentifier ports and in the termination status block
associated with each control block. See “Device Interrupt Identifier
Port” on page 1-28 for more information.

The format and content of the Interrupt Status port are shown in the
following figure, followed by a description of the individual fields.

I/0 Address Space — January 1981 1-21

Fewer than 16 Devices
7 4 3 ¢}

1D Device

16 Devices or More
1
5

N
—
[<=]

ID Device

Figure 1-13. Interrupt Status Port

Interrupt IdentHier Field: The Interrupt Identifier (ID) field is encoded
with a value that identifies the cause of the interrupt. If the interrupt
is the result of a control-block command, more detailed information
on the cause is available in the termination status block for that
control block.

The foliowing figure contains a summary of all the valid
interrupt-identifier codes.

Hex interrupt Definition

0 Reset compieted without error

1 Control-block command completed without error
2—-4 Reserved

5 Device dependent

6 Inform interrupt

7 Hardware failure —immediate command

8 Hardware failure — controi-block command

9 Reserved

A Immediate command completed without error
B Reserved

c Control-block command compieted with error
D Immediate command completed with error

E Reserved

F Device dependent

Figure 1-14. Interrupt-identifier Codes

The following is a description of all the valid interrupt-identitier
codes.

1-22 1/O Address Space —January 1991

Code Definition

[T

The subsystem or device has completed a reset operation
without error.

The device or subsystem has completed the control-block
operation without error. If the specific control block enables
storing of the termination status block, additional status is
stored in the termination status block.

This code is not used when the Device Interrupt Identifier port is
supported.

These codes are reserved.
This code is device dependent.

This code can be used to indicate a condition that is not
associated with any specific command.

A hardware failure occurred that prohibits the completion of the
immediate command or hardware-controfled command.

While a control-block command was being processed, a
hardware failure caused one of the following:

* The subsystem or device attempted to read the control
block, and the read operation failed.

¢ The subsystem attempted to store a termination status
block, and the stare operation failed.

It the condition occurs while the device is processing a chained
control block, the chain is terminated. If the hardware failure
does not prohibit the device from responding to commands, the
device can store command-completion status internally. The
contents of the termination status block are not valid; however,
additional status can be obtained with a Read Completion
Status command, depending upon the specific hardware failure.

This code is reserved.

The subsystem has completed the immediate or
hardware-controlled command without an error.

This code is reserved.

/O Address Space —January 1991 1-23

E
F

A specific control block has been completed, and an error
occurred. The subsystem or device has stored the status. See
“Termination Status Blocks” on page 1-43 for details on the
termination status block and “Signalling Protocol” on page 3-13
for details on interrupt status and completion.

This interrupt-identifier code is not used when the Device
Interrupt Identifier port is supported.

An immediate or hardware-controlled command was completed
with a nonhardware failure, or the device failed the diagnostic
test. (See “Run Immediate Diagnostic Test” on page 1-87.)

If the device failed the diagnostic test, it can provide additional
information about the reason for the failure through a Read
Completion $tatus command or a Run Diagnostic Control Block
command.

The subsystem or device might need to be reset before any
diagnostic data can be obtained by a Run Immediate Diagnostic
Test command.

This code is reserved.

This code is device dependent.

Detailed explanations of interrupt handling are provided in
“Signalling Protocol” on page 3-13.

Device Number Field: The Device Number (Device) field identifies
the device that presented the interrupt status.

Command Busy/Status Port

This 8-bit port has two functions:

1-24

After an immediate command or command-control-block address

is submitted, the Command Busy/Status port is read to determine

the status of the command or control block. The system must
allow the subsystem a predefined period of time before

attempting to read this port.

It also indicates whether the subsystem has a valid interrupt

value present in the Interrupt Status port. The Interrupt Status

port should not be read unless the Command Busy/Status port
indicates that the interrupt is valid.

I/0 Address Space — January 1991

The Command Busy/Status port is shown in the following figure and
is followed by a description of the individual bits.

7 5 4 3 2 1 8

Status REJ | DD oD v B

Figure 1-15. Command Busy/Status Port

Blts 7—5 The status bits indicate the reason that the command or
control block has been rejected. If the reject bit is 0, the
status bits are undefined and should be ignored. (See
“Delivery-Leve! Protocols” on page 3-10 for more details
on command and control-block submission.)

The encoded values and meanings of the status bits are
shown in the following table.

110 Address Space-January 1991 1-25

Code

000
oo1

010

100

101

Regerved
Device Not Available

The subsystem determined that a device cannot perform the
command or process the control block. The condition is
cleared by the Reset Device or Reset Subsystem command.

Invalid Command

The subsystem does not recognize an attention code in the
Attention port, or an immediate command is not a valid
command.

Device Busy

A device is busy executing a command or processing a control
block and cannot accept a new command or control block.

Device Control-Block Execution Suspended

The device has been put into a suspended state. It can be resat
by the Resume, Reset Device, or Reset Subsystem command.

Invalid Device Number

The Device Number field of the Attention port contains an
invalid value.

Aeserved
Device Limits Reached

The device’s internal capacity to accept another command has
reached its limit. The condition will be cleared as the device
completes the execution of commands and the system accepts
and resets interrupts from the device. If the condition persists,
it can also be cleared by a Reset Device or a Reset Subsystem
command. {See “Signalling Protocoi” on page 3-13 for details.}

Figure

Bit4

Bits 3, 2

1-16. Command Busy/Status Port — Status Bit Encoding

The reject (REJ) bit indicates that the subsystem has
rejected a command or control block submitted through
the Command ports and Attention ports. The reason is
encoded in the status bits in the Command Busy/Status
port. See Figure 1-17 on page 1-27 for details about this

These bits are device dependent.

1-26 /O Address Space —January 1991

Bit1 The interrupt-valid (IV} bit is set to 1 whenever the
subsystem writes an interrupt value into the Interrupt
Status port. When this bit is set to 1, the Interrupt Status
port contains a valid interrupt identifier and device
number. When this bit is set to 0, the Interrupt Status port
does not contain a valid interrupt value. {For details on

M—
interrupts, see “Signalling Protocol” on page 3-13.)

Bit0 The busy (B) bit indicates whether the Command port and
Attention port are currently being used or whether a
hardware-controlled reset is in progress. The following
table shows encoding of the busy bit and the reject bit.

Busy Reject

Bit Blt Description

0 0 Writing to the Command port and Attention port is not
blocked.

o 1 Reserved,

1 0 Writing to the Command port and Attention port is blocked.
The maximum time for this condition is specified in the
configuration data.

1 1 Writing to the Command port and Attention port is blocked
because the previous command has been rejected. This
condition is cleared by seftting the reset-reject bit in the

— Subsystem Contral port to 1.

Figure 1-17. Busy-Bit And Reject-Bit Settings

] \‘—'

;i I/0 Address Space —January 1891 1-27

Device Interrupt Identifier Port

This optional port indicates which devices have control-block logical
interrupts pending. When a bit is set to 1, it indicates that the device
associated with the bit has at least one control-block logical interrupt
waiting to be serviced. The interrupt status associated with the
control block has been stored in the termination status block. When a
bit is set to 0, it indicates that no control-block logical interrupts have
been posted for that device. Bits can be reset with the Reset Control
Biock Interrupt command.

The following figure shows the format and content of the Device
Interrupt Identifier port.

—

Figure 1-18. Device Interrupt Identifier Port

Each bit, starting with bit 0, has a one-to-one correspondence with a
physical device. For example, bit 0 represents the subsystem (device
0); bit 1 represents device 1. When the subsystem supports more
than 15 devices, the devices are assigned to additional Device
Interrupt identifier ports consecutively, starting at bit-position 0. For
example, a subsystem that has 17 attached devices requires two
Device Interrupt Identifier ports, bits 0 and 1 in the second Device
Interrupt Identifier port are assigned to devices 16 and 17,
respectively.

The Read Configuration command can be used to determine the
number of Device Interrupt Identifier ports supported by a subsystem.
{See “Read Configuration” on page 1-63.) For more information
about the use of the Device Interrupt [dentifier ports, see “DIIP
Interrupts (Multiple Form}” on page 3-26.

1-28 |/O Address Space —January 1991

Memory Address Space

In the Locate mode, shared memory is used to hoid command control
blocks, indirect lists, termination status blocks, and data. Eachis
described in detail 1ater. The organization of shared memory is
described in the System Resource description of the in Part 1, SCB
Architecture Overview,

Control Structures

The Locate mode uses the following control structures: the command
control block, the termination status block, and the indirect list.

Command Control Blocks

In the Locate mode, command control blocks are used to exchange
control and status information between a client and a server.
Command control blocks are variable-length areas in the system’s
memory address space containing the commands and arguments
passed to a subsystem. These arguments describe the operation to
be performed.

There are two formats for command control blocks: base and
extended. The base command control block can use only one
memeory operand at a time and can increment only the memory
address associated with the operation.

The extended command control block can use two memory operands
in a single operation and can increment or decrement each memory
address independently. The additional fields in the extended
command control block used to support the additional functions are
Enable Word 2 and Byte Count 2.

Control Structures —January 1991 1-29

Some important characteristics of the command control block are:

« Command control blocks can be chained to other command
control blocks.

s After a command control block is sent to a subsystem, it is
read-only to a system master and to a device or subsystem.
Command control blocks can be modified by the system master
before being sent or after the device or subsystem has completed
the task.

s Command cantrol blocks must be aligned on a doubleword
memory boundary.

+ Extended termination status blocks must be used with extended
command control blocks, and base termination status blocks
must be used with base command control blocks.

* All memory addresses contained within a command control block
must be specified as physical addresses.

* A device or subsystem in a feature adapter is reguired to read
only those command-contral-block fields that it needs.

1-30 Control Structures —January 1991

The following figure shows the format of the base and extended
command control blocks.

11
1 65 Q

Enable Word 1 Command Word

Memory Address 1 or Device Dependent

Memory Address 2 or Device Dependent

Byte Count 1 or Device Dependent

Termination Status Block Address

Chain Address 1 or Device Dependent

Chain Address 2 or Device Dependent

Chain 1D Reserved Pev. Dep. Size
Reserved Enable Word 2
Extended
Byte Count 2 or Device Dependent Control
Block
Reserved Onty
{ /

Device Dependent Area

Figure 1-19. Command Control Block Structure

Command Word

The Command Word identifies the operation to be performed by a
subsystem or device. The following figure shows the format of the
Command Word and a description of each field.

1 111 1 1
5 432 1 ©0 9 B 7 0
A Opts [R | R[R|R Op Code

Figure 1-20. Command Word Format

Control Structures —January 1991 1-31

Bit 15 The architected (A) bit indicates whether the
command specitied in the Op Code field is an
architecture-defined command or one that is specific
to the device. When this bit is set to 1, the Op Code
field contains an operation code defined by the
architecture. When this bit is set to 0, the operation
code is device dependent. (See “Control-Block
Commands” on page 1-55 for definitions of
architected commands.})

Bits 14— 12 The Options (Opts) field is uvsed to modity or qualify
the operation performed for each of the architected
commands. The meaning of each bit depends on the
command (see the specific command for the meaning
and use of these bits).

Bits 11-8 These bits are reserved.

Bits 70 The Op Code field is used to identify the specific
command to be performed. The value used can be
for commands defined by the architecture, or it can
be for a command that is defined by and specific to
that subsystem or device. Bit 15, the architected bit,
indicates whether the op-code value is architecture
defined or device dependent.

For commands defined by the architecture, the
op-code values are as follows.

Value Meaning

0000 0000 No Operation

0000 0001 Read

0000 0010 Write

0000 101 Run Diagnostic Test

0000 0110 Initialize Device

0000 111 Read Completion Status

0000 1010 Read Configuration

All architected values not shown are reserved.

Figure 1-21. Architected Op Codes

»'

1-32 Control Structures — January 1991

Enable Word 1

Enable Word 1 defines parameters to be used with this command
control block. The following is the format of Enable Word 1 and a
description of each field. DD indicates that the bit position is device
dependent and that the bit can be used by individual subsystems and
devices for specific needs.

5 4 3 2 1 © 9 8 7 6 5 43 21 0

DD |TSB|DD $IL1|SEL|SESIDD [EXT|DI |MAZ|MAl| CCS |CC [CNE

Figure 1-22. Enable Word 1 Format

Bit15 This bit (DD) can be used for applications that are
device dependent.

Bit 14 The conditional termination-status-biock (TSB) bit
specifies whether status is stored for this command
control block. When this bit is set to 0, a termination
status block is stored for this command control block.
When this bit is set to 1, the termination status block is
stored only when an error or exception occurs while the
command control block is being executed. (Whenever
an error or exception occurs, a termination status block
is stored, regardless of whether the condition is
suppressed.)

Note: Independent of the setting of this bit, End Status
Word 1 in the termination status block is stored
whenever the Device Interrupt Identifier port is
supported and an interrupt is generated at the
completion of the command controi biock (that is,
the disable-interrupt bit is set to).

Bit 13 This bit and bits 15 and 9 can be used for
device-specific parameters.

Bit 12 The indirect-list-1 (IL1) bit specifies whether an indirect
list (used to chain data) is being used with this
command control block. If this bit is set to 1, an indirect
list is being used (an indirect list must beginon a
doubleword boundary). If this bit is set to 0, an indirect

Control Structures —January 1891 1-33

Bit H1

Bit 10

list is not being used. Refer to “Data Chaining” on
page 4-10 for additional information on using indirect
lists.

Figure 1-23 on page 1-36 describes the use of, and
restrictions on the use of, the indirect-list-1 bit.

The suppress-exception-long (SEL) bit specifies whether
a long-length exception is to be treated as a major
error. (Refer to “Long-Length Exception” on page 5-11
for more information on long-length exceptions.)

If this bit is set to 1, a iong-length exception condition is
not treated as a major error. If this bit is set to 0, the
exception is treated as a major error.

When a long-length exception occurs, the
long-length-exception bit in End Status Word 1 is set to
1. The residual byte count and residual buffer address
are stored in the termination status block. A single
residual byte count and residual buffer address are
stored in the appropriate field if only one of the Memory
Address fields is specified in the command control
block. When both Memory Address fields are used, two
sets of residual byte counts and residual buffer
addresses are stored.

The suppress-exception-short (SES) bit specifies
whether a short-length exception is treated as a major
error. Refer to “Short-Length Exception” on page 5-9
for more details on short-length exceptions.

If the suppress-exception-short bit is setto 1, a
short-length-exception condition is suppressed and is
not treated as a major error. If the
suppress-exception-short bit is set to 0, the exception
condition is treated as a major error.

When a short-length exception occurs, the
short-length-exception bit in End Status Word 1 is set to
1. The residual byte count and residual buffer address
are stored in the termination status block. A single
residual byte count and residual buffer address are
stored in the appropriate field if only one of the Memory
Address fields is specified in the command control
block. When both Memory Address fields are used, two

1-34 Control Structures — January 1991

BitS
Bit 8

BT

BIt6

sets of residual byte counts and residual butfer
addresses are stored.

This bit is device dependent.

The extended-structure (EXT) bit indicates whether this
command control block is a base or extended command
control block. When this bit is set to 1, the command
control block is an extended command control block.
When this bit is set to 0, the command control block is a
base command control block.

The disable-interrupt (DI} bit specifies whether the
subsystem generates an interrupt after the normal
processing of this command control block is completed
or only when an error or exception occurs.

When this bit is set to 1, no interrupt is generated upon
completion of the command control block. When this bit
is set to 0, an interrupt is generated upon completion of
the command control block.

If an unsuppressible error or exception occurs during
control-block processing, an interrupt is generated,
regardless of the setting of this bit.

The memory-address-2-selected (MA2) bit indicates
whether the Memory Address 2 field contains a physical
address to be used in the operation specified. If this bit
is set to 1, the Memory Address 2 field contains an
address, and the field operates as defined by the
architecture. If this bit is set to 0, the Memory Address
2 tield can be used as a device-dependent field.

For the base command control block, the Memory
Address 1 field and the Memory Address 2 field are
mutually exclusive because only one memory operand
can be specified. The extended command controi block,
however, can use operations that specify two memory
operands.

Figure 1-23 on page 1-36 describes the use of, and
restrictions on the use of, the
memory-address-2-selected bit.

Control Structures —January 1991 1-35

Bit5 The memory-address-1-selected (MA1) bit indicates
whether the Memory Address 1 field contains a physical
address to be used in the operation specified. If the bit
is set to 1, the Memory Address 1 field contains an
address, and the field operates as defined by the
architecture. If the bit is set to 0, the Memory Address 1
field can be used as a device-dependent field.

For the base command control block, the Memory
Address 1 field and the Memory Address 2 field are
mutually exclusive because only one memory operand
can be specified. The extended command control biock
can use operations that specify two memory operands.

The following figure describes the use of, and
restrictions on the use of, the
memory-address-1-selected bit, the
memory-address-2-selected bit, the extended-structure
bit, and the indirect-list-1 bit. For a description of how
to use indirect lists, see “Data Chaining” on page 4-10.

1-36 Control Structures —January 1991

it1 EXT

MA2

MA1

Description

Neither Memory Address nor Byte Count is selected.
Both fields are device dependent.

Memory Address 1 and Byte Count 1 are selected.
The address can only be incremented.

Memory Address 2 and Byte Count 1 are selected.
The address can only be incremented.

Invalid combination. Two memory operands require
extended format.

Memory Address 1 and Byte Count 1 are selected.
The address can be incremented or decremented.

Memory Address 2 and Byte Count 2 are selected.
The address can be incremented or decremented.

Memory Address 1, Byte Count 1, Memory Address
2, and Byte Count 2 are selected. Any of these
addresses can be incremented or decremented.

Memory Address 1 and Byte Count 1 are selected.
The address points to an indirect list; the buffer
addresses are incremented.

Memory Address 2 and Byte Count 1 are selected.
The address points to an indirect list; the buffer
addresses are incremented.

Memory Address 1 and Byte Count 1 are selected.
The address points to an indirect list; the buffer
addresses are incremented or decremented.

Memory Address 1 and Byte Count 1 are selected.
The address points to an indirect list; the buffer
addresses are incremented or decremented.
Memory Address 2 and Byte Count 2 are selected.
The address can be incremented or decremented.

Noles:

1. X means “don‘t care.”

2. If two memory operands are being used, the operation code determines
whether ane memory operand is the source of the dala and one is the target,
or whether both operands act as sources or targets.

Figure 1-23. Memory-Addressing-Control Encoding

Bits4—-2

The chain-condition-specification (CCS) bits specify the
conditions that must exist for chaining to continue. The
conditions under which chaining will continue are listed
in the following figure.

Control Structures ~ January 1991 1-37

Yalue Condition

000 An error or exception occurred that was not suppressed, cther than
specification errors, hardware failures while reading a command
control block, or hardware failures while storing a termination status
block.

001 The command control block is completed, and the associated
termination status block indicates that additional device-dependent
data is available.

010-111 These candition codes are reserved.

Figure 1-24. Chain-Condition-Specification Encoding

When the conditional-chaining bit is set to 0, these bits
are ignored. See Figure 1-25 for the setting of
conditional-chaining and other related bits.

Bit 1 The conditional-chaining (CC) bit specifies whether
conditional chaining is enabled or disabled. If this bit is
set to 1, conditional chaining is enabled. If this bit is set
to 0, conditional chaining is disabled.

See Figure 1-25 for the setting of this and other related
bits.

Bit 0 The chain-no-error (CNE) bit indicates whether
unconditional chaining is enabled. If this bit is set to 1,
unconditional chaining is enabled. If this bit is set to 0,
unconditional chaining is disabled.

The following figure shows the relationship among the
chaining bits: chain-no-error, conditional-chaining, and
chain-condition-specifications.

Maet
CNE CC Chain Subaystem Chain Action
Conditions
4] 0 X No chaining active.
1] 1 No Halt chaining.
X 1 Yes Chain to Chain Address 2.
1 0 X If no error or error is suppressed, chain to Chain
Address 1; otherwise, halt chaining.
1 1 No If no error or error is suppressed, chain to Chain

Address 1; otherwise, halt chaining,

Note: X means “don’t care.”

Figure 1-25. Chaining-Bit Settings

1-38 Control Structures — January 1991

Memory Address 1

The Memory Address 1 field is a 32-bit field. If the
memory-address-1-selected bit is set to 1, this field contains the
physical address of the source or target memory address to be used
in this operation. If the memory-address-1-selected bit is set to 0, the
field can be used for device-dependent parameters.

When the Memory Address 1 tield is selected and an indirect list is
being used, this field points to an area in memory that contains a list
of addresses and byte counts used as the source or destination of the
data transfer. (See “Data Chaining” on page 4-10 for additional
information on indirect lists.)

When the Memory Address 1 field is selected and an indirect list is
not being used, this field contains the physical address of the buffer
in memory that is used as the source or destination of the data
transfer.

Memory Address 2

The Memory Address 2 field is a 32-bit field. If the
memory-address-2-selected bit is set to 1, this field contains the
physical address of the source or target memory address to be used
in this operation. If the memory-address-2-selected bit is set to 0, this
field can be used for device-dependent parameters.

When the Memory Address 2 field is selected and an indirect list is
being used, this field points to an area in memory that contains a list
of addresses and byte counts used as the source or destination of the
data transfer. (See “Data Chaining” on page 4-10 for additional
information on indirect lists.)

When the Memory Address 2 field is selected and an indirect list is
not being used, this field contains the physical address of the butfer
in memory that is used as the source or destination of the data
transfer.

Control Structures — January 1991 1-39

Byte Count 1

The Byte Count 1 field is a 32-bit field that contains the number of
bytes to be transferred. The value contained in this field depends on
whether an indirect list is used. (See Figure 1-23 on page 1-36 for bit
settings that control the use of this fieid.)

If an indirect list is not being used, this field contains the number of
bytes to be transferred. If the count specified is 0, no data is
transferred.

If an indirect list is being used, this field contains the number of bytes
in the indirect list, not the number of bytes to be transferred. The
byte count must be a multiple of 8 because each indirect-list entry
consists of 8-byte elements (a 32-bit physical address and a 32-bit
byte count). The sum of all byte ¢ounts in the indirect list is the
number of bytes to be transterred. If the sum of all byte counts is 0,
no data is transferred.

This field can be used for device-dependent parameters if neither
Memory Address field is used or if, in the extended format, the
Memory Address 1 field is not used.

Termination Status Block Address

The Termination Status Block Address field is a 32-bit field. It
contains the physical address of a doubleword-aligned memory area
that is used by the subsystem to store the termination status block for
this command controf block. Refer to “Termination Status Blocks” on
page 1-43 for a description of the termination status block.

Chain Address 1

The Chain Address 1 field is a 32-bit field that contains the physical
address of the next command control block to be processed by a
device or subsystem. All command control blocks are aligned on
doubleword addresses.

If the chain-no-error bit is set to 0, the Chain Address 1 field can be

used for device-dependent parameters. (See Figure 1-25 on
page 1-38 for bit settings that control the use of this field.)

1-40 Control Structures — January 1991

Chain Address 2

The Chain Address 2 field is a 32-bit field that contains the physical
address of the next command control block to be processed by a
subsystem or device when conditional chaining is enabled. The
Chain Address 2 field is used when conditional chaining is enabled
and the command control block is completed in a manner that
matches the condition set in the chain-condition-specification bits.

If the conditional-chaining bit is set to 0, the Chain Address 2 field can
be used for device-dependent parameters. (See Figure 1-25 on
page 1-38 for bit settings that control the use of this field.)

Device Dependent Slze

The Device Dependent Size field is an 8-bit field containing a count of
the number of bytes in the device-dependent area of the command
control block.

Chain 1D

This field is reserved.

Enable Word 2

The Enable Word 2 field is a 16-bit field and is available only in the
extended command control block. The field specifies additional
parameters to be used when the extended command control block is
processed. The following tigure describes the Enable Word 2 tields.

Reserved DECZ|DEC1|iL2

Figure 1-26. Enable Word 2 Format {(Extended Command Control Block)

Bits 15—3 These bits are reserved.

Control Structures — January 1991 1-41

Blt 2

Bit1

Bit 0

Byte Count 2

The decrement-memory-address-2 (DEC2) bit specifies
whether the memory address pointed to by the Memory
Address 2 fieid is to be decremented or incremented
when Memory Address 2 is selected. When the Memory
Address 2 field is not selected, this bit has no effect.

If this bit is set to 1, the buffer addresses are
decremented as data is transferred. If this bit is set to
0, the buffer addresses are incremented.

The decrement-memory-address-1 (DEC1) bit specifies
whether the memory address pointed to by the Memory
Address 1 field is to be decremented or incremented
when Memory Address 1 is selected. When the Memory
Address 1 field is not selected, this bit has no effect.

If this bit is set to 1, the buffer addresses are
decremented as data is transferred. If this bit is set to
0, the buffer addresses are incremented.

The indirect-list-2 (IL2) bit specifies whether an indirect
list is being used with the Memory Address 2 field.
{Details on indirect lists are described in “Data
Chaining” on page 4-10)

Note: This bit is valid only when both the
extended-structure and the
memory-address-2-selected bits in Enable Word
1 are setto 1.

When this bit is set to 1 and the

memory-address-2-selected bit is set to 1, the Memory
Address 2 field contains the address of an indirect list.
An indirect list must begin on a doubleword boundary.

When the indirect-list-2 bit is set to 0, the Memory
Address 2 field does not point to an indirect tist.

The Byte Count 2 field is a 32-bit fieid and is available only in the
extended command control block. When the Memory Address 2 field
is selected, the content of this field depends on whether an indirect
listis being used. When the Memory Address 2 field is not selected,
this field can be used for device-dependent applications.

1-42

Control Structures —January 1991

When an indirect list is not being used, this field contains the number
of bytes in the source or destination buffer to which the Memory
Address 2 field points that are to be transferred. If the count specified
is 0, no data is transferred.

When an indirect list is being used, this field contains the number of
bytes in the indirect list, not the number of bytes to be transferred.
The byte count must be a muitiple of 8 because each indirect-list
entry consists of an 8-byte element (a 32-bit physical address and a
32-bit byte count). The sum of ali byte counts in the indirect list is the
number of bytes to be transferred. If the sum of all byte counts is 0,
no data is transtferred.

Termination Status Blocks

Termination status blocks are areas in shared memory that are used
by a device or subsystem to report the ending status of a command
control block to the software in the system master. The location of a
termination status block is contained in the TSB Address field of the
command control block in which it is used.

Command Contrel Block 1

788 1
TSB Address >
Chain Address ——]
Command Control Block 2
e
TSB 2

TS8 Address >

Figure 1-27. Termination Status Blocks
A termination status block is structured so that the status information

it contains can be read and interpreted by software in the system
master, regardless of the control-block command processed.

Control Structures — January 1981 1-43

The area allocated to the termination status block must not be
modified by the system master after its associated command control
block has been delivered to the subsystem. The system software
should initialize the End Status Word 1 field in the termination status
btock to 0 prior to delivering the command control block to the
subsystem. This allows the software to do a simple nonzere check of
the End Status Word 1 field in the termination status block to
determine whether the termination status block was stored upon
command-control-block completion.

Any command control block in a chain can suppress the storing of the
termination status block for normal completion of the command
control block. However, the termination status block is always stored
when a command control block is suspended, terminated by an error,
reports a suppressed error, or follows a conditional chain, When
accompanied by an interrupt to the system master, a termination
status block allows a program to monitor a device’s progress through
a chain of command control blocks.

The Subsystem Control Block architecture supports two formats of
termination status blocks: base and extended. The difference
between them is the addition of two fields for the extended format:
the Residual Byte Count 2 field and the Residual Butfer Address 2
field.

The base format of the termination status block is used by a device or
subsystem to report the ending status of a base command control
block. A base termination status block is always 32 bytes in length.

The structure of the base termination status block is shown in the
following figure,

1-44 Control Structures — January 1991

3 11
1 65]
End Status Word 2 End Status Word 1
Residual Byte Count 1
Residual Buffer Address 1
Device Dependent Data Area Device Dependent Data Size
! !

Figure 1-28. Base Termination Status 8lock

The extended format of the termination status block is used to report

the ending status of an extended command control block. An

extended termination status block is always 40 bytes in length. The

following tigure shows the structure of the extended termination
status block and a description of each of the individual fields.

3 11
1 65 0

End Status Word 2 End Status Word 1

Residual Byte Count 1

Residual Buffer Address 1

Residua) Byte Count 2

Residual Buffer Address 2

Device Dependent Data Area Device Dependent Data Size

/ {

a

Figure 1-29. Extended Termination Status Block

Control Structures —January 1991

1-45

End Status Word 1

End Status Word 1 is a 16-bit structured field that indicates how a
command in the associated command control block was processed.
Information is placed in this field by the device or a subsystem when:

* The command control block was completed with an error
(including suppressed errors).

+ The command control block was completed without error but had
requested that a termination status block be stored
unconditionally (the TSB bit in Enable Word 1is 0).

* The command control block was suspended by a Suspend
command.

+ The device addressed in the Attention port supports the Device
Interrupt Identifier port {refer to “Signalling Protocol” on
page 3-13 for a description), and an interrupt was requested
upon normal comptetion of the command controt block.

When the termination status block is written, End Status Word 1 must
be the last portion of the status information stored; the update is done
prior to requesting a system interrupt. The system should reset this
field to 0 prior to delivering a command control block to a device or
subsystem. The system can then test this field for a nonzero value to
determine whether the termination status block has been stored.

The format of End Status Word 1 is shown in the following figure. It is
followed by a description of the content, meaning, and use of each of
its individual bits.

ES [SUS|CD |ME |INI|DO TSA [INT|R |[LLE[SC (DD |DD [SLEfD

Figure 1-30. End Status Word 1 Format

1-46 Control Structures — January 1991

—

Bit 15

Bit 14

BIt 13

Bit 12

The extended-status (ES) bit indicates how the End
Status Word 2 field is being used. When this bitis 1, the
End Status Word 2 field contains status information as
defined by the architecture. When this bit is 0, End
Status Word 2 can be used as a device-dependent field.

The suspended (SUS) bit indicates that a Suspend
command has been received during the execution of
this command control block. The device has entered
the suspend state after completing the execution of this
control block.

When this bit is 1, the processing of the associated
command control block has been completed; however,
the device is in the suspended state and will not allow
execution of any more command control blocks. When
this bit is 0, the processing of control blocks has not
been suspended.

The chain-direction (CD) bit indicates whether the
address in the Chain Address 2 field of the current
command control block has been used to obtain the
next command control block in the chain.

When this bit is 1, the Chain Address 2 field has been
used as the pointer to the next command control block
in the chain. When this bit is 0, the Chain Address 2
field has not been used.

The major-errar/exception (ME) bit is used to indicate
whethar a major error or exception has occurred in the
processing of the associated command control block.

When this bit is 1, the command in the associated
command control block has been completed
unsuccessfully. The interrupt-requested bit is also set
to 1 because an interrupt must be requested when a
major error or exception is detected.

When this bit is set to 0, the command in the command
control block has been completed without major errors
or exceptions.

Control Structures — January 1991 1-47

Bit 11

Bit 10

Bits 9, 8

The device-not-initialized (INI) bit indicates whether a
device has completed initialization.

When this bit is 1, the device has not completed the
initialization sequence. When this bit is 0, the device
has completed the initialization sequence.

The device-overrun (DO) bit indicates that a device
overrun has been detected.

When this bit is 1, the device has lost data because of
an overrun. The device also sets the
major-error/exception and interrupt-requested bits to 1.
When this bit is set to 0, the device has not detected an
overrun.

See "Device-Overrun Exception” on page 5-14 for a
definition of the condition and the actions taken.

The TSB-available (TSA) bits contain an encoded value
that indicates the amount of status information stored in
the termination status block and whether more status
information is available, The value and meaning of
these bits are as shown in the following figure.

Value

01

10

1"

Status information has been placed in End Status Word 1.

All fields, except for the Device Dependent Data Size and the Device
Dependent Area, contain status information.

All fields, including the Device Dapendent Area, contain status
information. The Device Dependent Data Size field specifies the
number of bytes of device-dependent data stored.

Up to 1B bytes of device-dependent data can be stored in a
termination status block. If the value in the Device Dependent Data
Size field exceeds 18, the Read Completion Status command must be
used to retrieve this additional data. See "Read Compietion Status”
on page 1-80 for more details on Read Completion Status.

All fields of the termination status block, except for the Residual
Buffer Address and Residual Byte Count fields, contain status
information. The value of the Device Dependent Data Size field
specifies the number of byles of device-dependent data stored.

Figure

1-31. TSB-Available Bit Encoding

1-48 Control Structures — January 1991

Bit 7

Bit 6
Bit5

Bit4

Bits 3, 2

Blt1

The interrupt-requested (INT) bit indicates whether an
interrupt has been requested for the associated
command control block. When this bit is set to 0, an
interrupt has not been requested.

When this bit is 1, an interrupt has been requested for
the completed command control block.

This bit is reserved.

The long-length-exception (LLE) bit indicates whether a
long-length exception has been detected.

See “Long-Length Exception” on page 5-11 for the
definition of the condition and the actions taken when
the candition occurs. When this bitis setto 1, a
long-length exception has occurred. When this bit is set
to 0, a long-length exception has not occurred.

The specification-check (SC) bit indicates that an invalid
field has been detected in the command control block.
Checking the command control block for valid fields is
optional.

When this bit is 1, checking has been performed, and an
invalid field has been found. The operation is
terminated, and no data is transferred. When this bit is
0, either the fields have not been checked or an invalid
field was not detected.

See “Specitication Exception” on page 5-13 for
definitions of the conditions and the actions to be taken
when a condition is detected.

These bits (DD) are device dependent and contain
information meaningful only to the specific device
implementation.

The short-length-exception {SLE) bit indicates whether a
short-length exception has been detected. When this bit
is set to 1, a short-length exception has occurred. When
this bit is set to 0, a short-iength exception has not
occurred. See “Short-Length Exception” on page 5-8
for the definition of the condition and the actions taken
when the condition is detected.

Control Structures —January 1991 1-49

BH O The done (D) bit indicates whether the command in the
associated command control block was completed
without error.

When this bit is 1, the associated command control
block has been completed without an errar or
exception. When this bit is 0, other bits defined in End
Status Word 1 must be checked to determine the status
of the associated command contral block.

End Status Word 2

The End Status Word 2 field is a 16-bit structured field used to hold
additional status information. This field can also be used as a
device-dependent fisld, depending on the setting of the
extended-status bit in End Status Word 1.

The architected format of End Status Word 2 is shown in the following
figure and is followed by a description of the individual bits.

Reserved cT

Figure 1-32. End Status Word 2 Format

Bits 151 These bits are reserved.

BitO The command-type {CT) bit is always set to 0.

Reslidual Byte Count 1

The Residual Byte Count 1 field is a 32-bit field that is aligned on a
doubleward boundary and contains the number of bytes that remain
to be read into, or written from, the buffer identified by the address in
the Residual Buffer Address 1 field.

This field must be provided when either a short-length or long-length
exception condition is indicated. If neither the short-length-exception
bit nor the long-length-exception bit in End Status Word 1 is used, this
field is optional. For more detail see “Residual Byte Count” on

page 5-19.

1-50 Control Structures — January 1991

Residual Buffier Address 1

The Residual Buffer Address 1 field is a 32-bit field that Is aligned on
a doubleword boundary and identifies the buffer last read from, or
written to, in the associated command control block.

If the associated command control block buffer is not a data chain
element in an indirect list, this field contains the address of the buffer
{Memory Address 1 or Memory Address 2) as indicated by bits in
Enable Word 1 of the command control block.

If the associated command control block buffer is a data chain
element in an indirect list, this tield containg the address of the bufter
in the data-chain element that was most recently used to transfer
data.

This field must be provided when either a short-length or long-iength
exception condition is indicated. If neither the short-length-exception
bit nor the long-length-exception bit in End Status Word 1 is used, this
field is optional. For more detail see “Residual Butier Address” on
page 5-20.

In the extended termination status block, this field pertains only to the
Memory Address 1 field of the command-control-block structure. It is
used to identify the data transfer buffer that was located through
Memory Address 1.

Note: Software in the system master can use the Residual Buffer
Address 1 and Residual Buffer Count 1 fields to determine how
far a command has progressed toward completion. The
encoded value of the TSB Available (TSA) field in End Status
Word 1 indicates whether these two fields have been stored by
the device. For more details, see “Number of Bytes
Transtferred” on page 5-21.

Residual Byte Count 2

The Residual Byte Count 2 field is present only in an extended
termination status block. It is a 32-bit field that is aligned on a
doubleword boundary and contains the number of bytes that remain
to be read into, or written from, the buffer identified in the Residual
Buffer Address 2 field.

Control Structures —January 1991 1-51

This field must be provided when either a short-length-exception or
long-length-exception condition is indicated by the
short-length-exception (SLE) bit or the long-length-exception (LLE) bit
in End Status Word 1. If neither the short-length-exception (SLE) bit
nor the long-tength-exception (LLE) bit is used, this field is optional
and does not need to be reported. Refer to “Residual Byte Count” on
page 5-19 for a detailed description of this tield.

Residual Buffer Address 2

The Residual Buffer Address 2 field is present only in an extended
termination status block. It is a 32-bit doubleword-aligned field
identifying the buffer last written to or read from in the associated
command control block.

If the associated command-control-block buffer is not a data-chain
element in an indirect list, this field contains the address of the buffer
(Memory Address 2).

if the associated command-control-block buffer is a data-chain
element in an indirect list, this field contains the address of the buffer
in the data-chain element that was most recently used to transfer
data.

This field must be provided when either a short-length-exception or
long-length-exception condition is indicated by the
short-length-exception (SLE) bit or the long-length-exception {LLE) bit
in End Status Word 1. If neither the short-length-exception (SLE) bit
nor the long-length-exception (LLE) bit is used, this field is optional
and does not need to be reported. Refer to “Residual Buffer
Address” on page 5-20 for a detailed description of this field.

Note: Software in the system master can use the Residual Buffer
Address 1, Residual Buffer Count 1, Residual Buffer Address
2, and Residual Buffer Count 2 fields to determine how far a
command has progressed toward completion. The encoded
value of the TSB Available (TSA) field in End Status Word 1
indicates whether these two fields have been stored by the
device. For more details, see “Number of Bytes Transferred”
on page 5-21.

1-52 Control Structures - January 1991

Device Dependent Data Slze

The Device Dependent Data Size field is a 16-bit field that is used to
indicate the number of bytes of device-dependent data stored by a
device or subsystem as a result of the associated command control
block. If the value of this field exceeds 18 bytes, a Read Completion
Status control-block command must be issued to retrieve the data
beyond byte 18. Refer to “Read Completion Status” on page 1-60 for
details on the Read Completion Status command.

The validity of this field is determined by examining the encoded
value of the TSB-available bit in End Status Word 1.

Device Dependent Data Area

The Device Dependent Data Area is an 18-byte field used to hold a
maximum of 18 bytes of device-dependent data. The amount of
device-dependent data contained within the field is indicated by the
value in the Device Dependent Size field.

Indirect-List Structure

An indirect list is a variable-length list consisting of the address-count
pairs used to support data chaining. Both the location of the indirect
list and its length are specified in the control block. Within the
indirect list, the Address field and the Gount field are each
douvleword fields. The format and content of an indirect list is shown
in the following figure.

Control Structures —January 1981 1-53

In Command
Control
Block

Indirect
List

Start Address cf Indirect List

Length of Indirect List

Buffer 1 Start Address

Buffer 1 Byte Count

Buffer n Start Address

Buffer n Byte Count

Figure 1-33. Indirect-List Format

1-54 Control Structures — January 1991

Commands

In the Locate mode, there are two types of commands: control-block
commands and immediate commands.

Control-Block Commands

The Locate mode architecture defines a number of control-block
commands that have common uses. This section describes these
commands and their associated command control blocks. These
commands are defined in alphabetic order. The architected
control-block commands are:

s |nitialize Device

* No Operation

* Read

Read Completion Status
Read Configuration

Run Diagnostic Test
Write.

Control-block commands are primarily concerned with the transfer of
data. Therefore, the semantics of commands that transfer data folliow
those of the Read and Write commands.

All control-block commands can be in the form of the base or
extended command control blocks and can use indirect lists. The
semantics of commands transferring indirect data in read and write
operations are defined in “Reading with a Base Control Block and
Indirect Lists” on page 4-12 and “Writing with a Base Control Block
and Indirect Lists” an page 4-14. The semantics of interrupts used in
control-block commands follow those described in sections
“Signalling Protocol” and “Exception Conditions” on page 5-9.

Initialize Device

The Initialize Device command is used to write initialization data to a
device. Prior to receiving initialization data, a device might not be
able to execute its entire command set. However, prior to
initialization, the device must be able to execute the Read
Configuration command and the Initialize Device command.

Commands — January 1991 1-85

The Memory Address 2 field points to initialization data, and the Byte
Count 1 field defines the amount of initialization data to be read by
the device. Data is transferred to the address in a device’s memory,
using the same semantics as the Write command.

The initialize Device command should be directed only to a device
that requires initialization and that has been put into a state in which
it can be initialized. Attempting to initialize a device that does not
require initialization can cause a specification exception. Software in
the system master can determine whether a device needs to be
initialized by issuing the Read Configuration command.

The Initialize Device command has the option to request an interrupt
when the command is completed without an error or with a
suppressed error.

3322222222221111111111
1098765432109876543210987654321¢0

Erabte Word 1 ARLC| Res [DOOOD110

Start Address or Device Dependent

Memory Address of Source

Byte Count 1

Termination Status Block Address

Chain Address 1 or Device Dependent

Chain Address 2 or Device Dependent

Chain ID Reserved Dev. Dep. Size

/ . /
Device Dependent Area

Figure 1-34. Initialize Device Control Block

1-56 Commands— January 1991

Optlons

The following options are used with the Initialize Device command,; if
the device or subsystem does not support these options, a
specification error can result.

Bit 14 The restart (R) bit specifies whether a device restarts
initialization or continues from a previous point. If this bit
is set to 1, the initialization sequence starts at the
beginning. If this bit is set to 0, the sequence continues
from a prior point.

Bit13 The location (L} bit specifies whether the Start Address
field, used as a data load point, is a destination address
that is internal to the device. If this bit is set to 1, the Start
Address field is an internal load point. If this bit is set to
0, the Start Address field is available for device-dependent
applications.

Bit12 The complete (C) bit specifies whether the device should
complete initialization with this command. If this bit is set
to 1, the device should complete initialization. If this bit is
set to 0, the device should not complete initialization.

if this bit is set to 1 and the device can complete its
initialization, the device-not-initialized bit in End Status
Word 1 is set to 0. If initialization cannot be completed
when this bit is selected, the device-not-initialized bit is
setto 1.

No Operation

The No Operation (Noop) command initiates a branching structure
within command chains or requests an interrupt that can signal a
progress point in a command chain.

No data transfer to buffer areas in shared memory is performed.
Memory Address 1 and Memory Address 2 fields do not specify buffer

areas.

This command has the option to request an interrupt when the
command is completed.

Commands —January 1991 1-57

3322222222221111111111
10987654321058765432106987654321¢0

Enable Word 1 Al Opts] Res |0 OOBO0OO0D

Device Dependent

Device Dependent

Byte Count 1

Termination Status Block Address

Chain Address 1 or Device Dependent

Chain Address 2 or Device Dependent

Chain ID Reserved Dev, Dep. Size

{

Device Dependent Area

Figure 1-35. No-Operation Gontrol Block

Read

The Read command transfers data from the device specified in the
Attention port {(source) to a location in shared memory that is pointed

to by the Memory Address 2 field (destination).

This command has the option to request an interrupt when the
command is completed without error or with a suppressed error.

1-58 Commands —January 1991

33zze2z22zz2221111111111
1389876543210987654321098765432180

Enable Word 1 Al Opts| Res 110G O0QGDOO1

Device Dependent

Memory Address of Destination

Byte Count 1

Termination Status Block Address

Chain Address 1 or Device Dependent

Chain Address 2 or Device Dependent

Chain ID Reserved Dev. Dep. Size

/

Device Dependent Area

Figure 1-36. Read Control Block

If an indirect list is specified in this control block (the indirect-list-1 bit
of Enable Word 1 is set to 1), semantics for data movement are
defined in “Reading with a Base Control Block and Indirect Lists” on
page 4-12,

If an indirect list is not specified (the indirect-list bit of Enable Word 1
is set to 0), the Memory Address 2 field contains the starting address
of the destination area. The Byte Count 1 field contains the length, in
bytes, of the data to be transferred. If the Byte Count 1 field is 0, no
data is transferred.

A running count of the number of bytes transferred is maintained
within the device (residual byte count}). This count is developed trom
the initial value in the Byte Count 1 field. As each byte is transferred
from the device, the Residual Byte Count field is decreased by 1. The
operation is compieted when the Residual Byte Count field is 0 or the
device has no more data to transfer. The address in the Memory
Address 2 field is copied to a Residual Buffer Address field in the
termination status block, and the residual byte count is transferred to
the Residual Byte Count field in the termination status block.

When a command control block is completed, a program can obtain
the residual byte count and residual buffer address from the

Commands —January 1991 1-58

associated termination status block to determine the progress of the
operation. Storing these fields in the termination status block is
optional, except when short-length or long-length exception
conditions are detected.

Note: Refer to “Exception Conditions” on page 5-9 for a description
of short-tength and long-length exceptions.

If the residual byte count and residual buffer address are not stored
for a read operation thal is completed with an error, the entire
operation should be performed again.

Data transfers during a read operation can also be terminated
because of irrecoverable errors at the device (other than short-length
and long-length exceptions). The major-error/exception and
interrupt-requested bits in the End Status Word 1 are setto 1to
indicate that a major error occurred and that an interrupt was
requested.

Read Completion Status

The Read Completion Status command allows a program to retrieve
tha completion status of the previous immediate or control-block
command from a device. The data is moved from the device to an
area that is pointed to by the Memory Address 2 field.

Completion status data is transferred to the system master, using the
same semantics as the Read command.

This command must be implemented if a device has the potential to
report more status than can be presented in the termination status
block, or if the device has the potential to report status in response to
immediate commands.

The Read Completion Status command has the option to request an
interrupt when the command is completed without error or with a
suppressed error.

The maximum size of the completion status information depends on

the device and can be determined with the Read Configuration
command.

1-80 Commands —January 1991

33z2z222¢z22221111111111
10987654321098 654321@98?6543210

Enabte Word 1 Al CFCS| Res [0BO0OO 111

Device Dependent

Memory Address of Completion Status Data

Byte Count 1

Termination Status Block Address

Chain Address 1 or Device Dependent

Chain Address 2 or Device Dependent

Chain ID Reserved Dev. Dep. Size

/ . !

Device Dependent Area

Figure 1-37. Read Completion-Status Control Block

Byte Count 1 specifies the number of bytes of completion status data
that the software will read from the device.

The completion status data returned to the system is dependent on
the encoding of the Command for Completion Status field, as
described in the following table. An invalid or unsupported encoding
of this field might raise a specification error.

Value Descripilon

000 The completion-status data to be returned is for the last command
{either immediate or control block) that was executed by the
device prior to execution of this Read Completion Status
command.

001 The completion-status data to be returned is for the last
contrel-block command that was executed by the device prior to
execution of this Read Completion Status command.

oo The completion-status data to be returned is for the last immediate
command that was executed by the device prior to execution of
this Read Completion Status command.

e All other values are reserved.

Figure 1-38. Command for Completion Status Field Encoding

]
,
‘
l'
:
]
r
1
.
:
;

Commands — January 1981 1-61

If the device does not have completion status to report that matches
the specification given in the Command for Gompletion Status field, a
short-length exception condition can be returned to the system
master.

The format of the data returned in response to the Read Completion
Status command is shown in the following tigures. The data block
returned depends on whether the status corresponds to a
control-block command or to an immediate command. The following
figure shows the format of completion-status data when the
previously executed command was an immediate command.

Figure 1-40 on page 1-63 shows the format of completion-status data
when the previously executed command was a control-block
command.

332222 221111111111
109876 1098765432109876543218

3 222
] 432

—

Reserved Immediate End Status Word

Device Dependent

Device Dependent

Device Dependent Area Device Dependent Area Size

/ /

J

Figure 1-39. Completion-Status Data Block for Inmediate Commands

The format, content, and description of the Immediate End Status
Word are the same as those of End Status Word 1 of the termination
status block defined in “End Status Word 1" on page 1-46.

Note: It is suggested that the device return (as device-dependent
data) the immediate command or the address of the control
block with the completion status.

1-62 Commands—January 1991

3322222222221111111111
10987654321098765432109876543210
Reserved 0 Previous TSE Word 0

Previous TSE Word 2 Previous TSE Word 1
Previous TSB Word 4 Previous TSB Word 3
Device Dependent Area Device Dependent Area Size

{ /

Figure 1-40. Completion-Status Data Block for Base Control Blocks
Read Configuration

The Read Configuration control-block command is used to obtain
parametric data about the subsystem or the devices attached to the
subsystem. The device must always be capable of executing this
command, even if the device requires initialization using the Initialize
Device command.

Configuration data is transferred to the system master, using the
same semantics as the Read command. Data is delivered to the
system master in the location pointed to by the Memory Address 2
field.

The Read Configuration command has the option to request an

interrupt when the command is completed without error or with a
suppressed error.

Commands —January 1991 1-63

3322222222221111111 1
1098765432109876543 0 987654321090
Enable Word 1 Al Opts| Res |06000Q101

Device Dependent

Memory Address of Read Configuration Data

Byte Count 1

Termination Status Block Address

Chain Address 1 or Device Dependent

Chain Address 2 or Device Dependent

Chain ID Reserved Dev. Dep. Size

/ . /
Device Dependent Area

Figure 1-41. Read Configuration Control Block

Byte Count 1 specifies the number of bytes of configuration data that
software will read from the device, Byte Count 1 should contain a
value that is equal to at least 44 bytes. Data read beyond the first 44
bytes is device dependent.

If a long-length-exception condition is detected, the system master
can determine the maximum amount of configuration data by
checking the device-dependent-area size and reissuing the command
with the appropriate byte count.

If a short-length-exception condition is detected, the number of valid
bytes returned depends upon the value specified for Byte Count 1.

The following figure shows the format of the read-configuration data

block returned to the system. It is followed by a description of gach of
the configuration data fields.

1-64 Commands— January 1991

332222222222111111¢1111
109876543210987654321069876543210
POS Register 3 |POS Register 2 Attachment 1D

POS Register 7 [POS Register 6 [PQS Register 5 |POS Register 4

Attachment Revision Level Reserved Int Level

Reserved Number Of Devices Supported

Max Device Reset Time [n|u|m Max Subs Reset Time [nfu{m|s

w

Reserved Flags
Max Reset ISP Time nlulm|s| Max Reset CB Int Time |niu|m]s
Reserved Min Cmd Status Time nlu|m|s
DIIP Register Address Max Number Of Queued Ints
Max Size Completion Status DIIP Bit Position
Device Dependent Area Size Max Size Diagnostic Status

Device Dependent Area

Figure 1-42. Read Configuration Data Block

Attachment ID
The Attachment Identification field is a 16-bit field that
contains the ID of the subsystem.

POS Register 2
The POS Register 2 field is an 8-bit field that reflects the
contents of POS Register 2.

POS Register 3
The POS Register 3 field is an 8-bit field that reflects the
contents of POS Register 3.

POS Register 4
The POS Register 4 field is an 8-bit field that reflects the
contents of POS Register 4.

POS Reglster 5
The POS Register 5 field is an 8-bit field that reflects the
contents of POS Register 5.

Commands — January 1991 1-65

POS Register 6
The POS Register 6 field is an 8-bit field that reflects the
contents of POS Register 6.

POS Register 7
The POS Register 7 field is an 8-bit field that reflects the
contents of POS Register 7.

Interrupt Level (Iint Level)
The Interrupt Level field is an 8-bit field that contains the
interrupt level assigned to the specified device at the end
of system initialization.

Reserved
These areas are reserved.

Attachment Revlislon Level
The Attachment Revision Level field is a 16-bit field that
indicates the revision level of the subsystem.

Number of Devices Supported
The Number of Devices Supported on the Subsystem field
is a 16-bit field that indicates the maximum number of
devices that can be attached to the subsystem.

Maximum Subsystemn Reset Time
The Maximum Subsystem Reset Time field is a 16-bit field
that contains the maximum time for the subsystem to
reset. It can be specified in seconds, milliseconds,
microseconds, or nanoseconds, depending on the setting
of the 4 lower-order bits. The bits are defined in the
following figure,

1-66 Commands—January 1991

Bit Name Description

s The seconds bit, when set to 1, indicates that the field is specified
in seconds.

m The milliseconds bit, when set to 1, indicates that the field is

specified in milliseconds.

The microseconds bit, when set to 1, indicates that the field is
specified in microseconds.

The nangseconds bit, when set to 1, indicates that the field is
specified in nanoseconds.

Note: One and only one bit must be setto 1. All other combinations are reserved.

Figure 1-43. Time-Field Specifier

Maximum Device Reset Time

Flags

The Maximum Device Reset Time field is a 16-bit field that
contains the maximum time for the device to reset. It can
be specified in seconds, milliseconds, microseconds, or
nanoseconds, depending on the setting of the 4
lower-order bits as indicated in Figure 1-43,

The Flags field is an 8-bit field that consists of the
following indicators.

Bits 7—4 These bits are reserved.

BIt3 The device-dependent-data-available bit (bit
3) indicates whether the specified device
supports the device-dependent data in the
termination status block. See Figure 1-31 on
page 1-48 for a description of the
TSB-available bits. The maximum amount of
device-dependent data is specified in the
Maximum Size for Completion Status field.
When the bit is set to 1, the device supporis
device-dependent data available in the
termination status block. When the bit is set
to 0, the device does not support
device-dependent data available in the
termination status block.

Commands — January 1991 1-67

Reserved

Bit2 The interrupt-support bit (bit 2) indicates
whether the device uses the Device Interrupt
Identifier port. When the bit is set to 1, the
device uses the Device Interrupt Identifier
port. When the bit is set to 0, the device
does not support the Device Interrupt
Identifier port.

Bit1 The reset bit (bit 1) indicates whether the
Reset Subsysterm command resets all
devices. When the Reset bit is set to 1, the
Reset Subsystem command resets all
devices. When the Reset bit is set to 0, the
Reset Subsystem command does not reset
all devices attached to the subsystem. In
this case, individual Reset Device
commands are required.

Bit 0 The load bit (bit 0} indicates whether the
specified device requires a program load
using the Initialize Device command. If this
bit is set to 1, a program load is required. If
this bit is set to 0, the device never requires
a program load.

This tieid is reserved.

Maximum Reset Control Block Interrupt Time

The Maximum Reset Control Block Interrupt Time field is
a 32-bit field that indicates the maximum time the
addressed device takes to perform a Reset Control Block
Interrupt command. It can be specified in seconds,
milliseconds, microseconds, or nanoseconds, depending
on the setting of the 4 lower-order bits as indicated in
Figure 1-43 on page 1-67.

Maximum Reset Interrupt Status Port Time

The Maximum Reset Interrupt Status Port Time field is a
32-bit field that indicates the maximum time the specified
device takes to perform a Reset Interrupt Status Port
command. It can be specified in seconds, milliseconds,
microseconds, or nanoseconds, depending on the setting
of the 4 lower-order bits as indicated in Figure 1-43 on
page 1-67.

1-68 Commands— January 1861

Maximum Command/Busy Status Time
The Maximum Command/Busy Status Time field is a 32-bit
tield that indicates the maximum time required to present
status for an incoming command to the Command
Busy/Status port. It can be specified in seconds,
milliseconds, microseconds, or nanoseconds, depending
on the setting of the 4 lower-order bits as indicated in
Figure 1-43 on page 1-67.

Maximum Number of Queued Interrupts
The Maximum Number of Queued Interrupts field is a
32-bit field that indicates the maximum number of
interrupts that can be internally queued by the specified
device.

DIIP Address
The DIIP Address field is a 16-bit field that indicates the
I/0 address of the Device Interrupt Identitier port for the
specified device. This field is valid only when the
interrupt-support bit in the Flags field is set to 1.

DIIP Bit Position
The DIIP Bit Position field is a 16-bit field that indicates the
bit position assigned to the specified device in the Device
Interrupt Identifier port. This fieid is valid only when the
interrupt-support bit in the Flags field is set to 1.

Maximum Size for Completion Status
The Maximum Size for Completion Status field is a 16-bit
field that indicates the maximum number of bytes needed
to hold the completion-status data block for the specified
device. See “Read Completion Status” on page 1-60 for a
complete description of this command.

Maximum Size for Diagnostic Status
The Maximum Size for Diagnostic Status field is a 16-bit
field that indicates the maximum number of bytes needed
to hold diagnostic-status data as a result of the Run
Diagnostic Test command. See “Run Diagnostic Test” on
page 1-70 for a complete description of this command.

Device Dependent Area Size
The Device Dependent Area Size field is a 16-bit field that
indicates the number of bytes in the Device Dependent
Configuration Data Area field.

Commands — January 1991 1-69

Device Dependent Configuration Data Area
The Device Dependent Configuration Data Area field is a
variable-length field containing device-dependent
configuration data. The use of this field is device
dependent and can be determined by reading the device
specifications.

Run Diagnostic Test

The Run Diagnostic Test command causes the specified device to run
diagnhostic tests and to return the results to the location pointed to in
the Memory Address 2 field. The data transfer uses the same
semantics as the Read command.

The maximum size of the data area needed by the device to
successfully store its diagnostic status is obtained by the Read
Configuration command. The format, meaning, content, and uses of
the data returned by the command are device dependent.

The Run Diagnostic Test command has the option to request an
interrupt when the command is completed without error or with a
suppressed error.

33z2z2222222221111111111
10987654321098765432109876543210
Erable Word 1 Al Opts| Res |[0OOBO101

Device Dependent

Memory Address of Test Results

Byte Count 1

Termination Status Block Address

Chain Address 1 or Device Dependent

Chain Address 2 or Device Dependent

Chain ID Reserved Dev. Dep. Size

/

Device Dependent Area

Figure 1-44. Run-Diagnostic-Test Control Block

1-70 Commands — January 1991

The Byte CGount 1 field specifies the number of bytes of diagnostic
data to be returned.

Write

The Write command transfers data from the location in shared
memory pointed to by the Memory Address 2 field to the device
specified in the Attention port.

The Write command has the option to request an interrupt when the
command is completed without error or with a suppressed error.

33222222222¢21111111111
1098765432106098765432109876543210

Enable Word 1 Al Opts| Res (PDOODOGO10

Device Dependent

Memory Address of Source

Byte Count 1

Termination Status Block Address

Chain Address 1 or Device Dependent

Chain Address 2 or Device Dependent

Chain Id Reserved Dev. Dep. Size

!

Device Dependent Area

Figure 1-45. Write Control Block

If an indirect list is specified, the semantics for data movement are
defined in “Writing with a Base Control Block and Indirect Lists” on
page 4-14.

If an indirect list is not specified, the Memory Address 2 field is the
starting address of the source data in shared memory, and the Byte
Count 1 field contains the number of bytes to be transterred.

The Byte Count 1 field is copied to a residual byte count, which is

used as a counter during the transfer. As each byte is transferred
from shared memory to the device, the residual byte count is

Commands — January 1991 1-71

dacreased by 1. The operation is completed normally when the
residual byte count is 0 and ail bytes are received by the device. The
address in the Memory Address 2 field is copied to a residual buffer
address, which is used as the current pointer during the transfer.

These two residual values can be stored in the termination status
block. After the values are stored, a program can determine the
progress of the operation by obtaining the residual byte count and
residual buffer address from the associated termination status block.
When the residual byte count and residual buffer address are not
stored in the termination status block and an error occurs, the entire
operation should be performed again.

Transfer of data might be terminated because of an irrecoverable
error at the device. When this happens, the major-error/exception
and interrupt-requested bits in the End Status Word 1 are set to 1.

Immediate Commands

This section contains general descriptions of the immediate
commands defined in the Locate mode. These commands are control
oriented and use the same delivery interface as control-block
commands (that is, delivery using the Command Interface and
Attention ports). The immediate commands are:

No Operation (Noop)

Reset Device

Reset Interrupt Status Port

Reset Control Block Interrupt

* Reset Subsystem (software-controlled)
* Resume

* Run Immediate Diagnostic Test

¢+ Suspend

¢ Reset Subsystem (hardware-controlled).

An immediate command uses one of two formats, depending on the
value of the format identifier (bit 8) in the immediate command.
Format 0 allows a command to use bits 31-16 for
operation-code-dependent purposes. This gives the implementer
additional flexibility. Format 1 reserves bits 31-16 of the immediate
command. This allows architecture-defined commands the flexibility
to grow. All commands described in this document are Format 1.

1-72 Commands —January 1991

Immediate Command — Format @

3 1 1 11
1 6 5 4 3 987 0
0P Code Dependent DCL|DDI| OP Code Dependent |@| Operation Code
Immediate Command — Format 1
3 1 1 11
1 6 5 4 3 987]
Reserved DCE|DDI| OP Code Dependent |1]| Operation Code

Figure 1-46. immediate-Command Formats

The following is a description of the fields of an immediate command
and their meanings:

Bits 31 —16 Refer to bit 8.

Bit 15

Bit 14

Bits 13—9

The disable-command-interrupt (DCI) bit specifies
whether the device requests an interrupt after
successfully completing this command. If this bit is set
to 1, the device does not request a system interrupt. If
this bit is set to 0, the device requests an interrupt after
completing the command and reports the status to the
Interrupt Status port. For some commands, this bit is
ignored.

The disable-device-interrupt (DDI) bit specifies whether
the device is enabled to generate interrupts to the
system. If this bit is set to 1, interrupts are disabled for
the device specified. If this bit is set to 0, interrupts are
enabled for the device specified. When interrupts are
disabled, the device must be able to internally store
interrupts until the system enables the interrupts.

The Op Code Dependent field is defined for each
command.

Commands —January 1991 1-73

Bits The format-identifier bit determines the format used by
the immediate command. If this bit is set to 0, Format 0
is used, allowing the immediate command to use bits
31-16 for operation-code-dependent purposes. If this bit
is setto 1, Format 1 is used, causing bits 31-16 of the
immediate command to be reserved.

Bits 7-0 The Operation Code field identifies the specific
operation to be performed by the immediate command.
Format 0 operation codes are implementation
dependent. Format 1 operation codes are defined in the
following figure.

1-74 Commands — January 1991

Operation-Code Bits

Description

76543210
0go0o0000
00000001
00000010
00000011
00000100
00000101
006000110
00000111
Q0001000
00001001
40001010
00001011
00001100
00001101
60001110
6001111
00010000
00010001
00010010
0got0011
00030100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
0g011110
gQat11111
006100000

Reset device
Reserved

Noop

Reserved

Reset Interrupt Status port
Reserved
Reserved
Reserved

Reset Control Block interrupt
Reserved
Reserved
Reserved

Device dependent
Device dependent
Device dependent
Device dependent
Reserved
Reserved

Run Immediate Diagnostics
Device dependent
Reserved
Reserved

Device dependent
Device dependent
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Suspend

Resume

All combinations of bits 7-0 not shown are reserved.

Figure

Some immediate commands use interrupts to reply to the system

1-47. Operation-Code Bits — Format 1

master. The semantics of interrupts are defined in “Signalling
Protocol” on page 3-13. Details on exception handling are found in
“Exception and Error Handling” on page 5-4.

Commands — January 1991

1-75

No Operation (Noop)

The No Operation command can change the interrupt-enablement
status of the device specified in the Attention port without causing any

other effect,

This command can request an interrupt, upon successful compietion
of the command, by setting the DCI bit te 0.

3 11 11
1 6 5 4 3 9876543210
Reserved DCI|DDI Reserved 1|0|eloje(elo)1l(e

Command Port

7

43 8

0001

Device #

Attention Port

Figure 1-48,
Bit15

Bit14

Blts 13—9

Ne-Operation Command Structure

The disable-command-interrupt (DCI} bit specifies
whether the device requests an interrupt after
successfully completing this command. If this bit is set
to 1, the device does not request a system interrupt. If
this bit is set to 0, the device requests an interrupt after
completing the command.

The disable-device-interrupt (DDI) bit specifies whether
the device is allowed to generate interrupts to the
system. If this bit is set to 1, interrupts are disabled
from the device specified. I this bit is set to Q,
interrupts are enabled from the device specified.

These bits are reserved.

Programming Note: A Noop command will be rejected by a device
that is currently executing a control block.

1-786 Commands — January 1991

Resel Device

The Reset Device command is used to put the specilied device into a
known state. A device number of O directs the command to the
subsystem. The known device state is defined as follows:

¢ All pending interrupts for the device are cleared. If the device
supports Device Interrupt Identifier ports, the internal count of
logical interrupts is set to 0, and the DIIP bit is set to 0.

¢ Any control block or control-block chain that is currently being
executed is purged.

s Any control-block chain that is suspended at the device is purged.

* The device is restored to its default setting (device interrupts are
enabled or disabled depending on the value of the DDI bit in the
Immediate Reset Device command).

» The device executes any device-dependent reset activities.

A Reset Device command always requests an interrupt upon
successful completion.

6 5 4 3 2 1 9876543210

Reserved DCI|DODI(OPZ(0P1] Reserved |1]|0(G|0

olojoje

)

Command Port

7

43]

0000 Device #

Attention Port

Figure

1-49. Reset Device Command Structure

Commands — January 1991

1-77

S e

Bit 15 The disable-command-interrupt (DCI) bit is ignored by
the device. An interrupt is always requested on
completion of this command.

Bit 14 The disable-device-interrupt (DDI) bit specifies whether
the device is allowed to generate interrupts to the
system. If this bit is set to 1, interrupts are disabled
from the device specified. If this bit is set to 0,
interrupts are enabled from the device specified.

Bit13 The option-2 (OP2) bit specifies whether the subsystem
and all its attached devices are reset, or whether just
the subsystem is reset. If the device number is not 0,
the option-2 bit is ignored. If the device number is 0 and
this bit is set to 0, the subsystem and all its attached
devices are reset. If the device number is 0 and this bit
is set to 1, the subsystem is reset, but all attached
devices are not reset.

Bit12 The option-1 (OP1) bit specifies whether a partial or
complete reset of the device is performed. When this
bit is set to 0, the device is reset completely so that the
device must be reinitialized. The device’s internal
memory is reset. If this bit is set to 1 and the device has
already been initialized, the device is partially reset and
does not need to be reinitialized. The device’s internal
memory is not reset.

Programming Notes:

1. The Reset Device command should be used to force a device into
a known state. It should, however, be used with care in
error-recovery situations because all pending interrupts are lost
when the device is reset.

2. When a Reset Device command is executed to device 0, with the
option-2 bit set to 1, only the internal states of commands
directed to device 0 are affected. Other devices attached to the
subsystem are not reset.

3. An interrupt from a prior command for a device might be present
in the Interrupt Status port when a Reset Device command is
issued. A program must receive and ignore this interrupt by
reading and resetting the Interrupt Status port without processing
the interrupt. The program should test for an interrupt identifier
of 0 because a Reset Device command always enqueues an

1-78 Commands — January 1891

interrupt with an identifier of 0 when the command is completed
without error.

For details on error handling see “Subsystem Level” on page 5-6.

Reset Interrupt Status Port

This command resets an interrupt in the Interrupt Status port. It
clears the Interrupt Status port only if the device specified in the
Attention port is the same as the device associated with the interrupt
in the Interrupt Status port. If the Interrupt Status port is cleared, the
interrupt-valid bit in the Command Busy/Status port is set to 0. If the

device specified does not maich the device in the Interrupt Status

port, the Interrupt Status port is not cleared, and the
disable-device-interrupt bit is the only bit checked by the device.

When the Interrupt Status port is cleared by this command, the

physical interrupt to the system master is reset unless the Device

Interrupt Identitier port is used. When the Device Interrupt identifier

port is used, the interrupt is reset only when all bits in the Device
Interrupt Identifier port are 0.

This command does not request an interrupt upon completion.

3 9876543210

Reserved

DCI

DD Reserved 1lo|aq0

ejaf1)8

]

Command Port

7

43

1110

Device #

Attention Port

Figure

1-50. Reset Interrupt Status Port Command Structure

Commands — January 1991

1-79

Bit15 The disable-command-interrupt {DCI) bit is ignored by
the device. An interrupt is never requested on
completion of this command.

Bit 14 The disable-device-interrupt (DBI) bit specifies whether
the device is allowed to generate interrupts to the
system. If this bit is set to 1, interrupts are disabled
trom the device specified. If this bit is set to 0,
interrupts are enabled from the device specified.

Programming Notes:

1. A device that is currently executing a command must accept the
Reset interrupt Status Port command. This command ailows a
program to reset interrupts that occur within a chain of control
blocks without having to issue a Suspend command to the device.

2. Refer to “Signalling Protocol” on page 3-13 for details on
interrupt handling.

Reset Control Block Interrupt

The Reset Control Block Interrupt command resets logical interrupts
received for control-block commands when the Device Interrupt
Identifier port is used. It causes the internal logical-interrupt count of
the device specified to be decreased by the number specified in the
Count field.

When a count of 0 is specified, the logical-interrupt count is not
modified; the disable-device-interrupt bit is the only bit that effects a
change.

This command never requests an interrupt of the system master.

1-80 Commands —January 1891

6 5 4 3 2 98765432180

Reserved pCY{DDIf R Count 1{¢|oto(of2|0

0|0

Command Port

7

43 B

1118

Device #

Attention Port

Figure 1-51. Reset Control Block Interrupt Command Structure

Bit 15

Bit 14

Bits 12-9

The disable-command-interrupt {DCI) bit is ignored by
the device. An interrupt is never requested on
completion of this command.

The disable-device-interrupt (DDI) bit specifies whether
the device is allowed to generate interrupts to the
system. If this bit is set to 1, interrupts are disabled
from the device specified. If this bit is setto 0,
interrupts are enabled from the device specified.

The Count field is a 4-bit field that specifies the number
of logical interrupts to be reset for the device specified.
A value of 0 does not affect the logical-interrupt count.

When the count of logical interrupts becomes less than
or equal to 0, the bit in the Device Interrupt |dentifier
port that is assigned to the device is set to 0. When all
bits in the Device Interrupt Identifier port are settoc 0
and the Interrupt Status port does not indicate an
interrupt, the physical interrupt to the system master is
reset.

When the Device Interrupt Identifier port is being used, a program can
reset logical interrupts for control blocks singly or in multiples by
using this command. The program does not have to wait for a
physical interrupt in order to reset logical interrupts.

Commands — January 1991 1-81

Programming Notes:

1. A device that is currently exacuting a control-block command
must accept the Reset Control Block Interrupt command. This
allows a program to reset interrupts that occur within a chain of
control blocks without having to issue a Suspend command to the
device.

2. When specitying the count value in this command, do not exceed
the number of termination status blocks that have the
interrupt-requested bits in the End Status Word 1 set to 1;
otherwise, loss of physical interrupts can result.

If the logical-interrupt count for a device becomes less than or
equal to 0, the bit in the Device Interrupt ldentifier port associated
with the device is set to 0, and the subsystem does not generate a
physical interrupt for logical interrupts from the device. While in
this state, the logical interrupts continue to be posted in the
associated termination status blocks, and the logical-interrupt
count is increased. A logical-interrupt count greater than 0
causes the device to set the associated bit in the Device Interrupt
Identifier port to 1 and to raise a physical interrupt if the interrupt
is enabled.

3. When the Device Interrupt identifier port is being used, the Reset
Control Block Interrupt command is used to clear interrupts for
control blocks. However, when a contral block cannot be read or
the termination status block cannot be stored, the device puts an
interrupt into the Interrupt Status port. This interrupt must be
clearad using the Reset Interrupt Status Port command.

4. Refer to “DIIP interrupts (Multipie Form)” on page 3-26 for details
on interrupt handling.

Reset Subsystem (Software Controlléd)

The Reset Subsystem command has the same format as the Reset
Device command, except that it must be issued to device 0.

The Reset Subsystem command can be used to perform a
software-controlled reset (soft reset) of the subsystem and all
attached devices. The option-2 bit specifies whether the subsystem
and all attached devices are reset or whether the subsystem alone is
reset.

1-82 Commands —January 1891

When the command is initiated, all device activity for that subsystem
is stopped, and the subsystem is reset to a known state.

After the command is completed, the Interrupt Status port is set10 0,
and the interrupt-valid bit in the Command Busy/Status port is set to
1, indicating that a reset of the subsystem has been completed and an
interrupt has been requested. The results of the Reset Subsystem
command are:

s The enable-interrupts, DMA, and reset-reject bits in the
Subsystem Control port are set to 0.

* Any previous physical interrupt to the system is cleared.

¢ All activity on the subsystem not related to resetting the
subsystem ends.

« {f the subsystem supports the Device Interrupt Identifier port, all
bits in this port are set to 0.

*» The Command and Attention ports are set to 0.

* When the option-2 bit is set 0, all devices attached to the
subsystem perform the following actions:

— All pending interrupts are cleared.

— It the device uses the Device Interrupt Identifier port, the
logical-interrupt count is set to 0.

— Any suspended chain operation is purged.
— The device interrupts are enabled.

— The device is put into a state enabling execution of
control-block commands.

— The device performs any device-dependent reset activities.

» [f the option-1 bit is set to 0 (indicating a complete reset), the
subsystem and attached devices perform a power-on self-test and
might require reinitialization.

Commands — January 1991 1-83

5 4 3 2 1 98765432168

Reserved DCI|ODI|OPZ|QP1| Reserved |1|0|0(G|0;0|0

]

Command Part

7

43 @

6000

elle]

Attention Port

Figure

Bit15

Bit 14

BIt 13

Bit12

1-52. Reset Subsystem Command Structure

The disable-command-interrupt (DCI) bit is ignored by
the device. An interrupt is always requested on
completion of this command.

The disable-device-interrupt {DDI) bit specifies whether
the subsystem is allowed to generate interrupts to the
system. If this bit is set to 1, interrupts are disabled
from the subsystem. If this bit is set to 0, interrupts are
enabled from the subsystem.

The option-2 (OP2) bit specifies whether the subsystem
and all its attached devices are reset or whether the
subsystem alone is reset. If this bit is set to 0, the
subsystem and all its attached devices are reset. if this
bit is set to 1, the subsystem is reset, but all attached
devices are not reset.

The option-1 (OP1) bit specifies whether a partial or
complete reset of the subsystem is performed. When
this bit is set to 0, the subsystem is reset completely so
that the subsystem must be reinitialized; the
subsystem’s internal memory is reset, if this bit is set
to 1, the subsystem is partially reset and does not need
to be reinitialized; the subsystem’s internal memory is
not reset.

1-84 Commands—January 1991

Programming Notes:

This command differs from the hardware-controlled reset (hard
reset) in that it does not cause a reset of the internal logic that
controls the subsystem. Additionally, the soft reset depends on
the availability of the Command and Attention ports for delivery,
whereas the hardware-controlled Reset Subsystem command
does not.

1. Programmable-option-setect data is not reset by this command.

2. After a subsystem reset begins, the Command and Attention ports
are not available until the reset has been completed.

3. The system software should use the software-controlled reset
{soft reset) when it is unable to recover a device through the
Reset Device command. The Reset Subsystem command must
be used carefully because it ends all commands in progress on
the subsystem. |t also causes any interrupts queued by attached
devices to be lost.

4. If the subsystem fails to complete a software-controlled reset
within a specified time, the software in the system master should
use a hardware-controlled reset.

5. The software-controlled reset normally is completed by setting
the enable-DMA (DMA) and enable-interrupt bits in the
Subsystem Coniral port to 0. These bits remain in that state
unless they are changed after the reset starts. If the
enable-interrupt bit is not changed, the subsystem will not
generate an interrupt.

6. A subsystem reset causes the busy bit in the Command
Busy/Status port to be set to 1 and causes the reject bit in the
Command Busy/Status port to be set to 0. Commands submitted
normally through the Attention port have the same eftect on the
busy and reject bits. Programs cannot use the busy and reject
bits to distinguish between commands submitted through the
Attention port and commands that cause a subsystem reset
(which take longer). Therefore, to avoid resource conflicts,
programs should maintain an external indication of any
subsystem-reset activity.

Commands —January 1991 1-85

Resume is an immediate command that puts the device that is

specified in the

all control-block commands. The Resume command is used to restart

Attention port into a state that enables it to execute

an active control-block chain that has been halted by a Suspend

command. The

device might not be able to restart if it is suspended

because of internal conflicts or conditions. If the interrupt queue is
full, the device remains in a suspended state until its queue is no

longer tull.

If the Resume command requests an interrupt on completion, the
interrupt is requested before execution of a suspended control-block
chain is resumed.

6 5 4 3 98765432180

Reserved DCI|DDI Reserved 1|0je(1jo|ele

2]

Command Port

7 43

0801

Device #

Attention Port

Figure 1-53. Resume Command Structure

Bit 15

Bit 14

The disable-command-interrupt (DCI) bit specifies
whether the device requests an interrupt after
successfully compieting this command. If this bit is
set to 1, the device does not request a system
interrupt. If this bit is set to 0, the device requests an
interrupt after completing the command and reports
the status to the Interrupt Status port.

The disable-device-interrupt (DDI) bit specities
whether the device is enabled to generate interrupts
to the system. If this bit is set to 1, interrupts are
disabled for the device specified. If this bit is set to 0,
interrupts are enabled for the device specified.

1-86 Commands —January 1991

Run Immediate Diagnostic Test

The Run Immediate Diagnostic Test command is used to initiate a
diagnostic test to the specified device. The results of the test are
returned as an interrupt in the Interrupt Status port upon tommand
completion. The interrupt code returned indicates whether the
command was completed with or without errors. The command
always requests an interrupt upon completion.

A more comprehensive diagnostic report can be obtained with the
Run Diagnostic Test control-block command.

3 1 1 1 1
1 6 5 4 3 9876543210
Diagnostic Command DCI|DDI Reserved o|a|o|e|1|a|e|1lle

Command Port

7 43 0

0801 Device #

Attention Port

Figure 1-54. Runimmediate Diagnostic Test Command Structure

Bits 31 —16 The Diagnostic Command field is a 16-bit field that
indicates the diagnostic test to be performed. The code
used is device dependent.

Bit 15 The disable-command-interrupt {DCI) bit is ignored by
the device. An interrupt is always requested on
completion of this command.

Bit14 The disable-device-interrupt (DDI) bit specifies whether
the device is allowed to generate interrupts to the
system. If this bit is set to 1, interrupts are disabled from
the device specified. If this bit is set to 0, interrupts are
enabled from the device specified.

Bits 13—9 These bits are reserved.

Commands —January 1991 1-87

Suspend

The Suspend command is used to put the specified device in the
Attention port into a state that no longer executes control-block
commands. A Resume, Reset Device, or Reset Subsystem command
is needed to restore the device to a state in which it can execute
control-block commands again.

When the command is accepted by a device that is not executing a
command, the internal state is set to show that the control-block
execution is disabled.

When the command is accepted by a device that is executing a
controi block or a control-block chain, the execution of the Suspend
command is deferred until the current control block or chain element
has completed its execution. The completed command always stores
the termination status block. The suspend bit in End Status Word 1 of
the termination status block is set to 1 to indicate that the associated
control block was the last one completed before the suspend request
was completed. If this command is issued while a control block in a
chain element, other than the ending chain element, is being run, the
next element in the chain will be executed only after a subsequent
Resume command is received.

If the Suspend command is issued while a control block that is not a
chain element, or is the ending chain element, is being executed, the
current control block will be completed, and all subsequent control
blocks will be rejected until a Resume command is received.

When the Suspend command is completed, the device will reject any
control-block commands directed to it until either a Resume, Reset
Device, or Reset Subsystem command has been successfully
executed. The device will accept any non-control-block command or
direct hardware command directed to it.

A Suspend command always requests an interrupt upon completion.
It a control block is being executed at the device, the interrupt will be
a control-block interrupt. If a control block is not being executed, the
interrupt returned will be an immediate command completed, without
error.

1-88 Commands — January 1991

1 6 5 4 3 9876543210

Reserved DCIEDDI Reserved 1|e|ele]lii]|1j1(1

Command Port

7 43]

Qost Device #

Attention Port

Figure 1-55. Suspend Command Structure

Bits 3116 These bits are reserved.

BIt 15 The disable-command-interrupt (DCI) bit is ignored by
the device. An interrupt is always requested on
completion of this command.

Bit 14 The disable-device-interrupt {DDI) bit specifies whether
the device is allowed to generate interrupts to the
system. If this bit is set to 1, interrupts are disabled
from the device specified. If this bitis setto 0,
interrupts are enabled from the device specified.

Blis 13—9 These bits are reserved.

Programming Notes:

1. It a chain operation is suspended, the termination status block
can be examined to determine the next control block to be
executed when the chain is resumed. For more information, refer
to “Signalling Protocol” on page 3-13.

2. A Suspend command is not necessary before a Reset Control
Block Interrupt or Reset Interrupt Status Port command is issued
to a device executing a control-block chain because these
commands are always accepted by the device.

3. If a control block cannot be read, or the termination status block
cannot be stored, and a Suspend command is issued, the
program can determine that the Resume command will not be
able to restart the chain.

Commands — January 1991 1-88

4, The Suspend command always requests an interrupt upon
completion. By examining the interrupt value returned as a
result of a Suspend command, a program can determine the
device state at the time the command was executed. If the device
is not executing a control block when the Suspend command is
accepted, the interrupt returned indicates that the immediate
command was completed without error. If the device is executing
a control block when the Suspend command is accepted, the
command requests a control-block interrupt for the device. If the
interrupt returned indicates that a hardware failure occurred
while executing a control block, the program determines that the
device was executing a control block and that the chain cannot be
resumed. If the interrupt returned is not for a hardware faiture,
the program might have to examine the completion status of the
termination status blocks associated with the device to determine
whether the chain can be restarted.

Reset Subsystem (Hardware Controlled)

A program uses the hardware-controlled Reset Subsystem command
to stop the activity of all devices attached to the subsystem and to
restore the subsystem and attached devices to a known state. The
state of each device after the reset is defined in the description of the
Reset Device command.

This command is initiated by the reset bit in the Subsystem Control
port, which controls a reset signal internal to the subsystem. If the
subsystem and its attached devices require an initial program load,
they are put into a state in which they can accept an Initialize Davice
command to receive their program loads. Upon completion, the
command stores an interrupt in the Interrupt Status port. POS data is
not reset by this command. If the Device Interrupt Identifier ports are
supported, these ports are set to 0.

A Reset Subsystem command is originated by the program. This is
done by writing a 1 to the reset (RST) bit of the Subsystem Contral
port, followed by writing a 0 value to the reset bitin an
implementation-defined amount of time. In other words, the reset bit
is switched from 0to 1to 0.

Setting the reset-control bit of the Subsystem Control port to 1 clears
the physical interrupt line from the subsystem and causes all device

190 Commands —January 1991

activities on the subsystem to abend. The following values are set in
the Command Busy/Status port:

¢ Busy (B)=1
¢ Interrupt valid (IV)=0
* Reject (REJ)=0.

The enable-subsystem interrupt (El), enable-DMA (DMA), and
reset-reject (RR) control bits in the Subsystem Control port are set to
0 by the subsystem. El and DMA remain 0 unless specifically set by
the program while the device-reset operation is in progress. All
activities not related to subsystem reset are ended.

When the subsystem senses the transition of the reset-control bit
from 1 to 0, it completes reset actions for the subsystem and all
attached devices.

At the completion of this command, the Interrupt Status port and all
bits in the Command and Attention ports are set to 0, and all device
interrupts are cleared.

RST R RR R sD SD DMA | EI

Figure 1-56. Subsystem Control Port {(Hardware-Controlled Subsystem
Reset)

Programming Notes:

1. Using the hardware-controlled Subsystem Reset command ends
all other commands in progress on the subsystem and causes all
interrupts from attached devices to be lost.

2. This command should be used in error-recovery procedures by
programs in the system master when all other recommended
retry actions have failed.

3. If the subsystem fails to complete a Reset Subsystem command
within the maximum time defined for it by each impiementation,
the software unit may have reset the reset bit in the Subsystem
Control port to 0 too rapidly. In this case, setting the reset bit to 1
again will restart the Reset Subsystem command sequence.

Commands —January 1991 1-81

4. Notice that the normal complietion of this command sets the
Subsystem Control port DMA and E| control bits to 0. These
control bits should be set to 1 by the program in the system
master after it has switched the reset-control bit to 0 or after the
busy bit in the Command Busy Status port is set to 0. If these
control bits are not reset, DMA and interrupts for the subsystem
remain disabled after the Reset Subsystem command has been
completed.

5. A Subsystem Reset command causes the busy bit in the
Command Busy/Status port to be set to 1 and the reject bit in the
Command Busy/Status port to be set to 0. Commands submitted
normally through the Attention port have the same effect on the
busy and reject bits. By examining these bits, programs cannot
distinguish between commands submitted through the Attention
port and commands that cause a subsystem reset (which take
longer). Therefore, to avoid resource conflicts, programs should
maintain an external indication of any subsystem-reset activity.

1-92 Commands — January 1991

Chapter 2. Physical Level

The physical level provides support for gaining access to data and
control areas in shared memory and IO address space and for
interrupting the system master.

At the physical level, the architecture defines the control areas in I/O
address space that are used to deliver immediate commands and
command control blocks to the various devices in a subsystem. [t
also defines how devices gain access to data and command control
blocks in shared memory, as well as how a device or subsystem
interrupts a system master.

Structure

The following figure shows the structure of the physical level in terms
of the components used to provide the command and
command-control-block delivery.

© Copyright iBM Corp. 1991 21

.......... | SRR SRS

Send / Receive Interface :

.......... [

Delivery
VO Space Support Shared Memory
i | Logic r———-
: | | | i
Porl S I '
i ort Set | Physlcal Support | |
| Adapter #1 I Logic | I
I] I |
| Port Set ’ | '
I on 56 L [nthawr] [VO Inatr | [Mem Slave | |
Adapter #2 i | I
| | I
I g | | |
! I B o % Channel | I
| —e|—8|-E|—T— | !
I Port Set | S c| = i
| Adapter #n I £ : |
I :
I .
I \ L__| [Buswmstr | [vO Siave | [Mom Stave | : |
| Each Port Set Contains: : | | I
I Command Port i | !
| Attention Port | Physical Support — '
| Subsystem Ctrl Port Logic | |
| interrupt Status Port |] | |
| CMD Busy/Status Port | - i
| DIIP Port I Delivery ' |
————————— Support L - ——
Logic

o

: Send / Receive Interface

........... R

Entity | ooo Entity

Figure 2-1. Locate Mode Physical Levet

Figure 2-1 shows the physical-level structure for a configuration with
a single system master and a single subsystem. The physical-level

2-2 Physical Level —January 1991

services are provided by a combination of hardware support,
physical-support logic, and control areas in I/O address space.

System-Master Hardware Support

The hardware support in a system master includes an interrupt
controller, the instructions used to gain access to informaticn in 1/O
address space, and shared-memory-slave support.

The interrupt controtler supports the use of interrupts as a means of
signalling the system master from one or more subsystems.

The I/O instructions provide the system master with access to
information in control areas in I/0 address space that are shared with
the subsystem.

The memory-slave support provides access to data and control
information either by bus masters or by memory instructions.

Subsystem Hardware Support

The hardware support in a subsystem includes 1/0-slave support and
bus-master support.

The 1/Q-slave support provides a means for the logic in a system
master to initialize the subsystem, enable access to the subsystem,
signal the subsystem, and identify the subsystem as the source of the
system interrupts.

The bus-master suppert provides access to data and control
information in shared memory. The subsystem intertace to the
system is through the following ports:

Command port

Attention port

Subsystem Control port

Interrupt Status port

Command Busy/Status port

Device Interrupt Identifier port (optional).

Physical Level —January 1991 2-3

Support Logic

The physical-support logic implements the services, protocols, and
functions that support the sharing of control areas by ditferent
command and command-control-block delivery flows. It also
provides the support necessary for access to the shared memory
used by a subsystem for command control blocks and data in data
buffers.

Memory Address Space

One of the most important aspects of the physical level is that it
provides access to data and control information in shared memory.
The delivery-level protocols need access to command control blocks,
which are physically located in system-master memory that is shared
with a subsystem.

The locations of the data buffers, used during data transfer, are also
assigned locations in shared memory. The locations of the data
buffers are determined by the delivery-level support and can change
from command control block to command control block.

The command control blocks are assigned locations within shared
memory. The starting location of the command control block is
provided by the command-delivery support for each delivery request.

The shared-memory addresses that are supported are defined during
system configuration.

110 Address Space

The physical-level services provide access to a set of control areas
{ports) in IO address space that are shared by the command and
command-control-block delivery for all the entities in a system or
subsystem.

Note: This minimizes the amount of IO address space required, but
it requires the management of the sharing of this address
space.

The range of I/O addresses assigned to each subsystem is
determined during system configuration. A description of the control

2-4 Physical Level —January 1991

areas is defined by the architecture for the Locate mode and can be
found in “1/O Address Space” on page 1-15.

Physical Level —January 1991 2-§

Physical-Level Services

The services provided by the physical level are used to gain access
to data and control information and to support interrupting a system
master from any subsystem on the Channel. The services provided
are:

* Push
e Pull
* |nterrupt.

These services are used by the delivery-levei logic in both the system
master and subsystems to gain access to control areas in I/0 address
space, to gain access to command control blocks and data buffers in
shared memory, and to cause an interrupt of the system master.

Note: A push from a system master to a control area in the I/O
address space of the Attention port causes an interrupt of the
associated subsystem upon completion.

Push and Pull

The deiivery-support logic uses the I/O-address-space form to move
control parameters between the system master and the subsystem. It
uses the shared-memory form to gain access to command control
blocks and data buffers.

A system master uses /0 instructions (IN or QUT) to gain access to
control areas in 1/0 address space.

A subsystem uses bus-master, DMA-type operations to gain access to
the shared memory for the specific subsystem or entity that performs
the service.

The push service moves data or control information from a location in
the caller’s shared memory to a location in shared memory or 110
address space.

The folliowing conceptual service primitive illustrates the parameters
required when the push service is invoked:

PUSH{unit id, addr space, from addr, to addr, lergth, return code)

2-6 Physical Level —January 1991

The unit ID parameter identifies the system master or subsystem
that applies.

The address space parameter indicates whether the to address
parameter refers to a location in shared memory or in /O
address space.

The from address parameter identifies the location of the
information to be pushed into the location that is indicated by the
to address parameter, :

The to address parameter identifies the destination in 1/O address
space or shared memory of the information that is indicated by
the from address parameter.

The fength parameter indicates the number of bytes to be pushed
into the location in I/O or shared memory, identified by the to
address parameter.

The return code parameter indicates the success or failure of the
push operation.

The pull service moves information from a location in I/0 address
space or shared memory to a location in the caller’s shared memory.

The foliowing conceptual service primitive illustrates the parameters
required when the pull service is invoked:

PULL{unit, addr space, from addr, to addr, length, return code)

The unit ID parameter identifies the system master or subsystem
that appiies.

The address space parameter indicates whether the lo address
parameter refers to a location in shared memory or in 1/O
address space.

The from address parameter identifies the location of the
information to be pulled into the location that is indicated by the
to address parameter.

The to address parameter identifies the destination in the caller’s
shared memory of the information that is indicated by the from
address parameter.

The length parameter indicates the number of bytes to be pulled
into the location that is identified by the to address parameter.

Physical Level —January 1991 2-7

The return code parameter indicates the success or failure of the
pull operation.

Interrupt

In addition to the push and pull services, the physical level also
provides a service to interrupt the system master.

Note: As stated previously, there are command-delivery protocols
that can be used to cause an interrupt 1o a subsystem. This is
accomplished by using the push service primitive to put the
appropriate control information into the control area in /O
address space that is assigned to the subsystem Attention
port, not by using the interrupt service.

The following conceptual service primitive iflustrates the parameters
required when the service is invoked:

INTERRUPT {return code)

There are no parameters required by the interrupt service primitive,;
however, the interrupt service does have a return code.

The return code parameter indicates the success or failure of the
interrupt operation.

2-8 Physical Level —January 1991

Data Delivery

In subsystems, the bus-master support can also be used to transfer
data to and from entities in the subsystem. The command control
blocks contain the jocation of the data in shared memory to which the
subsystem entities have access. The push and pul! services can be
used by these entities as well as by the delivery-support logic to gain
access to the data in shared memory.

Note: Different forms of address transformation might be required to
establish addressability between a system master or
subsystem’s local shared memory and the shared memory in
the command control blocks. The specific address
transformation is determined by the particular system master
or subsystem implementation.

Physical-Level Protocols

The protocols defined at the physical level for access to controi areas
in I/0 address space are the same as those required for Channel
operations to an 1/O slave.

The protocols defined for access to command control blocks and data
buffers in shared memory are the same as those required for
Channel operations to a shared-memory slave.

The protocol defined for interrupting a system master from a
subsystem is the same as the Channel protocol for interrupting a
system master.

The protocols at the delivery level for command and
command-control-block delivery define the uses of the various control
areas. See Chapter 3, “Delivery Level” on page 3-1 for additional
information.

Physicai Level —January 1991 2-8

Notes:

2-10 Physical Level —January 1991

Chapter 3. Delivery Level

The delivery level provides the set of services and protocols that
support the delivery of requests from programs in a system master to
devices in a subsystem. The primary form for these requests is one
or more control blocks that have been grouped together by
addresses. This grouping of control blocks includes the command
control block, a status block, and an optional indirect list. When the
request consists of more than one control block, the next one is
pointed to by a chain address maintained for that purpose in each
command control block.

The delivery level also supports the delivery of immediate and
tardware-controlled commands to a subsystem. The immediate
commands are limited to control-type functions that occupy one
doubleword. The hardware-controlled commands are used to directly
control the basic operation of the subsystem.

The Locate mode architecture defines the delivery-level protocols
that are used with bus-master type subsystems designed to operate
as shared-logic control units. It also defines the functions and
identifies the support logic required in both the system master and
the subsystem to implement the services and protocols of the
delivery level.

Structure

The following describes the delivery-level structure and the services
that support command and control-block delivery between entities.

© Copyright IBM Corp. 1991 31

1 1
! Data |
Entity | ooo Entity leep [T Indirect !
: List .
..........) I —L bata |
M - y 1)
: Send / Receive interface o TSB '
.. ! X
l L . :
Intermupt g:"“’; Mgmt ! [Adapter J Entity J '
Logic Lpp:: Logic 1] info Info |
l Shared Memory
- T T I
Physical Support Logic i I
VO Space — l
T ! I | indirect)# [0 |
| . Hardware ' |ccs Lst A [
| [Fosa) | .
|]
e, Channel | Data | |
i o i { TSB I
i | Port Set] 1 : [
: — Hardware \ I
L 1 |
l F_: |
Physical Support Logic | :
1 ' I
| r
Delivery |
|
nten.upt Support Mngt | l[
Logic L_Logic Logic Ce
| Local Memory
Ak A |
‘ : Sand / Receive Interface o '
| | ‘ : :
] 1
Entty | ooo Entity i !
e __ :

Figure 3-1. Overall Delivery-Level Structure

Figure 3-1 shows that the delivery support in the system master has
multipte instances of the request-delivery logic and the local control

E
i 3-2 Delivery Level —January 1991
E.

areas needed to maintain the states of both multiple Locate mode
subsystems as well as multiple devices associated with each of them.

The figure shows that in a system master, there is typically a single
instance of the interrupt handler that supports the completion of the
request-delivery protocol. It also shows that in a subsystem, there is
a single instance of both the request-delivery support and the
system-interrupt support. These must be managed to allow them to
support the multiple request-delivery protocols.

Figure 3-1 on page 3-2 also shows that delivery support is provided
to programs by the send and receive interfaces and that the delivery
logic uses the service of the underlying physical level.

The send and receive interfaces provide the local
operating-environment policy support for interfaces to the
delivery-level support and for scheduling this support on the
processing-level threads.

Processing-level threads of execution are used in a multitasking
programming environment.

Figure 3-1 on page 3-2 shows two views of a sample delivery request
{set of coupled command control biocks). The request control-block
structure needs to be understood in the local address space seen by
the system-master entity and the request delivery-level support, as
well as in the shared memory understood by the subsystem entities
and delivery-level support.

This happens when a program in a system master is running in
virtual or protected mode. The program in the system master would
use logical addresses when building control blocks or referring to
tields within the command control blocks. On the other hand, the
device in the subsystem would be using physical addresses when
fetching, storing, or referring to tields within the command control
blocks.

From the delivery-support view, ail addresses must be physical
addresses in shared memory. The programs in the system master
can provide a local view by prefixing each control block with the
necessary logical addresses.

Delivery Level — January 1981 3-3

Because the request delivery-level protocols use the control areas in
the 1/0 space to deliver requests and to process any reilated
interrupts, these are also shown as part of the overall structure.

Locate mode commands ¢an be delivered by one of two methods:

* The hardware-controlled method involves writing to the
Subsystemn Control port, which causes the subsystem to react
immediately to the functions encoded in the port bits. For the
definition of these functions, see “Subsystem Control Port” on
page 1-20.

* The software-controlled method involves writing to the Command
and Attention ports and waiting for the command handler in the
subsystem to accept or reject the command. For the definition of
these functions see “Command Port” on page 1-18 and
“Attention Port” on page 1-18.

Resetting the subsystem always forces the subsystem to a known
state, regardless of the state of the subsystem and its attached
devices. The specific actions for a reset of the subsystem are
described in “Reset Subsystem (Hardware Controlled)” on page 1-90.

Immediate-Command Delivery

Immediate commands are mainly device directed and are control
oriented. Similar to control-block commands, immediate commands
use the Command and Attention ports for delivery.

Immediate Command

Figure 3-2. Command Port—Immediate Commands
The 32-bit immediate command is put into the Command port.

In addition to the Command port, the immediate-command delivery
requires the use of the Attention port.

An immediate command that is written to the Command and Attention
ports cannot be executed until the device has verified that the whole

3-4 Delivery Level —January 1991

command has been accepted by the subsystem. After acceptance
has been verified, the busy bit in the Command Busy/Status port is
set to 0. The command type is determined by examining the attention
code in the Attention port. When the command is determined to be
an immediate command, the operation code in the Command port is

~— decoded to detarmine the device actions to be performed. The
following figure shows the format of the Attention port when it is used
for immediate-command delivery.

Reset Device/Reset Subsystem

7 4 3 0

Deoa Device Number

Reset Contrel Block Interrupt/Reset Interrupt Status Port

7 4 3 a
1110 Device Number
— A1l Other Immediate Commands
7 4 3 0
poo1l Device Number

Figure 3-3. 8-Bit Attention Port— Immediate Commands
Bits 3—-0 For a description of the Device Number subfield (bits

3-0), refer to the definition of the Attention port in
“Attention Port” on page 1-18.

Delivery Level — January 1981 3-§

Control-Block Command Delivery

Control-block commands are mainly data-transfer oriented and use
the Command and Attention ports for delivery.

Controi-block commands are identified by examining the attention
code in the Attention port. For a controi-block command, the
control-block starting address is contained in the Command port.

Controt Block Address

Figure 3-4. Command Port— Control-Block Commands

The address of a control block piaced in the Command port must be
the 32-bit, doubleword-aligned physical address of the location in
shared memory where the first or only command control block is
located.

in addition to the Command port, the command-controi-block delivery
requires the use of the Attention port. The following figure shows the
format of the Attention port when it is used for
command-control-block defivery.

7 4 3 0

po11 Device Number

Figure 3-5. 8-Bit Attention Port— Control-Block Commands
Bits 3—-0 For a description of the Device Number subfield (bits

3-0), refer to the definition of the Attention port in
“Attention Port” on page 1-18.

3-6 Delivery Level —January 1991

Delivery-Level Services

The services provided by the delivery level are used to deliver
requests from an entity {(software) in a system master to an entity
(device) in a subsystem. Three types of service are provided:

* Immediate-command delivery
* Hardware-controlied command delivery
* Command-control-block delivery.

A description of each of these services is provided in the following
sections.

Immediate-Command Delivery Service

The immediate-command delivery service is used to pass an
immediate command to a device or subsystem, using the services
provided by the underlying physical level for access to the
appropriate control areas in I/O address space.

The following conceptual service primitive illustrates the parameters
required when invoking the immediate-command delivery service:

DELIVER_IMMEDIATE (destination, attention code, command, return code)

The destination parameter identifies the adapter (subsystem} and
entity (device) to which the immediate command is 1o be
delivered.

The attention code parameter contains the value to be placed in
the Attention port on command delivery.

The command parameter contains the immediate command to be
delivered.

The return code parameter is returned to the caller and indicates
the successtul or unsuccessful acceptance of the command.

Delivery Level —January 1891 3-7

Hardware-Controlled Command Delivery Service

The hardware-controlled command delivery service is used to set the
appropriate hardware-control bit in the Subsystem Control port
associated with a feature adapter and to use the services provided by
the underlying physical level to set up and access the appropriate
control areas in I/0 space. The following conceptual service
primitive illustrates the parameters required when invoking the
command delivery service:

DELIVER_CONTROL (destination, value, return code)

The destination parameter identifies which adapter (subsystem)
the hardware-controlled command is directed to.

The value parameter contains the hardware-control value to be
delivered.

The first byte of the value parameter is used to identity the
specific hardware-controlled command. It must be one of the
following:

¢ Reset Subsystem

* Reset Reject Condition

s Set Subsystem Interrupt Enablement

* Set DMA Enablement

+ Set Other Bits in the Subsystem Control Port.

When Set Other Bits is indicated, byte 2 of the value parameter
contains the value to be set in the Subsystem Control port.

The return code parameter is returned to the caller and indicates
the successful or unsuccessful acceptance of the command.

3-8 Delivery Level —January 1991

Control-Block Delivery Service

The control-block delivery service is used to pass the address of a
chained or nonchained control block to an entity (device) in an
adapter (subsystem), using the services provided by the underlying
physical level to set up and access the appropriate control areas
(ports) in /0 address space. The following conceptual service
primitive illustrates the parameters required when invoking the
control-block delivery service:

DELIVER_BLOCK (destination, location, return code)

The destination parameter identifies the adapter and entity to
which the address of the chained or nonchained control block is
to be delivered.

The location parameter contains the address in shared memory
of the chained or nonchained control block to be delivered.

The return code paramseter is returned to the caller and indicates
the successful or unsuccessful acceptance of the command.

Delivery Level — January 1991 3-8

Delivery-Level Protocols

There are two types of delivery-level protocols: command-delivery
protocols and signalling protocols.

Command-Delivery Protocol
The following figure shows the fiow of commands through the

Command and Attention ports. It is followed by a description of the
protocols used to deliver these commands.

3-10 Delivery Level —January 1981

(System Entry ’

Load Command
Port

potl——
Disable System
Interrupts Enable System
Interrupts (Allows
Pending Interrupts
Read Command To Be Serviced)
Busy/Status Port

Load Attention

Wait Predstermined
Time for Subsystemn
1o Set Status Bits

L |

Read Command
Busy/Status Port

Enable System
Interrupts

Figure 3-6 (Part 1 of 2). Command-Delivery Flow

Delivery Level —January 1891 3-11

Save Status Bite
for Later Ermor
Racovery

Load Subsystem Confrol
Port With Reset Reject
Setto 1

Wait Predetermined
Time for Subsystem
to Clear the Reject
Condition

Read Command

Busy/Status Port @

Is Yes
Reject or Busy
Set ?
Subsytem May Be
Rejact Cleared Hung. Reset May
Be Required

Figure 3-6 (Part 2 of 2). Command-Delivery Flow

System interrupts should be disabled before attempting to write a
command to the subsystem. The Command Busy/Status port should
be read to ensure that the busy bit is off, indicating that the Command

3-12 Delivery Level — January 1991

and Attention ports are available. The desired command (or address,
in the case of a control block command) must be written to the
Command port before the Attention port is written to with the desired
attention code and device number. After the two ports are written,
the Command Busy/Status port must be read to ensure that the
command was not rejected by the subsystem.

Note: The amount of time that a subsystem requires to accept or
reject a command is implementation dependent and can be
determined in advance by examining the minimum
command-status time in the configuration data, which is
returned in response to a Read Configuration command.

if the busy and reject bits are both set to 0, the program can assume
that the command has been accepted by the subsystem. System
interrupts can then be enabled, and the system is free to perform
other tasks.

If the reject bit is set to 1 in the Command Busy/Status port, itis an
indication that the subsystem has rejected the command. The
program should examine the status bits in the Command Busy/Status
port to determine the reason for rejection and take appropriate action
to resolve the condition.

If the reject bit is 1, it must be explicitly reset by the system by setting
the reset-reject bit to 1 in the Subsystem Control port. To ensure that
the reject condition has been cleared, the program can read the
Command Busy/Status port to ensure that the reject and busy bits
have been set to 0 by the subsystem. If the condition has not been
cleared, the system might need to use more severe error recovery
actions; that is, a Reset Device or Reset Subsystem command could
be required.

Signalling Protocol

This section describes the protocols governing interrupts in the
Locate mode, how interrupts are presented to the system master, and
how they can be cleared.

Interrupts are used as the signalling mechanism between the

subsystem and the system master in the Locate mode. They indicate
that the subsystem, or a device attached to the subsystem, has

Delivery Level —January 1991 3-13

completed a command and requires the system master to act upon
the completion by servicing the interrupt request.

For simplicity in the discussion of interrupts, the term “device
interrupt” is used to refer to an interrupt that either originates from a
device attached to the subsystem, or the subsystem itself when a
command is directed to it as device 0, or when the reset-subsystem
(RST) bit in the Subsystem Control port is toggled.

Interrupt Identification

In the Locate mode, a subsystem has a control area (the Interrupt
Status port) in 10 address space that is set by the subsystem with the
identification of the device that caused the interrupt, as well as the
general reason for the interrupt. Programs in the system master
must read this information to determine the source and cause of the
interrupt.

Each control-block command also has a unique area (the tarmination
status block} in shared memory where interrupt information and
completion status can be stored by the subsystem. Programs in the
system master can read this area to determine how a particular
command control block has been completed.

Physical and Logical Interrupts

In the Locate mode, the architecture defines and uses two types of
interrupts:

* Physical
¢+ Logical.

A physical interrupt occurs when a subsystem activates the interrupt
iine to the system master, alerting it that an I/0 event has occurred
during the execution of a command issued to a device on the
subsystem. This I/0Q event is associated with the successful or
unsuccessful completion of a command control block, an immediate
command, or a hardware-controlled command. When the system
master recognizes the activated line, it typically preempts the
program currently being executed and directs an interrupt-handling
program to the I/0 event. Physical interrupts are directly associated
with immediate commands and direct hardware commands, and they
can be signalled as a result of command control blocks.

3-14 Delivery Level — January 1991

Logical interrupts are associated only with command control blocks.
A logical interrupt occurs when a completed command control block
causes End Status Word 1 of the termination status block to be written
into the shared memory with the control-block-interrupt-reguested bit
set to 1 and the device’s bit set to 1 in the Device Interrupt Identitier
port. This logically informs the system master of the interrupt,
potentially before the physical interrupt can be delivered to the
system master. An option of the Locate mode architecture allows a
program in the system master to process logical interrupts for the
command control block betore the physical interrupt is presented.
Logical interrupts are reset by the Reset Control Block Interrupt
command. This is described in detail in “Resetting Interrupts” on
page 3-38.

Physical-Interrupt Enablement

Physical-interrupt enablement determines whether an interrupt that
has been detected by a device will be presented as a physical
interrupt to the system master by the subsystem. In the Locate mode,
interrupts can be disabled at the subsystem or device ievel.

When interrupts are disabled at the subsystem level, the subsystem
and its attached devices cannot present a physical interrupt to the
system master until the subsystem is enabled for interrupts.

The subsystem can be disabled for interrupts by setting the
enable-interrupt (El) bit in the Subsystem Control port to 0.

An individual device can be disabled for physical interrupts. A device
is disabled for interrupts by setting the disable-device-interrupt (DD1)
bit to 1 in any immediate command directed to a device. (ltis
enabled by setting the disable-device-interrupt bit in an immediate
command to 0.)

When disabled, a device cannot present any further interrupt requests
as physical interrupts to the system master. An interrupt request that
is generated by a device after the device is disabled must be saved
by the device for later presentation to the system master.

Once an interrupt value is written into the Interrupt Status port, it will
cause an interrupt to the system master if the subsystem is enabled,
even if the device that was the source of the interrupt has been
subsequently disabled.

Delivery Level —January 1991 3-15

Interrupt Queuling within the Subsystem

A subsystemn has a single Interrupt Status port in I/0 address space
for communicating interrupt data to the system master. Once an
interrupt value is written into the Interrupt Status port, the port cannot
be used to denote any other interrupt until it is explicitly cleared by a
Reset Interrupt Status Port command issued from the system master.
Because there can be multiple devices contending for this resource
(and the Interrupt Status port can be used by only one device at a
time), the subsystem is responsible for ensuring that each attached
device is given an opportunity to send a physical interrupt request to
the system master.

A device can detect an interrupt condition and be unable to present it
to the system master at the time of detection. This occurs when the
Interrupt Status port is currently in use, or when the device has been
disabled for interrupts. To deal with this situation, each device must
retain sufficient information to allow tater presentation of the
interrupt. An interrupt should never be lost in this case.

Interrupt Types

The Locate mode architecture defines two forms of interrupt handling:

¢ Non-DIIP or simple form, which serializes all interrupts through a
single Interrupt Status port

* DIIP or multiple form, which uses the Interrupt Status port for
non-control-block and hardware-failure interrupts but uses the
Device Interrupt Identifier port (DIIP) for control-block interrupts.

Non-DIIP Interrupts (Simple Form)

In this form of interrupt architecture, all physical interrupts are
presented to the system master by the subsystem recording
device-level information in a single Interrupt Status portin 110
address space. Once the Interrupt Status port is written by the
subsystem with a valid interrupt value, the Interrupt Status port is
unavailable for a new interrupt cause until software in the system
master explicitly clears it. Clearing the Interrupt Status port is
usually accomplished by the Reset Interrupt Status Port command.

An interrupt value in the Interrupt Status port contains two fields:

3-16 Delivery Level -~ January 1991

+ The device ID that caused the interrupt

= The reason the interrupt was sent (the Interrupt Identifier Code
field).

The Interrupt Identifier Code field is set by the subsystem to
indicate whether a command control block, immediate command,
or hardware-controlled command was successfully compieted.

In the Locate mode, all interrupts are presented by a device in the
same order in which the system master submitted the corresponding
command. This restriction does not apply to the Move mode. If
commands must be executed in another order, the Move mode must
be used.

Note: This can be done in the implementation if the subsystem
queues all interrupt requests in the order in which the device
raised them.

The Locate mode requires that commands to a device be executed in
the order in which they were submitted from the system master. This
restriction does not apply to the Move mode. If commands must be
executed in another order, the Move mode must be used.

Device — Control-Block Interrupts: This section describes the actions
taken by a device when a command control block is completed and
needs to raise an interrupt to the system master,

The codes stored in the Interrupt Status port for command
control-block interrupts are.

+« Command control block completed, no error
* Command control block completed, error
¢« Command control block completed, hardware failure.

The interrupt-valid (IV) bit in the Command Busy/Status port is set to
1 when the Interrupt Status port is written with the interrupt code.

Normally, when a command control block is completed and requires
an interrupt, the termination status block associated with the
command control block has at least End Status Word 1 stored with the
interrupt-requested (INT) bit set to 1 before the physical interrupt is
requested.

Delivery Level —January 1991 317

A program can elect to inhibit the storing of all
termination-status-block status in the non-DIIP-interrupt case when it
is completed without error. When this option is selected, a physical
interrupt request is enqueued for the device without any
corresponding logical interrupt. This option is offered to improve
system performance. It should be used with care, especially with
control-block chains, because it is more difficult for a program in the
system master to determine the completion status of a particular
control block. {If a program were written so that only the last control
block in a chain requested an interrupt on normal completion, no
problems would occur.)

The inhibiting of the storing of termination-status-block status is
ignored and a logical interrupt is raised if the command control block
is completed with any of the following conditions:

* The command control block was completed with an error that was
not suppressed. An example of an error that cannot be
suppressed is an irrecoverable hardware failure during a read.

¢ The command control block is suspended as the result of a
Suspend command.

These conditions cause a logical interrupt to be raised and the
storing of at least End Status Word 1 with the interrupt-request (INT)
bit set to 1 in the termination status block.

Note: If termination-status-block status is stored, a program running
in the system master can observe that a device has completed
a command control block with the interrupt-request (INT) bit
set before the actual interrupt is requested. This is possible if
the program tests the termination status block associated with
the completed command control block before the interrupt is
received by the system master.

This technique is not recommended, however, because an
interrupt cannot be cleared in the non-DIIP-interrupt case
unless the subsystem has placed the interrupt value in the
Interrupt Status port.

The correct method of detecting a pending interrupt is to check the
interrupt-valid {IV) bit in the Command Busy/Status port. When this
bit is equal to 1, the Interrupt Status port can be read tc determine the
interrupt type and device origin. Any interrupt present in the Interrupt
Status port is cleared by the Reset Interrupt Status Port command.

3-18 Delivery Level —January 1991

A command control biock can also fail as a result of a hardware
failure when the subsystem or device is attempting either to read a
control block or to store status information in a termination status
block. In either of these cases, termination-status-block status is not
stored, and an interrupt code of hex 8 (Hardware failure —control
block command) is presented in the Interrupt Status port. The
execution of any control-block chain for the device is terminated
when this error is encountered.

Device — Non-Control-Block interrupts: The codes for
non-controi-block interrupts are:

Immediate command completed, no error
Immediate command compieted, error

Immediate command compieted, hardware failure
Reset subsystem or device completed, no error.

The interrupt-valid {IV) bit in the Command Busy/Status port is set to
1 when the Interrupt Status port is written.

Subsystem — Physical Interrupts: When a subsystem determines that
a physical interrupt must be raised to the system master, the
subsystem must ensure that the following actions are taken:

1. The Interrupt Status port must be written with a valid interrupt
identifier and device number. The device must be enabled {o
interrupt the system master.

2. The interrupt-valid kit in the Command Busy/Status port must be
set to 1 to indicate that the Interrupt Status port contains a valid
interrupt. The subsystem must be enabled to interrupt the system
master before the interrupt-valid bit can be set to 1.

3. The subsystem must activate the physical-interrupt-request line
for the level it was assigned at initialization time.

After the system master has serviced the interrupt, it must reset the
interrupt by performing the following actions:

1. The Interrupt Status port must be reset by issuing a Reset
Interrupt Status Port command. This causes the subsystem to
clear the Interrupt Status port and reset the interrupt-valid bit in
the Command Busy/Status port. This, in turn, causes the
physical-interrupt-request line to become inactive.

Delivery Level —January 1981 3-19

2. The system master must reset the interrupt controller (i it has
one) by issuing an End of Interrupt command.

The subsystem can now raise a new physical interrupt to the
system if any interrupts are pending within the subsystem.

System Master — Physical Interrupts: The following discussion deals
with programming considerations in the system master with the
non-DIIP-interrupt-handling model of Locate mode architecture.

An interrupt is sent from the subsystem to the system master if the
subsystem is enabled to send interrupts to the system master and the
Interrupt Status port has an interrupt value in it.

When the system master receives a physical interrupt on an interrupt
level assigned to the subsystem, it should invoke a program to read
the interrupt status of the subsystem to determine whether there is an
interrupt to service. This program is called a first-level
interrupt-handiing routine for the subsystem. |t is invoked in a state
in which the system master is disabled for interrupts.

The first-level interrupt-handling routine determines the interrupt
state of a subsystem by reading its Command Busy/Status port in /O
address space to determine whether the interrupt-valid (IV) bit is
equal to 1. If this is the case, the subsystem or one of its attached
devices has requested a physical interrupt. If the IV bitis 0, the
first-level interrupt-handling routine can return with the report that it
did not have an interrupt to service.

If the IV bit is set to 1, the first-level interrupt-handling routine must
read the Interrupt Status port for the subsystem to obtain the identity
of the device presenting the interrupt and the reason. The Device ID
field identifies the device, and the Interrupt ID field indicates the type
and reason for the interrupt.

The interrupt should be cleared by the first-leve! interrupt-handling
routine as soon as possible to avoid blocking the interrupt level and
to free the subsystem to present interrupts from other devices that
can be attached. The interrupt is cleared by the Reset Interrupt
Status Port command. The Attention port value specified in the Reset
Interrupt Status Port command must have a device ID equal to the
device ID read from the Interrupt Status port at the time of the
interrupt. In some cases, the ¢learing action must be done before

3-20 Delivery Level— January 1981

analysis of the cause of the interrupt is completed. This can be true
when dealing with chained command control blocks in a multitasking
environment. In this case, the clearing operation is done in the
first-tevel interrupt-handling routine, and a second-ievel
interrupt-handling routine is scheduled. The second-level
interrupt-handling routine is like the program that issued the
command chain. To be most effective, the second-level
interrupt-handling routine should be waiting for a signal to continue
processing. The first-level interrupt-handling routine provides the
needed signal, and it unblocks execution of the second-level
interrupt-handling routine. Having freed the subsystem and the
interrupt level, the first-level interrupt-handling routine returns
control to its catler.

When the second-level interrupt-handling routine is unblocked and
signalled, it needs input arguments. Most likely, the argument
supplied to a second-level interrupt-handling routine is the value read
by the first-level interrupt-handling routine from the Interrupt Status
port.

When a second-level interrupt-handling routine approach is used, the
first-level interrupt-handling routine can prevent reentry into the
second-level interrupt-handling routine for interrupts by disabling the
device that caused the interrupt. This is done by setting the
disable-device-interrupt (DDI) bit to 1 before issuing the Reset
Interrupt Status Port command. The second-level interrupt-handting
routine issues an immediate command to the device to reenable
interrupts when it has finished processing a chain or single control
block and wants to receive more signals from the first-level
interrupt-handling routine.

It an interrupt is not cleared from the Interrupt Status port, it will
cause a later physical interrupt when the subsystem and the interrupt
level are reenabled.

Non-Control Block Completed without Error, Reset Subsystem

The clearing and processing of an interrupt of this type is
straightforward. it consists of the following steps:

1. Clear the Interrupt Status port with a Reset Interrupt Status Port
command with the Attention port device ID set to the device ID
read from the Interrupt Status port.

Delivery Level — January 1991 3-21

2. Find the program that issued the command to the device and
cause it to gain contral (unblock it if in a multitasking
environment).

3. The program that issued the command should easily determine
the specific command completed, because only one
non-control-block command can be active for a device at a time,

4. Issue an End of Interrupt command to reset the system-master
interrupt controller to free the interrupt level.

The End of interrupt command referred to is the command described
in the documentation for the system-master interrupt controller. Itis
not a Locate mode architected command, but it is included here for
implementation information.

When an interrupt controller exists between the subsystem and the
system master, the resetting of the interrupt controller must be
explicitly performed in addition to the reset, which is required by the
subsystem to clear an interrupt. Interrupt Reset commands in this
case should be issued as follows:

1. Reset Interrupt Status Port or Reset Control Block Interrupt
2. End of Interrupt to the interrupt controller.

This ensures that the subsystem interrupt is cleared so that the
subsystem can present a new interrupt when the interrupt controller
is cleared. If the interrupt controller is cleared without the subsystem
interrupt being cleared first, a physical interrupt from the interrupt
controlier will be received as a result of the prior subsystem
interrupt.

Non-Control Biock Completed with Error or Hardware Failure

Handling an interrupt of this type is more complex than handling a
non-control-block command that was completed without error. The
processing is identical for both cases to the point of recovery for the
non-control-block command. The additional complexity occurs in
handling the recovery for interrupts of this type. Recovery is
determined, for the most part, by each imptementation. For more
detail, see “Exception and Error Handling” on page 5-4.

3-22 Delivery Level —January 1991

System Master — Control Block Interrupts: Interrupt handling for
control blocks can involve the use of first- and second-level
interrupt-handling routines, discussed in “System Master — Physical
Interrupts” on page 3-31. This is the case because the second-level
interrupt-handling routine is typicaily given the task of determining
which control block in the command c¢hain was the source of the
interrupt, and whether the chain had gone to completion. The task of
locating a particular control block in a chain can involve a search
through termination status blocks and interrogation of control-block
Enable Word 1. In a multitasking environment, it is best to have this
search done in a task that is separate from a first-level
interrupt-handiing routine. This leaves the first-level
interrupt-handling routine free to service other devices on the
subsystem.

A second-lavel interrupt-handling routine would probably be
signalled while the device it is servicing has been disabled for
interrupts. This action would be taken by the tirst-level
interrupt-handling routine as part of ciearing the Interrupt Status port
with a Reset Interrupt Status Port command. Disabling the device
performs two functions. First, it assures the second-level
interrupt-handling routine that it will not be reentered from the
first-level interrupt-handling routine until it specifically reenables the
device. Second, it assures the first-level interrupt-handling routine
that it will not be called upon to service additional interrupts from a
device until the second-level interrupt-handling routine has
processed its work request from the first-level interrupt-handling
routine. This allows devices on the adapter to continue to obtain
interrupt service from the first-level interrupt-handling routine while
others are being serviced by the second-level interrupt-handling
routine. A second-level interrupt-handling routine, when signalled, is
supplied with the data read from the Interrupt Status port when the
interrupt was received by the first-level interrupt-handling routine.

Searching Control-Block Chalns: The second-level
interrupt-handling routine can also be designed to determine which
control block in a command chain has interrupted and whether the
chain is complete. This task can be greatly simplified if certain
programming conventions ¢oncerning control-block chains are
followed. Some examples of these conventions are:

e Always request a successful completion interrupt in the last (or
only) control block in a command chain.

Delivery Level —January 1991 3-23

]

Ensure that End Status Word 1 in each termination status block in
the chain is set to 0 before the chain is issued to the device.

Once a chain is initiated, do not modify control biocks that have
not been reported as complete.

By searching the termination status blocks of a chain of commands, a
second-level interrupt-handling routine can find the specific
command control block that interrupted and can determine the state
of a chain of control blocks. After analyzing the results of the search,
the second-tevel interrupt-handling routine can take one of the
following paths:

*

If the chain has ended and has not been suspended, the
second-level interrupt-handling routine should reenable
interrupts for the device. Status should be returned to the
program that created the chain. The interrupt code passed to the
second-level interrupt-handling routine by the first-level
interrupt-handling routine determines the kind of ending status
given.

If the chain has not ended and has not been suspended, the
second-level interrupt-handling routine should log any error
found, enable the device for interrupts, and block itself waiting for
the next signal from the first-level interrupt-handling routine for
the command-control-block chain.

If the chain has been suspended, the second-level
interrupt-handling routine needs to log any errors found. If the
chain has ended, the second-level interrupt-handling routine does
not need to save state to restart the chain at a later point. The
second-level interrupt-handling routine can return a final result of
the program that created the chain or control block. Status
shoutd be returned to the program that created the chain. The
interrupt code passed to the second-level interrupt-handling
routine by the first-level interrupt-handling routine determines the
kind of ending status given. If the chain has not ended, the
address of the next control block in the chain can be used to
restart the chain at a later point if necessary. Any error found is
noted.

Another control-block command stream can be started at the
device after the device is enabled for interrupts. This can be
done by issuing a write to the Command and Attention ports. The

3-24 Delivery Level —January 1981

second-tevel interrupt-handling routine will block itselt waiting for
new interrupts if a new command stream is started.

In the cases cited previously where the device is still active on a
control-block chain, the second-level interrupt-handling routine
reenables interrupts by using the Command Reset Interrupt Status
port with its disable-device-interrupt bit set to 0. This command will
be accepted by a device that is busy executing a control block,

Contirol Block Compieted without Error

When the interrupt ID that is returned to the interrupt-handling
program in the system unit indicates that the control-block command
was completed without error, there are two cases to consider:

+ |f the interrupt-handling program knows that the control block is
not part of a chain, it can quickly determine which control-block
command caused the interrupt, without examining the termination
status blocks. This follows from the fact that only one control
block was active.

¢ |f the interrupt-handling program does not know the chain status
of the control block, it should use a chain-searching technigue to
locate the interrupting control block.

Although the architecture permits a program to suppress storing
termination status biocks for control-block commands that are
completed without error, the use of this option must be weighed
against the extra analysis that could be needed in interrupt-handling
programs to handie chains of control blocks that use interrupts on
normal completion to track progress.

A Reset Interrupt Status Port command will clear this interrupt
condition from the subsystem and make the Interrupt Status port
availabie.

Control Block Completed with Error
When the interrupt ID indicates that an error occurred that was not
caused by the hardware, the interrupt-handling program needs to

examine the termination status block associated with the control
block to determine the cause of the error.

Delivery Level — January 1991 3-25

If a control block is not part of a chain, the interrupting control block
can easily be identitied because a device can have only one control
block active at a time.

When the command control block is part of a chain operation, the
interrupt-handling program might be required to search the
control-block chain to determine which control bleck requested an
interrupt. This is done by examining, in chain order, each control
black that is thought to be incomplete, and testing for completion with
termination-status-block status indicating that it requested an
interrupt. The first termination status block found indicating a request
for an interrupt locates the failing command control block. For more
details on exception handling see “Exception and Error Handling” on
page 5-4.

Control-Block-Command Hardware Failure

When the interrupt ID indicates that an error caused by the hardware
occurred while a control block was being processed, the
interrupt-handling program cannot accurately identify the control
block when it is part of a chain. This is because a termination status
block is not stored for hardware-related errors, even though the
control-block chain is terminated.

If a control block is not part of a chain, the interrupting control block
can easily be identified because a device can have only one control
block active at a time.

DIIP Interrupts (Multiple Form)

In this form of interrupt handling, command-control-block interrupts
are not restricted to presentation in the serialiy-reusable Interrupt
Status port. Instead, they are presented through the Device Interrupt
Identifier port (DIIP), which provides a means of signalling interrupts
for multiple devices in a single port. Not only can multiple devices
present logical interrupts in a single DIIP, but each device that
signais the presence of a logical interrupt in the DIIP by setting its
designated device bit can indicate that several command control
blocks have been completed with their interrupt-request bits setto 1
in End Status Word 1 of the termination status blocks.

In this interrupt mode, every command control-block interrupt is a
logical interrupt and results in at least End Status Word 1 being

3-26 Delivery Level —January 1991

written to memory before a physical interrupt request is made. This
differs from the non-DIIP-interrupt case, in which
termination-status-block status can be disabled for completion of
error-free command control blocks when an interrupt is requested.

As defined in the description of the DIIPs, each device is assigned a
unique bit in the DIIP that, when set to 1, indicates that at least one
command-control-block logical interrupt has been raised for the
assigned device. Each time a device detects a
command-control-block logical interrupt, an internal count of logical
interrupts presented by the device is incremented by 1. it this
internal count of logical interrupts presented by the device is greater
than 0, the assigned DIIP bit for the device is set to 1, signalling the
presence of a fogical interrupt in the DIIP. If the device that
requested the command-control-block interrupt is enabled for
interrupts and the subsystem is also enabled for interrupts, a physical
interrupt will be requested.

When the DIIP is supported, at least one DIIP must exist. The
implementation defines as many DIIPs as are needed to address the
number of devices attached to it. When multiple DIIPs exist, they
must occupy consecutive addresses in shared I/0 space. The first
DIIP defines its least-significant bit 0 to indicate that
command-control-block logical interrupts have been raised for the
subsystem. Bits 1-15 are then assigned to the first 15 devices
attached to the subsystem. Any remaining devices are assigned to
other DIIPs, with each port supporting 16 devices. Device assignment
continues in each port, starting at the ieast-significant bit and
extending to the most-significant bit. Unassigned bits of a DIIP must
always be set to 0.

Delivery Level —January 1991 3-27

Device Control-Block Interrupts: When a command control block is
completed with an interrupt request, at least End Status Word 1 is
stored in the termination status block associated with the command
control block, indicating that a logical interrupt request is pending for
this command. The device issuing the request increments an internal
logical interrupt count by 1 for every logical interrupt request. If the
logical interrupt count is greater than 0, the device detects the
presence of a logical interrupt by setting its associated bit to 1 in the
Device Interrupt Identifier port (DIIP). A physical interrupt for a
device is presented to the system master if the following conditions
are met:

+* The DIIP bit for the device is set to 1.
* The device is enabled for interrupts.
* The subsystem is enabled to send interrupts.

The DIIP interrupt architecture allows a program to reset logical
interrupts as soon as they are detected. Typically, a program detects
the need to process logical interrupts for a device by reading a
subsystem DIIP. The number and specifics of the command control
blocks that have been completed with logical interrupts are then
determined by examining the End Status Word 1 of control-block
commands associated with the device whose DIIP bit is 1.

Logical interrupts that have been processed by programs in the
system master are cleared for a specific device by issuing a Reset
Control Block Interrupt command. This command contains a count
value that allows a program in the system master to reset as many as
15 logical interrupts for a device at one time. The count value
specified in the command is subtracted from the internal logical
interrupt count for the device. If the resulting new logical interrupt
count for the device is less than or equal to 0 as a result of the Reset
Control Block Interrupt command, the DIIP bit associated with the
device is set to 0 in the appropriate DIIP. This signals the fact that the
device currently has no outstanding logical interrupts left to process,
and it prevents any further interruption of the system master on
behalf of the device for logical interrupts.

When the DIIP architecture is implemented, most control-block
interrupts are presented to the system master through the DIIPs. The
only exception to this rule occurs when a command control block
cannot be read by a device or the subsystem or when completion

3-28 Delivery Level —January 1991

status could not be stored in the control block’s termination status
block by the subsystem or device.

If the command control block could not be read or the
termination-status-block status could not be written, the interrupt
request is not presented in the DIIP, but is signalled as interrupt code
hex 8 (Hardware failure —contral block command) in the interrupt
Status port. This type of interrupt is handled in an identical fashion to
the non-DIIP interrupt, and the resulting interrupt must be signalled to
the system master in the Interrupt Status port of the subsystem.

Note: If the failing command control block is an elementin a
command chain, it might not be possibie to locate the tailing
control block, bacause no termination-status-block status has
been stored.

When the Interrupt Status port is written to and the DIIP is supported,
the same rules apply for setting the interrupt-valid bit in the
Command Busy/Status port to 1. interrupt-handling software in the
system master should test the interrupt-valid bit so that it can
determine whether the Interrupt Status port needs to be read to
handle the interrupt request recorded there. A practice of testing and
reading the Interrupt Status port before reading any DIIPs ensures
that control-block hardware failures are handled on a higher priority
than are logical interrupts caused by recoverable
command-control-block completions.

As in the non-DIIP-interrupt case, a control-block hardware-failure
interrupt is cleared from the Interrupt Status port by the Reset
Interrupt Status Port command. Interrupt data remains in the
Interrupt Status port until it is explicitly reset by the system master.

Software in the system master can detect that a control-block logical
interrupt has been raised for a device before it receives a physical
interrupt.

The recommended method for detecting control-block interrupts is to
read the DIIPs for any nonzero bits. Nonzero bits represent devices
that have at least one control-block logical interrupt. A nonzero value
for a DIIP bit indicates that at least one control-black logical interrupt
exists for a program to handle.

Delivery Level — January 1891 3-29

Note: This method of detecting control-block interrupts before
receiving the physical interrupt is simpler and uses fewer
system-master processor cycles in the DilP-interrupt case than
in the non-DIIP-interrupt case. In the non-DIIP-interrupt case,
it is possible to detect a logical interrupt before the physical
interrupt is requested. The program in the system master can
do this by polling the termination status blocks for one with the
interrupt-request bit set to 1. This is not recommended
because it can waste processor cycles that could be used by
other tasks.

Once a logical interrupt is found, the DIIP-interrupt case is
superior to the non-DIIP-interrupt case because it allows a
logical interrupt to be reset without having to wait for the
interrupt value to be presented in the subsystem’s Interrupt
Status port.

Device Non-Control-Block Interrupt: If a non-control-block logical
interrupt is found by a device, it is signalled to the system master in
exactly the same manner as in the non-DIIP-interrupt case. The
interrupt code is signatled in the Interrupt Status port. The specitic
codes are:

* |Immediate/hardware-controlled command completed, no error
+ Immediate/hardware-controlied command completed, with error

* |mmediate/hardware-controlied command completed, hardware
failure

+ Reset subsystem or device completed, no error.

Subsystem — Physical Interrupts (DIP Form): A subsystem can raise
a physical interrupt to the system master, following the same steps as
in the non-DIIP case (see pages 3-16 through /SFEND/). In addition, a
physical interrupt can be raised if a device is enabled for interrupts
and its associated DIIP bit is set to 1. The interrupt-valid bit is setto 1
only if the Interrupt Status port contains a valid interrupt value. The
DIIP bits are reset by the Reset Control Block Interrupt command (see
“Reset Control Block Interrupt” on page 1-80 for details).

3-30 Delivery Level —January 1991

System Master — Physical Interrupts: The following discussion deals
with programming considerations in the system master with the
Device Interrupt Identifier port (DIIP) interrupt-handling model of the
Locate mode architecture,

A subsystem will attempt to interrupt the system master if the
following conditions are met:

* The subsystem is enabled to send interrupts to the system
master.

* Either of the following conditions is true:
— The Interrupt Status port has an interrupt value in it.

— Any device is enabled tor interrupts, and its associated DIIP
bit is set to 1.

If these conditions are met, the system master will receive an
interrupt from the subsystem.

Unlike the non-DilP interrupt, a physical interrupt in the DIIP-interrupt
case can indicate that at least one device has presented a
controt-block logical interrupt and a device has interrupt data present
in the interrupt Status port.

In order to determine the source of a physical interrupt, a program in
the system master must read both the Command Busy/Status port
and the DIIPs. As in the non-DIIP-interrupt case described in “System
Master — Physical interrupts” on page 3-20, interrupt handling can be
viewed as consisting of two levels: a first-level interrupt-handling
routine and a second-level interrupt-handling routine.

When a system master receives a physical interrupt, it invokes the

first-level interrupt-handling routine associated with the subsystem.
This is based upon the interrupt level assigned to the subsystem at
configuration and initialization time.

The first-level interrupt-handling routine determines the interrupt
state of a subsystem by reading its Command Busy/Status port and
DItPs. If the interrupt-valid bit in the Command Busy/Status port is 0
and ali the bits in the DIIPs are also 0, the interrupt is not for this
subsystem (interrupt sharing). The interrupt handler simply returns
control to its caller with an indication that it did not have an interrupt
to service.

Delivery Level — January 1991 3-31

S

If an interrupt exists for the subsystem or any of its devices, a
procedure is followed that allows the first-level interrupt-handling
routine to schedule the second-level interrupt-handling routine to
process device requests for interrupt servicing. A first-level
interrupt-handling routine typically tries to schedule all the requests it
received on a single invocation to the appropriate second-tevel
interrupt-handling routines. Because second-level interrupt-handting
routines are scheduled, the first-level interrupt-handling routine must
not accept further interrupts from the device. This is done by
disabling the devices. While the devices are disabled, the first-level
interrupt-handling routine ignores the DIIP bits for these devices
when it is reentered on an interrupt request. (The second-level
interrupt-handling routines may not have finished resetting all
interrupts at that time.)

Devices are disabled by the first-level interrupt-handling routine in
two ways:

¢« When an interrupt is found in a DIIP,

A Reset Control Block Interrupt command is used with the
disable-device-interrupt (DDI) bit set to 1. The count value in the
command is set to 0. This allows the second-level
interrupt-handling routine to reset as many fogical interrupts as it
encounters in its processing, using a true interrupt count.

* When an interrupt is found in the Interrupt Status port.

A Reset Interrupt Status Port command is used with the
disable-device-interrupt (DDI) bit set to 1.

Second-level interrupt-handling routines need to use the services
provided by the first-level interrupt-handling routine to reenable a
device for interrupts. This allows the second-level interrupt-handling
routine to be capable of being calted again by the first-level
interrupt-handling routine when the first-level interrupt-handling
routine detects that the DIIP bit for its device is set to 1.

When all DIIPs have been processed, the first-level interrupt-handling
routine returns control to its caller. It indicates that it has cleared an
interrupt when it schedules any second-level interrupt-handiing
reutine. If no second-level interrupt-handling routine was scheduled
on entry to the first-level interrupt-handling routine, no interrupts
were found or cleared by it on this invocation.

‘f 3-32 Delivery Level —January 1991

As each second-level interrupt-handling routine is scheduled by the
first-level intarrupt-handling routine, it passes on information
explaining why it is being invoked. In the case of an interrupt found
in the Interrupt Status port, it would most likely be the contents of the
Interrupt Status port Interrupt ID field. For routines that are
scheduled to handle logical interrupts, a code is passed that indicates
that a search of the command control blocks is needed.

The procedure for dealing with an interrupt found in the Interrupt
Status port in the DIIP-interrupt case is similar to that in the
non-DiIP-interrupt case. If the interrupt-valid (IV} bit in the Command
Busy/Status port is set to 1, the first-level interrupt-handling routine
must read the Interrupt Status port for the subsystem to determine the
device and the cause of the interrupt. The Interrupt ID tield indicates
the type and cause of the interrupt, and the Device ID field indicates
the identity of the device.

The interrupt should be cleared as soon as possible to avoid blocking
the interrupt level and to free the subsystem to present interrupts
from other attached devices. The interrupt is cleared by the Reset
Interrupt Status Port command. The Attention port must be set to the
Device ID read from the Interrupt Status port. In this case, the
clearing action is done before analysis of the cause of the interrupt is
completed. The clearing operation is done in the first-levei
interrupt-handling routine, and a second-level interrupt-handling
routine is scheduled.

The second-level interrupt-handling routine can be the program that
originally issued the command. To be most effective, the
second-level interrupt-handling routine should be waiting for a signal
to continue processing. The first-level interrupt-handling routine
provides the needed signal, and it unblocks the execution of the
second-level interrupt-handling routine. In the DIIP case, the
first-level interrupt-handling routine continues processing to
determine whether it needs to schedule second-level
interrupt-handling routines for DIIP interrupts.

Delivery Level —January 1981 3-33

Non-Control Block Completed without Error, Reset Subsystem or
Device

When the interrupt ID from the Interrupt Status port indicates that a
non-control-block command was completed without error, processing
of the interrupt consists of a Reset Interrupt Status Port command,
followed by an End of Interrupt command to reset the interrupt
controller on the system master to free the interrupt level,

Note: The End of interrupt command referred to is the command
described in the documentation for the system-master
interrupt controller. it is not a Locate mode architected
command, but it is included here for implementation
information.

Non-Conirol Block Completed with Error, Non-Controi-Block
Hardware Fallure

When the interrupt ID indicates that a non-control-block command
was completed with an error, recovery depends upon the interrupt
code returned and the command that was submitted. The program
must keep track of all submitted non-control-block commands that
have not been completed. There can be only one non-control-block
command active for each device. The interrupt is cieared in the same
way as a non-control-block command that was completed without
error. For more details on error handling, see “Exception and Error
Handling” on page 5-4.

Conirol-Block-Command Hardware Failure

When the interrupt ID indicates that a hardware failure occurred while
a control-block command was being processed, the program might
not be able to locate the exact control block that failed, if the control
block is an element of a control-block chain. This is because, in
these cases, termination-status-block status is not stored.

In the case of a single nonchained control block, a device can have
only one control-block address active at a time, so the interrupting
control block is immediately known. In the case in which a
control-block chain might be present, a second-level
interrupt-handling routine and a control-block-searching procedure
can be used. In this case, the first control block that has an End

3-34 Delivery Level ~ January 1891

Status Word 1 of 0 is located. The execution of the control-block
chain is terminated by the device when such a condition is signalled.

For more details on error handling, see “Exception and Error
Handling” on page 5-4.

DIP Interrupt Present

To process a logical interrupt in the DIIP interrupt architecture, a
program in the system master must read the termination status
blocks associated with the control-block commands. This happens
because only one DIIP bit is returned to the system master to indicate
that the device has posted logical interrupts in shared storage.

Because this is the case, a programming convention needs to be
employed to simplify the task of locating the termination status block
of a control block that is complete. The same convention and
searching approach that is described in the non-DIIP-interrupt case
can be used; that is:

e Always request a successful completion interrupt in the last (or
only) control block in a command chain.

* Ensure that the End Status Word 1 in each termination status
block in the chain is set to 0 before the chain is issued to the
device.

» Do not modify control blocks that have not been reported as
complete once a chain is initiated.

+ Enable termination-status-block status storage on the completion
of every control block.

Using this convention, a second-level interrupt-handling routine can
be written that uses a search program like the one described to find
controi-block interrupts in the non-DIlP-interrupt case. The difference
in the DIIP case is that a second-leve! interrupt-handling routine uses
a loop to call the search routine. The cbjective of the loop is to call
the search routine to find logical interrupts and to count them. As
each interrupting control-block command is found, any error or
exception condition that is found is processed. For a discussion of
error handling, see “Exception and Error Handling” on page 5-4.
Calls to the search routine continue if all the following conditions are
met:

Delivery Level —January 1881 3-35

* The search routine indicates that an interrupt has been found.
* The end of the ¢chain has not been reached.

* The chain has not been suspended.
If any of these conditions are not met, searching stops.

After calls to the search program are stopped in the second-tevel
interrupt-handling routine, several paths are possible. On any path,
the logical interrupts found are reset. Resetting is done by the Reset
Control Block Interrupt command. As many as 15 interrupts can be
reset with one use of the command. If more than 15 interrupts are
tound, multiple Reset Control Block Interrupt commands are used.

The actions for stopping the search are as follows:

* |f the chain has ended and has not been suspended, the
second-level interrupt-handling routine should reset the
interrupts found and reenable interrupts for the device. The
second-level interrupt-handling routine should return status to the
program that created the chain. The ending status provided by
the second-level interrupt-handling routine is determined from
the End Status Word 1 of the last interrupting control biock.

¢ If the chain has not ended and has not been suspended, the
second-level interrupt-handling routine should log any errors
found. The second-level interrupt-handling routine resets the
logical interrupts found and enables the device for interrupts.
The second-level interrupt-handling routine blocks itself waiting
for the next signal from the first-level interrupt-handling routine
for the control-block chain.

* |f the chain has been suspended, the second-level
interrupt-handling routine needs to log any errors found. The
second-level interrupt-handling routine resets the number of
legical interrupts found. If the chain has ended, status does not
need to be saved by the second-level interrupt-handling routine
to restart the chain at a later point. Final status can be returned
to the program that created the chain or control block. The
ending status provided by the second-level interrupt-handling
routine is determined from the End Status Word 1 of the last
interrupting control block found by the search program, If the
chain has not ended, the address of the next control block in the

3-36 Delivery Level — January 1991

chain, returned by the search routine, can be used to restart the
chain at a fater point. Any error found is noted.

Another command-control-block stream can be started at the
device after the number of logical interrupts found is reset and
the device is enabled for interrupts. This is done by issuing a
write to the Command and Attention ports.

The second-level interrupt-handling routine will block itself
waiting for new interrupts it a new command stream is started.

In the cases cited previously where the device is still active on a
control-block chain, the second-level interrupt-handling routine
reenables interrupts for a device by calling the first-level
interrupt-handling routine, which issues a Reset Control Block
command with a count of 0 and with its disable-device-interrupt bit
set to 0. This command will be accepted by a device that is busy
executing a control block.

The order in which devices are processed for control-block interrupts
and the number of control-block interrupts that are processed for
each device are determined solely by the interrupt-handling software.

Note: System software is free to read DIIPs at any time, butin a
typical case, these ports would be read after the system
master received the physical interrupt.

DIIP versus Non-DIIP: The description of DIIP {multiple form)
interrupt handling can be concluded by summarizing its advantages
over the non-DIIP {(simple form) interrupt case. The advantages are:

» Multiple interrupt sources are presented in the DIIP case.

In the DIIP case, interrupt-handling software in the system master
can determine the interrupt status of all its devices on a single
physical interrupt of the system master and decide the order of
service. In the non-DIIP case, only one device source is
presented to the system master.

s Multiple logical interrupts can be reset.

Multiple control-block logical interrupts from one device can be
reset with a single execution of the Reset Control Block Interrupt
command in the DIIP case. The non-DIIP case allows only one to
be reset.

Delivery Level —January 1991 3-37

* Logical interrupts can be reset quickly.

In the DIIP case, logical interrupts can be reset as socn as they
are detected in the system master. Software in the system
master does not have to wait for a value to be presented in the
Interrupt Status port, as in the non-DIIP case.

* Device logical-interrupt status can be found quickly.

The use of single bits for a device in a DIIP allows programs in
the system master to determine whether any logical interrupts
are pending for a device without having to poll each termination
status block, as in the non-DIIP case.

* Logical interrupts are presented quickly.

In the DIIP case, logical interrupts are queued quickly at the
device by incrementing a simple count. They are presented to
the system master immediately by setting the assigned DIIP bit
each time a device requests a logical interrupt and its internal
count is nonzero. This means that control-block logical interrupts
can be responded to in the order the program in the system
master selects, rather than waiting for the subsystem to serialize
presentation through a single Interrupt Status port.

Resetting Interrupts

This section describes the actions and effects of Reset type
commands on the Interrupt Status port and the Device Interrupt
identifier ports (DIIPs).

Interrupt Status Port: The value in the Interrupt Status port remains
constant once it is set by the subsystem or a device, until software in
the system master clears the port with a Reset Interrupt Status Port
command or a Reset Subsystem command.

The normai method of clearing the Interrupt Status port is the Reset
Interrupt Status Port command. This command clears the Interrupt
Status port when the port contains a valid interrupt value and the
device that caused the interrupt matches the value specified in the
Attention port. After the Interrupt Status port is cleared, the
interrupt-valid (IV) bit in the Command Busy/Status port is set to 0.

3-38 Delivery Level —January 1991

Device Interrupt Identifler Ports: The Device Interrupt Identifier ports
(DIIPs) are reset by the Reset Control Block interrupt, Reset Device,
or Reset Subsystem command.

The normal method of clearing logical interrupts and DIiPs is the
Reset Control Block Interrupt command.

When the Reset Control Block Interrupt command is used, the reset
count specified in the command should match the number of logical
interrupts to be cleared. If the reset count used is greater than or
equal to the number of logical interrupts counted internally by the
device, the subsystem sets the DIIP bit for the device to 0 and will not
set the DIIP bit for the device until enough control-block interrupts
occur for the device to set its internal logical-interrupt countto a
positive value. When the DIIP bit for a device is Q, it cannot raise a
physical interrupt.

A Reset Device command sets the DIIP bit for the device to 0 and sets
the device’s internal logical-interrupt count to 0. An interrupt is
requested when execution of the Reset Device command is complete,
because a Reset Device command always requests an interrupt upon
successful complation. (For details, see "Reset Device” on

page 1-77.)

Delivery Level — January 1991 3-39

Notes:

3-49 Delivery Level —January 1991

Chapter 4. Processing Level

In general, the services and protocols at the processing level are not
defined by the architecture. However, the architecture does define
configuration and initialization, exception handling, and the
control-block and data-chaining protocols. The control-block and
data-chaining protocols are described in this section. A discussion of
configuration, initialization, and exception handling can be found in
“Exception and Error Handling” on page 5-4.

There are two types of control-block chaining:
* Command chaining.

Command chaining allows a series of control blocks to be
presented to a device for execution with a single request. The
request points to the tirst control block in a chain of control
blocks. This frees the system master to perform other work.

* Data chaining.

Data chaining uses an indirect list pointed to from the control
block to perform data transfers into a set of separate
shared-memory areas (pages). This capability is useful when
dealing with data buffers in a virtual shared-memory system that
are logically contiguous but are mapped by the operating system
into separate pages.

© Copyright IBM Corp. 1891 4-1

Command Chaining

A command-control-block address is delivered from the system
master to the subsystem through I/0 instructions to write to the
Command and Attention ports. Once this command address is
delivered and accepted, the device performs the operation specified
by the command control block. If command control blocks are issued
to the device one at a time, a program in the system master will wait
for the command control black to be completed before it issues the
next control block to the device. Such a practice involves at least
three 11O operations from the system master to initiate the control
black and verity its acceptance. At least three [/O operations are
needed to verify and reset an interrupt from the device on
completion.

If a program needs to issue several commands to a device,
instructions are saved in the system master by using command
chaining. This is illustrated in Figure 4-1 on page 4-3 (Control
Blocks without Command Chaining) and Figure 4-2 on page 4-4
{Control Blocks with Command Chaining).

Figure 4-1 on page 4-3 shows an example of three command control
blocks initiated as individual commands from the system master. As
indicated, each I/0 command requires at least two /O operations to
be delivered to the subsystem through the Attention and Command
ports. An I/O operation toc the Command Busy/Status port is required
to verify command acceptance.

Before control block 2 is sent to the device, control block 1 must be
completed and must interrupt the system master. This requires at
least three 1/0 operations from the system master:

¢ One /0 operation to read the Interrupt Status port
s Two /O operations to write to the Command and Attention ports
to clear the Interrupt Status port.

A program in the system master can then issue the next command
control block (control block 2). The procedure is the same as the
procedure for control block 1. When control block 2 is completed,
control block 3 is issued.

4-2 Processing Level ~January 1991

]

Command
Command Port Control Block 1

TSB 1

Command
Control Block
Address

Command
Command Port Control Block 2

TSB 2

Command
Control Block
Address

Command
Command Port Centrol Block 3

TSB 3

Command
Control Block
Address

Figure 4-1. Control Blocks without Command Chaining

When command-control-block chaining is used, the system master
issues one set of YO commands to the subsystem to initiate the chain,
and the device performs the three |/Q operations independently of the
system.

In the following figure, the operation defined in control block 1is
executed, and the completion status is written to the termination
status block. After this is done, the device reads the next control
block (control block 2), that is, independent of the system master.
Control block 2 is executed by the device, and the completion status
is written to its termination status block. The device then reads and
executes control block 3. After control block 3 has been executed, its
comptetion status is written to its termination status block, and a
system-master interrupt is requested. This notifies the program that
all three commands have been successfully executed.

Processing Level —January 1991 4-3

The system master is free to perform other work while the device is
executing control blocks 1, 2, and 3 and does not have to execute
extra instructions to submit each control-block command. This is
useful in a multitasking environment. See “Signalling Protocol” on
page 3-13 for details of programming conventions, the architecture
for interrupts, and cormmmand-control-block chains.

Command Port Control Block 1
T
Control Block (——— Data Buffer
Address f
CHMD/Enable

Buffer Add2

TSB Address [—
| TS81 |
Chain Addl >

Control Block 2
s

!

I

Centrol Block 3

—_—

L

Figure 4-2. Control Blocks with Command Chaining

4-4 Processing Level —January 1991

Conditional Command Chaining

The Locate mode architecture supports the ability to conditionally
continue processing command control blocks in a command chain it
the current control block is completed with a specified condition. This
is called conditional chaining, and it uses a separate
control-block-chain address tield (Chain Address 2} to specify the
next control block to be executed. The form of command chaining
illustrated in Figure 4-2 on page 4-4 is called Chain No Error. it uses
the other chain-address field in the control block (Chain Address 1) to
specify the next control block to be executed when the current control
block is completed without error. An individual control block can
specify one or both forms of command chaining. When only one form
is enabled, the chain continues down the specified path when the
control block is completed in a manner that satisties the chain
specification. When both forms of chaining are specified in a control
block, two branches in the chain are enabled. The control-block
execution path is Chain Address 2 if that condition is met. if the
condition is not met and the control block is completed without error,
the Chain Address 1 execution path is followed. If neither condition is
met, the chain is halted.

An example of the use of both Conditional Chaining and Chain No
Error is shown in the following figure. In the example, control block 1
uses the chain condition specification, Chain on Error, and also
enables Chain No Error.

If control block 1 is completed with an error and the conditional chain
condition is met, the chain continues using Chain Address 2. In the
following figure, the path of chain execution is Chain Address 2.

If the condition is not met and control block 1 is completed without
error, the chain continues using Chain Address 1. In this case, the
path of execution follows Chain Address 1.

Using chaining in this manner allows a program to provide a
predetermined error-recovery path. The conditional-chain path is
used for commands that are performed dependent on the specified
condition.

Processing Level—January 1881 4-5

Command Port Control Block 1

o - = = = — —
Control Block Data Buffer
Address I
CMD/Enable
I I
| I
| Buffer Add2 I
TSB Addr
| 8B 1 |
i Chain Addl |— |
Chain Addz
| |
/
| / !
Error Path L — — — || — = —!
No Error Path
Chain 2 Chain 1
Centrol Block 2 Control Block 2
-b y

/ /

L ¢ L
Chain 2 Chain 1
Control Block 3 Control Block 3

> o

/ /

I I

Figure 4-3. Command Chaining with Conditional and Chain No Error
Enabled

4-6 Processing Level —January 1991

Command-Chalning Optlons

Command chaining is specified by setting the chain-no-error bit or
the conditional-chaining bit in Enable Word 1 of a command control
block. This results in four types of chaining:

¢ No chaining

¢ Chain no error (Enable Chain Address 1)

¢ Conditional chain (Enable Chain Address 2)

* Two-way chain (Enable Chain Address 1 and 2).

The types of chaining are described in detail below.

* No chaining.

The operation in the control block stands alone, After the device

has completed processing of the control block, the device is
ready to execute another command from the program. This is

specified when the chain-no-error and conditional-chaining bits in
Enable Word 1 of the current command control block are both 0.

¢ Chain no error (unconditional chain).

This type of command chaining is enabled if the chain-no-error

bit

in Enable Word 1 of the command control block is set to 1 and the
conditional-chaining bit is set to 0. If the current control block is

completed without error or is completed with an error that has

been suppressed, chaining continues, using control-block Chain
Address 1 to read the next control block. An example of this type
of chain is a write to a disk, followed by a read to verify the data.

If a control block terminates with an unsuppressed error, the
chain is halted.

* Conditional chaining.

This type of command chaining specifies that chaining is to use

the Chain Address 2 field of the current control block when the
control block is completed in 2 manner that matches the

chain-condition-specification bits in Enable Word 1 of the current

contro! block.

If the current control block is not completed in a manner that

matches the chain-condition-specification bits in Enable Word 1 of

the current control block, chaining is halted.

The conditions that can be specified by the settings of the
chain-condition-specification bits are:

Processing Level —January 1991

4-7

a8

000

001

Chain on Error

An unsuppressed error/exception occurred. The
errors excluded from this condition are: specitication
error, hardware failure reading a control block, and
hardware failure storing a termination status block.

Chain on More Status

The device or subsystem completed the current
command control block in a state that indicates that
more status is available at the device than could be
stored in a termination status block.

010—-111 These codes are reserved.

Note: A program in the system master can determine whether a

command control block was completed by selecting the
conditional chain address (Chain Address 2). This is
indicated by the setting of the chain-direction bit in the
termination-status-block End Status Word 1. To ensure
that the termination status block is stored when
conditional chaining is specified, the program should set
the termination-status-block bit in End Enable Word 1 of
the control block to ¢ when the chain condition is Chain on
More Status. The chain condition Chain on Error causes
termination-status-block End Status Word 1 to be stored,
ignoring the setting of the termination-status-block bit in
Enable Word 1.

Two-way chaining.

This type of chaining describes the actions to be taken when both
Conditional Chaining and Chain No Error are enabled in the same
control block {both the chain-no-error and conditional-chaining
bits are set to 1).

Note: When both forms of chaining are specified in a single

control block, testing is performed first to determine
whether the Conditional Chaining specification is met. If it
is not met, testing is performed to determine whether the
Chain No Error condition is met.

Two-way command chaining specifies that chaining is to continue
using the Chain Address 2 field of the current control block, if the
current control block is completed in a manner that matches the

Processing Level —January 1991

conditions specified in the chain-condition-gpecification bits in
Enable Word 1.

If the current control block is not completed in a manner that
matches the chain-condition-specification bits in Enable Word 1 of
the current control block, chaining continues, using the Chain
Address 1 field of the current control block, provided the control
biock was completed without error or with an error that was
suppressed.

Chaining is halted if the chain condition does not match the
ending condition of the current control block or if the control block
is completed with an unsuppressed error.

Control-Block Execution

Control blocks in a chain must be executed in the sequence in which
they are presented. This allows programs to depend on a
predetermined order of execution. The device cannot perform the
next control block until it has completed all operations on the current
control block, including the storing of the termination status block.

In the Locate mode, the ordering restriction on command execution
also applies to all commands outside of a chain. The restriction is

applied to simplify and speed up interrupt-handling software in the

system master.

Processing Level —January 1991 4.9

Data Chaining

Data chaining, often referred to as indirect lists, allows a single
control block to gather data from several areas of shared memory
and transfer it to or from a destination or source.

Data chaining is enabled with the indirect-list-1 {IL1) and
indirect-list-2 (IL2) bits in the control-block Enable Word 1 and
control-block Enable Word 2, respectively. In the base control block,
only IL1 is used, because only one byte count is present to specify the
length of the indirect list in system shared memory. This data area,
whether used as a source or destination, is accessed by incrementing
addresses. With the extended command control block, both Byte
Count 1 and Byte Count 2 can be used to specify two data areas
addressed by Shared Memory Address 1 and Shared Memory
Address 2. Each address can be specified as incrementing or
decrementing during the data transfer.

Note: IL1is associated with the shared-memory address chosen by
the setting of the memory-address-1-selected (MA1) and
memory-address-2-selected (MA2) bits in Enable Word 1.
From this point on, the term “Memory Address x" will be used
to refer to either shared-memory address, as selected by the
MA1 and MA2 bits.

If iL1 is enabled, Memory Address 1 or Memory Address 2 points to
the doubleword-aligned beginning of an indirect list of buffer
descriptors. The indirect list is in error if Memory Address x points to
an invalid address, the indirect list does not begin on a doubleword
boundary, or the length of the indirect list is not a multiple of eight
bytes. A specification exception might be noted in these cases.

For reference, an indirect list is illustrated in Figure 4-4 on
page 4-11.

4-10 Processing Level —January 1991

In Command
Control Start Address of Indirect List
8lock

Length of Indirect List

Indirect -
List Buffer 1 Start Address

Buffer 1 Byte Count

Buffer n Start Address

Buffer n Byte Count

Figure 4-4. Indirect List

Each element {buffer descriptor) in the indirect list consists of eight
bytes. The first four bytes define the buffer start address—the
location in shared memory to be used as the scurce or destination of
a data transfer. The second four bytes define the buffer length—the
size, in bytes, of the data transfer.

The total data-transfer length defined for the control block is the sum
of the buffer lengths of all the elements in the indirect list.

The Byte Ccunt 1 field in the control block, associated with Memory
Address x, contains the length, in bytes, of the indirect list. The
indirect list is in error if the byte count is not a multiple of eight bytes.
Because each element consists of eight bytes, the number of
elements in the list is Byte Count 1 divided by B. A specification error
exists if any element points to an invalid address. Testing of element
validity must be performed before data transfer begins. If no
specification testing is done on each address, the results of the
operation are not defined by the architecture. An example of a
command control block with an indirect list is shown in Figure 4-5 on
page 4-12.

Processing Level —January 1991 4-11

Note: The indirect list is useful for software systems that are running
user programs in a virtual shared-memory mode. In this case,
a user request to read or write from a contiguous area of
virtual space might require /O to a set of honcontiguous real
shared-memory pages. The indirect buffer list would then
describe the physical pages that map the contiguous virtual
area. The start of such an area might fall on an arbitrary byte

boundary.
Buffer 1
Control Block Indirect List 1 __‘J——b
(MD/Enable Address of Buffer 1 /
Memory Addr 1 Byte Count of Buffer 1 ‘ j
Memory Addr 2 Address of Buffer 2 Buffer 2
Byte Count 1 Byte Count of Buffer 2 —___l-—’l
TSB Address Address of Buffer 3 T {
Chain Addr 1 Byte Count of Buffer 3 _-nlnq’ Buffer 3
Chain Addr 2
L | : i

/
.
Figure 4-5. Control-Block Command with Indirect List

Reading with a Base Control Block and Indirect Lists

In a read operation, the control block is read from the system master
by the device. If IL1 is equal to 1 and EXT is equal to 0, Memory
Address x is read to determine the starting address of an indirect list
in shared memory. An indirect list must start on a doubleword
boundary. The length of the indirect list, in bytes, is found in Byte
Count 1. The length of an indirect list must be a multiple of eight
bytes.

An indirect list consists of individual buffer descriptors that are eight
bytes long and contain a 4-byte butfer address, followed by a 4-byte
bufter length. The buffer descriptors give the starting address and
length of each element in the indirect list. The total number of data

4-12 Processing Level — January 1991

3

bytes that can be transferred using an indirect list in a read command
is equal to the sum of the buffer lengths of all the buffer descriptors in
the indirect list. An implementation might choose to compute this
total value and reject a command with a specification error if the total
data-transfer size exceeds its capability. In this case, no data
transfer occurs,

As data is transferred during the read operation, data is not allowed
to exceed the length specified for an individual bufter descriptor. A
bufter length of 0 transfers no bytes for that bufter descriptor.
Additional source data from the device is transferred into the next
buffer descriptor in the list if the end of the indirect list has not been
reached and more source data exists.

A residual byte count can be developed by the implementation,
initializing a value to the size of the buffer and subtracting 1 for each
byte that is moved to the buffer from the device. Data movement to
the buffer stops when the residual-byte-count value is 0. The buffer is
said to be filled.

Data transfers continue in the read operation i any unfilled butter
descriptors remain in the indirect list and more data remains at the
source. The indirect list is accessed by incrementing a value set to
the contents of Memory Address x by 8 as each butfer descriptor is
filled. Processing of the indirect list is completed when the number of
list elements that have been filled equals the value in Byte Count 1
divided by 8. A residual buffer address can be developed by the
implementation by initializing a value to the contents of Memory
Address x and incrementing by 8 as each buffer descriptor is
processed. See “Locate Mode Residual Data Values” on page 5-19
for details on developing the residual byte count and the residual
buffer address.

If the operation terminates before successful completion, a program
in the system master can read the residual byte count and residual
buffer address in the corresponding termination status block to
determine the progress of the operation and the recovery procedures.
Storing of these values in the termination status block is optional
(except for short- or long-length exception conditions) and is
indicated by the conditional termination-status-block bit in Enable
Word 1 of the command control block. If storing of these values is not
supported, the program should assume that a complete retry of the

Processing Level —January 1991 4-13

operation is needed. For details on this topic, see “Locate Mode
Residual Data Values” on page 5-19.

When the device has more data to send to the program than there is
space for in a buffer, a long-length exception condition exists. This
error condition is always indicated in End Status Word 1. The error
might be suppressed if the option is supported by the implementation.
For a definition of this condition, see “Long-Length Exception” on
page 5-11.

When the program defines buffer descriptors that require more data
than the device has to send, a short-length exception condition exists.
This error condition is always indicated in End Status Word 1. The
error might be suppressed if the implementation supports this option.
For a definition of this condition, see “Short-Length Exception” on
page 5-9.

Apart from long-length and short-length exception conditions, transfer
on a read might be terminated because of an irrecoverable error at
the device. In this case, a major error is indicated in End Status Word
1, and an /O interrupt is requested. Device-dependent error data can
also be stored in the termination status block. For more detail on this
topic, see "Exception Conditions” on page 5-9.

Reading with an Extended Control Block and Indirect Lists

This case is the same as the base control-block case, except that
either Memory Address 1, Memory Address 2, or both can be
specified as a combination of indirect lists or direct addressing, and
incrementing or decrementing of shared-memory addresses. For
further details, see the definition of the indirect-list-1 bit on 1-33 and
the indirect-list-2 bit on 1-42.

Writing with a Base Control Block and Indirect Lists

In a write operation, the control block is sent from the system master
to the device. The control block is read, and if the indirect-list-1 (IL1)
bit is equal to 1 and Ext is equal to 0, Memory Address 2 is read to
dstermine the starting address of an indirect list in shared memory.
An indirect list must start on a doubleword boundary. The length of
an indirect list must be a multiple of eight bytes. The length of the
indirect list, in bytes, is found in Byte Count 1.

4-14 Processing Level —January 1991

An indirect list consists of individual buffer descriptors that are eight
bytes long and contain a 4-byte buffer address, foliowed by a 4-byte
buffer length. The buffer descriptors give the starting address and
length of each element in the indirect list. The total number of data
bytes that can be transferred using an indirect list in a write
command is equal to the sum of the buffer lengths of all the buffer
descriptors in the indirect list. An implementation might choose to
compute this total value and reject a command with a specification
error if the total data-transfer size exceeds its capability. In this case,
no data transfer occurs.

As data is transferred during the write operation, data is not accessed
beyond the extent of the individual buffer descriptor. A buffer length
of 0 transfers no bytes for that buffer descriptor.

As bytes are moved from an individuai buffer element, a residual byte
count can be developed by the implementation, initializing a value to
the size of the buffer and subtracting 1 for each byte that is moved to
the device from the buffer. Data movement from the butfer stops
when the residual-byte-count value is 0. The buffer is said to be
empty.

Data transfers continue in the write operation if any full buffer
descriptors remain in the indirect list. The indirect list is accessed by
incrementing a value set to the contents of Memory Address x by 8 as
each buffer descriptor is emptied. Processing of the indirect list is
completed when the number of list elements that have been emptied
equals the value in Byte Count 1 divided by 8. A residual bufler
address can be developed by the implementation by initializing a
value to Memory Address x, and incrementing by 8 as each buffer
descriptor is processed.

If the operation terminates before successful completion, a program
in the system master can read the residual byte count and buffer
address in the corresponding termination status block to determine
the progress of the operation and to determine recovery procedures.
Storing of these values in the termination status block is optional and
is indicated by the termination-status-block bits in End Status Word 1.
If storing of these values is not supported, the program should
assume that a complete retransfer is needed. For more information
on this topic, see “Locate Mode Residual Data Values” on page 5-19.

Processing Level —January 1991 4-15

Transfer on a write might be terminated because of an irrecoverable
error at the device. In this case, a major error is indicated in End
Status Word 1, and an I/O interrupt is queued. Device-dependent
error data can also be stored in the termination status block. For
more information on this topic, see "Exception Conditions” on

page 5-9.

Writing with an Extended Control Block and Indirect Lists

This case is the same as the base control-block case, except that
either Memory Address 1, Memory Address 2, or both can be
specified as a combination of indirect lists or direct addressing, and
incrementing or decrementing of shared-memory addresses. For
further details, see the definition of the indirect-list-1 bit on 1-33 and
the indirect-list-2 bit on 1-42.

Wrlting Physical Data Blocks and Indirect Lists

The architecture does not require that a device write the elements of
an indirect list as a single physical data block. However, if the device
is capable of being written and then later read, the architecture does
require that the same indirect list used on the write be capable of
retrieving the same physical data blocks on the read.

4-16 Processing Level—January 1991

Chapter 5. Design Considerations

This section contains a discussion of topics covering broad areas in
Locate mode architecture. It addresses the following subjects:

» Locate mode setup and initialization
¢ Locate mode configuration

* Locate mode exception handling.

Locate Mode Setup and Initialization

This section contains some general architectural rules on the topic of
setup and initialization. Many of these areas are implementation
defined and are not part of the SCB architecture.

The following are used by Locate mode delivery and must be taken
into consideration when the system and subsystem are configured:
* 1/Q address space

During setup, the I/O base address space and its length are
defined.

* System interrupt level
* System arbitration level
* Maximum number of devices that can be attached to the

subsystem.

The specific control area definitions in 1/0 address space for Locate
mode delivery are defined in “I/0 Address Space” on page 1-15.

@ Copyright IBM Corp. 1891 51

Locate Mode Configuration

This section contains information on the configuration of subsystems
that support the Locate mode. Much of this area is implementation
defined. The following are some of the architectural rules.

Locate Mode Ports

The following ports are required implementations of the Locate mode
architecture:

One Attention port

One Command Interface port
One Subsystem Control port
One Command Busy/Status port
One Interrupt Status port.

The size of the Attention and Interrupt Status ports depends on
whether a Type 1 or Type 2 register interface is used. |t is
determined by the maximum number of devices supported by the
subsystem. A given subsystem can use only the Type 1 or Type 2
register interface and only a single size for its Attention and Interrupt
Status ports. This value must be determined before any commands
are issued by programs.

Device Interrupt Identifier Port

The Device Interrupt Identifier ports are optional. If these ports are
supported, the number of Device Interrupt Identifier ports required is
determined by the following equation:

(1 + number of devices attached to the subsystem)/16

The definition of these ports is found in “Device Interrupt ldentifier
Port” on page 1-28.

§-2 Design Considerations — January 1991

Obtaining Configuration Information

The configuration intormation for a particular subsystem varies with
the installation. The subsystem also has values that are important to
the operation of programs. The Read Configuration command is used
to obtain both configuration and device-dependent information and
can be directed either to an individual device or to the subsystem.
See page 1-63 for a complete description of the Read Configuration
command.

The following is a list of examples of information returned by the
Read Configuration command:

¢ The attachment ID of the subsystem

* The POS register values (Micro Channel systems)

¢ The revision level of the subsystem

» The interrupt and arbitration levels assigned to the subsystem

+ The maximum number of devices that can be attached to the
subsystem

* An indication of whether the subsystem supports the Device
Interrupt identifier port

= Anindication of whether the device-dependent information is
returned

= An indication of whether the subsystem needs to be initialized
* The /O address of the Device Interrupt ldentifier port

¢+ The time it takes for a device to perform a reset

* The data biock returned by the Run Diagnostics command

* The size and definition of the programs

* The time a subsystem takes to perform a reset

* The time a device takes to reset a control-block interrupt

+ The time a davice takes to reset the Interrupt Status port

¢ The minimum time that must elapse between the submission of a
command and the reading of the Command Busy/Status port for
acceptance data.

Design Considerations —January 1891 5-3

Exception and Error Handling

The Locate mode defines exception and error conditions and
provides a standardized method of reporting these conditions. The
following topics are discussed:

* Exception and error handling

* Exceptions and error conditions

¢ The actions to take when a condition is detected

* The data reported in a status block for a condition

+ A summary of exception and error conditions that can occur.

Errors and exceptions exist at two levels in the Locate mode: the
device |level and the subsystem or command-delivery level.
Many of the detaiis of error handling and recovery are device
dependent; however, some general guidelines are described in
the following.

Device Level

At the device level, most exceptions or errors are indicated by an
interrupt to the system master. The treatment and handling of Locate
mode signalling is described in detail in “Signalling Protocol” on
page 3-13.

To process an exception, an error handling program determines
which command caused the exception and reads the associated
termination status block for status. This topic is discussed in “System
Master — Physical interrupts” on page 3-31. A discussion of how to
process residual status is found in “Locate Mode Residual Data
Values” on page 5-19.

At the device level, errors and exceptions are generally handled in
the following manner:
1. Determine which device caused the exception,

This information is found either in the Interrupt Status port or in
the Device Interrupt Identifier port (DHP) for the subsystem.

5-4 Design Considerations —January 1991

2.

Determine the type of exception.

The type of the exception is found in the Interrupt Status port
interrupt code or in a nonzero DIIP bit. 1f it was a control-block
command, the termination status block might need to be
examined to determine the exact cause of the exception.

. Determine which command caused the exception.

Read the termination status block for ending status.

If the interrupt code was a control-block command completed with
error, read the termination status block to get the details of the
exception.

When the above steps are complete, proceed as follows:

Short-length exception (suppressed).

Determine the number of data bytes successfully read, using
residual status. Do not treat it as an error.

Note: To determine the number of bytes successfully transferred
in a control-block command, refer to "Number of Bytes
Transferred” on page 5-21.

Short-length exception (not suppressed).

Determine the number of data bytes successfully read, using
residual status. Report any error.

Specification exception.

Use any impiementation-defined data, found in the termination
status block of the command, to find the reason for the error.
Report any error.

Long-length exception {suppressed).

Determine the number of data bytes successfully read, using
residual status. Do not treat it as an error.

Long-length exception (not suppressed).

Determine the number of data bytes successfully read, using
residual status. Report any error.

Device overrun on write.

Determine the number of data bytes successfully written it
residual status is present. Report any error.

Design Considerations —January 1991 5§-5

¢ Major error on data transfer.

Determine the number of data bytes successfully transferred it
residual status is present. Report any error.

* Hardware failure —control-block command.

it might not be possible to find the control-block command that
failted. Report any error.

¢+ Hardware failure — non-control-block command.

Retry the failed command, or report an error if the device is not
functional.

* Non-control-block command completed with error.
Determine which command failed. Report any error.
* Device does not respond after maximum time.

Retry the failed command, or report an error if the device is not
functional.

Subsystem Level

At the subsystem level, exceptions or errors are noted by signalling
an interrupt to the system master or by setting the reject and status
bits in the Command Busy/Status port.

The treatment and handling of Locate mode signalling is described in
“Signalling Protocol” on page 3-13.

At the subsystem level, errors and exceptions are generally handled
as follows:
¢ Control-block command errors.

These are handled the same way as in the device or entity case.
See "Device Level” on page 5-4.

5-6 Design Considerations — January 1991

* The subsystem does not respond after the maximum time.

Determine which command is in progress:

Hardware-controlled Reset Subsystem command.

When the command is a hardware-controlled Reset
Subsystem command, report any error, retry the command,
and take the subsystem out of service if the retry is
unsuccessful.

Software-controlled Reset Subsystem command.

When the command is a software-controlled Reset Subsystem
command, retry the command and issue a
hardware-controlled Reset Subsystem command if the retry
is unsuccessful.

The subsystem is taking too much time to clear the busy bit
on command submission.

Read the Command and Attention ports. Issue a
software-controlled Reset Subsystem command, and attempt
to resubmit the command.

« Command rejected in Command Busy/Status port.

The status bits in the Command Busy/Status port are read, and
processing proceeds as follows:

Device unavailable.

Determine which command failed. Clear the rejection
condition from the subsystem. Retry the command, or report
any error.

Invalid command.

Detaermine which command failed. Clear the rejection
condition from the subsystem. Report any error.

Device busy.

Determine which command failed. Clear the rejection
condition from the subsystem. Report any error, or wait a
specified amount of time and retry the command.

Design Considerations —January 1991 5-7

— Device control-block execution suspended.

Determine which command failed. Clear the rejection
condition from the subsystem. Report any error. The caller
can reenable control-block execution with a Resume
command if the suspension is the result of a Suspend
command.

— Invalid device number,

Determine which command failed. Clear the rejection
condition from the subsystem. Report any error.

— Device limits reached.

Determine which command failed. Clear the rejection
condition from the subsystem. Report any error.

Nole: The caller needs to process and clear interrupts for
the device with the queue full by ensuring that the
device is enabled for interrupts, using the Reset
Interrupt Status Port command. This is necessary for
the interrupt-handling software to read the Interrupt
Status port and issue a Reset Interrupt Status Port
command for the device indicated, if the interrupt-valid
{IV) bit of the Command Busy/Status port is setto 1.

5-8 Design Considerations —.January 1991

Exception Conditions

There are five types of exception conditions in the Locate mode:

Short-length exception
Long-length exception
Specification exception
Device-overrun exception
Major error on data transfer.

Each is described in this section.

Short-Length Exception

Definition of a short-length exception.

A short-length exception can occur when data is being read
during the execution of a control-block command. The condition
exists when the shared data area specified in the controt block
(the target buffer area) requests more data than is available from
the source device.

The condition can arise in any of the control-block commands that
use the semantics of the control-block read commands to transfer
data from a device to an area in shared memeory. The condition
is not restricted to the control-block Read command; it can be
detected in the following control-block commands:

— Read

— Read Configuration

— Read Completion Status
— Run Diagnostic Test.

Standard actions on detection.

When the condition is detected, the following actions are always
taken:

1. The residual byte count is stored.

The residual byte count is stored in the termination status
block. The stored value is the number of bytes that remain to
be transferred for the current buffer. See “Residual Byte
Count" on page 5-18.

Design Considerations —January 1991 5-9

2. The residual buffer address is stored.

The residual buffer address is stored in the termination status
block. The stored value is the address of the buffer element
being used in the current transfer. See “Residual Buffer
Address” on page 5-20.

3. The short-length-exception bit in End Status Word 1 is set to
1.

4. The TSB-available bits in End Status Word 1 are set to show
that residual status is stored in the termination status block.

* Optional actions on detection.

When the condition is detected, the foliowing optional actions can
be taken:

1. Device-dependent status is stored.

An implementation can choose to store device-dependent
data in the termination status block when the condition is
detected. If this is done, the TSB-available bits in End Status
Word 1 are set to reflect this,

2. Exception suppressed.

If the exception has been suppressed in the current control
block by setting the suppress-exception-short bit in Enable
Word 1 to 1, the condition is not treated as a major exception.
An interrupt is not requested for this control block uniess the
disable-interrupt bit in Enable Word 1 is set to 0. If the
disable-interrupt bit is set to 0, the interrupt-requested bit in
End Status Word 1 is set to 1, the done bit in the termination
status block is set to 0, and an interrupt is requested for the
condition.

A command chain that is defined to continue on No Error (by
setting the chain-no-error bit in Enable Word 1 to 1) is not
terminated if the error is suppressed. If conditional chaining
was specified, the conditional chain can continue if the
ending condition matches the conditional specification.

5-10 Design Considerations —January 1991

3. Exception not suppressed.

If the exception has not been suppressed in the current
control block by setting the suppress-exception-short bit in
Enable Word 1 to 0, the condition is treated as a major
exception. The major-error and interrupt-requested bits in
End Status Word 1 are set to 1, the done bit is set to 0, and an
interrupt is requested for the condition.

A command chain that was defined to continue on No Error
(by setting the chain-no-error bit in Enable Word 1 to 1)
cannot continue. If conditional chaining is enabled in the
current control block, with the conditional-chaining bit set to
1, the conditional chain can continue if the condition matches
the ending status.

Long-Length Exception

Definition of long-length exception.

A long-length exception can occur when data is being read during
the execution of a control-biock command. The condition exists
when the shared-data area specified in the control block {the
target buffer area) requests |less data than is available from the
source device.

The condition can arise in any of the controi-block commands that
use the semantics of the Read command to transfer data from a
device to an area in shared memory. It is not restricted to the
control-block Read command, and it can be detected in the
following control-block commands:

Read

Read Configuration
Read Completion Status
Run Diagnostic Test.

Design Considerations —January 1991 5-11

¢ Standard actions on detection.

When the condition is detected, the following actions are always
taken:

1. The residual byte count is stored.

The residual byte count is stored in the termination status
block. The stored value is 0, because all bytes specified in
the current buffer have been transferred (there is no residual
byte count). See "Residual Byte Count” on page 5-19.

2. The residual buffer address is stored.

The residual buffer address is stored in the termination status
block. The stored value is the address of the buffer element
being used in the current transfer. In this case, it is the last
buffer in an indirect list or the only buffer, when an indirect
list is not used. See “Residual Buffer Address” on

page 5-20.

3. The long-length-exception bit in End Status Word 1 is set to 1.

4. The TSB-available bits in End Status Word 1 are set to show
that residual status is stored in the termination status block.

¢ Optional actions on detection.

When the condition is detected, the following optional actions can
be taken:

1. Device-dependent status is stored.

An implementation can choose to store device-dependent
data in the termination status block when the condition is
detected. If this is done, the TSB-available bits in End Status
Word 1 are set to reflect this.

2. The exception is suppressed.

If the exception has been suppressed in the current control
block and the suppress-exception-long bit in Enable Word 1 is
set to 1, the condition is not treated as a major exception, An
interrupt is not requested for this control block unless the
disable-interrupt bit in Enable Word 1 is set to 0. If the
disable-interrupt bit is set to 0, the interrupt-requested bit in
End Status Word 1 is set to 1, the done bit is set to 0, and an
interrupt is requested for the condition.

§-12 Design Considerations — January 1991

A command chain that is defined to continue on No Error by
setting the chain-no-error bit in Enable Word 1 to 1 is not
terminated when this exception is suppressed. If conditional
chaining is specified, the command chain can continue if the
ending condition matches the conditional specification.

3. The exception is not suppressed.

If the exception has not been suppressed in the current
control block and SEL in Enable Word 1 is set to 0, the
condition is treated as a major exception. The major-error
and interrupt-requested bits in End Status Word 1 are set to 1,
the done bit is set to 0, and an interrupt is requested for the
condition.

A command chain that is defined to continue on No Error by
setting the chain-no-error bit in Enable Word 1 to 1 cannot
continue. W conditional chaining is enabled in the current
control block by setting the conditional-chaining bit to 1, the
conditional chain can continue if the condition matches the
ending status.

Specification Exception
» Definition of specification exception.

A specification exception can occur during the reading of any
control-block command in the Locate mode. The condition occurs
when an illegal or unsupported value or option is detected in a
control-block field. Specification testing is optional in an
implementation. The condition can be detected in any command
control blocks.

* Standard actions on detection.

When the condition is detected, the following actions are always
taken:

1. The command is terminated, and no data transter occurs.

2. If additicnal status is to be provided, it is stored in the
termination status block. This is described in the list of
optional actions for this condition.

Design Considerations — January 1991 5-13

3. This condition is treated as a major error. The
specification-check bit in End Status Word 1 is set to 1,
indicating that the condition has been detected. The
major-arror/exception bit in the termination status block in
End Status Word 1 is also set to 1, the done bit is set to 0, and
an interrupt is requested for the condition.

Any control-block chaining that is in effect when the condition
is detected is halted. Conditional chaining is not supported
when a specification error is detected.

* QOptional actions on detection.

When the condition is detected, the following optional actions can
be taken:

— Device-dependent data is optionally stored.

An implementation-defined value can be written to the
termination status block in the device-dependent area to
identify the field or option that has been found to be illegal.

— The TSB-available bits are set to show device-dependent
data,

If device-dependent data is stored in the termination status
block, the TSB-available bits in End Status Word 1 are set to
reflect this.

Device-Overrun Exception
* Definition of device-overrun exception.

A device-overrun exception can occur when data is being read or
written during the execution ot a control-block command. The
condition exists when data is being transferred at a rate that the
device cannot accept. When the condition is detected, data
transfer to the device is halted.

The condition can arise in any of the control-block commands that
transfer data to or from an area in shared memory.

5-14 Design Considerations — January 1991

+« Standard actions on detection.

When the condition is detected, the following actions are always
taken:

1. Data transter for the control-block command requesting the
data transfer is terminated.

2. |f additional status is to be provided, it is stored in the
termination status block. This is described in the list of
optional actions for this condition.

3. The condition is treated as a major error. The device-overrun
bit in End Status Word 1 is set to 1, indicating that the
condition has been detected. The major-error/exception bit
in the termination status block in End Status Word 1 is also
set to 1, the done bit is set to 0, and an interrupt is requested
tor the condition.

A control-block command chain that is defined to continue on
No Error by setting the chain-no-error bit in Enable Word 1 to
1 cannot continue. If conditional chaining is enabled in the
current command control block by setting the
conditional-chaining bit to 1, the conditional chain can
continue if the condition matches the ending status.

* (Optional actions on detection.

When the condition is detected, the following optional actions can
be taken:

1. The residual byte count is optionally stored.

The residual byte count is optionally stored in the termination
status block. The stored value is the number of bytes
remaining to be transferred for the current buffer. See
“Residual Byte Count” on page 5-19.

2. The residual buffer address is optionally stored.

The residual bufter address is stored in the termination status
block. The stored value is the address of the buffer element
being used in the current transfer. See “Residual Buffer
Address” on page 5-20.

Design Considerations — January 1991 5-15

3. The TSB-available bits are set to show that residual status
was stored.

The TSB-available bits in End Status Word 1 are set to show
that residual status is stored in the termination status block, if
needed.

4. Device-dependent status is optionally stored.

An implementation can optionally store device-dependent
data in the termination status block when the condition is
detected.

5. The TSB-available bits are set to show device-dependent
data.

If device-dependent data is stored in the termination status
block, the TSB-available bits in End Status Word 1 are set to
reflect this.

Major Error on Data Transfer
+ Definition of major error on data transfer.

A major error on data transfer can occur when data is being read
or written during the execution of a control-block command. The
condition exists when the data requested cannot be provided
because an error has arisen that cannot be corrected. Note that
this condition differs from errors for device-overrun, long-length,
and short-length exceptions. This condition also sets the
major-error/exception bit in End Status Word 1. The condition
arises in the following ways:

— Data is being read.

In this case, the data at the device cannot be delivered to the
shared-memory buffer area defined in the control block
because an error has arisen that cannot be corrected. This
error cannot be a long-length or short-length exception.

— Data is being written.

In this case, the data from the shared-memaory buffer area
defined in the control block cannot be delivered to the device
because an error has arisen that cannot be corrected. This
error cannot be a device-overrun exception.

5-16 Design Considerations — January 1991

The condition can arise in any controi-block command that
transfers data to or from shared memory.

+ Standard actions on detection,

When the condition is detected, the following actions are always
taken:

1. Data transfer for the contrai-block command requesting the
read or write is terminated.

2. if additional status is to be provided, it is stored in the
termination status block. This is described in the list of
aptional actions for this condition.

3. An error condition that cannot be corrected is treated as a
major error. The major-error/exception bit in the termination
status block in End Status Word 1 is set to 1, indicating that
the condition has been detected. The interrupt-requested bit
in End Status Word 1 is set to 1, the done bit is set to 0, and
an interrupt is requested for the condition.

A control-block command chain that is defined to continue on
No Error by setting the chain-no-error bit in Enable Word 1 to
1 cannot continue. If conditional chaining is enabled in the
current command control block by setting the
conditional-chaining bit to 1, the conditional chain can
continue if the condition matches the ending status.

s Optional actions on detection.

When the condition is detected, the following optional actions can
be taken:

1. The residual byte count is optionally stored.

The residual byte count is optionally stored in the termination
status block. The stored value is the number of bytes that
remain to be transferred for the current buffer. See
“Residual Byte Count” on page 5-19.

2. The residual buffer address is optionally stored.

The residual buffer address is stored in the termination status
block. The stored value is the address of the buffer element
being used in the current transter. See “Residual Buffer
Address” on page 5-20.

Design Considerations —January 1981 517

3. The TSB-available bits are set to show that residual status is
stored.

The TSB-available bits in End Status Word 1 are set to show
that residual status is stored in the termination status block.

4, Device-dependent status is optionally stored.

An implementation can optionally store device-dependent
data in the termination status block when the condition is
detected.

5. The TSB-available bits are set to show device-dependent
data.

If device-dependent data is stored in the termination status
block, the TSB-available bits in End Status Word 1 are set to
reflect this.

5-18 Design Considerations — January 1991

Locate Mode Residual Data Values

The termination status block for a control-block command contains
fields that are designed to show the progress a control-block
command has made in data transfer when it has been completed.
These fields are the Residual Byte Count and Residual Buffer
Address fields. Further definition and programmed use of these
fields are discussed in the following section.

A summary of the residual data provided, organized by
control-block-command ending status, is in “Summary — Residual
Buffer Address and Residual Byte Count” on page 5-22.

Residual Byte Count

The termination status block contains the Residual Byte Count field
that is used to indicate the number of bytes that remain to be
transferred when the command is completed.

The use of the Residual Byte Gount field is completely defined by the
architecture when a single storage operand is specified in the control
biock. The use of this field is implementation defined when two
shared-memory operands are specified in the same control block.

When the Residual Byte Count field is 0 and a long-length exception
has not been indicated for the command, all data for the command
has been successfully read or written. When a long-length exception
existg, this field is 0, but additional data remains at the device. An
implementation can provide the extent of this unread data in a
device-dependent field in the termination status block.

When the Residual Byte Count field is not 0, it indicates that the
operation has terminated; therefore, the data that was defined by the
command could not be transferred. In this case, a residual byte count
remains. To determine the number of bytes of data that have been
successfully transferred by the command, a program in the system
master needs to read the associated control block and determine the
expected byte count of the transfer. To do this, a program might need
to use the second data value provided in the termination status block,
the residual buffer address.

Design Considerations — January 1891 5-19

Residual Buffer Address

The termination status block contains the Residual Butfer Address
field, which is used to indicate the buffer that was in use when the
command was completed.

The use of the Residual Buffer Address field is completely defined by
the architecture when a single storage operand is specified in the
control block. The use of this field is implementation defined when
two shared-memory operands are specified in the same controi
block.

When indirect lists are not being used, the address returned for this
value corresponds to the buffer field specified in the control block.
The address that is presented corresponds to either the address of
Memory Address 1 or the address of Memory Address 2. The value
is determined by the setting of the memory-address-1-selected (MA1)
bit or the memory-address-2-selected (MA2) bit in Enable Word 1.

For example, if the control block is located at Memory Address hex
40000 and MAZ2 is selected, the residual buffer address is hex 40008
(the base control-block address + hex 8).

If indirect lists are being used, the address returned is the physical
address of the list element in use when the command was completed.

For example, assume that an indirect list is being used, it is iocated
at Memory Address hex 60000, and it contains 4 buffer elements (is 32
bytes long). The list starts at shared-memory location hex 60000 and
ends at location hex 6001F. In this case, the residual buffer address
returned for a control block using this indirect list must be one of the
foliowing:

* Hex 60000 — the first buffer descriptor in the indirect list
s Hex 60008 —the second buffer descriptor in the indirect list
¢ Hex 60010 —the third buffer descriptor in the indirect list
* Hex 60018 —the last buffer descriptor in the indirect list.

§5-20 Design Considerations — January 1991

Number of Bytes Transferred

To determine the number of bytes that have been successfully read
or written by a control-block command, the residual byte count can be
subtracted from the number of bytes requested in the command. This
computation is of most interest when a short-length exception is
detected. It defines the number of bytes that were successfully read.
The computation involves the following cases:

« Control block in base format— no indirect list specified.

The total data-transier size is given by the contents of Byte Count
1. The number of bytes successtully moved is computed as:

Bytes moved = Byte Count 1 - residual byte count

» Control block in extended format—no indirect list specified (only
one memory address specified).

The total data-transfer size is given by the contents of Byte Count
1 if Memory Address 1 is 1, or by the contents of Byte Count 2 if
Memory Address 2 is 1. The Residual Byte Count field selected
in the termination status block is Residual Byte Count 1 if
Memory Address 1 is 1, or Residual Byte Count 2 if Memory
Address 2 is 1. The number of bytes successfully moved is
computed as:

Bytes moved = total data-transfer size - residual byte count

+ Control block in extended format — no indirect list specified (two
memory addresses specified).

The total data-transfer size is not defined by the architecture in
this case. Itis determined by the control-block operation code.
An example of this is a case in which data is defined to be
transferred from Memory Address 1 to Memory Address 2. if this
convention were used, Memory Address 2 would be used to
determine the number of data bytes read.

* Indirect list specified —~ only one memory address specified.

The total data-transfer size is given by the byte counts of the
indirect-list elements up to and including the element where the
transfer stopped. From this total the residual byte count given in
the termination status block needs to be subtracted.

Design Considerations —January 1991 $-21

¢ Indirect list specified —two memory addresses specified.

The total data-transfer size is not defined by the architecture in
this case. It is determined by the control-block operation code.
An example of this is a case in which data is defined to be
transferred from Memory Address 1 to Memory Address 2. If this
convention were used, Memory Address 2 would be used to
determine the number of data bytes read.

Summary — Residual Butffer Address and Residual Byte
Count

This section provides a summary of the contents of the Residual
Buffer Address and Residual Byte Count fields for the various ending
conditions of control-block commands, The Residual Buffer Address
and Residual Byte Count fields must be stored in the termination
status block when a short-length or long-iength exception condition is
encountered. For all other errors and exceptions, storing of these
fields in the termination status block is optional.

In the summary data in Figure 5-1, the terms “read” and “write” refer
to any control-block operations using the semantics of the Read and
Write control-block commands to transter data to or from shared
memory. For example, the term “read"” refers not only to the Read
command, but to other commands such as Read Configuration; the
term “write” refers not only to the Write command, but to other
commands such as Initialize Device.

5-22 Design Considerations —January 1991

Control Bleck

Residual Buffer Address

Residual Byte Count

exception on
read

block if no indirect hist. If
indirect list, address of last
list element.

Completion
Normal end Memory Address 2 in control Zero.
on read block if no indirect list. tf
indirect list, address of last
list element.
Short-length Memory Address 2 in control Number of bytes remaining

1o transmit for current butfar
element.

Long-length
exception on
read

Memory Address 2 in control
block if no indirect fist. If
indirect list, locates last list
element.

Zero.

Device error
on read

Memory Address 2 in control
block if no indirect list. If
indirect list, address of
current list element.

The number of bytes that
remain to be read in the
current buffer element.

indirect list, address of last
list element.

Specification Not set. Not set.
error in

control block

Normal end Memory Address 2 in control Zero.
OR write block if no indirect list. If

Device error

Memory Address 2 in control

The number of bytes that

on write, or block if no indirect tist. if remain to be written in the
device indirect list, address of current buffer element.
averrun current list element.

Normal end Not set. Not set.

on no data

transfer

{Noop)

Figure 5-1. Residual Status Data after Control-Btock Execution

Design Considerations —January 1991

5-23

Notes:

5-24 Design Considerations —January 1991

Index

A
address field 1-53
address space 1-15
architected bit 1-32
attachment ID field 1-65
attachment revision level
field 1-66
attention code field 1-19
attention port 1-9, 1-18, 1-48, 2-3,
5-2

attention code field 1-19
device number tield 1-20
B
base control block 4-12, 4-14
base control-block structure 1-10,
1-29
base termination status block 1-44
bits
architected (A) 1-32
busy (B} 1-9, 1-27, 1-91
chain-condition-spacification
(CCS) 1-37
chain-direction {CD) 1-47
chain-no-error (CNE) 1-38
chain-specification 4-7
command-type (CT} 1-50
compiete (C} 1-57
conditional
termination-status-block
{TSB) 1-33
conditional-chaining (CC) 1-38

decrement-memory-address-1
(DEC1) 1-42
decrement-memory-address-2
(DEC2) 1-42
device-dependent (DD)
1-33, 1-35, 1-49

1-26,

© Copyright IBM Corp. 1891

bits {continued)
device-dependent-data-availabie
device-not-initialized (INI) 1-48,
1-57
device-overrun (DO) 1-48
disable-command-interrupt
(DCYH) 1-73, 1-76, 1-78, 1-80,
1-81, 1-B4, 1-86, 1-87, 1-89
disable-device-interrupt
(DD 1-73, 1-76, 1-78, 1-80,
1-81, 1-84, 1-86, 1-87, 1-89

disable-interrupt (DI) 1-35
done (D) 1-50
enabie-DMA (DMA) 1-21

enable-subsystem-interrupts
(Eh 1-21
extended-status (ES) 1-47
extended-structure (EXT)
1-37
format-identifier
indirect-list-1 (IL1)
1-59
indirect-list-2 {IL2) 1-42
interrupt-requested (INT)
1-60, 1-72
interrupt-support
interrupt-valid {1V)
1-91
ioad 1-68
location {L) 1-57
long-length-exception
{LLE) 1-49
major-error/exception
(ME) 1-47,1-60, 1-72
memory-address-1-selected
{MA1) 1-36, 1-37
memeory-address-2-selected
{(MA2) 1-35, 1-37
microseconds (u)
milliseconds (m)

1-35,

1-72, 1-74
1-33, 1-37,

1-49,

1-68
1-9, 1-27,

1-67
1-67

X-1

1-67

bits {continued)
nanoseconds (n) 1-67
operation-code 1-75
option-1 (OP1} 1-78, 1-84
option-2 (QP2) 1-78, 1-B4
reject (REJ) 1-9, 1-26, 1-91
reset (RST) 1-68, 1-80
reset-reject (RR) 1-20
restart (R) 1-57
seconds (s) 1-67
short-length-exception
(SLE) 1-49
specification-check {SC) 1-49
status 1-9, 1-25
subsystem-reset (RST) 1-20
suppress-exception-long
(SEL) 1-34
suppress-exception-short
(SES) 1-34
suspended (SUS) 1-47
TSB-available (TSA) 1-48
busy bit 1-9, 1-27, 1-91
byte count 1 field 1-40, 1-56, 1-59,
1-61, 1-64, 1-71
byte count 2 field 1-42

C

chain address 1 field 1-40

chain address 2 field 1-41, 1-47

chain ID field 1-41

chain no error {unconditional
chain) 4-7

chain-condition-specification
bit 1-37, 4-7

chain-direction bit 1-47

chain-no-error bit 1-38

chaining 4-1

characteristics, command controi
blocks 1-30

command busy/status port 1-9,
1-24, 2-3, 5-2

command busy/status port
indicators 1-91

X-2

command busy/status port
indicators (continued)
busy 1-8, 1-81
interrupt-valid 1-9, 1-81
reject 1-9, 1-91
status 1-9
command chaining 4-1, 4-2
command contrel block 1-29
command delivery,
hardware-controlled 3-4
command delivery,
software-controlled 3-4
command for compietion status
field 1-61
command interface port 5-2
command port 1-9, 1-18, 2-3
command reject status 1-25
command rejected in
command/busy status port 5-7
command word field 1-31
command-chaining options 4-7
chain no error 4-7
conditional chaining 4-7
no chaining 4-7
two-way chaining 4-8
command-control-block
delivery 3-6
command-delivery protocol 3-10
command-type bit 1-50
commands

end of interrupt 3-20, 3-22, 3-34

initialize device 1-55

no operation 1-57, 1-76

read 1-58

read completion status 1-53,
1-60

read configuration 1-63, 5-3

reset control block
interrupt 1-80

reset device 1-77

reset interrupt status port 1-79

resetreject 1-9

reset subsystem (hardware
controiled) 1-85, 1-90

commands (continued)
reset subsystem (software
controlled) 1-82
resume 1-86
run diagnostic test 1-70, 1-87
run immediate diagnostic
test 1-87
suspend 1-47, 1-88
write 1-71
complete bit 1-57
conditional chaining 4-7
conditional command chaining 4-5
conditicnal termination-status-block
kit 1-33
conditional-chaining bit
configuration 5-2
configuration information 5-3
contro! areas 1-9
See also ports
control block 1-29
control-block chaining 4-1
control-block chains,
searching 3-23
control-biock characteristics
control-biock command
delivery 3-6
control-block command error 5-6
control-block commands 1-55
initialize device 1-55
no operation 1-57
read 1-58
read completion status 1-60
read configuration 1-63, 5-3
run diagnostic test 1-70, 1-87
write 1-71
control-block delivery 1-1
control-block delivery service 3-9
control-block delivery service
parameters 3-89
control-block execution 4-9
control-block execution
suspended 5-8

1-38

1-30

control-block interrupt 3-17, 3-23,
3-25, 3-26, 3-28, 3-34
control-block structure 1-10

base control-btock
structure 1-10, 1-29
byte count 1 field 1-40, 1-59,
1-61, 1-64, 1-71
byte count 2 field
chain address 1 field
chain address 2 field
chain ID field 1-41
command word field
device dependent size
field 1-41
enable word 1 field 1-33, 1-59
enable word 2 field 1-41
extended control-block

1-42
1-40
1-41, 1-47

1-31

structure 1-10, 1-29
memory address 1 field 1-39
memory address 2 field 1-39,
1-59, 1-71
termination status block address
field 1-40
count field 1-53, 1-81

D

data chaining 4-1, 4-10

data delivery 2-8

decrement-memory-address-1i
bit 1-42

decrement-memory-address-2
bit 1-42

delivery flow 1-6

delivery level 3-1

delivery service 1-1

delivery structure 1-13

delivery-level protocols 3-10
command delivery 3-10
signalling 3-13

delivery-level services 3-7
control-block delivery 3-9
hardware-controlled command
delivery 3-8

delivery-level services (continued)
immediate-command
detivery 3-7
signalling protocol 3-13
control-block chains,
searching 3-23
control-block interrupt 3-17,
3-23, 3-25, 3-26, 3-28, 3-34
DNP interrupt 3-26, 3-35, 3-37
first-level interrupt-handling
routine 3-20
interrupt identification 3-14
interrupt queuing 3-16
logical interrupt 3-15
non-control-block
interrupt 3-19, 3-21, 3-22,
3-30, 3-34
non-DIIP interrupt 3-16, 3-37
physical interrupt 3-14, 3-19,
3-20, 3-30, 3-31
physical-interrupt
enablement 3-15
resetting interrupts 3-38
second-level
interrupt-handiing
routine 3-21
delivery-ievel structure 3-1
control-block command
delivery 3-6
immediate-command
delivery 3-4
design considerations 5-1
configuration information 5-3
device-overrun exception 5-14
exception and error
handling 5-4
command rejected in
command/busy status
port 5-7
control-block command
error 5-6
control-block execution
suspended 5-8
device busy 5-7
device does not respond 5-6

X-4

design considerations (continued)
exception and error handling
{continued)
device limits reached 5-8
device overrun on write 5-5,
5-6
device unavailable 5-7
hardware
failure — control-block
command 5-6
hardware
failure — non-control-block
command 5-6
invalid command 5-7
invalid device number 5-8
long-length exception 5-5
major error on data
transfer 5-6
short-length exception 5-5
specification exception 5-5
subsystem doss not
respond 57
exception conditions 5-9
long-length exception 5-11
major error on data
transter 5-16
short-length exception 5-9
specification exception 5-13
device busy 5-7
device dependent area size
tield 1-69
device dependent configuration data
area field 1-70
device dependent data area
field 1-53
device dependent data size
field 1-53
device dependent size field
device does not respond 5-6
device interrupt identifier
port 1-10, 1-28, 2-3, 3-39, 5-2
device limits reached 5-B

1-41

device number 1-20
device number field 1-20, 1-24
device number subfield 3-6
device overrun on write 5-5, 5-6
device unavailable 5-7
device-dependent area 1-10
device-dependent bit 1-26, 1-33,
1-35, 1-49
device-dependent-data-available
bit 1-67
device-not-initialized bit 1-48, 1-57
device-overrun bit 1-48
device-overrun exception 5-14
diagnostic command field 1-87
DUP
See device interrupt identifier
port
DIIP address field 1-69
DIP bit position field 1-69
MIP interrupt 3-26, 3-35, 3-37
disable-command-interrupt
bit 1-73, 1-76, 1-78, 1-80, 1-81,
1-84, 1-86, 1-87, 1-89
disable-device-interrupt bit 1-73,
1-76, 1-78, 1-80, 1-81, 1-84, 1-86,
1-87, 1-89
disable-interrupt bit 1-35
done bit 1-50

enable word 1 field 1-33, 1-59
enable word 2 field 1-41
enable-DMA bit 1-21
enabie-subsystem-interrupts
bit 1-21
end of interrupt command 3-20,
3-22, 3-34
end status word 1 field 1-44, 1-46,
1-57, 1-60, 1-72
end status word 2 field 1-47, 1-50
arror handting 5-4
command rejected in
command/busy status port 5-7

error handling (continued)
contrel-block command
error 5-6
control-block execution
suspended 5-8
device busy 5-7
device does not respond 5-6
device limits reached 5-8
device overrun on write 5-6
device unavailable 5-7
hardware failure — control-block
command 5-6
hardware
failure — nen-control-block
command 5-6
invalid command 5-7
invalid device number 5-8
subsystem does not
respond 5-7
exception handling 5-4
device overrun on write 5-5
device-overrun exception 5-15
long-length exception 5-5, 5-12
major error on data
transfer 5-6, 5-17
short-length exception 5-5, 5-9
specification exception 5-5,
513
axceptions 59
extended contrel block 4-14, 4-16
extended control-block
structure 1-10, 1-29
extended termination status
block 1-45
extended-status bit 1-47
extended-structure bit 1-35, 1-37

F

fields
address 1-53
attachment ID 1-65
attachment revision level 1-66
attention code 1-19

fields {continued)

byte count 1 1-40, 1-56, 1-59,
1-61, 1-64, 1-71

byte count 2 1-42

chain address 1 1-40

chain address 2 1-41, 1-47

chain D 1-41

command for completion
status 1-61

command word 1-31

count 1-53, 1-81

device dependent area
size 1-69

device dependent configuration
data area 1-70

device dependent data
area 1-53

device dependent data
size 1-53

device dependent size 1-41

device number 1-20, 1-24, 3-6

diagnostic command 1-87

DIIP address 1-69

DIIP bit position 1-69

enable word 1 1-33, 1-59

enable word 2 1-41

end status word 1 1-44, 1-46,
1-67, 1-60, 1-72

end status word 2 1-47, 1-50

flags 1-67

interrupt identifier 1-22

interrupt level 1-66

maximum command/busy status
time 1-69

maximum device reset
time 1-67

maximum number of queued
interrupts 1-69

maximum reset control block
interrupt time 1-68

maximum reset interrupt status
port time 1-68

maximum size for completion
status 1-69

fields {continued)
maximum size for diagnostic
status 1-69
maximum subsystem reset
time 1-66
memory address 1 1-39
memory address 2 1-39, 1-56,
1-59, 1-71
number of devices
supported 1-66
op code 1-32, 1-74
op code dependent 1-73
operation code 1-32, 1-74
options 1-32
POS register 2 1-65
POS register 3 1-65
POS register 4 1-65
POS register 5 1-65
POS register 6 1-66
POS register 7 1-66
residual buffer address 1-59,
5-20, 5-22
residual buffer address 1 1-51
residual buffer address 2 1-44,
1-52
residual byte count 1-59, 5-19,
5-22
residual byte count 1 1-50
residual byte count 2 1-44, 1-51
start address 1-57
termination status block
address 1-40, 1-43
first-level interrupt-handling
routine 3-20
flags field 1-67
format-identifier bit 1-72, 1-74

H

hardware fatlure — control-block
command 5-6

hardware failure — non-control-block
command 5-6

hardware support, subsystem 2-3
hardware support, system
master 2-3
hardware-controlled command
delivery 3-4
hardware-controlied command
delivary service 3-8
hardware-controlied command
delivery service parameters 3-8
hardware-controlled reset
subsystem command
See reset subsystem command
{hardware controlled)

immediate commands
no operation 1-78
reset control block
interrupt 1-80
reset device 1-77
reset interrupt status port
reset subsystem (hardware
controlled) 1-85, 1-80
reset subsystem (software
controtled) 1-82
resume 1-86
run immediate diagnostic
test 1-87
suspend 1-88
immediate-command delivery 3-4
immediate-command delivery
service 3-7
immediate-command delivery
service parameters 3-7
immediate-command
structure 1-73
disable-command-interrupt
bit 1-73

1-72

1-79

disable-device-interrupt bit 1-73
format-identifier bit 1-74
op code dependent field 1-73

operation code field 1-74
operation-code bits {format
1) 1-75

indirect list 4-10, 4-12, 4-14, 4-16
See also processing level, data
chaining

indirect-list structure 1-12, 1-53
address field 1-53
count field 1-53
indirect-list-1 bit 1-33, 1-37, 1-59
indirect-list-2 bit 1-42

initialization 5-1
initialize device command
options 1-57
interrupt 2-8
interrupt identification
interrupt identifier field
interrupt level field 1-66
interrupt queuing 3-16
interrupt status port 1-9, 1-21,
1-79, 2-3, 3-38, 5-2
device number field
interrupt identitier field
interrupt-identifier codes
interrupt-requested bit
1-72
interrupt-support bit 1-68
interrupt-valid bit 1-8, 1-27, 1-91
interrupts, resetting 3-38
invalid command 5-7
invalid device number 5-8
IO address space 1-15, 2-4
/O space 1-15

1-565

3-14
1-22

1-24

1-22
1-22
1-49, 1-60,

L

load bit 1-68

locate mode overview 1-1

location bit 1-57

logical interrupt 3-15

long-length exception 4-14, 5-5,
5-11

long-length-exception bit 1-49

X-7

major error on data transfer 5-6,
5-16

major-error bit 1-47

major-errorfexception bit
1-60, 1-72

major-exception bit 1-47

maximum command/busy status
time field 1-69

maximum device reset time
field 1-87

maximum number of queued
interrupts fieid 1-69

maximum reset control block
interrupt time field 1-68

maximum reset interrupt status port
time field 1-68

maximum size for completion status
tield 1-69

maximum size for diagnostic status
field 1-69

maximum subsystem reset time
field 1-66

memory address space

memory address x 4-10

memory address 1 field

memory address 2 field
1-59, 1-71

memory-address-1-selecied
bit 1-36, 1-37

memory-address-2-selected
bit 1-35, 1-37

microseconds bit 1-67

milliseconds bit 1-67

multiple-form interrupt

See DIIP interrupt

1-47,

1-29, 2-4

1-39
1-39, 1-66,

nanoseconds bit
no chaining 4-7
no operation command 1-57, 1-76
disable-command-interrupt
bit 1-76

1-67

X-8

no operation command {continued)
disable-device-interrupt bit 1-76
non-control-block interrupt 3-19,
3-21, 3-22, 3-30, 3-34
non-DIIP interrupt 3-16, 3-37
number of devices supported
field 1-66

o)

op code dependent field
op code field 1-32, 1-74
op-code values 1-32
operation code field 1-32, 1-74
operation-code bits {format 1) 1-75
operational characteristics, locate
mode 1-3
option-1 bit
option-2 bit 1-78, 1-84
options field 1-32
options, initialize device
command 1-57
overview, locate mode 1-%

1-73

1-78, 1-84

P

physical data block 4-16

physical interface 1-15
type 1 1-15,1-16
type 2 1-15,1-17
physical interrupt 3-14, 3-19, 3-20,
3-30, 3-31
physical level 2-1
physical-interrupt
enablement 3-15

physical-level protoceols 2-9
physical-level services 2-6
data delivery 2-9
interrupt 2-8
interrupt-service
parameters 2-8
puli 2-6
pull-service parameters 2-7
push 2-6

physical-level services (continued)
push-service parameters 2-6

physical-level structure 2-1
hardware support,
subsystem 2-3
hardware support, system
master 2-3
I/O address space 2-4
memory address space 2-4
subsystem hardware
support 2-3
support logic 2-4
system-master hardware
support 2-3

port 1-9

ports

attention 1-9, 1-18, 1-48, 2-3, 5-2

attention code field 1-19
device number field 1-20
command 1-8, 1-18, 2-3
command busy/status 1-9, 1-24,
2-3, 5-2
command interface 5-2
device interrupt identifier 1-10,
1-28, 2-3, 3-39, 5-2
interrupt status 1-9, 1-21, 1-79,
2-3, 3-38, 5-2
device number field 1-24
interrupt identifier field 1-22
request ports 19
attention 1-9, 1-48, 2-3, 5-2
command 1-9, 2-3
command busy/status 1-9,
2-3
device interrupt
identifier 1-10, 2-3, 3-39,
5-2
interrupt status 1-9, 1-79,
2-3, 3-38, 5-2
subsystermn control 1-9, 1-20,
1-90, 2-3, 5-2
POS register 2 field 1-65

POS register 3 field 1-65
POS register 4 field 1-65
POS register 5 field 1-65
POS register 6 field 1-66
POS register 7 field 1-66
processing level 4-1
command chaining 4-1, 4-2
command-chaining
options 4-7, 4-8
conditional command
chaining 4-5
control-block execution 4-9
control-block chaining 4-1
data chaining 4-1, 4-10
base control block 4-12, 4-14
extended control block 4-14,
4-16
indirect list 4-12, 4-14, 4-16
physical data block 4-16
read indirect list 4-12, 4-14
write indirect list 4-14, 4-16
pull 2-6
push 2-6

R

read command 1-58
read completion status
command 1-53, 1-60
read configuration command 1-63,
5-3
attachment ID field 1-65
attachment revision ievel
field 1-66
device dependent area size
field 1-69
device dependent configuration
data area field 1-70
DIIP address field 1-69
DIIP bit position field 1-68
flags field 1-67
interrupt level field 1-66
maximum command/busy status
time field 1-69

read configuration command
(continued)

maximum device reset time
field 1-67

maximum number of queued
interrupts field 1-69

maximum reset control block
interrupt time field 1-68

maximum reset interrupt status
port time field 1-68

maximum size for completion

status field 1-69
maximum size for diagnostic
status field 1-69

maximum subsystem reset time
field 1-66
number of devices supported

field 1-66
POS register 2 field 1-65
POS register 3 fieild 1-65
POS register 4 field 1-65
POS register 5 field 1-65
POS register 6 field 1-66
POS register 7 field 1-66
read indirect list 4-12, 4-14
reject bit 1-9, 1-26, 1-91
request ports 1-9
reset bit 1-68, 1-90

reset control bltock interrupt
command 1-80

count field 1-81
disable-command-interrupt
bit 1-81
disable-device-interrupt bit

reset device command 1-77
disable-command-interrupt
bit 1-78
disable-device-interrupt bit
option-1 bit 1-78
option-2 bit 1-78

reset interrupt status port
command 1-79
disable-command-interrupt
bit 1-80

1-81

1-78

X-10

reset interrupt status port command
{continued)
disable-device-interrupt bit
reset reject command 1-9
reset subsystem command
{hardware controlled) 1-85, 1-90
resetf subsystem command
(software controlled) 1-82
disable-command-interrupt
bit 1-84
disable-device-interrupt bit
option-1 bit 1-84
option-2 bit 1-84
reset-reject bit 1-20
resetting interrupts 3-38
residual buffer address
residual buffer address field
5-20, 5-22
residual buffer address 1 field
residual buffer address 2
field 1-44, 1-52
residual byte count
residual byte count field
5-18, 5-22
residual byte count 1 field
residual byte count 2 field
1-51
residual data values 5-19
number of bytes
transferred 5-21
residual butfer address 5-20

1-80

1-84

1-34, 1-72
1-59,

1-51

1-34, 1-71

1-58,

1-50
1-44,

residual byte count 5-19
restart bit 1-57
resume command 1-86

disable-command-interrupt
bit 1-86

disable-device-interrupt bit 1-86
run diagnostic test command 1-70,
1-71, 1-87
run immediate diagnostic test
command 1-87
diagnostic command field 1-87

disable-command-interrupt
bit 1-87

run immediate diagnostic test
command (continued)
disable-device-interrupt bit

S

second-level interrupt-handling
routine 3-21
seconds bit 1-67
setup 5-1
shared memory 1-29
short-length exception 4-14, 5-5,
5-9
short-length-exception bit
signalling protocol 3-13
simple-form interrupt
See non-DIIP interrupt
software-controlled command
delivery 3-4
software-controlied reset subsystem
command
Saee reset subsystem command
(software controlled)
specification exception 5-5, 5-13

1-87

1-49

specification-check bit 1-49

start address field 1-57

status bit 1-9, 1-25

subsystem control port 1-9, 1-20,
1-90, 2-3, 5-2

subsystem does not respond 5-7
subsystem hardware support 2-3
subsystem-reset bit 1-20
support logic 2-4

suppress-exception-long bit 1-34
suppress-exception-short bit 1-34
suspend command 1-47, 1-88

disable-command-interrupt

bit 1-89
disable-device-interrupt bit
suspended bit 1-47
system-master hardware
support 2-3

1-89

T

termination status block 1-43
termination status block address
field 1-40, 1-43
termination-status-block
structure 1-11
base termination status
block 1-44
device dependent data area
field 1-53
device dependent data size
field 1-53
end status word 1
end status word 1 field
1-46, 1-72
end status word 2 fieid
1-50
extended termination status
block 1-45
residual buffer address
residual buffer address 1
field 1-51
residual buffer address 2
field 1-44, 1-52
residual byte count 1-59
residual byte count 1 field
residual byte count 2 field
1-51
time-field specifier bits
TSB-available bit 1-48
two-way chaining 4-8
type 1 physical interface 1-1
type 2 physical interface 1-1

1-57, 1-60
1-44,

1-47,

1-59

1-50
1-44,

1-67

5, 1-16
5,117

w

write command 1-71
byte count 1 field 1-71
end status word 1 field
memory address 2 field

write indirect list 4-14, 4-16

1-72
1-71

X-11

