
PENPOINT™ OPERATING SYSTEM

PenPoinl™ UI
Design Guidelines

GO Corporation
Foster City, California

PenPointTM User Interface Design Guide
GO Corporation
Foster City, California
Copyright c 1991 GO Corporation. All rights reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into any language in any form by any
means without the written permission of GO Corporation, 950 Tower Lane, Suite 1400, Foster City, CA
94404.
Printed in the United States of America.
Your license agreement with GO Corporation, which is included. with the product, specifies the permitted
and prohibited. uses of the PenPointTM operating system. Any unauthorized duplication or use of the
PenPoint operating system in whole or in part is forbidden. Information in this document is subject to
change without notice and does not represent a commitment on the part of GO Corporation.
The following are trademarks of GO Corporation: GO, the PenPoint logo, the GO logo, ImagePoint,
PenPoint, GrafPaper, TableServer, BaseStation, EDA, DrawingPaper, and ChartPaper.
Words are checked against the 77,000 word Proximity IMerriam-Webster Linguibase,
c 1983 Merriam-Webster. c 1983. All rights reserved, Proximity Technology, Inc.
The spelling portion of this product is based on spelling and thesaurus technology from Franklin Electronic
publishers. All other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations.

Warranty DIsclaimer and Umltlatlon of Uablllty

GO Corporation makes no warranties, express or implied, including without limitation the implied
warranties of merchantability, fitness for a particular purpose and noninfringement, regarding PenPoint
software or anything else. GO Corporation does not warrant, guarantee, or make any representations
regarding the use or the results of the use of the PenPoint software, other products, or documentation in
terms of its correctness, accuracy, reliability, currentness, or otherwise. The entire risk as to the results
and performance of the PenPoint software, and documentation is assumed by you. The exclusion of
implied warranties is not permitted by some states. The above exclusion may not apply to you.
In no event will GO Corporation, its directors, officers, employees, or agentS be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits, business
interruption, loss of business information, cost of procurement of substitute goods or technology, and the
like) arising out of the use or inability to use the PenPoint software, other products, and documentation
or defeds therein even if GO Corporation has been advised of the possiblity of such damages, whether
under theory of contrad, tort (including negligence), products liability, or otherwise. Because some states
do not allow the exclusion or limitation of liability for consequential or incidental damages, the above
limitations may not apply to you. GO Corporation's liability to you for actual damages from any cause
whatsoever, and regardless of the form of the action (whether in contract, tort (including negligence),
product liability or otherwise), will be limited to $50.

Note

This equipment has been tested. and found to comply with the limits for a Class A digital device, pursuant to
Part 15 of the FCC rules. These limits are designed. to provide reasonable protection against harmful
interference when the equipment is operated in a commercial environment. This equipment generates, uses,
and can radiate radio frequency energy and if not installed. and used in accordance with the instruction
manual may cause harmful interference to radio communciations. Operation of this equipment in a

. residential area is likely to cause harmful interference, in which case the user will be required to correct the
interference at his or her own expense.

Table of Contents

Preface ... xi

Section I: Introduction to the Notebook User Interface 1

Chapter 1: Designing for Mobile, Pen-Based Computing 3

PenPoint Innovations .. 4
Designing for the Notebook Metaphor ... 5
Designing for the Pen .. 6
Designing for the Embedded Document Architecture 7
Designing for Scalability .. 8
Designing for Consistency .. 9
A Design Challenge for the '90s ... 10

Chapter 2: The Notebook .. 11

The Notebook ... 12
Fitting Into the Notebook .. 13

Chapter 3: Gestures .. 15

Dual Command Path: Gestures and Controls 16
Core Gestures-.. 17
Non-Core Gestures .. 18
Letter Accelerators ... 18

Section II: User Interface Building Blocks .. 19

Chapter 4: Controls .. 21

Buttons ... 22
Raised Buttons on Grey Background 22
Outlined Buttons on White Background 23
Half-Outlined Buttons on White Background 23
Square Buttons with Long Labels .. 24
Unadorned Buttons in Menus .. 25
Other Button Styles .. 25

Table of Contents

Lists : ... 26
Checklists ... 26
Pop-up Checklists .. 27
Multiple Checklists .. 27
Checkboxes ... 28
Checklists Containing Fields .. 28
Boxed Lists .. 29

Scroll Margins ... 30
Vertical Scroll Margins .. 30
Horizontal Scroll Margins ... 30
Scroll Margin Components ... 31
Scroll Margin Operations ... 31
Scroll Margin Borders .. 32
Scrolling by Flicking .. 32

Scrolling Lists .. ; 33
Scrolling Checklists .. 33
Scrolling Pop-up Checklists .. 34
Scrolling Multiple Checklists .. 35
Editable Lists ... 36
Gesture Accelerators for Scrolling ... 36

Text Fields ... 37
Overwrite Fields ... 37
Fill-in Fields ... 38
Pop-up Text Sheets; .. 39
Embedded Text Boxes ... 40

Chapter s: Menus .. ~ ~ 41

ContI'ols in Menus .. 42
Buttons, Lists and Fields in Menus .. 42
Multiple Types of Control in a Single Menu 43
Two-state Switches in Menus ... 43

Menu Labels .. 45
Menu Behavior ~ .. 46

In.put Behavior .. 46
Choosing From Menus .. 46

Menu Layout ... 47
Multi-column Menus : .. 47
Separating Groups of Controls ... 47

Hierarchical Menus .. 48

Pageiv PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Table of Contents

Chapter 6: Dialog Sheets and Option Sheets ..•.....•...•.........•.•.....•............. 49

Dialog Sheets ... 50
Option Sheets .. 51

Role of Option Sheets in PenPoint ... 51
Option Sheets for Different Types of Objects 52
Invoking Option Sheets ... 52
Dynamic Behavior of Mode1ess Option Sheets 52
Response to Checkrnark Gesture ... 52
Relationship to the Selection : 53
Oean and Dirty Controls .. 53
Copying Options from One Object to Another 53

Modeless and Modal Sheets ... 54
Command Buttons .. 55

Standard Modeless Buttons .. 55
Standard Modal Buttons ... 56
Non-standard Buttons ... 56
Command Buttons and Other Buttons 57

Layout of Controls ~ ... 58
Standard Layout ... 58
Non-standard layouts .. 58
Single vs. Multiple Sheets ... 59
Pop-up vs. Inline Choices ... 60
Fill-in vs. Overwrite Fields ... 61
De-activating vs. Hiding Controls ... 61

Chapter 7: Status, Warning and Error Feedback 63

Busy Clock ... 64
Busy Clock Location .. 64

Wording Guidelines .. 66
Wording of Messages .. 66
Wording of Button Labels ... 66

Progress and Completion Messages .. 66
Pop-up Progress/Completion Note 67
In-Line Progress/Completion Message 68

Confirmation Notes•... 69
Error Notes .. 70
Timing-Triggered Notes .. 71
Audible Feedback for Warning and Errors 72
Message Lines ... 73

PenPoint User Interface Design Guide, Reu. 0.5,2/15/91 Page v

Table of Contents

Chapter 8: Putting the Building Blocks Together 75

Basic Guidelines ... 76
Dual Command Path - Controls and Gestures 76
Layering ... 76
User Configurability .. ; 77

Where to Put It: Menu, Option Sheet, or Palette? 78
When to Depart from the Standard Building Blocks 80

Section III: Standard User Interface Elements ... 81

Chapter 9: Standard Menus and Commands .. 83

Standard Menus ... 84
Document Menu ... 8S
Customizing the Document Menu .. 8S
Edit Menu .. 86
Customizing the Edit Menu ... 87

Recommended Menus .. ; 89
View Menu .. 89
Options Menu ... 90

Chapter 10: Standar.d Option Sheets .. 91

Accessing The Application Option Sheets .. 92
Title & Info Sheet .. 92
Access Sheet .. 93
Application Sheet ... 94
Adding Your Own Application Option Sheets 95

Chapter 11: Icons •.............................•... 97

Application Icons ... 98
Icons for Documents .. 99
Icons for Tools ... 99
Icon Design Guidelines ... 100

Simple Shapes ... 100
Lightweight Look ... 100
Feedback When the Icon is Open ... 101

Using Icons to Show Application State ... 102

Chapter 12: Help .. ~ .. 103

Quick Help 104
Help Notebook ... 105

Page vi PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Table of Contents

Section IV: Processing Pen Input .. 107

Chapter 13: Processing Gestures ... 109

Gesture Targeting ... 110
The Target Point ... 110
Targetting Unselected Objects .. 111
T argetting the Selection ... 111
Targetting Window Objects .. 112

Core Gestures .. 113
Non-Core Gestures .. 114
Avoiding Gesture Collisions .. 115
Passing on Unused Gestures .. 118

Chapter 14: Processing Handwri~g ..•... 119

Handwriting Translators ... 120
Constraining Translation .. 121

The Problem of Ambiguity ... 121
Improving Translation via Context-Specific
Constraints .. 121
Constraining to Letters and Numbers 122
Constraining Via Dictionary and Templates 122
Guidelines for Using Constraints .. 123

Three Models of Translators and Fields ... 123

Chapter 15: Processing Strokes Without Translating 125

Ch.apter 16: Presentin.g Input Modes ' 127

Translation Modes ... 128
Always Show the Current Mode ... 128
Mode Control on Menu Line ~ 129

Pop-up List at Right of Menu Line .. 129
Palette at Right of Menu Line ... 130

Mode Control in Palette Line : .. 131
Mode Control on Pop-up Sheet .. 132

c1iapter 17: Handlin.g Keyboard Input•... 133

PenPoint User Interface Design Guide, ReD. 0.5,2/15/91 Page vii

Table of Contents

Section V: Manipulating Application Objects ... 135

Chapter 18: Selection ... 137

User Model .. 138
Selection Feedback ... 138
Selecting and Deselecting ~•................................... 139

Selecting a Single Object .. 139
Deselecting an Existing Selection ... 140
Extending a Selection by Dragging 141
Extending a Selection With Brackets 142
Discontiguous Multiple Selections .. 144
Auto-selection of Gesture Targets ... 144

Text Selection Issues ... 145
Pending Delete ... ~ 145
Primary Input Preference .. 145

Selection in Option Sheets .. ; 146

Chapter 19: Move/Copy ... 147

User Model: Drag and Drop .. 148
Move andCopy in Mouse-based Interfaces 148
Move and Copy in PenPoint ... 149

Support for Implementing Move and Copy 150
Initiating the Move or Copy Operation .. 150

Move and Copy Marquee ... 150
Drag Icons ... 151

Completing the Operatic;>n .. 153
Drag Rectangle ... 153
Targetting the Destination .. 154
Cancelling the Drag ... 155

Moving and Copying Between Applications 156
Standard Data Types ... 156
Object Data Transfer .. 156
Regions that Don't Accept Embeddees 157

Examples ... 157
Example 1: Moving a Word in Text 158
Example 2: Moving an Item in a List 159
Example 3: Moving. a Figure · .. 160
Example 4: Moving a Figure to a Far Destination 161
Example 5: Object Data Type: Copying a Paragraph
to the Bookshelf ... ~ .. 162

Page viii PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Table of Contents

Chapter 20: Editing Text ... 165

Pop-up Edit Pads .. 166
Usage by PenPoint ... 166
Usage by Applications ... 166
Invoking Edit Pads ... 167
Input Behavior .. 167
Size Preference .. 167
Using Edit Pads .. 168

Pop-up Writing Pads ... 169
Gestures in Character Boxes ... 170
Gestures in Fill-in Fields ... 171
Gestures in Text Views .. 172

Chapter 21: Forms ...•......................... 175

Section VI: Application Architecture ... 177

Chapter 22: Documents .. 179

When to Structure Your Application as a Document 180
User Model: Document on Single Notebook Page 180
Basic Document Layout .. 181
Local Page Controls ... 183
Managing Embedded Objects ... ~ 185

Transparent Embeddors .. 185
Child-aware Embeddors ... 186

Chapter 23: Tools ... 187

Chapter 24: Component! Application Model. •••.•...•..••••••••..••..•••....•...•.••..•.. 189

Chapter 25: Notebooks and Notebook Sections •••.•••.••......••..•...•..•.••••..•.... 191

Structuring Your Application as a Section 192
Subclassing the Table of Contents ... 193

Subclassing to Provide Inter-document Functionality ._ 193
Subclassing to Provide a Customized User Interface 193

Structuring Your Application as a Notebook ; 194

Chapter 26: Services .. 195

Chapter 27: Installation of Applications and Resources 197

PenPoint User Interface Design Guide, Rer1. 0.5, 2/15/91 Pageix

Preface

Audience

This book is addressed to anyone who is developing - or considering
developing - a PenPoint application.

Scope of This Book

This book covers a wide range of issues that you will encounter in the course of
designing a PenPoint application.

The purpose of providing such a design guide is to ensure a high level of .
consistency and usability throughout the PenPoint environment.

Some of the guidelines cover topics that will be familiar to anyone familiar with
other graphical user interfaces - components such as buttons, choice lists, and
menus.

Some of the guidelines are unique to PenPoint - guidelines for using gestures,
for example.

Note: The final version of this book will contain references to the relevant
programmer's documentation for each design topic.

Toolkit Support

Often the conventions described in this book are quite precise - for example, the
layout for controls on option sheets. And often they involve dynamic
interactions that are complex and subtle - for example, the dynamic behavior of
option sheets.

When reading such specific guidelines, you may find yourself thinking "this is all
well and good, but how much work is this going to be for me to support?"

The PeriPoint User Interface Toolkit has been designed to support these
guidelines. In many cases, the guidelines are implemented by the default
behavior of the toolkit. In other cases, a protocol is provided that you must
respond to in order to implement the standard behavior. In other cases, you
need to combine standard components to obtain the desired behavior.

In any case, you will never be "on your own" in the sense of having to
implement the recommended behavior "from scratch."

Preface

How to Use This Book

It will be useful to familiarize yourself with this book at the very beginning of
your design process - skimming all the chapters, and reading some parts
through.

Then, as you actually get into designing your application, no matter what
techniques you use - making sketches, storyboarding, prototyping, etc. - use
this book as a companion to the programmer's documentation, referring to
various sections as needed ..

The book is divided into sections; as follows:

I. Introduction To The Notebook User Interface gives a brief orientation to
designing applications for mobile, pen-based computing. It introduces the
Notebook User Interface, discusses basic concepts such as the Notebook and
gestures.

II. User Interface Building Blocks describes the set of components available
to you to build up your interface. These building blocks include controls
such as buttons, fields and lists, and various containers for controls such as
menus, dialog sheets, option sheets, and notes.

III. Standard User Interface Elements describes the standard user interface
elements that are implemented by the PenPoint Application Framework,
and how to tailor those standard elements for your application.

IV. Processing Pen Input covers issues in gesture processing, handwriting
translation, and the use of pen strokes without translating. It also covers
how to present input mod~s to the user.

V. Manipulating Application Objects presents detailed guidelines for
selecting, moving, copying and editing application objects.

VI. Application Architecture presents guidelines on the overall structure of
the application and how it is presented to the user. Topics include:
structuring applications as documents within a notebook, as pop-up
accessories, or as separate notebooks, standard menus and option sheets,
conventions for handling application modes, etc.

Page xii PenPoint User Interface Design Guide, Rev. 05,2/15/91

Preface

Related Documentation

This book is not a user's guide - it will not give you an overview of the features
of PenPoint or tell you how to use PenPoint. For documentation on how to use
PenPoint, see:

• Getting Started A brief introduction to using PenPoint.

• Using PenPoint A more complete guide to using PenPoint.

• Connecting to a Personal Computer A guide to using a PenPoint computer
with other personal computers.

Neither is this book a programmer's guide - it will not tell you how to write a
PenPoint application. For that, see:

• PenPoint Application Development Guide A variety of guide material for the
PenPoint developer covering: SDK (Software Development Kit) installation,
PenPoint architecture, writing applications, software development tools,
and sample code .

• PenPoint Architectural Reference, Volumes I and II Detailed information on
each of the subsystems in PenPoint.

• PenPoint API Reference Manual "Datasheets" on all the functions and
messages comprising the API (Application Programming Interface) to the
PenPoint operating system.

PenPoint User Interftzce Design Guide, Rev. 0.5, 2{15/91 . Page xiii

Preface

Current Status and Review Cycle

This is the first draft, released with the PenPoint Developer's Kit on February 15,
1991.

While many of the chapters are fairly compete, several chapters are basically
placeholders at this point. These chapters are clearly marked.

There will be at least one more complete draft of this book circulated throughout
the PenPoint developer community before final publication in Fall of '91.

PenPoint itself has been over three years in development. During that time we
have learned a great deal about designing for a pen-based environment.

At the same time, the release of the PenPoint Developer's Release is just a start.
The promise of mobile, pen-based computing won't be fully realized until there
is a thriving market of PenPoint applications.

In that context, we invite your feedback and comments.

To help facilitate the review process, there is a section at the end of each chapter
giving issues. . '

Send your comments to:

Tony Hoeber
User Interface Coordinator
GO Corporation
950 Tower Lane
14th Floor
Foster City, CA 94404

Fax: (415)345-9833
Phone: (415) 345-7400

Page xiv PenPoint User Interface Design Guide, RerJ. 0.5,2/15/91

Section I: Introduction to the
Notebook User Interface

This section presents a brief introduction to PenPoint, and presents some overall
guidelines for developing PenPoint applications.

Chapter 1: Designing for Mobile, Pen-Based
Computing

Designing for a mobile, pen-based application is not the same as designing a
desk-bound, mouse-based application.

This chapter describes some of the key PenPoint innovations, and describes their
implications for application design.

Introduction to the Notebook User Interface

PenPoint Innovations

The PenPoint operating system has been designed expressly to meet the needs of
the mobile, pen-based computing market.

The key innovations of PenPoint include:

• Notebook User Interface (NUl). A simple organizing metaphor - the
Notebook - combined with a document modE!I, commands (called gestures)
issued with a pen, and powerful handwriting recognition.

• Embedded Document Architecture (EDA). PenPoint's EDA lets the'user embed
live, editable documents within one another and create hyperlink buttons
for navigating through the Notebook.

• Mobile Connectivity. Instant-on, detachable networking and deferred II 6
make possible truly portable computers for mobile users.

• Scalable. While expressly designed for small, lightweight, portable
computers, PenPoint is highly hardward-independent and scales to a
variety of formats, from pocket-size to wallboard-size computers.

Taken together, these innovations point to a different way of thinking about
computers, and a different way of thinking about application design.

The sections that follow suggest some of the impiications of these features for
application design.

Page 4 PenPoint User Interfrlce Design Guide, Rev. 05,2/15/91

Designing for Mobile, Pen-Based Computing

Designing for the Notebook Metaphor

The paper-like world suggested by the notebook metaphor is rich in design
possibilities. We are all familiar with notebooks, forms, sheets, pads, tabs,
bookmarks, sticky notes, etc. And the graphical conventions used in this world
are equally rich: borders, margins, grids, lists, checkboxes, decorations of every
stripe.

As far as possible, all the elements of the Notebook User Interface have been
designed to make visual and conceptual sense in the context this paper-like
world. For example, PenPoint has:

• A Table of Contents instead of a directory of files.

• Notebook pages instead of application windows.

• Turning to pages in the Notebook instead of launching/quitting applications and
opening/saving files.

• Sheets instead of control panels.

• Notes instead of alerts from the system.

• Writing pads instead of data entry areas.

• Menu lines instead of menu bars.

• Scroll margins instead of scrollbars.

• Checklists instead of radio buttons.

By designing within the notebook metaphor you will help make the ov~rall
PenPoint environment visually and conceptually coherent.

In particular, unless you are deliberately emulating a calculator, stereo panel or
some other type of control panel, avoid the "gadget" look with raised buttons
and switches, etched lines, heavy shadows, and other visual embellishments.

Of course the notebook metaphor can only be carried $0 far. For example,
buttons are an important element of the Notebook User Interface, and no one
ever tapped a button on a real document to make something happen.

But the magic of a powerful metaphor lies not in its precision, but in its ability to
bring together different worlds in a useful way. The Notebook User Interface
brings together the world of paper, pencils, notebooks and writing, with the
world of computers, with its buttons, icons, links, and automatic commands.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 PageS

Introduction to the Notebook User Interface

Designing for the Pen

The pen is clearly a different sort of input device than the mouse and keyboard
combination.

• The pen is a single, simple device that allows the user to both point at
objects on the screen and enter data.

• Where the mouse requires the user to first select an object, then choose the
command, the pen allows the user to specify both the operand and the .
operation with a single gesture.

• Where the keyboard requires an insertion point, and some sort of feedback
to mark it, the pen allows the user to write wherever desired, or to make a
gesture to indicate where to insert text.

• Where the mouse is a relative input device, requiring a point on the screen
as its surrogate, the pen is an absolute device, that does not require a
pointer.

All of these differences - and more - need to be taken into account in
designing a pen-based application.

But over and above the specific characteristics of the pen as an input device, the
real challenge is to design applications that fully exploit the pen. And that
requires stepping back and re-thinking traditional approaches.

Page 6 PenPoint User Interface Design Guide, Rev. 05,2/15/91

Designing for Mobile, Pen-Based Computing

Designing for the Embedded Document Architecture

The Application Framework implements embedding and hyper links
transparently for all applications, so you don't have to write special code to
implement the basic functionality.

Of course there are some things you should do to take full advantage of these
features. For example, many applications will want to be aware of embedded
objects for layout purposes. And when the user taps a hyperlink button that is
linked to an object within your application, the application should scroll the
object into view and select it.

But PenPoint's Embedded Document Architecture has implications far beyond
the details of handling embedded objects. It makes possible a modular approach
to application design and development, which benefits both the application
vendor and the user.

Current PC environments encourage a IImonolithi<' model of application
architecture, all applications tend to converge: a word processor adds support
for drawings, tables, and charts, a spreadsheet adds support for word processing
and charts, etc. This trend has unfortunate consequences for both the developer
and the user. Development and testing cycles are stretched out, and the user is
locked into using all the functionality bundled into the monolithic application,
like it or not.

With PenPoint's EDA, instead of writing a complex, monolithic application that
tries to be all things to all people, you can think in terms of a suite of simpler,
more focused applications, knowing that the user can combine them as needed.
And you can develop and test each unit of functionality separately.

When designing your application, then, one of the first things to ask is l'how can
I divide this application up into modules of functionality that the user can
combine as needed?"

PenPoint User Interface Design Guide, ReD. 0.5,2/15/91 Page 7

Introduction to the Notebook User Interface

Designing for Scalability

One aspect of scalability relates to hardware. The entire PenPoint operating
system has been designed to run on a full range of hardware devices, from small
"shirt pocket" notebooks to wallboard-sized work surfaces~

The other aspect of scalability relates to people. Each user is different, and
people will use pen-based computers in a variety of environments. So PenPoint
allows the user to change the layout of the system at any time, specifying portrait
or landscape orientation, left-handed or right-handed layout, different font sizes
and type faces, etc.

The PenPoint user interface toolkit includes a powerful automatic layout facility
that ensures device independence and scalability. The standard components of
the PenPoint user interface make use of this facility, so any menus, option sheets
and notes you use in your application are rendered in a device-independent and
scalable way.

Any time you handle the rendering of your application's data yourself,you
should follow these guidelines:

• Layout the objects in your application in terms of device-independent
layout units, rather than absolute units of measure or units for a particular
device.

• Express layout relationships in higher-level terms - to the right of,below,
etc., whenever possible. This will allow your application to adapt well to
different orientations and screen sizes.

• Follow the preference settings for User Font and Font Size. That way you'll
allow the user to adjust for personal preference or ambient lighting
conditions.

PageS PenPoint User Interface Design Guide, Reo. 05, 2/15/91

Designing for Mobile, Pen-Based Computing

Designing for Consistency

The graphical user interfaces of the '70s and '80s have shown the value of
consistency in user interface design. As pen-based computers extend the use of
computers to new groups of people - people who are less technical and have
less time to spend learning computer arcana - consistency will become even
more important.

PenPoint lays the foundation to support this new class of users by providing
consistent interfaces for many commands and options, including some that in
traditional environments are presented differently by each application.

Examples include Print and Print Setup, Send, Find, Spell, Import and Export,
and many others. Of course, you can customize these interfaces'if you need to.
But in most cases using the standard building block that PenPoint provides will
allow you to concentrate on bringing the particular added value of your
application to the marketplace.

In addition, PenPoint supports a set of 11 core gestures that all applications
should implement where appropriate.

Another example of how PenPoint promotes consistency is the" drag and drop"
method of moving and copying objects, which allows the user to move or copy
objects of all types - documents, icons, text, figures in a drawing program, etc.
- in the same way.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 9

Introduction to the Notebook User Interface

A Design Challenge for the '90s

This chapter has briefly sketched out some of the new design territory that
PenPoint opens up.

The rest of this book is a detailed guidebook for exploring that territory. It spells
out in detail how to design your application to take full advantage of PenPoint's
features - the notebook metaphor, gestures and handwriting recognition,
embedding and hyperlinks, mobile connectivity, scalability, and consistency.

Many people today share a vision of a new class of mobile, pen-based computers
that bring the power of computers to people in a more natural way. The
enabling technologies are now in place to realize that vision: hardware
technologies such as compact, lightweight batteries, flat, low-power, readable
displays, fast, low-power chips. And now, with PenPoint, the software
foundation and framework is in place.

But there is one essential piece missing - perhaps the most important piece. The
promise of the new class of mobile computers won't be fully delivered until there
is a rich set of applications that put all of the technology to work for people in
their daily live~.

That's where you come in.

Just as the introduction of graphic displays and the mouse as an input device
created a rich space of design possibilities in the '70s and '80s, the notebook
computer and the pen will do the same in the '90s.

We invite you to join us in meeting this exciting challenge.

Page 10 PenPoint User Interface Design Guide, Reo. 0.5,2/15/91

Chapter 2: The Notebook

This chapter introduces the basic elements of the Notebook User Interface,
including the Notebook, the Bookshelf, the Table of Contents, notebook tabs and
hyper links.

Introduction to the Notebook User Interface

The Notebook

The Notebook is shown in Figure 1.

Notebook

r ·············· .. ··········· .. ·· .. ··T~·b·i·~···~·f .. ·C·~·~"t·~·~·t·~··:;:"t"':;"
r···'D·~·~~·~~·~'t' E·di·t E~~·~t·~·' .. \i1·'~'~··' .. 's·h·~·~· s~·~i·· .. · ···

I""""'§J=~~:'~::~'"=":~',,"""="'""''''''""'''=''''==''''''''''''''''''=''~""'''"'''' i
: IJ Clients .. "'" " " ,, 3 ~

~ East .. 4

~ West ... 5

[21 North 6

EI South ,.. 7
o Tax Forms .. B
(Ji' Personal .. 9

EI Todo............. 10

~ Letter to Mom........ 11

~-................ ----.................. .
Bookshelf 1J .,-11 ~ j)l i1l ~ [). .!. J:.

Help Preferences Too 1s Stationer~ Disks Kbd. Install In Out

Figure 1: The Notebook and Bookshelf

Notebook
Tabs

As shown in Figure 1, the first page of the Notebook contains the Table of Contents.
Each page of the Notebook contains either a single document, or a section divider. The
Table of Contents shows documents in normal font, sections in bold.

The user can turn to any page by tapping on the page number. The user can also
perform housekeeping functions from"the Table of Contents, such as moving, copying,
renaming and deleting documents.

The user can also access documents by means of notebook tabs and hyperlink buttons
that can link any document to any other document.

Below the Notebook is an area called the Bookshelf that contains icons representing
utilities such as Help, Preferences, In and Out boxes, etc.

Page 12 PenPoint User Interface Design Guide, Reo. 05~ 2/15/91

The Notebook

Fitting Into the Notebook

The most straightforward way to fit into the notebook is to present each
application instance as a document on a single page of the notebook.

That is not the only way to present your application, however. Other standard
ways of presenting application instances include:

• Pop-up tool. Some applications make more sense as a pop-up tool than as a
document in a notebook. Examples include utilities such as a clock, a
calculator, a snapshot program, etc.

• Separate Notebook. You can either use the standard PenPoint notebook as a
vehicle for delivering information, or you can tailor the notebook interface
to suite the needs of your application.

• Background Service. This category includes transfer services that manage the
sending and receiving of information through the Outbox and Inbox, and
other services such as database servers.

These approaches are described in more detail in Section VI, Application
Architecture.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 13

Chapter 3: Gestures

This chapter introduces the concept of using pen gestures to issue commands.

Topics covered include:

• Dual Command Path. The basic PenPoint principle of using gestures to
complement visible controls.

• Gesture Categories. Core gestures, non-core gestures and capita11etter
accelerators.

• Core Gestures. Description of the 11 core gestures.

Gesture processing is discussed in detail in Chapter 13, Processing Gestures.

Introduction to the Notebook User Interface

Dual Command Path: Gestures and Controls

It is a good practice in graphical user interfaces to provide the user with some
kind of visual cue for the most important commands in any given context.

In PenPoint this means that you should make most of the commands in your
application available from some form of visible control- buttons, menus, dialog
sheets or option sheets. (These components are described in detail in Section II.)

In addition to the visible controls, you should provide gestures for the most
common or important commands.

This dual command path is a basic principle of the PenPoint user interface.

Here are a few examples of how gestures and visible controls complement each
other in PenPoint. These examples should give an idea of how to apply this idea
of the dual command path in your application.

• Turning notebook pages. The user can either tap the arrows on either side of.
the page number at the right of the Title Line, or make a flick gesture
anywhere in the Title Line to turn to the next or previous page (flick left for
next page, right for previous page.)

• Scrolling. The user can either use the arrows or drag box on the scroll
margin, or flick directly on the text or list to scroll it (flicking up shoves the
lines up, flicking down shoves the lines down).

• Editing operations, The common editing operations such as Delete and
Options are available from both the Edit menu and from gestures (X for
Delete, checkmark for Options.)

• Text style options. Text styles such as Bold, Italic, Underlined and Normal
are all available from both the text option sheet and from gestures (the first
letter of each command: 8, I, U and N).

The sections that follow discuss the three categories of PenPointgestures: core
gestures, non-core gestures, and letter accelerators .

Page 16 . PenPoint User Interface Design Guide, Reo. 0.5,2/15/91

Gestures

Core Gestures

There are 11 core PenPoint gestures:

.r
,

x

o

[J

L

Tap. This is the most basic gesture. Typically tapping selects an object or pushes a button.

Press-Hold. (Touch the pen to the screen and pause for a moment.) Initiate drag move when
made over icons or selected application objects. Initiate drag area select when made over
background or unselected objects in application.

Tap-Hold. (Tap the screen once, then touch the pen to the screen again and pause for a
moment.) Initiate drag copy.

Flick. (Four directions) Flicking is used throughout PenPoint to bring more information into
view. The user model is that the flick gesture shoves the object in the direction of the flick.
Examples include scrolling text, turning notebook pages, and exposing overlapping tabs.

X. The basic deletion gesture.

Caret. Insert or create.

Circle. Edit.

Checkmark. Display the object's option sheet.

Brackets. Adjust an existing selection in contexts that support the selection of a span of objects
(such as text, lists and tables).

Pigtail. Delete a single character in text.

Down-Right. Insert a space in text.

These gestures, because they represent operations that are common across all
or most applications,· are considered fundamental, or core.

Applications are strongly encouraged to use these gestures, and are expected
to follow the GO usage if these gestures are used.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 17

Introduction to the Notebook User Interface

Non-Core Gestures

In addition to the core gestures, PenPoint supports a larger set of gestures
(approximately 20, depending on how they are counted) that are not universally
applicable. Examples include variations on core gestures (e.g. multiple taps and
multiple flicks) and other symbols (e.g. arrows, square, and plus). Applications
are encouraged to be consistent with GO usage, but we anticipate that there will
be some variation in the use of these gestures.

The non-core gestures are described in detail in the chapter on Processing
Gestures.

Letter Accelerators

In addition to the special shapes in the first two categories, PenPoint allows any
capital letter to be used as a gesture. The normal usage is to use the first letter of
the command, e.g. S for Spell or F for Find.

Because the capital letters are intended to be used as context-specific accelerators,
their interpretation will often vary depending on the context.
For example, in PenPoint a B drawn in text toggles the bold attribute on/ off,
while a B drawn on the title line of a document toggles the document's borders
on/ off. Another application might well place a third interpretation on B.

Note: In the Developer's Release of PenPoint, many of the capital letters aren't
recognized. This will be fixed for PenPoint 1.0.

Page 18 PenPoint User Interface Design Guide, ReD. 0.5,2/15/91

Section II: User Interface Building
Blocks

This section describes the building blocks PenPoint provides to build your user
interface.

Chapters include:

• Controls. The set of standard user interface components such as buttons,
lists, and fill-in fields.

• Menus. Pop-up menus containing commands and checklists.

• Dialog Sheets and Option Sheets. Pop-up sheets for setting parameters to
commands or attributes of objects.

• Status, Warning and Error Feedback. Various types of user feedback and
messages, including the standard busy clock, progress and completion
messages, confirmation messages and error messages.

• Putting the Building Blocks Together. Which building blocks - menus, option
sheets or tiled palettes - to use in various situations

Chapter 4: Controls

PenPoint provides a rich set of user interface components such as buttons,
checkboxes, lists and so on. Collectively these components are referred to as
controls.

This chapter describes the standard PenPoint controls and gives guidelines for
their usage.

User Interface Building Blocks

Buttons

The simplest type of control is the button, which allows the user to initiate an
action.

There are several standard button forms used throughout the interface for
PenPoint. The sections that follow illustrate each of these forms.

Raised Buttons on Grey Background

PenPoint uses this form for the action buttons of dialog and option sheets, as
shown in Figure 2.

Figure 2: Raised Buttons on Grey Background

The use of the white/ dark grey outline on the light grey background gives a
raised, "push button" effect.

The raised button style is appropriate when you deliberately intend to produce
the effect of a mechanical control panel in a physical device such as a calculator,
keyboard, tape recorder, etc.

The raised button style should should be used sparingly, however, as it produces
a strong visual effect that tend to work against the notebook and paper metaphor
of PenPoint.

In particular, do not use raised buttons on surfaces that the user would otherwise
perceive as flat and paper-like.

Page 22 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Controls

Outlined Buttons on White Background

PenPoint uses this form for Hyperlink buttons, as shown in figure 3.

(Todo List)
'~" ... """ .. "." .. " .. " ".'~

Figure 3: Outlined Button on White Background

Half-Outlined Buttons on White Background

The half-outlined button is a special form designed to facilitate the use of buttons
in the context of surrounding text.

Figure 4 shows a paragraph of help text with two Hyperlink buttons that the user
can tap to see related topics.

PenPoi nt features two forms of hel p. You can get Quick Hel p,l at any
ti me by si mpl y tappi ng on the Hel p icon and then t's'p'p'i'ng"o'n'sny' object
visi ble on the screen to see 8 brief message about the object. Or, you
can open the Hel p Notebook; and bro'vlse through it. The Hel p Notebook
contains information, organized by topic, for both PenPoint itself and
for each installed application,

Figure 4: Half-Outlined Buttons in Text

The open left end allows the button to be read as part of the flow of the text,
while the curved right distinguishes the button from an underline, and provides
the suggestion of a button. The absence of the upper border allows for normal
line spacing.

Note: To obtain the effect described above you need to explicitly set the label
font and size for each button to match the surrounding text.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 23

User Interface Building Blocks

Square Buttons with Long Labels

This form works well for columns of buttons that have long labels.'

Figure 5 shows a typical example.

o Lower Case Let ters
o Upper Case Letters
o Numerals & Symbols
o I ndi i dual Characters
o E)c(it

Figure 5: Square Buttons with Long Labels

Page 24 PenPoint User Interface Design Guide, Rev. 005,2/15/91

Controls

Unadorned Buttons in Menus

Unlike buttons in most settings, buttons in menus do not have any type of
outline or other ornamentation to set them apart. This is because buttons are the
most common type of control in menus, and the layout of menus is simple.

Figure 6 below shows a typical menu with several buttons.

Other Button Styles

Undo
Move
Copy
Delete

Figure 6: Unadorned Menu Buttons

You can modify the shape and border style of buttons to obtain visual effects
other than those described above by setting various toolkit style bits.

Follow these general guidelines when customizing button styles:

• Don't depart from the standard button styles just to be different. Usually,
minor visual variations do not add substantial value to an application - but
they do present one more thing for the new user to become familiar with.
By using the standard styles, your application will better fit in with the
overall PenPoint environment.

• If you do depart from the standard styles, pick a single style and use it
consistently. Don't introduce two or three new styles without strong
motivation.

• Avoid the temptation to overuse heavy borders and thick shadows. Heavy
borders and shadows tend to degrade readability because they draw
attention away from the button's label and interact with the letters in the
labels to set up competing visual shapes.

PenPoint User Interface Design Guide, Reu. 0.5,2/15/91 Page 25

User Interface Building Blocks

Lists

PenPoint provides several types of controls for the presentation of lists to the
user.

Checklists

Checklists allow the user to choose one item or setting from a list of choices.

Figure 7 shows a typical example.

Orientation: -.'! Portrait
~Landscape

Figure 7: Checklist

By default the list is layed out in a single column. You can specify that the
choices be arranged horizontally, or in a matrix.

You can also specify that the individual choices be represented as graphical
images rather than as text strings, as shown in Figure 8.

Paragraph
Justification: Orientation: ~I ~

i[ij
Figure 8: Checklists

Only use graphical images when they communicate more effectively than text.
Take the two examples in Figure 8 above. In both cases the images are clear and
unambiguous, and the purpose of the control is evident at a glance.

Page 26 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Pop-up Checklists

Pop-up checklists allow you to present choices in a more compact format.

Figure 9 shows a typical example.

Font: ~ Roman

Courier
Hand Print

Font: ~ Roman
Sans Serif

Figure 9: Pop-up Checklist

Controls

The currently selected choice appears to the right of the list's label, separated by a
small arrow, as shown on the left. Tapping on the arrow or the current choice
pops up a menu with the entire list, as shown on the right.

The user can also make the flick and double-flick gestures (on either the arrow or
the current choice) to choose from a pop-up checklist in a single step, without
bringing up the menu. A flick up or left makes the next item in the list current.
Similarly, a flick down or right makes the previous item in the list current. A
double-flick up or left makes the last item current, while a double-flick down or
right makes the first item current.

Multiple Checklists

In some lists the choices are not mutually exclusive - more than one choice can
be on at a time.

For such situations PenPoint provides a control called a multiple checklist, in
which tapping on one choice toggles its checkmark on and off, without affecting
the other choices in the list.

Figure 10 shows a typical multiple checklist.

Show: ,,~~ Title Une
¥' ~~ Menu L1 ne
4 ii Scroll Margi n

~l Cork Margi n

Figure 10: Multiple Checklist

The user can always tell whether a checklist is single or multiple by looking at
the line between the checkmark and the list: a single line signifies a single-choice
list, a double line signifies a multiple-choice list.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 27

User Interface Building Blocks

Checkboxes

The double-line convention described on the previous page is the standard used
by PenPoint to present multiple choice lists in dialog sheets, option sheets and
menus.

PenPoint also provides checkboxes for multiple choice lists. Use the checkboxes
rather than the double-lined list where appropriate. Situations that call for
checkboxes include:

• A single checkbox representing a toggle switch;

• A form where checkboxes are the common convention;

• A columns of checkboxes in a table.

Figure 11 shows how checkboxes in the notebook Table of Contents provide an
easy way for the user to toggle the tabs on and off for individual sections and
documents.

m C11ents .. 3
~ East 4

~ West 5
i~
EJ North ". 6

Figure 11: Checkboxes

Checklists Containing Fields

Checklists are not constrained to a single type of control.

Figure 12 shows a common idiom, in which one of the choices in a checklist
contains one or more overwrite or fill-in fields.

Pages: .t All

Fro m L. L L ... : to L.. L L ... :

Figure 12: Checklist with Overwrite Fields

Page2S PenPoint User Interface Design Guide, Rev. OS, 2/15/91

Controls

Boxed Lists

An alternative to checklists is the boxed list, in which the current choice is
outlined instead of marked with a checkmark.

Use boxed lists when the choices are best represented as graphical images rather
than text labels, and when you need to present them in the most compact form
possible.

Figure 13 shows a boxed checklist for choosing a fill pattern in a drawing
program.

Fill Patterns: II '.1.1,1. 1'1'1'1'1 II
11111111
11111111 1,1,1,10

II .~. ~ ... :..... D' -.1- : .. :. ..

II ~~~ ~ ~
Figure 13: Boxed List

As with checklists, you can specify that the choices in the list are mutually
exclusive or not.

Figure 14 shows a boxed list from which the user can choose more than one
translation mode.

Trans1ation Modes: I\J ~ '""'-~~

Figure 14: Multiple Boxed List

Boxed checklists are the ideal control to use in constructing palettes and control
margins, as described in the chapters on Putting The Building Blocks Together, and
Presenting Input Modes.

PenPoint User Interface Design Guide, RerJ. 0.5,2/15/91 Page 29

User Interface Building Blocks

Scroll Margins

In order to allow long documents or lists to be displayed in a smaller viewing
region, PenPoint provides a control called a scroll margin.

Vertical Scroll Margins

If there is more information past the top or bottom edges of the viewing region,
then a vertical scroll margin appears on the right edge of the document, as shown
in Figure 15.

Contents (1)

'1f>.
@J Celender .. ".................. ____ 2 n

~~

IJ(C1 " t 3 n lens II
~$

EI Eest 4 II
Qr. n
~ West 5 Ii
~ II ~ ___ .~_·_No_r_th_._ _ ==_ _ _ _ _ _.--.. _ _.6 __ ~

Figure 15: Vertical Scroll Margin

By default, PenPoint displays vertical scroll margins on the right. The user can
specify that they be displayed on the left, by means of the Preferences facility.

Horizontal Scroll Margins

If there is more information past the left or right edge, a horizontal scroll margin
appears at the bottom of the page. Figure 16 shows a document with both a
vertical and a horizontal scroll margin.

Page 30

Contents <1>
............... ~ "'!!:~.!!~~~~~~~:::!!::::!:::::~"!:~~

@l Calendar " 2

I] Clients 3
EI East 4

~ West 5

~

9/17/~ ~
8/21/~

9/15/~

9/25/~

~
~ ... ==' :::::::::::=_=. = ... =.=.=:.= ... =::: ... =_v .J

Figure 16: Vertical and Horizontal Scroll Margins

PenPoint User Interface Design Guide, Rev. 05,2/15/91

Controls

Scroll Margin Components

Figure 17 shows the components of a vertical scroll margin.

Bacll:'Ward Arro'W

Drag Handle

For'Ward Arro'W

Figure 17: Scroll Margin Components

Scroll Margin Operations

The scroll margins support the following operations:

• Scrolling by unit. You should interpret a tap on one of the scrolling arrows as
a request by the user to scroll by one unit. In applications that are
organized by lines, such as text or lists, the line is the obvious unit. For
tables the unit should be a row or column. For painting programs, the unit
might be as small as a single pixel.

• Scrolling by screenful. A single tap above the handle should scroll towards
the beginning of the sheet by one screenful. A tap below the handle should
scroll towards the end of the sheet by one screenful.

• Scrolling to beginning/end. A double-tap above the handle should scroll all
the way to the beginning of the sheet. A double-tap below the handle
should all the way to the end of the sheet.

• Thumbing. When the user drags the handle of the scroll margin, you should
scroll to the corresponding location in the sheet - dragging the handle to
the top should result in a scroll to the beginning of the sheet, dragging half­
way should resUlt in a scroll to the half-way point of the sheet, etc.

PenPoint User Interface Design Guide, ReD. 0.5,2/15/91 Page 31

User Interface Building Blocks

Scroll Margin Borders

By default the scroll m~rgin does not have a border separating it from the body
of the scrollable region. This is intentional, so that the double-line appears as a
visual separator marking out a margin on a paper-like surface.

For some applications, such as painting programs, it is important that the user be
able to see the precise extent of the scrollable region, down to the pixel level. In
such cases you can turn on the border of the scroll margin to provide the
demarcation.

Scrolling by Flicking

In keeping with the principle of the dual command path, PenPoint provides a
family of gestures - known as flicks - for scrolling.

The model presented to the user is that he or she is manipulating a sheet of paper
directly by shoving it with the pen. Therefore flicking up should always move
the contents of the sheet up, and reveal more information that had been hidden
past the bottom edge. Likewise, flicking down should always move the contents of
the sheet down, and reveal more information that had been hidden past the top
edge.

The two most important scrolling gestures are the single and double flicks. In
most cases you should interpret them as follows:

• Single Flick. Send the line or point under the start of the flick to the edge of
the viewing region. So flicking up on a line should send it to the top edge,
and flicking down on line should send it to the bottom edge.

• Double Flick. Scroll as far as possible. That is, double-flicking up should
scroll to the end of the sheet, and double-flicking down should scroll to the
beginning of the sheet.

The single and double flicks should suffice for most applications. However,
PenPoint also supports the triple and quadruple flick gestures. H your
application is organized hierarchically, with more levels of structure, you may
want to use the double and triple flick to scroll to intermediate levels, and
quadruple flick to scroll all the way to the beginning or end.

Page 32 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Controls

Scrolling Lists

The PenPoint toolkit supports various forms of scrolling lists.

When using a scrolling list, one of the essential design questions to ask is how is
the information in the list to be used. There are several usage patterns which
suggest different variations, as described below.

Scrolling Checklists

When the purpose is to allow the user to indicate that exactly one of the items is
"current," or distinguished for some purpose, the scrolling list behaves like a
single choice list control.

Figure 18 shows a scrollable single choice list in the standard PenPoint layout
used in dialog and option sheets (bold label followed by an unbordered list.)

Font: .t i Courier ~
i Hand Pri nt ~
i New York g

1;:~aS;~:~a 1
Figure 18: Scrolling Checklist

Depending on the context, you may find it more appropriate to present the list in
borders and with some other marker for the current item, such as a checkbox.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 33

User Interface Building Blocks

Scrolling Pop-up Checklists

Use a scrolling pop-up checklist when you need to present choices in a more
compact format.

Figure 19 shows a pop-up list from which the user can choose one of the fifty U.S.
states.

California
Colorado

~
B
:i

D

State: ., Del aware
Connect i cut ~:::!ll'

State: .. Delaware
il
i!

Florida
Georgia
Hawaii

Figure 19: Scrolling Pop-up Checklist

II
~

The currently selected choice appears to the right of the list's label, separated by a
small arrow, as shown at the left in the above figure. Tapping on the arrow or
the current choice pops up a menu with the entire list, as shown at the right.

Page 34 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Controls

Scrolling Multiple Checklists

When the purpose is to allow the user to choose more than one of the items in the
list, the scrolling list behaves like a multiple choice control.

Figure 20 shows two examples.

... ~.

4r/!! Jan. 7 Pistons U

.. ...

~ Jan. 7 Pistons
.,;.
U

11 Jan. 10 Cavall ers ii
4r/ II Jan. 14 Nets II
4r/ I! Jan. 20 Wolves 11

I! Feb. 10 Mastodons ~

r-i Jan. 10 Caval j ers :..

ri! Jan. 14 Nets ..

fi! Jan. 20 Wolves
C-:J Feb. 10 Mastodons f~

Figure 20: Scrollable Multiple Choice Lists

The list on the left uses the PenPoint double-line convention, the list on the right
uses checkboxes.

Use the double-line form if the list is in a standard dialog sheet or option sheet.
Use checkboxes if you are using checkboxes for similar purposes throughout in
your application.

PenPoint User Interftzce Design Guide, RerJ. 0.5,2/15/91 Page 35

User Interface Building Blocks

Editable Lists

When the contents of the list can be edited by the user (i.e. the user can add,
delete and edit items) the list should support selection.

Figure 21 shows a list with one item selected.

r .. ···~~:;:.·1

I ~h~~~C;~~rk Orange II
~ ~i

Figure 21: Editable List

See the chapter on Selection for guidelines on handling the selection.

Gesture Accelerators for Scrolling

In long alphabetically sorted lists, it is a good idea to use the capital letters as
accelerators for scrolling. Allow the user to write the letter anywhere on the list.
When a letter is recognized, select the next item in the list beginning with that
letter. If the item is not visible, scroll the list so that the item appears at the top of
the view.

Page 36 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Controls

Text Fields

There are several types of text fields that are commonly used as controls:

• Overwrite Fields. Fields that display each character in a discrete box and
allow direct overwrite of characters;

• Fill-in Fields. Single-line fields that are backed by pop-up editing pads;

• Pop-up text view. Single-line fields that are backed by multi-line, scrollable,
fully editable pop-up text sheets.

• Embedded text view. Boxes containing scrollable, fully editable text.

This section introduces each of these types of fields. For details on text editing,
see Chapter 20, Editing Text.

Overwrite Fields

For fields that are limited to a few characters, such as numeric fields, PenPoint
provides a type of field that consists of a series of overwrite boxes, each of which
accepts and displays a single character.

Figure 22 shows a typical usage of overwrite boxes.

Tim e: ·..J . ..L~ .. 1: L~.L9. .. :

Figure 22: Overwrite Fields

Overwrite boxes are designed to make it as convenient as possible to edit the
contents of the field. To change a character, the user simply writes the new
character directly over an existing one.

Editing in character boxes is described in detail in the Chapter 20, Editing Text.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 37

User Interface Building Blocks

Fill-in Fields

Fill-in fields allow the user to enter textual data with the pen. Figure 23 shows an
example.

Name: Nathaniel Bowditch

Figure 23: Fill-in Field

When fill-in fields are empty, the user can write directly into them. After a short
pause, the written characters are translated into a standard computer font.

The user can also tap to pop up an editing pad containing overwrite boxes.

See the chapter on Editing Text for details on fields, including pop-up pad
behavior and a list of the editing gestures accepted by fill-in fields.

Visuals

Figure 28 above shows the default field format used in PenPoint dialog and
option sheets. The label is at the left, followed by an underlined field.

If your application needs to emulate a standard paper form, you may find it
more appropriate to use different ornamentation for fill-in fields, such as boxes
around the field, dashes or other characters as separators, etc.

Font

By default, fill-in fields use the font specified as the Field Font preference, and
the size specified as the Font Size preference.

Your application can override these preferences, either for the purpose of fixing
the font and size to ensure that all the information on a sheet can be viewed at
once, or because your application provides its own usei' interface for controlling
fonts. .

Page 38 PenPoint User Interface Design Guide, Rev. 05,2/15/91

Controls

Pap-up Text Sheets

The fill-in fields described above work well for short fields. When the contents of
the field will typically be longer than can be displayed in a single-line field,
tapping on the field should bring up a pop-up text sheet, instead of an editing
pad.

Figure 24 shows a comment field from a document option sheet.

C om me n t s: .!..~.~ .. ~ .. ~.~.~.~.~.~.~.~ ~.~.~ ... ~.~~.9~.~.~.~.~.~.
Figure 24: Long Text Field

The ellipsis at the end of the string indicates to the user that the field is truncated.
Tapping on the field (or drawing a circle) brings up a pop-up sheet containing a
fully-editable text component, as shown in Figure 25.

Comments:

Comments
m:,:,:,:::-n-::::I:I::::m::mmm::::::-r:n::-::::::::::mmm:::m:mnu::::u:::::::::m:::mmr::-r:mm:::nrm::::n:::n:::

This document was original1 y prepared f
for the mi d-year conference on tropi cal
ornithology. Later revisions were
made by Rol ando A 1 denford, Professor
of Southern Hemi sphere Studi es at
Bal i Normal Uni versity.

Figure 25: Pop-up Text Sheet

The sheet should have the field's label as its title.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 39

User Interface Building Blocks

Embedded Text Boxes

If you have room, presenting a long text field as an embedded text box instead of
a single-line field backed by a pop-up sheet has the advantage of eliminating the
step of popping up the sheet to see the field contents.

Figure 26 shows the comment field implemented as an embedded text box.

Com men t s: l····~·~·~·~· .. ~·~~·~·~~·~·~···~·~~···~·~~··~·~··~~·~··~·~···~·~·~·~·~~·~~········t··.
for the ml d-year conference on trop1 cal U :

ornlthology. Later rev1 sl ons were:: :
i made by Rol ando A 1 denford, Professor J.l,.1
\ ... _ .. :

Figure 26: Embedded Text Box

You can specify that the text box have resize handles on the bottom edge, lower
right corner, or right edge, independently.

Often it is most convenient for the user if the width of the box is fixed to be as
wide as the document or sheet that contains it, and only the bottom edge has a
resize handle, as shown in the example above.

Issues

Is it important for the toolkit to provide other controls - e.g. gauges and sliders
- in the first release?

Applications may want to implement other scrolling models in addition to the
methods described in this chapter that are standard in PenPoint. One example of
this is a "proportional flicking" model, in which the length of the scroll depends
on the length of the flick. Another alternative scrolling model is direct panning
via a ''hand'' mode that is entered via a press-hold timeout.

Page 40 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Chapter 5: Menus

One of the most basic user interface components is the pop-up menu.

This chapter gives guidelines for menu usage, including:

• The various types of controls that menus can contain

• Conventions for laying out the controls in menus

• Wording conventions for menu labels

• Hierarchical menus

User Interface Building Blocks

Controls in Menus

This section describes the controls that menus can contain.

Buttons, Lists and Fields in Menus

Menus can contain buttons, checklists, multiple checklists, fill-in fields, and
overwrite fields, as shown in Figure 27.

Page 42

Undo
Move
Copy
Delete

4r/ I con
Size
Date
Tab Box

.j Dally
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

2/15/91

8
.j 10

12
14

Figure 27: Menus

4r/ By Name
By Type
By Size
By Date

16
18
20
17: 2'i

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Menus

Multiple Types of Control in a Single Menu

A single menu can contain more than one type of control, as shown in Figure 28.

Button
.t Icon

llType
.t!! Date
.t II Size

jjTab Box

Figure 28: Menu with Two Kinds of Controls

Two-state Switches in Menus

There are two recommended idioms for representing a two-state switch in a
menu.

The first is to present the switch in the form of a single command, whose label
changes dynamically based on the state of the program.

Use this method when the choices are obvious opposites. A typical example is a
command to toggle a grid on and off. The command invites the user to Hide
Grid when the grid is on, and Show Grid when the grid is off. Figure 29 shows
the menu in both states.

Hide Grid Show Grid

Figure 29: Single Command for Two-state Switch

Another example. is toggling the label of a single-level undo command between
Undo and Redo.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 43

User Interface Building Blocks

The other recommended method for presenting a two-state switch is to use a
checklis t with two items.

Use this form when the choices do not constitute an obvious pair of opposites.
Figure 30 shows a typical example, for setting the color of the background .

.t 1 Grey Background
I Whi te Background

Figure 30: Checklist for Two-State Switch

Since the choices are not clearly opposites, it is clearer to show them both, rather
than having a single command labelled Set Background to Grey and Set
Background to White.

Presenting a two-state switch as a multiple choice list with a single choice, as
shown in Figure 31, is not recommended.

.til Grid II Grid

Figure 31: Multiple Checklist for Switch (Not Recommended)

In this idiom the state of the switch is indicated by the presence or absence of a
checkmark. Avoid this usage, as it is not as clear as the two methods described
above - a single command whose label toggles, or a checklist showing both
choices.

Page 44 PenPoint User Interface Design Guide, Rev. 05, 2/15/91

Menus

Menu Labels

The following conventions have become de-facto standards for graphical user
interfaces. Use them in PenPoint too.

• Use Verbs. When possible, use verbs for both the label of the menu and the
commands contained in the menu.

• Capitalize. Capitalize the first letter in each word of both label and contents
of the menu.

• Ellipsis convention. If the menu command will bring up a pop-up sheet, add
an ellipsis (three dots) to the label.

• De-activating menu labels. If a menu control is unavailable for any reason, set
it to the inactive state. The toolkit will render it in light grey. In particular,
before aisplaying any menu containing commands that act on the selection,
make sure to check whether your application currently holds the selection.
If it doesn't, de-activate the selection-based commands before displaying the
menu.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 45

User Interface Building Blocks

Menu Behavior

PenPoint menus follow the "tap-tap" usage model rather than the "press-drag­
release" model. That is, the user taps on the menu's label to display the menu,
then taps on a control in the menu to take the desired action and dismiss the
menu.

Input Behavior

Menus are modal: while a menu is displayed, input to the rest of the screen is blocked.

Tapping anywhere on the screen outside the menu dismisses the menu and cancels the mod
without taking any other action .

. PenPoint makes a deliberate exception to this rule for the other menu labels on
the screen. They remain active, so that the user can easily browse through a
group of menus by tapping each label, without needing to dismiss the
previously-opened menu each time.

Choosing From Menus

In most cases, tapping on a control in the menu takes the appropriate action and
dismisses the menu.

PenPoint makes an exception to this rule when the menu contains a choice list
with a fill-in or overwrite field, as shown in Figure 32.

~8
"i 10

~ 12
~ 14

Figure 32: Menu Containing Overwrite Field

Tapping to the left of the vertical line, by the field, will choose that item and
dismiss the menu, as usual. But directing input to the field itself (entering a
character, making an editing gesture, or tapping to set the keyboard input focus)
will not dismiss the menu. This allows the user to complete the editing
operation and verify that the contents of the field are correct before dismissing
the menu.

Similarly, tapping on a fill-in field in a menu displays the field's edit pad, and
dismissing the pad leaves the menu displayed.

Page 46 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Menus

Menu Layout

The most readable and most common layout for controls in menus is a single
column.

Multi-column Menus

In some cases the standard single column layout results in an extremely tall and
skinny menu. An example might be a menu containing the numbers 1 through
20. In such cases consider using a multi-column layout. The rule of thumb is to
keep the menu a bit taller than wide - say a 5 to 3 ratio.

For readability, use a column-major sort order when the controls are sorted
alphabetically or numerically. That is, the controls should read downward, in
columns, rather than across, in rows.

Separating Groups of Controls

You can separate groups of commands either with white space or with a light
grey line.

Menus that contain more than one checklist don't need a dividing line, since the
vertical single or double line unifies each list, as shown in Figure 33.

~ Button
-tI! Icon

~~ Type
-tI!! Date
-till Size

llTab Box

! Button
-tI I Icon

!!Type
-tI 1! Date
-tlHSize

IITab Box

Figure 33: Lists in Menus Don't Need Dividing Lines

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 47

User Interface Building Blocks

Hierarchical Menus

The PenPoint toolkit supports hierarchical menus.

A right-pointing arrow to the right of a menu command tells the user that
tapping that command will display a submenu, as shown in Figure 34.

Checkpoint
Revert

Print...
Pri nt Setup ...

About...

Fax
Email

Figure 34: Submenu

As a general rule, keep the menu hierarchy to one level. Hierarchies deeper than
a single level are cumbersome to use. You can always avoid a deep hierarchy by
either making the hierarchy broader at the top level or putting commands on
other types of controls, such as option sheets or palette lines.

Issues

We are considering adding some kind of facility to allow the user to convert
modal, one-shot menus into modeless, floating menus for repeated use. How
important is this feature?

Page 48 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Chapter 6: Dialog Sheets and Option Sheets

This chapter gives guidelines for using dialog sheets and option sheets.

Topics covered include:

• Dialog Sheets. For allowing the user to set parameters to commands.

• Option Sheets. For allowing the user to set options for application objects.
Includes conventions for tracking the selection, refreshing option sheets,
clean and dirty controls, etc.

• l.J;zyout of Controls. Default two column layout, pop-up vs. inline lists.

• Multiple Sheets. Multiple sheets controlled by a pop-up list in the title line.

• Modeless and Modal Sheets. When to use modal sheets.

User Interface Building Blocks

Dialog Sheets

Use dialog sheets to allow the user to specify the parameters to commands.

Figure 35 shows a typical dialog sheet, for the Print command.

Print

Figure 35: Print Sheet

Page SO PenPoint User Interface Design Guide, ReD. 0.5,2/15/91

Dialog Sheets and Option Sheets

Option Sheets

You can think of option sheets as a specialized type of dialog sheet, in which the
command is "Apply the settings on the sheet to the selected object."

Figure 36 shows a typical option sheet, for the PenPoint text component.

Text ~ Character
!i!::::::::::::::::::::::::::::::::.:::

Font: .. Ti mes Roman

sj ze: .. 16

styl e: ~:i Bol d
~ II Italic

Ii Small Caps
II Stri ke-thru
11 Underl i ne
Ii Heavy Underl i ne
11 Hidden

Figure 36: Text Option Sheet

Role of Option Sheets in PenPoint

Option sheets are used widely throughout the PenPoint environment to allow the .
user to modify:

• application-specific objects such as text in a word processor. Typical text
options include font, point size, paragraph justification, etc.

• individual documents. Standard document options include the title and
author of the document, whether the document is editable and deletable,
whether its menu line and cork margin are shown, etc.

• the overall PenPoint environment. Tapping on the Preferences icon brings
up the PenPoint preferences sheets, allowing the user to set options for the
environment as a whole, such as portrait or landscape layout, whether the
bell sounds when warning or error messages are displayed, system font
size, etc.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 PageS1

User Interface Building Blocks

Option Sheets for Different Types of Objects

If your application presents objects that appear to the user as clearly distinct
types - text, figures and bitmaps are typical examples - it is usually best to
present a separate option sheet for each type of object.

Invoking Option Sheets

The user brings up an option sheet either from the a menu (the standard Edit
menu, or an Options menu if present) or by making the checkmark gesture over
the object of interest.

Dynamic Behavior of Modeless Option Sheets

Option sheets are modeless, in that the rest of the screen remains responsive to
input from the pen while the sheet is displayed.

The remainder of this section describes the dynamic behavior of option sheets­
how they respond as the user makes a checkmark over an object or taps to
change the selection.

It is very important that the conventions described below be implemented
consistently whenever option sheets are used. In recognition of the importance
of the option sheet behavior, the PenPoint toolkit includes a protocol to support
consistent implementation by applications.

Response to Checkmark Gesture

When the user draws the checkmark gesture over an object that is not selected,
first select the object that was the target of the gesture, then display its option
sheet. It is important to first select the object, so that the user can clearly tell
which object is associated with the sheet.

This implies that you need to decide what the most natural and useful "default"
object is in the context of your application. For example, in the Table of Contents
the default object is the document, while in text the default object is the word
(not the character) under the gesture.

If an option sheet is already up when the user draws a checkmark on another
object (of the type appropriate to the option sheet) first select the object, then
update the sheet's contents to reflect the current state of the object.

Page 52 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Dialog Sheets and Option Sheets

Relationship to the Selection

Any time there is no current selection, or the current selection is not of the option
sheet's type, dim the Apply and Apply & Oose buttons, since there is no target
for the actions.

Clean and Dirty Controls

Option sheets have the concept of "clean" and "dirty" controls. Clean controls
are shown in dark grey; dirty controls in black.

When the sheet initially comes up (or is updated by the drawing of a checkmark)
all the controls are clean. When the user modifies a control, it is marked dirty.

When the user taps the Apply button, only the dirty controls are applied. This
distinction allows the user to tell unambiguously which options will be affected
by tapping Apply.

In most cases, this distinction is not important to the user. But there is one
situation in which it is essential: when the selection contains multiple objects,
that don't all share the same setting for the option.

Let's take a common example from text. Suppose an entire paragraph is selected.
Most of the font is normal, but there are a few bold words and a few italic words.
Since the setting would take its value from the first letter in the selection, neither
bold nor italic would be checked. The user needs to know whether the entire
paragraph will be made not bold and not italic when Apply is tapped. The
clean/ dirty convention satisfies this concern.

Copying Options from One Object to Another

If the user selects another object while an option sheet is displayed, the toolkit
automatically marks all the controls as dirty.

This allows the user to easily copy properties from one object to another by
simply bringirig up the option sheet for the source object, selecting the
destination object, and tapping Apply.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 53

User Interface Building Blocks

Modeless and Modal Sheets

By default, PenPoint dialog and option sheets are modeless.

You can also specify that a sheet be modal, in which case pen input to the rest of
the screen is blocked as long as the sheet is displayed.

In most cases, it is better to use modeless sheets, because they are less restrictive
to the user. For example, the user can bring up an option sheet, and then go
through a document, repeatedly selecting and modifying different objects. The
user can also interrupt the use of the option sheet to do something else, without
needing to dismiss the sheet and then bring it up again.

Sometimes there is a good reason to restrict input to the sheet itself. For example,
it may be necessary to control access to the application's data in order to maintain
the integrity of the data.

Suppose a database application presented a dialog sheet to modifY the result of a
database query. It's quite possible that a modeless sheet would allow the user to
change the state of the program's data such that it would be impossible or
impractical to update the contents of the sheet. In such a case using a modal
sheet can eliminate a whole class of problems.

Ptlge54 PenPoint User Interface Design Guide, Rev. 05, 2/15/91

Dialog Sheets and Option Sheets

Command Buttons

The light grey area at the bottom of dialog and option sheets is called the
command line, and the buttons found there are called command buttons.

Standard Modeless Buttons

In the simplest case the sheet has a single command - as in the case of the Print
Sheet shown at the beginning of this chapter.

For such cases the rule is to use three buttons: one to execute the command and
leave the sheet up, another to execute the command and close the sheet, and a
third to close the sheet without taking any other action.

This button convention takes advantage of the modeless nature of the sheet by
allowing the user to use the sheet one time or repeatedly.

For the sake of consistency, the three buttons should be named and ordered as in
the examples shown in Figure 37.

Figure 37: Standard Modeless Command Buttons

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 55

User Interface Building Blocks

Standard Modal Buttons

For modal sheets that have a single command, the convention is to have just two
buttons - one to invoke the command and dismiss the sheet, and another to
dismiss the sheet without taking any action.

The latter button should always appear on the right, and be labelled Cancel. So,
for example, if the Print Sheet were modal, its buttons would be labelled as
shown in Figure 38.

Figure 38: Standard Modal Command Buttons

The word Cancel is appropriate in two senses: the button cancels hoth the mode,
and the the pending operation.

The Cose/Cancel convention also serves the function of giving the user a
consistent cue as to whether a given sheet is modal or modeless.

Non-standard Buttons

Sometimes the standard conventions described in the previous section~ aren't
sufficient. The basic command for a dialog sheet may have variations, as in this
example from the Find sheet.

Figure 39: Command Buttons for Find Sheet

In such cases do the best you can to keep the buttons simple.

If possible, limit the buttons to a single row. If there are more buttons than will
fit on a single row, consider grouping them into multiple sheets, as described in
the later section on Layout.

Page 56 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Dialog Sheets and Option Sheets

Command Buttons and Other Buttons

Only buttons that actually affect something outside of the sheet should appear on the
command line. Any other buttons should be placed. within the body of the sheet.

Take the example of a screen snapshot program. There is a need for a button that
the user can tap to go into "drag mode" to specify the area to be captured in the
snapshot -let's call it the Aim button. It might seem at first glance that this
button should go on the command line, as shown in Figure 40.

Snapshot

Ori gi n: LQ . .L..LJ (x)

Hei ght: LQ. .. ~ ... J. .. j
, . .

Width: LQ.~l ~

~O]l!() y

Figure 40: Non-Command Button on Command Line (Not Recommended)

This design has the weakness of losing the distinction between buttons (like Snap)
that actually effect the command and those (like Aim) that only set up the command.
Even if the user never consciously thinks in terms of this distinction, it is important
to maintain it consistently, because it reflects the structure that underlies the
interface.

Figure 41 shows a better solution.

Snapshot

Origin: l 0 ~ 1 ! (x)

i O! 1 : (y)

H - ht i 0 ~ 1 ~ . elg : L L ~

Width: LQ .. Ll.J

(Alm ... J)

Figure 41: Proper Use of Command Line

The Aim button is in the body of the sheet, close to the parameters that it modifies. This
also makes room in the command line for the standard three buttons.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 PageS7

User Interface Building Blocks

Layout of Controls

This section gives guidelines for laying out the controls in both dialog sheets and
option sheets.

Standard Layout

The default layout supported by the toolkit is designed to be simple and
readable. It has two columns: the labels are on the left, the values are on the
right.

Both columns are left-justified. The text in the value column line up vertically,
whether the control is a choice list, a pop-up list, or a text field.

The labels are shown in bold, followed by colons.

All parts of the control- both label and value - are. aligned on the same
baseline.

Non-standard layouts

If the default two-column layout does not suffice for your purposes, the PenPoint
toolkit will support more complex layouts ..

The most important guideline is to align all the controls along a clear grid. By
following this basic rule of graphic design, you can maintain readability even in
quite dense layouts. When infonnation is not aligned on a grid, readability is
degraded.

Page 58 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Dialog Sheets and Option Sheets

Single vs. Multiple Sheets.

As a general rule, it's a good idea to keep a given sheet simple and compact - six
to ten controls to a sheet is a good limit. The larger the sheet, the more of the
screen it will obscure when displayed. PenPoint sheets are modeless, so that the
user can leave them displayed and use them repeatedly. This feature becomes
less useful the larger the sheet becomes.

The basic technique to keep the sheets simple and compact is to organize the
controls into separate categories, each with its own sheet.

When you create multiple sheets, the PenPoint toolkit automatically generates a
pop-up list containing the titles of all the sheets, and places this control in the
sheet's title line, following the overall title for the sheet.

Tapping on the arrow displays the menu with the names of all the sheets. Figure
42 shows the text option sheet with its menu open.

Text ~ Character - ,---= Paragraph -
Font: Tab Stops

Size: View

Figure 42: Menu for Text Option Sheet

The arrow in the title-line gives the user a consistent visual cue that there are
multiple sheets.

Multiple sheets allow you to present complex functionality in a simple way by
unifying several related commands. The user need only make the checkmark to
bring up the most-recently-used sheet, then turn to any of the other sheets via the
title-line menu.

Whenever possible, list each of the sheets from an Options menu, as
recommended in the later chapter on Putting the Building Blocks Together. This
gives the user a choice of two complementary paths to the desired command:
making a checkmark to bring up the most-recently-used sheet, or using the menu
to go directly to any sheet.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 59

User Interface Building Blocks

Pop-up vs. Inline Choices

As described in the chapter on Controls, PenPoint provides two forms of choice
lists: an inline form in which all the choices are shown, and a more compact pop­
up form in which only the current choice is shown.

Using only one form of list on a single sheet has the advantage of ensuring both
visual clarity and consistent behavior for choosing from the lists. First consider
using the inline form, which is easier to browse and use, for all of the lists on the
sheet. If that would make the sheet too tall, use the pop-up form.

This is not a hard and fast rule. There are two good reasons to mix inline and
pop-up lists on a single sheet:

• If the controls fall clearly into frequently-used and seldom-used controls,
consider presenting the frequently-used lists inline and the seldom-used
lists as pop-ups.

• If there is a natural grouping of controls, consider showing the related
controls in the same form.

The document Access sheet, shown in Figure 43, provides a good example of
both these guidelines.

Expense Report .. Access

Edi tabl e: .. Ves

Del etabl e: ., Ves

Access Speed: .. Standard

Borders & -V' ~ Show
Controls: t Hide

Controls: ~!I Tit 1e Line
v!< Menu Line
-v'il Scroll Margin

Figure 43: Document Access Sheet

The Borders & Controls toggle would ordinarily be shown as a pop-up list, like the first
three lists on the sheet. But since its function is so closely related to the multiple
checklist below it, and it is the most frequently-used control on the sheet, it is shown
inline, to reinforce the relationship.

Page 60 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Dialog Sheets and Option Sheets

Fill-in vs. Overwrite Fields

As described in the chapter on Controls, PenPoint provides two forms for text
fields: underlined fill-in fields and overwrite fields that are segmented into
discrete character boxes.

Each of these forms has its advantage. The overwrite fields are easier to use,
since the user can edit them directly without first tapping to pop up an edit pad.

The disadvantage of the overwrite fields is that they are usually much larger than
fill-in fields. The sizes of these two types of field are controlled by different user
preferences: fill-in fields are shown in the size of the system font, while
overwrite fields take their size from the Box Size preference on the Handwriting
Preference Sheet. By default, the overwrite fields are larger, to make it easy to
write accurately in them.

By default, PenPoint sheets use overwrite fields for numeric fields, and fill-in
fields for text fields, which are usually longer.

Given tradeoff between editing efficiency and compactness, it's up to you to
decide which form to use. Unless there's a compelling reason to mix them, use
only one form on a single sheet.

De-activating vs. Hiding Controls

As with menus, when a control is not available for any reason, you should let the
user know by de-activating it.

Often a control is active or inactive depending on the state of the control above it.
Figure 43 on the previous page contains such a pair. The list labelled Controls is
only active when the switch labelled Borders &t Controls is set to Show. In the
case of such related pairs, it is best to activate and de-activate the dependent
control immediately as the dominant control is changed, rather than only after
the Apply button is tapped. This helps to make the semantic relationship
between the two controls clear to the user.

It is also acceptable to hide the dependent control completely when it is
irrelevant. H you do so, put the control that comes and goes at the bottom of the
sheet if possible, so thatit doesn't leave a gap in the middle of the sheet.

~

With de-activating and hiding, as with other stylistic choices, it is usually best to
choose one method or the other and use it throughout your application.

PenPoint User Interface Design Guide, ReD. 0.5,2/15/91 Page 61

User Interface Building Blocks

Issues

We are considering asking the user for confirmation when the user has pending
changes and turns to another sheet on a multiple option sheet. Is this a good
idea?

We are considering changing the label of the Close button to read Cancel when
there are pending (unapplied) changes. Is this a good idea?

Page 62 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Chapter 7: Status, Warning and Error Feedback

This chapter gives guidelines for giving feedback to the user, including:

• Busy clock

• Wording guidelines for messages and button labels

• Progress and completion messages

• Confirmation notes

• Error notes

• Timing-triggered notes

• Audible feedback for warning and errors

• Message lines

User Interface Building Blocks

Busy Dock

It is very important that the user have some indication that the machine is alive if
the result of a command doesn't appear instantly.

PenPoint provides a standard busy clock for this purpose. It is very important to
use the busy dock consistently, because your user will be expecting it, since it is
used throughout the PenPoint environment.

To make it more visible to the user, the busy dock is animated, with one hand
rotating through eight positions, as shown in Figure 44.

Figure 44: Frames of Animated Busy Dock

Busy Clock Location

In traditional mouse-based interfaces, the mouse pointer, which is always visible
on the screen, is used as the busy indicator. The situation is a little different with
a pen-based interface. Because there is usually no pointer on the screen to
provide a visual focal point, it is especially important to position the busy dock
so that it will be clearly visible to the user.

In most cases, it is best to display the busy dock at or near the point that the user
invoked the operation with the pen, as shown in Figure 45.

Let us lmt'ne 8 herd of ungulBtes.

Let us a herd of ungulates.

Figure 45: Busy Cock at Location of Gesture

In the above example the user has drawn a checkmark gesture to bring up the
option sheet for a word. The busy dock is centered on the pen-down point of the .
gesture.

Page 64 PenPoint User Interface Design Guide, Reo. 0.5,2/15/91

Status, Warning and Error Feedback

It is often helpful to position the busy clock precisely in relation to the object of
interest. For example, when the user taps on an icon, the busy clock appears
right over the icon, as shown in Figure 46.

....s
.:\l8!!i!

Figure 46: Busy Cock On Top of Icon

When the operation is invoked from a button, center the busy clock just above
the button, as shown in Figure 47.

Figure 47: Busy Cock Above Button

This eliminates the visual interference caused if the clock is centered on the pen­
down point of the tap, partially overlapping the icon or button.

In some cases it works best to place the clock not at the point of the gesture, but
in a consistent loc~tion with reference to the surrounding sheet. For example,
when the user turns from one option sheet to another, PenPoint places the busy
clock at the far right of the sheet's title line, as shown in figure 48.

Preferences" Pen ~

Figure 48: Busy Cock At Right of Title Line

The clock is still close enough to be in the user's field of vision, and is more easily
discerned than if it were overlapping the characters in the title.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 65

User Interface Building Blocks

Wording Guidelines

This section gives guidelines for the wording of the messages and button labels
in notes.

Wording of Messages

• Use normal, mixed case for the message - don't use all upper case letters for
emphasis.

• Don't use exclamation points - they give an exaggerated, cartoon-like
impression. And they're not really necessary!

• Never use words that may have offensive connotations, such as "abort."

• Put the message in the user's terms, not the programmer's terms. For
example, "Not enough memory for operation - press the restart button,
then try again" is more helpful than ''Heap allocator: unable to malloc 4 K
block."

Wording of Button Labels

PenPoint supports modal notes for the display of progress, completion,
confirmation and error messages, as described later in this chapter.

In labelling buttons on modal notes, follow the convention described in the
preceding chapter for modal dialog sheets: the name of the command, 'and
Cancel. For modeless notes, use Oose instead of Cancel.

This convention of using active verbs makes the buttons unambiguous. It also
allows the buttons to stand on their own - the user can interpret them at a
glance, without needing to read the message carefully.

Don't label buttons Yes and No. That forces the user to read the labels carefully
to know how to interpret them - does Yes mean "Yes, proceed with the
operation" or ''Yes, I want to cancel the operation?"

Progress and Completion Messages

H an operation is very lengthy - or especially important to the user for any
reason - it's a good idea to supplement the busy clock with an explicit message
while the operation is in progress.

You can use either a pop-up note or an in-line message area to display progress
messages, as described on the following two pages.

Page 66 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Status, Warning and Error Feedback

Pop-up Progress/Completion Note

The note shown in Figure 49 tracks the progress of a disk formatting operation.

"':":':',. '"

/Vat e from Dis): I"/QnQger. ..

Formatting floppy "June Backup 1" ...

45::1 complete.

Figure 49: Progress Note

Note the busy clock at the right of the note's title line.

Whenever possible, you should put a Cancel button on such progress notes to
allow the user to cancel long operations.

There are two ways to handle the normal completion of an operation. The
simplest is to take down the note programmatically when the operation is done.

If it is important that the user acknowledge the completion of the operation, then
leave the note up, change the message to reflect the completion of the operation,
and change the label on the button from Cancel to either OK or Continue, as
shown in Figure 50.

/Vote ;ram Dis),' l"/tlnQger. ..

Format t i ng of fl oppy

"June Backup 111 comp1 ete.

Figure 50: Note Marking Successful Completion of Operation

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 67

User Interface Building Blocks

In-Line Progress/Completion Message

When possible, put a progress message in a note that is already up. This disturbs
the screen less.

Figure 51 shows a progress message embedded in a pre-existing note.

Nate fram InsttJller. ..
I:::

Applications on disk -Backup-:
l· .. ·~· ·~ ··~· · • .. ~~· .. ~ .. ·"m·~· ~ · .. ~...,I'
• ~ y

~ c:J PenWri te I l
I @J PenCalc ii I
1 [g PenDraw 11 ~
I ~ PenPaint ~ I
,1

Tap -Install- to install the selected one.

-------------------------11 -----------
~ ...

I nstal ling "PenPai nt" ...

- --------------------------------- ;~. -----------
j.,.

: v =---.--............ --.-----,~---,
"PenPaint" successfully installed.

, Figure 51: Progress and Completion Message as Part of Note

Page 68 PenPoint User Interface Design Guide, Rw. 0.5, 2/15/91

Status, Warning and Error Feedback

Confiimation Notes

Before proceeding with operations that are irreversible and that destroy data,
you should protect the user by asking for confirmation.

Figure 52 shows a typical confirmation note.

Nate fram PenPaint ...
:::f:!1

Please confirm the deletion

of -Expense Report~

Figure 52: Confirmation Note

As with all notes, use active verbs for button labels, rather than Yes and No.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 69

User Interface Building Blocks

Error Notes

Figure 53 shows a typical pop-up error note.

/vote from Djsk /"/8iJ8ger. ..
.. .. : . '::::.:'

Formatting of floppy

IIJune Backup 1" failed.

Do you want to try again?

Figure 53: Error Note

,'::,:,::.,:.,,: .

Whenever possible, tell the user what he or she can do next. In the above
example, the options are to try the operation again or to cancel the operation.

H you can give the user a short hint as to what they can do to work around the
problem, by all means do it.

As with all notes, use active verbs for button labels, rather than Yes and No.

Page 70 PenPoint User Interface Design Guide, Reo. 005,2/15/91

Status, Warning and Error Feedback

Timing-Triggered Notes

In some situations it may be appropriate to display a note for a few seconds, then
automatically dismiss it and continue. You can use this technique both for
completion notes and error notes.

For example, when the user tries to turn to a notebook page, and the application
framework is unable to open the document on that page, it displays the note
shown in Figure 54.

:i::~ .. ~~~~ ~~t(.. ~~~~~~"$.~~#ffl~:
~ /Vote fram PenPoint... :!
·~~::::::!:-::~::::::;.r:::~r::;.::::::;.::::::::::~::::::::::::::::::::::m::":::::n:::::nm::::::::;:::::m:.::::m:::n:::::m::::::::::::m::::.::::::::::::::::::.:::::::1

~

Unable to turn to "June Expense Report".

Tap "Continuel! to turn to

Tabl e of Contents.

, x .. ::-' .. r~~:'1~.' '7w, <i::··5A:~:~.: ~r ; .. ::%-.;:~<j~ '~;~t· ,.:.
,;.."tilrut . x ~'Wmm""w-~W~-w<'.""=~,' .

Figure 54: Timing Triggered Error Note

H the user doesn't tap Continue within 5 seconds, the application framework
takes down the note and turns back to the Table of Contents.

Use timing-triggered notes with caution. Never use them in situations where it is
really important that the user see the note.

Another problem with timing-triggered notes is how long a timeout interval to
use. Dismiss the note too quickly and the user will strain to see it, or miss it
entirely. Leave it up too long and the user may become impatient waiting for it
to go away. Given that different user will vary in how fast they read, it's not
clear that one interval will work for the range of users that will use your
application.

H you do use timing-triggered notes, it is especially important to test the interval
on users.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 71

User Interface Building Blocks

Audible Feedback for Warning and Errors

PenPoint is designed to be used anywhere - in meetings, during interviews, in
classrooms, etc. - without intruding into the social situation.

For this reason PenPoint provides a user preference for audible feedback, which
by default is disabled.

You can use audible feedback for minor errors, subject to these two guidelines:

• Always check the user preference before providing audible feedback. Never
provide audible feedback when the user has indicated that it is not desired.

• Never rely solely on audible feedback, since it might be turned off by the
user. Always accompany the audible feedback with some kind of visual
feedback (such as briefly flashing the title line.)

If the user has enabled the audible feedback preference, notes will be
accompanied by audible feedback when they are displayed. You can override
this behavior, so that a particu1arnote is never accompanied by audible feedback,
regardless of the preference setting.

Page 72 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Status, Warning and Error Feedback

Message Lines

If you need to give many messages or instructions to the user, you can do so by
providing a message line as part of the layout of your application.
55
Figure 59 shows an application with a palette line for different drawing modes,
and a message line giving instructions for each mode.

.. ------- -------------- -------

Figure 55: Message Line

Note that the message line is on the top rather than the bottom. Because of the
way the PenPoint computer is held in the hands, the top half of the screen is
more easily seen than the lower half, which is more often obscured by the user's
hands.

If you do put a message line at the bottom, make sure that you do adequate user
testing to verify that users see the messages.

One of the considerations underlying the use of a message line is the basic issue
of how much feedback to give to the user. Too little and the program may be
seen as terse and unfriendly. Too much feedback will get in the user's way, and
may be seen as cumbersome or even condescending. You need to know your
audience.

Issues

PenPoint User Interface Design Guide, Rell. 0.5, 2/15/91 Page 73

Chapter 8: Putting the Building Blocks Together

The preceding chapters have introduced the various building blocks provided by
PenPoint - controls, menus, dialog and option sheets, etc.

With these building blocks in hand, we can step back and ask how they should
be put together. Should a given function go on a menu, or an option sheet, a
palette, or all three? Should all functions be put on menus? On option sheets?

This chapter gives principles and examples relevant to answering the basic·
question of how to present your application's functionality.

Topics include:

• Dual command path - controls and gestures.

• Layering of functionality to hide complexity.

• Allowing the user to configure the interface to your application.

• When to use menus, palettes, and option sheets.

• When to depart from the standard building blocks.

User Interface Building Blocks

Basic Guidelines

This section mentions some basic guidelines for to keep in mind when thinking
about how to present your application's functionality.

Dual Command Path - Controls and Gestures

This basic PenPoint principle, introduced in Chapter 3, bears mention again here.
To summarize the gesture guidelines:

• Throughout your design and development process, ask yourself how you
can give your users the choice of using either visible controls - buttons,
checklists, menus, palettes - or gestures.

• Use the core gestures whenever they are relevant to your application.
Always follow the standard PenPoint usage for the core gestures.

• Use the non-core gestures and the capital letters as accelerators for
frequently-used operations. Use gesture accelerators judiciously - the
point isn't to find a gesture accelerator for every command, but to use them
where they really make the user's job easier.

Layering

This principle applies in designing any application, particularly those that
present a rich set of functionality and will be used by a diverse set of people.

Don't overwhelm the user by presenting all of the commands at the same level.
Layer the interface to hide complexity. Present the most important commands
prominently, and put the rest behind the surface, on menus or option sheets that
the user must open to see.

Page 76 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Putting the Building Blocks Together

User Configurability

Think of how you can help the user by allowing him or her to configure the face
presented by your application.

There are many ways to do this - by providing "novice" and "expert" modes,
by letting the user put favorite commands on customized palettes, etc.

One degree of flexibility you should always provide is to allow the user to hide
any non-essential palette line, message line or other region, to make more room
for the display of data.

Add the controls for showing and hiding the non-essential regions to the
standard document Access sheet, as shown in Figure 56.

Expense Report • Access
:!"!":m-:-n:mn::::::::I:-:mnu:::nnm:m:::::::m::-:m::::::m::::m:::::::m::::::::::::::::::::::::::::::::"

Editable: ~ Ves

Delet8ble: .. Ves

Access Speed: • Standard

Borders & ..,f ~ Show
Controls: I Hide

Controls: ..,f! Title Line
...,.' ~ Menu Li ne
.t! Scroll Margin
.1 Status Line

Figure 56: Status Line Control on Access Sheet

In this example the application has added a Status Line choice to the Controls
list.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 77

User Interface Building Blocks

Where to Put It: Menu, Option Sheet, or Palette?

Now we come to an issue that is very basic, and yet difficult to give hard and fast
guidelines for - how to divide your application's functionality between menus,
option sheets, and visible control areas such as palette lines and custom control
regions.

No single user interface mechanism is "beSt" - each has its strength and
corresponding weakness.

As a reference point, the table below summarizes the main strengths and
weaknesses of menus, option sheets, and palettes.

Mechanism

Menus

Option Sheets

Palettes

Strengths

Menus invite the user to explore by tapping.

Menus are easy and fast to invoke for a single
operation.

Option sheets don't require the user to access
each control by name. All the user need
remember is to make the checkmark gesture
over the object of interest.

Because they are modeless, option sheets allow
the user to easily change several settings at
once, or to keep the sheet up and use it
repeatedly.

Palettes provide the most visual invitation,
and the most efficient access, since all the
controls are visible at once.

Palettes are typically compact, since they use
small glyphs instead of longer textual labels.

Palettes don't obscure any of the document's
work area, and never need to be dragged out
of the way.

Weaknesses

Menus are inefficient for often used
commands, or for commands that are typica
issued in groups, since they disappear
automatically as soon as one command is
issued.

Option sheets are take longer to display thal
menus, and usually take up more screen rea
estate than menus (although the user can
resize the sheet to show only the desired
control.

While option sheets are displayed, they
obscure part of the screen, often requiring tl
user to drag them out of the way.

Not appropriate for commands that can't be
clearly expressed as a small glyph.

Not appropriate for less frequently-used
commands.

Take up screen real-estate permanently.

On the following page are tWo useful questions to ask when considering how to
present your application's commands and options to the user.

Page 78 PenPoint User Interface Design Guide, Rev. 05,2/15/91

Putting the Building Blocks Together

1. What are the most important, obvious objects that the user will see and deal with?

In general, you should provide an option sheet for each type of object in your
application, unless there's a compelling reason not to.

Whatever the object is - a span of text, a figure in a graphics editor, a cell in a
spreadsheet, an appointment entered into a calendar, - the user should be able
to view and modify the object's options by drawing a chec1<mark over it.

For example, suppose your application presents a list of sales contacts. Each
contact in the list has associated. information that the user can modify. You could
call the command by a specialized name such as Edit Entry or Update Contact
Information.

But that approach forces the user to learn and remember the specialized name
you have chosen. By presenting the same command under the generic umbrella
of Options, you lessen the learning curve. The user comes to yoUr application
already knowing about option sheets and how to invoke them. There's no need
to even think in terms of a new command. The user simply makes a checkmark
on the entry in the list, and already he or she is successfully using the
application.

2. Is there a set of commands or modes that are fundamental to your application, that the
user will be using very frequently? .

H the answer is "yes," it is probably best to present the commands in a palette
that is always visible, so the user never has to worry about popping up a menu
or option sheet, or dragging an option sheet out of the way.

The above two guidelines will suggest what you should put on option sheets and
palettes - now what about menus?

When designing your menu line, there are two general approaches you can take.

One is to put all the important functionality on the menu line, so that the menu
line, as the primary way of issuing commands, becomes indispensable.

The other is to put less functionality on the menu line and more on other input
paths - gestures, palette lines, or option sheets. That way the user can turn off
the menu line and continue using the application. In the notebook Table of
Contents, for example, the user can turn off the menu line and browse through
the notebook contents, turn to documents, turn tabs on and off for specific
documents, move, copy or export documents, etc.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 79

User Interface Building Blocks

When to Depart from the Standard Building Blocks

Don't depart gratuitously. There's not much added value in being different for
differences sake, and there may be a cost, if it requires the user to learn new
variations. For example scroll margin visuals.

But of course there are many situations in which it is appropriate to depart.
Guidelines and standards are not meant be rigidly applied, to produce a
monotonous scene. In the oft-quoted words of Ralph Waldo Emerson, "A foolish
consistency is the hobgoblin of small minds."

The best reason to depart from the standard visuals is to emulate a real world
object, such as a calculator, control panel, rolodex, telephone message slip, etc. In
such cases by all means be realistic.

In fact, being "realistic" has all the benefits cited for consistency in interfaces -
reducing learning time by taking advantage of the user's familiarity from other
contexts. Only with realistic objects the consistency is with respect to things from
other domains that the user is familiar with, instead of the domain of the
standard PenPoint user interface.

Issues

Page 80 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Section III: Standard User Interface
Elements

PenPoint, through the Application Framework, provides support for the
consistent presentation of many operations that in traditional operating systems
are left to each application to handle in an ad hoc way.

This section describes the standard user interface elements, including:

• Standard menus and commands

• Standard application option sheets

• Icons

• Help

Chapter 9: Standard Menus and Commands

This chapter describes the standard menus and commands supported by the
Application Framework.

Topics covered include:

• Standard menus - Document and Edit

• Recommended menus - View and Options

• Standard commands, including Checkpoint and Revert, Print, Move, Copy
and Delete, Find and Spell, Import and Export. .

User Interface Elements

Standard Menus

The PenPoint Application Framework provides support for two standard menus,
Document and Edit.

Figure 57 shows the default menu line with the standard menus.

June Expense Report

Document Ed; t
::~: :::: ::::: ::':::: ~::~~:: :~::::::::::::: :';:::: :::::::: :::::::: ::::: ;';: :::::::: :::::::::::::::::::::::::::~: ~:::-::::::::;::::::::::: :::::::::::::::::::

,----..,..-~ -----~-.
•••••••• .JIIII'-_/ ---,-----

Figure 57: Default Menu Line with Standard Menus

These menus represent two basic categories of functions that are widely
applicable across applications:

• Document is for commands related to the entire document (e.g.
Checkpoint and Revert) and to the outside world (e.g. Print and Send).

• Edit is for commands related to editing the objects in the document (e.g.
Move, Copy, and Delete).

Follow these guidelines for using the standard menus:

• If the functionality covered by these menus is relevant to your application,
present it in these standard menus, unless there is a compelling reason to do
otherwise.

• If you do use the standard menus, they should always be the first and
second menus on the menu line.

• If any of the default commands on the standard menus are not appropriate
for your application, remove the command entirely (rather than de­
activating it.)

The sections that follow describe both standard menus.

Page 84 PenPoint User Interface Design Guide, Rev. 05,2/15/91

Standard Menus and Commands

Document Menu

Figure 58 shows the default Document menu.

The commands are:

Check poi nt
Revert

Pri nt...
Pri nt Setup .. .

.... _,

Send ~

About. ..

Figure 58: Default Document Menu

• Checkpoint. Files the document in its current state.

• Revert. Restores the document to the state it was in at the last checkpoint.

• Print. Displays the Print Sheet for printing the document.

• Print Setup. Displays the Print Setup Sheet for setting print-related options
such as headers and footers, margins, etc.

• Send. Displays a submenu with commands to invoke each of the currently
installed services, such as fax, email, etc.

• About. Displays the application option sheets. The Application
Framework provides three standard sheets: TItle & Info, Access and
Application. See the chapter on Standard Option Sheets for details.

Customizing the Document Menu

The Application Framework implements the Checkpoint and Revert commands
for all documents that follow the normal PenPoint model and keep a second copy
of their data in the file system. In fact, the Application Framework automatically
checkpoints such documents whenever the user turns away from the document's
page.

You may choose to keep only one copy of your application's data. In that case
you need to either implement the Checkpoint and Revert commands yourself or
remove them from the menu.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 85

User Interface Elements

Edit Menu

Figure 59 shows the default Edit menu.

The commands are:

Undo
Select All·

Dpti ons ...

Move
Copy
Del ete

Find .. .
Spell .. .

Figure 59: Default Edit Menu

• Undo. Reverses the effect of the most-recently-executed operation. At a
minimum, all applications should support a single-level undo. When
possible, modify the label of the command to indicate which operation
would be undone (e.g. Undo Delete, or Undo Move.)

• Select All. Selects the entire contents of the document.

• Options. Brings up the option sheet for the currently-selected object in the
application. .

• Move. Puts the selected object into Move mode' (see the chapter on Move
and Copy for details).

• Copy. Puts the selected object into Copy mode (see the chapter on Move and
Copy for details).

• Delete. Deletes the selected object.

• Find. Displays the Find sheet, with the starting point for the search set to
the beginning of the document.

• Spell. Displays the Spell sheet, with the starting point for the spelling
check set to the beginning of the document.

Page 86 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Standard Menus and Commands

Customizing the Edit Menu

You will probably want to tailor the Edit menu to fit your application.

Figure 60 shows two typical Edit menus.

Undo
Select All

Options ...

Move
Copy
Del ete

Edi t Pad ...

Proof ...
Find ...
Spell...

Undo
Select All

Options ...

Move
Copy
Del ete
Delete All

Fl ip
Rotate
Bend
Shear
Fi 11

Figure 60: Customized Edit Menus

On the left is the menu for PenPoint's text component. The Edit Pad and Proof
commands have been added..

The menu on the right is for a drawing program. Note that:

• The Find and Spell commands, which don't apply to drawings, have been
removed..

• A set of commands to act on figures have been added. at the bottom of the
menu.

• A Delete All command has been added. immediately below the standard
Delete command. This is the recommended wording and location for the
command, rather than calling it Erase or Clear and putting it on the
Document menu.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 87

User Interface Elements

Follow this guideline for commands that create new objects:

• If your application has a single command for the creation of new objects,
put it in the Edit menu. An example of this usage is the PenPoint Disk
Manager, which has a Create Directory command .

• If you have separate commands to create objects of different types, it
usually makes more sense to present them on a separate menu. So, for
example, the notebook Table of Contents has a Create menu for creating
new documents and sections, and the text component has an Insert menu
for inserting new text and various other objects.

Page 88 PenPoint User Interface Design Guide, Reu. 0.5,2/15/91

Standard Menus and Commands

Recommended Menus

You should consider using two additional menus, View and Options. These
menus represent categories of functions that (while not implemented by the
Application Framework as standard menus on the default menu line) are also
widely applicable across applications.

Figure 61 shows the default menu line with the standard and recommended
menus.

June Expense Report
'", _ _~ 0,'"-' , , •• , , H U , , , "-' •••• ,,,-, .. , ., ,.,.,. U, , '.0,"

Document Edit Vi ew Options
::

----- ------------ ------

Figure 61: Default and Recommended Menus

View Menu

Whatever your application is, you will probably have commands to allow the
user to modify how the application's data is presented.

As discussed in the chapter on Using the Building Blocks, you can present this
infonnation in a variety of ways - through menus, option sheets, or palette
lines.

If you use do a menu, consider calling it the View menu, and putting it
immediately to the right of the Edit menu.

Figure 62 shows examples of typical View menus.

Table
Pie

.t Bar
Stacked Bar
3D Bar
Line

" 1 Screen Vi ew
j Pri nt Prevl ew

Figure 62: View Menus

Expand
Call apse
Expond All
Call apse All

Open I n-l1 ne
Open Pop-up

The menu on the left is for a charting application, the middle menu is for a word
processor, and the menu on the right is for an outliner, in which categories can be
expanded and collapsed, and entries can be opened.

PenPoint User Interface Design Guide, ReD. 0.5,2/15/91 Page 89

User Interface Elements

Options Menu

Many option sheets are actually multiple sheets, each displaying a different
category of options, grouped together. For example, the option sheet for
PenPoint's text component is comprised of separate sheets labelled Character,
Paragraph, Tab Stops, and View.

In such cases you should remove the Options command from the Edit menu,
and provide a separate Options menu listing each sheet.

This implements the PenPoint principle of giving the user a dual path -. visual
controls and gestures - for commands. The Options menu complements the
checkmark gesture by allowing the user both to find out which sheets are
available by browsing the menu, and to go directly to any sheet from the menu.

Figure 63 shows two examples of Options menus.

Color .. .
Une .. .
Text...
Trenslete ...

Selection ...

Character .. .
Pelregraph .. .
Teb Stops .. .
View ...

Selection ...

Figure 63: Options Menus

The menu on the left is for a drawing program; the menu on the right is for a text
editor.

As shown in the above example, the command originally labelled Options in the
default Edit menu should be called Selection in the Options menu. This
command is still necessary, to allow the user to bring up the option sheet for
embedded objects.

Issues

Do we have the right set of commands on the standard menus?

Do we have the right recommended menus?

Some people have suggested a Find Next command on the Edit menu.

Page 90 PenPoint User lnter{rla Design Guide, Rea. 0.5, 2/15/91

Chapter 10: Standard Option Sheets

The Application Framework provides three standard application option sheets
for information and options that are common to most documents.

Topics covered include:

• Accessing the application option sheets.

• The Title & Info sheet - for basic information about the document.

• The Access sheet - for controlling access to the document (e.g. whether can
be edited or deleted, and whether standard document elements such as the
menu line and cork margin are displayed.

• The Application sheet - for displaying information about your application
and company.

• Customizing the standard option sheets.

• Adding application-specific option sheets.

User Interface Elements

Accessing The Application Option Sheets

The user can access these sheets either from the About command on the
Document menu, or by making the checkmark gesture on the title line of the
document or tool.

Title & Info Sheet

The Title & Info sheet presents standard information about the document,
including its title and author, a comments field, and its size and date of creation.

Figure 64 shows the default Title & Info sheet.

Page 92

Expense Report ~ Title & Info

Title:

Author:

Comments:

Created:

,~)<pense Report

~r.np 1 d F .. _B_l~i m......;p:.......-~_

I.~.~.§ .. F~P.9F~.£9.Y~F~.:.::
6/12/89

Last Modi fi ed: 7/13/89

Actiye Size:

Filed Size:

1224 K

24k

Figure 64: Title & Info Sheet

PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91

Standard Option Sheets

Access Sheet

The Access sheet contains options related to accessing the document, including
controls to disable editing and deletion of the document, and controls to show
and hide various standard components such as the menu line, cork margin, and
borders.

Figure 65 shows the default Access sheet.

rti Expense Report., Access ~
1"::":::':'''::'::'::':':::':'::'::::::':':<::':::':'::::''::·::::·::,::::::::·,::'.::::.::::.:!"'.::':'::.:.::<:''''.::::::.:::.:.:.:::::.::::.:::.:.:':

~ Editable- .. Ves ~ - ,

Deletable: .. Ves

Access Speed: .. Stemderd

Borders & .t ~ Show
Control s: j Hi de

Controls: ·v'j Title Line
v'l Menu Line
..til Scroll Mergin

Figure 65: Access Sheet

As discussed in the chapter on Putting the Building Blocks Together, if you
include a palette line, message line, or other control area or as part of the layout
of your application, be sure to add it to the list of controls that the user can turn
and off from the Access sheet.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 93

User Interface Elements

Application Sheet

The Application sheet contains information about the application controlling the
document.

Figure 66 shows the default Application sheet.

~~':"""'" ~.'.'i/'.'.' ~ ... ',v.>." ... ~ s....... ~ .. s '..', · ·.· · w y.....•. ~ · ·.·h .. ·.· ... · ,', 0" ,', ••••••• .,. :::

~ Expense Report ., Appl1 cat ion ii

~'''''';;:;;:':;'''''''''''''~;'~;';:':'~''''''''''''''''''''''''''''''''''''''""""""",,,,,,,,,, I
Version: 1.0

GO Corp.
~

Company:

Copyright: Copyright 199 1, GO Corp.

Icon:

Small Icon: Uj

Figure 66: Application Sheet

The default layout shown above is provided to indicate the type of information
that should go on the sheet. By all means provide your own customized sheet,
with your company logo, fancy graphics, etc.

Page 94 PenPoint User Interface Design GuUU, Reo. 05,2/15/91

Standard Option Sheets

Adding Your Own Application Option Sheets

The application option sheets are the place to put controls that apply to the
application as a whole, as opposed to the objects within the application.

Remember that the sheets are easily accessible - the user can always bring them
up by making a checkmark on the title line, even if the menu line is turned off.
This is particularly useful if you structure your application as a pop-u·p tool
without a menu line, in the mold of a calculator, clock, keyboard, or control
panel.

For example, suppose you had a pop-up keyboard tool, and wanted to provide
several layouts of keys, and also allow the user to choose either a "realistic" look
with raised keycaps on a grey background, or a more compact, lighter "paper­
like" look. The place to put the controls would be on an application option sheet,
as shown in Figure 67.

Keyboard .. Vi ew
.. -... __ _ _ ~ L_ --. __ .. .

Layout: .j ! QUERTV
1 Alphabetic
~ Numeric

Style: "'1 Raised Buttons
! Paper-ll ke

Figure 67: View Sheet for a Keyboard Tool

PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91 Page 95

User Interface Elements

Issues ,

Currently when Find and Spell are invoked from the Edit menu their scope is
the entire document. Would it be better if their scope were the current selection?

We're considering adding support for a dynamic Options menu that can would
contain the names of option sheets for the component that contains the current
selection. Is this important?

Currently, if a tool has no menu line (like the keyboard, for example) the only
way for the user to access the option sheets is by making a checkmark - there's
no visual invitation. We're considering providing a standard button at the right
of the title line to bring up the option sheet in this situation. Is this a good idea?

Page 96 PenPoint User Interface Design Guide, ReD. 0.5, 2/15/91

Chapter 11: Icons

This chapter describes how PenPoint uses application icons, and presents.
guidelines for using icons, including:

• Guidelines for the graphic design of icons.

• The use of icons to show application state.

User Interface Elements

Application Icons

Each PenPoint application has an icon associated with it. The icon is a small
picture that suggests the type of document or the purpose of the tool.

The icon represents the application instance in its closed state. PenPoint displays
application icons in several places:

• Icons for full-page documents appear in the notebook Table of Contents.

• Icons for embedded documents or tools are displayed when the document or
tool is closed.

• Icons for tools appear in the Tools palette.

• Icons for documents, tools or notebooks appear on the Bookshelf.

The default size for icons throughout PenPoint is 16 X 16 pixels.

Everywhere except the Table of Contents, the user can also select a large size -
32 X 32 pixels - for the icon.

Whether you structure your application as a document, tool, or notebook, you
need to provide a bitmap to be used as the application's icon.

The rest of this chapter gives guidelines for the design of icons for both
documents and tools. Following these guideline will ensure that your icons fit in
with those designed by GO and by other application vendors, thereby helping to
bring visual consistency to the multi-vendor PenPoint environment.

Page 98 PenPoint User Inter{tlce Design Guide, &rJ. OS, 2/15/91

Icons for Documents

Figure 68 shows some typicaldocurnent icons as they appear in the notebook
Table of Contents.

[J Notes
OJ Memo
~ Drawing

.......... 2

.......... 3
....... 4

1'211 !.:.:.I Calendar " 5

Figure 68: Document Icons in Table of Contents

Icons

The first icon in the above figure is the default document icon: a blank page. If
you don't provide an icon, the default icon will be used.

When possible, show your icon within this standard outline, like the icons for
Memo and Drawing.

The icon for Calendar departs from this strict convention, to show a picture that
more clearly suggests a multi-page calendar. But it still coherent with the paper
metaphor.

Icons for Tools

Figure 69 shows some typical tool icons as they appear in the Tools Palette.

~···········T~·o·i·s··· .. ·· .. ··· .. ·····
~:::,,:""::,,:::::::

I .ill! Calculator t
:.~.:I Clock

iii Disks

~
.ml Keyboa rd

o NeW's Ser ice

i 8 Pri nter ~ .•
; --_ ...

Figure 69: Tools Icons in Tool Box

Note that these icons do not suggest documents. Each suggests a familiar object
closely related to the application's function.

The News Service application in the above example is structured as a notebook,
therefore it has a notebook-like icon.

PenPoint User Inter{rlce Design Guide, RerJ. 0.5,2/15/91 Page 99

User Interface Elements

Icon Design Guidelines

This section gives guidelines for the graphic design of PenPoint icons.

Simple Shapes

The most important rule is to keep the picture simple. Don't try to capture too
much detail in the 16 X 16 space.

Figure 70 illustrates how simple shapes communicate more directly.

m ~_.~
~II .1 .!. .!. ~

Detailed version

Simpler version

Figure 70: Keep Icons Simple

Attempting too much detail makes the icons on the top row busy. Eliminating
unnecessary detail, and bringing out a single theme, makes the versions on the
bottom row easier to .recognize.

Lightweight Look

The second general guideline is to keep the icons light - primarily white, with
black and grey accents.

To help give a lightweight look, and add some visual interest to what are
basically small square shapes, PenPoint icons de-emphasize the left and top of
the bounding shape.

There are two ways to do this - by using dark grey instead of black for the top
and left borders, or by eliminating the top and left borders entirely. Figure 71
shows examples of both techniques.

Page 100

Cl~li1D

1.1 ~ fill. i.J
• --- JIJ ...:J

Ughten top and left borders

Eliminate top and left borders

Figure 71: Two Ways to Keep Icons Light

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91

Feedback When the Icon is Open

Another consideration in designing the icon is making sure that the user can
distinguish between the closed and open states of the icon.

When you create an icon, you define two parts:

• The picture itself, in which each pixel can be either white, light grey, dark
grey or black.

• A shape, known as the mask, through which the icon will be painted.

Icons

When the icon is in its normal (closed) state, each pixel within the mask is
painted in the color that was specified when the icon was created. When the icon
is in its open state, each pixel within the mask is painted in dark grey. This
allows the user to tell at a glance when an icon is open.

Figure 72 shows several icons in both closed and open states.

1.1 .tIl ~ ~
1J ~'II lilt

iil 0 ~
iilill

Normal (closed) state

Open state

Figure 72: Open Feedback for Icons

The above examples show how to design the mask so that the open feedback
works well. Notice that the shapes that work best are the ones which are
partially open, and partially enclosed, so that the shape of the icon in its normal
(closed) state is different enough from the shape in the open state to be clearly
distinguished.

PenPoint User Interface Design Guide, Reu. 0.5,2/15/91 Page 101

User Interface Elements

Using Icons to Show Application State

You can give the user useful feedback by changing the icon's picture to reflect the
state of your application.

Figure 73 shows how the InBox and OutBox make use of this technique.

Empty InBox and OutBox

Full InBox and Outbox

Figure 73: Using Icons to Show State

The icons in the top row indicate that the the InBox and Out Box are both empty;
the icons in the bottom row indicate that InBox and OutBox each contain at least
one document.

Issues

Page 102 PenPoint User Interface Design Guide, ReD. 05,2/15/91

Chapter 12: Help

This chapter describes the two standard facilities that PenPoint provides for
presenting on-line application help:

• Quick Help - brief, context-specific help for anything that the user can tap
on.

• The Help Notebook - for more detailed, procedural help on your application.

User Interface Elements

Quick Help.

Tapping the Help icon on the Bookshelf displays the Quick Help Sheet, and puts
the input system into quick help mode.

As long as the sheet is displayed, the user, tapping anywhere on the screen
causes PenPoint to display the help message associated with the object or region
Under the tap.

The user terminates the mode by dismissing the Quick Help Sheet.

Figure 74 shows the quick help sheet for the column of checkboxes in the Table of
Contents that allows the user to turn tabs on and off.

Help: Tab Checkboxes

These check boxes 1 et you show or hi de the
tab for any document or section.

You can control whether the checkbox col umn
is shown or hi dden from the Show menu.

You can also turn any tab on or off by making
the T' gesture over the title of the document
or section.

Figure 74: Quick Help Sheet

This example shows quick help for the column of checkboxes in the Table of
Contents that allows the user to turn tabs on and off. The text briefly explains the
function of the checkboxes, tells how to turn the column off from the Show
menu, and mentions the gesture accelerator that forms the other part of the dual
command path for this function.

Follow these guidelines when writing quick help messages:

• Keep the message brief. Ideally all the text should fit in the default sheet
without requiring scrolling.

• Mention any relevant gesture accelerators .

• Cross-reference to a topic in the help notebook if appropriate.

Page 104 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Help

Help Notebook

While the Quick Help Sheet is for very brief messages describing objects that the
user can see on the screen, the Help Notebook is the place to describe how to use
your application.

The user can access the Help Notebook either by tapping a button on the Quick
Help Sheet, or by double-tapping the Help icon on the Bookshelf.

The Help Notebook behaves like an ordinary notebook, with the exception that it
cannot be resized. This means that you can count on the Help Notebook being a
fixed size, and can divide your help text into page-sized chunks.

As part of the installation process, the application's help text is placed in a
separate section of the Help Notebook.

Issues

Is it important to support Hyperlink buttons in the help notebook?

The way Quick Help currently works, it isn't very convenient to browse through
menus. The user has to leave the mode each time, then bring up the menu, then
re-enter the mode. One way to facilitate browsing is to allow menus to pop up
when in Quick Help mode - tapping on the menu label would both give a
message about the menu and bring up the menu. How important is this?

PenPoint User Interfaa Design Guide, RerJ. 0.5, 2/15/91 Page 105

Section IV: Processing Pen Input

This section covers issues in processing pen input, including:

• Processing gestures. Issues in gesture processing, including how to target
gestures, avoiding gesture collisions, complete list of core and non-core
gestures,etc.

• Processing handwriting. Handwriting processing issues, including the use of
translators and constraints.

• Processing strokes without translating. Guidelines on using strokes without
translating them.

• User interface far input modes. Guidelines for allowing the user t~ control the
input mode of your application.

Chapter 13: . Processing Gestures

This chapter covers the use of gestures, including:

• Gesture targeting. Guidelines for determining the operand of the operation
represented by the gesture.

• 'Gesture categories. Core and non-core gestures.

• Processing gestures. How to handle gesture events in an object-oriented
environment.

Processing Pen Input

Gesture Targeting

The object that the user intends to operate on is called the target of the gesture.

It is not always obvious what the target of a given gesture should be. This
section gives guidelines for computing gesture targets.

The Target Point

It is useful to think of each gesture as having a precise target point that determines
its target. Here are the general rules for detennining the target point for a given
gesture:

• Center of Bounding Box. For some gestures the PenPoint convention is to treat
the center of the gesture's bounding box as the target point. These gestures
include: cross-out, circle, and all the capital letters.

• Pen-down. For a large group of gestures the convention is to treat the point
where the pen first touches the screen (the pen-down point) as the target
point. Such pen-down gestures include: all the taps and flicks, checkmark,
pigtail, down-right, up-right, down-left, down-left-flick, down-right-flick,
right-up, right-up-flick, and right-down.

• Visual Focal Point. When a shape has a strong visual focal pOint, treat that
point as the target point. These gestures include: caret, caret-tap, double­
caret, and the arrows.

Page 110 PenPoint User Interface Design Guide, RerJ. 05, 2/15/91

Processing Gestures

Targetting Unselected Objects

One of the pen's inherent advantages is that it allows the user to indicate both the
operation and the operand in a single, natural gesture.

In order to fully take advantage of this capability, you should allow the user to
gesture over objects without first selecting them.

The above rule implies that you need to decide what the most intuitive or useful
object is - from the user's perspective - to use as the default target for the
operation. . .

Let's look at a few examples from PenPoint's text component. Some gestures act
on characters: tap to select, pigtail to delete. But many editing gestures - X to
delete, circle to edit, checkmark to set options, etc. - act on whole words,
because the word is the most natural unit of text to edit.

Note that the default target for a given gesture may well differ according to the
context. For example, an 'X' deletes a word when made in text, a document or
section when made in the notebook Table of Contents, and the entire contents of
the field when made in a fill-in field.

Targetting the Selection

In order to allow for the targetting of de-selected objects, gestures should act on
the selection only if the gesture is made over the selection.

If the selection is very small, it may be difficult for the user to target it accurately.
To take an extreme example, a selected lower-case letter 'i' in a 10 point, variable­
width font may be only three pixels wide.

To facilitate targetting of such small selections, allow a small"slop zone" around
the target point. If this region intersects the selection at all, then take the
selection as the target.

In PenPoint, this zone is 3 pixels wide by 5 pixels high. This makes it easy
enough, for example, to delete a single character with a pigtail.

PenPoint User Interface Design Guide, Reu. 0.5,2/15/91 Page 111

Processing Pen Input

Targetting Window Objects

The input system distributes each gesture to the window that the pen first
touches when making the gesture.

This presents an implementation problem when the gesture's target point is not
the pen-down point, and the object to be targetted is implemented as a separate
window.

For example, let's take the common case of making an X to delete the contents of
a field in a form. Since the idealized target point of the X is the center of the
bounding box, the user will often start the X slightly above the text tobe deleted,
and end it slightly below. However, if the field is implemented as a separate
window, it will never see the gesture, because the input system will distribute it
to the window implementing the background of the form.

In such cases, you can obtain good results by implementing a simple algorithm in
which the parent window distributes the gesture to the first of its children to be
intersected by the gesture.

Note: this "first enter" algorithm is supported by the PenPoint toolkit.

Page 112 PenPoint User Interface Design Guide, Rer1. 05, 2/15/91

Processing Gestures

Core Gestures

.~

,

x·
A

o

[J

L

Tap. This is the most basic gesture. Typically tapping selects an object or pushes a button. Use
it for the most basic or important function of an object or region.

Press-Hold. (Touch the pen to the screen and pause for a moment.) When done over an object
that can be moved by the user, press-hold should always initiate a move of that object. The
secondary meaning is, when made not over an object, to sweep out a region for selection. So, for
example, when done in text over a selection, press-hold begins a move for the selection; when
done in text not over a selection, it begins a wipe-thru selection. Press-hold in the margin of a
list should also wipe-thru select, and press-hold on the background of a graphics editor should
sweep out a bounding box for selection.

Tap-Hold. (Tap the screen once, then touch the pen to the screen again and pause for a
moment.) When done over an object that can be copied by the user tap-hold should always
begin a copy of that object.

Flick. Four directions are distinguished: up, down, left and right. Flicking is used throughout
PenPoint to bring more information into view. The user model is that the flick gesture shoves
the object in the direction of the flick. Examples include scrolling text, turning notebook
pages, exposing overlapping tabs, and cycling through choices in pop-up checklists. For
scrolling, flick should shove the object or poSition under the pen to the opposite boundary of
the viewing region - e.g. flicking up in text shoves the line under the pen to the top.

X. This is the basic deletion gesture.

Caret. Use this for the primary meaning of insert or create in your context. For example, in text
the caret brings up a writing pad to insert new text, and in the table of contents the caret brings
up a menu allowing you to create a new document or section.

Circle. Use for editing the primary attribute of an object. In PenPoint this usually means the
objects textual label. The object may be a field in a form, an entry in the table of contents, a
title on a document, a tab label, an icon label, a span of text, a spreadsheet cell, etc.

Checkmark. Use to display the option sheet for an object. The object may be a document, an
accessory, a span of text, an icon, a figure in a graphics editor, a cell in a spreadsheet, etc. This
gesture is a workhorse that can almost always carry the burden of changing whatever needs to
be changed for an object or region. .

Brackets. Use to adjust an existing selection in contexts that support the selection of a span of
objects (such as text, lists and tables>. The left bracket adjusts the starting point of the
selection, the right bracket adjusts the endpoint.

Pigtail. Use to delete a single character (or the selection> in text.

Down-Right. Inserts a space in text. In translated text always inserts a single character, in
overwrite boxes the number of spaces depends on the length of the horizontal leg of the L

Pen Point User Interface Design Guide, Rev. 0.5, 2/15/91 Page 113

Processing Pen Input

Non-Core Gestures

" ", m,

+

o

•
/\

Page 114

Double, Triple and Quadruple Flick. These gestures - like the single flick - are for "shoving
the paper or object to bring more information into view. The effect should correspond to the
number of strokes: the more strokes, the farther the shove. Pen Point uses double-flick to scroll
to the beginning or end of text, the table of contents, and list boxes, to cycle to the beginning or
end of pop-up lists, and to shove overlapping tabs to the top or bottom. Use the triple and
quadruple flicks only if you need to provide qUick scrolling over a hierarchical object. For
example, in a spreadsheet, single-flick should shove the cell under the pen to the view
boundary, double flick could scroll to the end of the filled-in cells, and triple-flick could scroll
still farther.

Double, Triple and Quadruple Tap, In text, these are used to select successively larger units: a
word, a sentence or a paragraph. Double-tap is also used to float documents from icons, tabs or
Hyperlink buttons. Triple-tap is also used in several places to mean, roughly, "restore the
default state." For example, triple-tapping on a tab makes the tab's label match the title of
the document, triple-tapping on the title-line of an option sheet restores the sheet to its defau
size, and triple-tap on a Hyperlink button links the button to the current selection and updates
its label.

Plus. Use to mean "toggle selection" in contexts where discrete, discontiguous selections make
sense, such as graphicS editors or lists. Also used to toggle selection on conb'ols which use tap
for invocation, such as icons and Hyperlink buttons. Can also be used in mathematical contexts
as an addition sign. .

Square. Select the area inside the square.

Circle-Line. Replace. For text, should bring up an empty editing pad for the object under the
gesture.

Caret-Tap. Use this for the secondary meaning of insert in your context. In text, for example,
caret pops up an insertion pad, and caret-tap creates an embedded insertion pad.

Circle-Tap. Create Hyperlink button. This gesture should not be processed by the
application.

Up Arrow and Down A"ow. Use to make the object larger & smaller, or to zoom up & down.

Double-Caret. Create embedded document. This gesture should not be processed by the
application. It is intended to be passed through so that it will always pop up the Create Menu
from which the user can choose a document to create. .

Check-Tap. Options for container. This gesture should not be processed by the application.
Used primarily to allow the user to display the option sheet for an embedded document whose
borders are off.

Up-Right. In text, pops up a single-character pad for inserting a single character.

Pen Point User Interface Design Guide, Rev. 0.5, 2/15/91

Processing Gestures

Down-Left. In text, inserts a paragraph break.

-1 Down-Left-Flick. In text, inserts a line break. -
L Down-Right-Flick. In text, inserts a tab.

-
Right-Up. In text, capitalizes the first letter the word, or of each word in the selection.

Right-Up-Flick. In text, capitalizes the word or selection.

Right-Down. In text, makes the word or selection lower case.

Avoiding Gesture Collisions

The term "gesture collision" refers to what happens when two gestures are not
distinct enough to be reliably distinguished by the gesture recognition engine.

Gesture collisions are very bad from the user's standpoint, because they cause the
system to behave unpredictably. For example, suppose the bracket gesture,
meaning extend a text selection, collided with the flick gesture for scrolling. The
user would attempt to extend the selection only to find that the display had
undergone a radical transformation. Only after the user figured out that the
bracket had been mis-recognized as a flick would the situation again make sense.

While collisions can never be completely eliminated, all of the core and non-core
PenPoint gestures have been designed, tested and adjusted to minimize
collisions.

However, when the 26 capital letters are added to the overall gesture set, many
collisions are introduced. This is because the capital letters are recognized by a

. separate character recognition engine. Character recognition engines are .
typically tuned for broad coverage of handwriting, and include many prototypes
for each letter.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 115

Processing Pen Input

When using capital letter gestures, it is your responsibility to make sure that the
gestures you use don 't collide with core or non-core gestures.

When you find that you want to use a letter accelerator that collides with a core
gesture, the core gesture should always take precedence, because it is more
widely useful throughout the system.

Let's look at an example. Suppose you want to use the letter C as an accelerator
to create a new item in a list. But if the list supports multiple selection, it should
support the left and right bracket gestures to adjust spans of selected items.
Unfortunately the left bracket collides with the letter C. Adding the C will cause
unpredictable behavior, since mis-recognition will occur both ways: C's will be
misrecognized as brackets, and brackets as C's.

Because the bracket is a core gesture, you should find another accelerator for the
Create command, or forgoe the accelerator entirely.

It may be appropriate in some cases to map two gestures onto one operation.
Let's look again at the previous example. If the list did not support multiple
selection, then the brackets would not be needed for the "adjust selection"
function. But the potential for mis-recognition would remain high: some
percentage of reasonable C's would be mis-recognized as left-brackets. The best
solution would be to accept both left-bracket and C as accelerators for Create.
That way the user would be successful even if he or she made a C that was mis-
recognized as a left-bracket. ~.

Note that the set of capital letters is not itself free of collisions - U and V are
probably the worst. The same guideline applies: never use such a pair for two
different operations. If you do use either of the pair, accept the other letter as
well, and map both to the same operation.

A final note of caution. Some collisions are easy to predict from looking at the
form of the gesture. But often collisions can not be predicted. The only way to
be sure is to test your gesture set on real users.

Page 116 PenPoint User Interfrlce Design Guide, Rev. 0.5, 2/15/91

Processing Gestures

Passing on Unused Gestures

The general rule for processing gestures is to pass on to your ancestors all
gestures that you aren't interested in.

This allows the ancestor to provide standard default behavior when appropriate.
For example, caret, caret-tap and double-caret all bring up the Create menu by
default in class EmbeddedWin. The PenPoint text component displays a pop-up
writing pad on caret, and an embedded writing pad on caret-tap. By passing
double-caret on, it gets the desired default behavior of displaying the Create
menu.

Issues

Other non-core gestures that GO should provide?

What should be the interpretation of circle and circle-line in non-text contexts?

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 117

Chapter 14: Processing Handwriting

This chapter describes the processing of handwritten characters by the PenPoint
handwriting translation system.

Topics covered include:

• Handwriting translators. The software objects that perform translation.

• Constraining translation. Guidelines for constraining translation for the
particular context.

• Text and numerals. Handwriting translators can be constrained to recognize
text only, numerals only, or both text and numerals.

• Dictionary. Optionally, handwriting translators can use the built-in PenPoint
dictionary (which the user may have augmented with a personal dictionary)
to constrain translation.

• Templates. Translators can be further constrained through the use of
customized templates.

Processing Pen Input

Handwriting Translators

The translation of handwritten input into ASCII codes is performed by software
objects called handwriting translators.

Because the handwriting translator and the user interface that mediates between
the user and the translator are separate, allowing you to tailor each to suit the
needs of your application.

But while these two components are separable, they are also related, and need to
be designed together. It is often helpful to the user to have conventions that
associate looks with translators. This gives the user a visual cue as to what kind
of behavior the field will exhibit.

The standard PenPoint fill-in fields and overwrite fields provide an example of a
convention associating a particular kind of translator with a specific visual cue.

When building a translator, the client can choose to 1) provide a grid that the
translator will use to segment the input strokes into discrete characters, or 2) tell
the translator to use heuristics to perform the segmentation.

The two types of standard PenPoint text fields are designed around this
distinction. Overwrite fields present visual segmentation cues to the user, and
tell the translator to use that grid. Fill-in fields, on the other hand, present no
visual segmentation cues to the user, and tell the translator to determine the
segmentation via heuristics.

,
Page 120 PenPoint User Interftzce Design Guide, Rer1. 0.5, 2/15/91

Processing Handwriting

Constraining Translati.on

This section discusses the role of constraints in designing handwriting translators.

The Problem of Ambiguity

Even assuming that the translator can correctly segment the input strokes into
characters, the problem remains of determining what the user intended in the
face of multiple possible valid shapes. Examples of handwritten forms that are
indistinguishable in the absence of constraints include the circle (letter '0' or
numeral zero?) and the vertical line (letter'!' or numeral one?)

The default behavior of the system is to put like with like. So, for example, a
circle preceded by 1/347" would be translated as a zero, while a circle preceded by
I/leg" would be translated as the letter '0'.

Improving Translation via Context-Specific Constraints

The basic technique available to you to deal with this ambiguity is to impose
constraints on the interpretation of the input based on its context.

Think of a continuum of input contexts. At one end would be input areas that
accept any character that the translation engine is capable of recognizing. An
example of such an unconstrained context would be a word processor - there's

. not much that the designer can say beforehand about what the user is likely to
enter.

At the other end of the continuum would be fields that accept only a small,
completely specified set of characters. An example of a highly-constrained field
would be a social security number, which always takes the form ###-##-###.
An even more highly constrained field might·only accept a small set of values -
for example, a list of states. (In such cases it often makeS sense to use an explicit
choice list instead of a handwriting translator.)

When building a translator, you can tailor it to the appropriate place on the
spectrum. The irreducible design tradeoff is that the more you constrain the
context, the more accurate the handwriting recognition will be, and, at the same
time, the greater limitation you place on what the user can enter.

The PenPoint translation system permits a great deal of flexibility in constraining
translators. The sections that follow describe the different types of constraints
and different ways that you can apply those constraints.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 121

Processing Pen Input

Constraining to Letters and Numbers

You can specify that a given translator accept alphabetic letters and symbols,
numbers, or both.

Constraining Via Dictionary and Templates

PenPoint allows you to further constrain translators by means of several types of
templates:

• Dictionary. The dictionary is actually drawn from two sources: the built-in
PenPoint dictionary, and the personal dictionary that the user has specified
as current in the Installer.

• Character lists. A list of ASCII characters.

• Word lists. A word list is effectively a smail, special-purpose dictionary.

• Pattern descriptions. You can describe a pattern by means of a simple
language. For example, suppose you define P as the set {A, B, C}. Then the
pattern ###PPP would accept any digit in the first three positions, and only
the letters A-C in the second three positions.

Furthermore, you can specify the degree to which each template constrains the
translator. There are three levels:

• Ignore. The template is ignored during translation.

• Enable. The template is used as one of the rules in the process of translation.

• Veto. The translator will return only words that match the template. If the
input does not match the template closely enough, the unrecognized
character symbol will be returned for each input character.

Page 122 PenPoint Userlnterface Design Guide, ReD. 0.5, 2/15/91

Processing Handwriting

Guidelines for Using Constraints

The basic guideline in designing translators is to constrain the input as much as
you judge reasonable, given the expected use of the field.

When constraints reflect expected rather than required usage, it is a good idea to
give the user some means of turning off the constraints temporarily, to enter
characters that don't fit the expected pattern. For example, in a word processor
that usually makes use of the dictionary to aid translation, give the user some
way to tum off the dictionary when entering a string that he or she knows is not
in the dictionary, such as a license plate number.

Three Models of Translators and Fields

As mentioned in a previous section, the translation object is separate from the
object used to implement the user interface.

There are three basic architectures to consider when associating translators with
fields:

• Each field has its own translator.

• Two or more fields share the same translator.

• One field uses two or more translators, based on a dynamic user setting.

Issues

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 123

Chapter 15: Processing Strokes Without Translating

This ~apter describes how untranslated strokes can be used.

Topics covered include:

• Markup Layers. Allowing the user to markup a document.

• Ink as a Data Type. The use of untranslated scribbles as a data type.

• Signature pads. Standard component.

• Deferred translation in forms.

• Deferred translation in notetaking applications.

Note: This chapter to come.

Issues

I

Chapter 16: Presenting Input Modes

This chapter describes how to allow the user to switch between input modes.

Topics covered include:

• Types of input modes

• Mode control via pop-up list at right of menu line

• Mode control via palette at right of menu line

• Mode control via palette line

• Mode control via palette in scroll margin

Processing Pen Input

Translation Modes

Drawing and painting applications in traditional graphical user interfaces
typically use different input modes for selecting, erasing, and various flavors of
drawing and painting.

In addition to these familiar modes, you may want to organize your application
around different translation modes.

The most common translation modes are:

• Gestures. This is an edit mode, in which the user can edit or scroll via
gestures in the work area.

• Sketch. In this mode the user's strokes are recorded without translation, as
free-form sketches.

• Shapes. In this mode common shapes are recognized: circles, squares and
ellipses.

• Text. In this mode strokes are processed by the handwriting translation
system.

This list is not exhaustive. For example, you might have modes that recognize
specialized shapes, such as musical notes in a composing program.

Also, note that translation modes are not necessarily mutually exclusive.

Always Show the Current Mode

If you do provide different input modes, it is essential to provide visual feedback
so the user can tell at a glance what the current mode is.

The remainder of this chapter describes different ways to present mode controls.

Page 128 PenPoint User Interfaa Design Guide, Reo. 0.5, 2/15/91

Presenting Input Modes

Mode Control on Menu Line

Given the importance the mode control, it is a good idea to place the mode
control where it is always visible to the user. One obvious place for it is on the
menu line.

Pap-up List at Right of Menu Line

If the input modes are exclusive, you can meet the requirement to show the
current mode by using a pop-up list, as shown in Figure 75.

DraWl ng Paper

Document Edit Options Mode. Sketch
_~~w"'... Gestures

Mod • Sketch

.--------- --------------- --------

Figure 75: Pop-up List for Exclusive Modes

:-:-::::-.:-:-:.:-::::-::-:::
Shapes
Letters

Put the list at the right of the menu line, to separate it visually from the other
menus.

Using a pop-up list has the advantage that it allows for the compact presentation
of many of choices.

Putting the mode control in a standard menu, as shown in Figure 76, is not
recommended.

Drawi ng Paper t---------
Document Edit Options

---------1================='1
.t! Gestures

! Sketch
! Shapes
! Letters

-------- -----------------
Figure 76: Menu with Checklist for Modes (Not Recommended)

This usage should be avoided, because it forces the user to display the menu to
discover what what the current mode is.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 129

Processing Pen Input

Palette at Right of Menu Line

You can also use a palette for the mode control, as shown in Figure 77 below.

Drawi ng Paper
"'6~~'~ tr1 ~.~ t· ·E·d·i·t "Q"pi 1~·~~· .. ·· .. · ····· .. · .. · ·· .. ···· .. ····I~;r·~ ·t(5 .. A ..
:.::: :.: :,:,:,:::::: :,: :::.:.:::;::::::~:::: :.:.:~:::: :,:: :.:::::::::::::::::: :,: :.~: :.:.:.:::: :,:,:,:.::'::::::: :.:.::::::::::: :':':.:.::::::::::::: :.:::::::::::::::: ::::::::: :.:: :,::::::: :::::::::::::::

.----- ------------- --------

Figure 77: Palette for Exclusive Modes

When the number of choices is small, the palette is just as compact as the pop-up
list, and is easier to use because the user can switch to any mode with a single
tap.

If the modes are additive rather than mutually exclusive, it is essential to show
them all at once, so the user can see which are on at any given moment.

The palette is the right control for this situation, as shown in Figure 78.

::::::::G2l.~~::::~:::~.::

Figure 78: Palette for Non-Exclusive Modes

Page 130 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Presenting Input Modes

Mode Control in Palette Line

You can also put the palette in a separate palette line. Do this if you have more
modes than will fit at the right of the menu line

In Figure 79 below the mode control has been combined with other controls on a
palette line.

DraWl ng Paper
.. .,.... .. - .. .

Document Edit Options

'''~J''''~'''=='''f6-A'~-''-8--=''''';;-;;--·''Ii1-i''·''''D·
~:;'~:::::::::===~::=::::: .. ::::::~::::::~..==::::~:::~~::..""=--"'=~....::;=::~::..--=::.. ~::::~==::~~==~:::::;:;::::::::::=::::::::::;".:::::::::::

--------- -------------- -------

Figure 79: Palette Line

The line in the above example contains three groups of controls: input modes at
the left, line thicknesses in the center, and fill colors on the right.

If you use a palette line, make sure to add a control to the standard Access Sheet
to allow the user to toggle the palette line on and off.

PenPoint User Interface Design Guide, Rer1. 0.5, 2/15/91 Page 131

Processing Pen Input

Mode Control on Pop-up Sheet

In addition, it is often appropriate to put the mode control on a pop-up palette or
option sheet. Figure 80 shows a pop-up palette for a drawing application.

fJlY 6~~·~·i·~·g .. ·p·;1·~'t·t·~ .. ·
~::

I /'/ ~ .-...., [Q A 1 ~
>

II 1- - - - - • f"·D .. · .. ·m· .. ·~·· · .. · · .. ·· .. · .. · ~

Figure 80: Mode Control on Pop-up Palette

In the above example, the first line of the palette controls the input mode, the
second line controls the line thickness, and the third line controls the the fill
color.

Issues

Page 132 PenPoint User Interface Design Guide, Rev. OS, 2/15/91

Chapter 17: Handling Keyboard Input

This chapter describes the use of the keyboard.

Note: This chapter to come.]

Section V: Manipulating Application
Objects

This section describes selecting and editing of objects within applications.

Topics.covered include:

• Selection. User interface conventions for allowing the user to manage the
current selection.

• Move/Copy. Drag and Drop model.

• Handwriting Processing. Standard PenPoint editing pads and text gestures.

• Text Editing. Standard PenPoint editing pads and text gestures.

Chapter 18: Selection

This chapter gives guidelines for managing the system-wide current selection.

Topics covered include:

• User Model. Definition of selection from the user's viewpoint.

• Selection Feedback. Standard selection feedback for different types of objects.

• Selecting and Deselecting. Selecting a single object. Adjusting an existing
selection. Selecting groups of objects. Selection of discontiguous multiple
objects. Auto-selection of gesture targets.

• Text Selection. Pending-delete selection. Selection behavior when the
primary input device is the pen vs. the keyboard.

• Option Sheet Selection. Handling option sheets that themselves contain
objects that take the selection.

Manipulating Application Objects

User Model

Graphical user interfaces in the Xerox Star tradition generally present the user
with what has been called the "noun-verb" model for invoking operations. In
this model the user first identifies the object of interest (the noun) and then
indicates which operation to apply to that object (the verb).

The act of identifying the operand is called selecting an object, or making a selection,
and the object, once selected, is called the current selection.

Selection Feedback

The current selection must be distinguished visually from the other objects on the
screen so that the user can identify it at a glance.

While it is important for selection feedback to be as consistent as possible, no one
convention suffices for all types of objects. Figure 81 shows selection feedback
for four different object types. .

Four score andil.years ago.

A Clockwork Orange
.....

'"
..

Chi ne B1 ue

~ .!&:' [511 iii

Text. Selected span is rendered on grey
background.

Lists. Selected i tern rendered on grey
background. The background usually extends
the full width of the list.

Icons. Selected icon is underlined .

Resizable figures. Selected figure is indicated by
the presence of resize handles at the comers and
at the midpoint of the edges of the figure's
bounding rectangle.

Figure 81: Seledion Feedback for Different Object Types

One rule to follow is to avoid using inversion as selection feedback, because
gestures that the user makes will not be visible over the black mass of the
selection.

Page 138 PenPoint User Interface Design Guide, Rev. 005,2/15/91

Selection

Selecting and Deselecting

This section describes the PenPoint conventions for selecting and deselecting
objects.

The importance of selection is reflected in the fact that all mouse-based interfaces
use the main mouse button to select objects. Those interfaces that came out of the
Xerox tradition devote two mouse buttons to selecting - one to making new
selections and the other to adjusting existing selections.

One of the strengths of the pen is that it permits the user to easily make gestures
other than tapping. PenPoint takes advantage of this strength by providing a
variety of complementary ways to make and adjust selections. Selection-related
gestures include tap, double-tap, plus, press-hold-drag, and left and right
brackets. .

Selecting a Single Object

The basic gesture for selecting a single object is tap. Tapping in text should select
a character, tapping a figure in a drawing should select the figure, tapping an
item in a list should select the item.

Some types of objects function like controls, in that they use the tap gesture to
invoke their ~ain operation. So, for example, tapping on an icon opens the icon,
and tapping on a tab or a hyperlink button turns to the associated document.

In these "control-like" cases - where selection is not as important as the object's
primary function - you should interpret plus as the selection gesture.

PenPoint User Interface Design Guide, ReD. 0.5,2/15/91 Page 139

Manipulating Application Objects

Deselecting an Existing Selection

From the user's perspective, the current selection is only useful with reference to
an operation that the user intends to make in the very near future. At other
times, it may appear as an artifact that is irrelevant, or even distracting.

Therefore it is important that the user be able to easily deselect any object. You
should always allow the user to deselect in two ways:

• Tapping on the object. Tapping (or making the plus gesture) on an existing
selection should deselect it.

• Tapping on the background. Tapping anywhere on the background of the
region should also deselect any existing selection. Examples of include the
background of a drawing region, or the dotted lines connecting document
names with their page numbers in the notebook Table of Contents.

Page 140 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Selection

Extending a Selection. by Dragging

In many contexts the user can select multiple objects - a span of text, a block of
items in a list, a block of cells in a spreadsheet, several figures in a drawing, etc.

If your application supports multiple selection, you should allow the user to
select adjacent objects via the press-hold gesture. The user touches the screen,
waits for the press-hold timeout to elapse, and then drags out the region to select
with the pen:

Use one of these two conventions for providing feedback during the drag:

• Wipe-thru. If your application uses a light grey background to indicate
selection (e.g. text and lists) jump the grey (from letter to letter, or item to
item) as the user drags. This is often called making a wipe-thru selection.

• Bounding Box. If your application uses some form of outline or underline to
indicate selection (e.g. graphic figures) use a bounding box to provide
feedback as the user drags.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 141

Manipulating Application Objects

Extending a Selection With Brackets

The left and right bracket gestures should adjust an existing selection in any
formatted context such as text, lists, or tables.

Figure 82 shows how the brackets work in text.

~
:~;mY[~ score end seven~~s ego.

ego.

yeers ego.

To extend an existing selection to the right, the
user makes a right-bracket past the end of the
selection. (A left-bracket before the beginning
of the selection extends to the left.)

The bracket gesture acts on whole words in text,
so the selection is extended to include the word
under the bracket.

To shrink an existing selection from the right,
the user makes a right-bracket. (A left-bracket
shrinks the selection from the left.)

The resulting selection includes the word under
the bracket.

If the right-bracket is drawn over the last word
in the selection, the selection will be adjusted by
letter, not word.

This allows the user to adjust within a word.

Figure 82: Adjusting a Text Selection with Brackets

Page 142 PenPoint User Interface Design Guide, Rev. 05, 2/15/91

Selection

Figure 83 shows how the brackets work in a list.

To extend an existing selection to include items
following the selection, the user makes a right­
bracket.

The selection extends to include the item under
the bracket.

To extend an existing selection to include items
preceding the selection, the user makes a left
bracket.

The selection extends to include the item under
the bracket.

Figure 83: Adjusting a List Selection with Brackets

PenPoint User Interface Design Guide, Reu. 0.5, 2/15/91 Page 143

Manipulating Application Objects

Discontiguous Multiple Selections

The previous section described how to allow the user to select multiple objects
that are adjacent.

It is often helpful to the user to allow the selection of multiple objects that are not
adjacent. This is referred to as discontiguous selection. Discontiguous selection is
commonly supported for lists and applications dealing with graphic objects.

If you do support dis contiguous selection, use the plus gesture as a toggle: a
plus over an unselected object should select it, a plus over a selected object
should deselect it.

Auto-selection of Gesture Targets

Because the pen allows the user to indicate the operand as well as the operation
in one gesture, the PenPoint user need always select the object to be operated on.

For example, the user can draw an 'X' to delete an object, a circle to edit a label, a
checkmark to bring up an object's option sheet, all without first selecting the
object.

Often such a gesture results in a popup sheet, pad or note - an edit pad for a
document in the Table of Contents, an option sheet for an icon, a proof menu for
a word, a confirmation note for deleting a document, etc. In all such cases you
should programmatically select the object targetted by the gesture before
displaying the pop-up, in order to provide a visual relationship between the pop­
up and its target.

Page 144 PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91

Selection

Text Selection Issues

This section discusses a couple of text-related issues.

Pending Delete

Text selection follows the "pending-delete" de-facto standard, in which text
entered via the keyboard replaces any existing text selection.

Primary Input Preference

Text should observe Primary Input preference, and follow the convention used
in PenPoint's text component. If the user has set the preference to Pen, then
tapping selects a single character.

If the preference is set to Keyboard, then tapping sets an I-beam indicating the
insertion point for keyboard input. This mode allows for compatibility with
traditional, mouse- and keyboard-based graphical user interfaces~

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 145

Chapter 19: Move/Copy

This chapter gives guidelines for implementing the Move and Copy operations.

Topics covered include:

- User Model.

- Detailed description of both the move and the copy process.

- Inter-application data transfer issues.

-Step-by-step examples.

Manipulating Application Objects

User Model: Drag and Drop

This section describes the PenPoint user model for moving and copying objects,
and contrasts it with the model presented by traditional, mouse-based interfaces.

Move and Copy in Mouse-based Interfaces

Mouse-based graphical user interfaces present the user with two very different
models for moving and copying objects, the direct manipulation drag and drop
model and the clipboard-based cut/copy/paste model.

The drag and drop model is simple and direct: the user drags the object to the
desired location with the mouse. It works well for objects such as icons on the
work surface or figures in a graphics editor.

But, as traditionally used, the drag and drop method has severe limitations:

• The application designer must map it to either move or copy, since there's no
way for the user to distinguish which operation is desired.

• It doesn't work for all types of objects - text, for example.

• It doesn't work when the source and destination are not in view at the same
time.

• It doesn't work when the source and destination are in separate applications.

• It doesn't work for deferred or repeated operations.

Because of these limitations, traditional graphical user interfaces supplement the
drag and drop method with the clipboard-based method that supports the cut,
copy and paste operations.

Page 148 PenPoint User Interface Design Guide, Rev. 05,2/15/91

Move/Copy

Move and Copy in PenPoint

PenPoint presents a single user model- drag and drop - for moving and
copying objects throughout the environment.

The PenPoint drag and drop method addresses the limitations described in the
previous section:

• It provides a way for the user to distinguish move from copy .

• It works for all types of objects - cons on the Bookshelf, entries in the Table
of Contents, text in a word processor, figures in a graphics editor, cells in a
spreadsheet, etc.

• It works when the source and destination are not in view at the same time.

• It works for transferring data across document boundaries, and between
different types of documents.

• It supports deferred. operations. The cut and paste model allows the user to
transfer data to a special clipboard, and copy it from the clipboard as needed.

In order to fully deliver the benefits of this unified. model to the user, it is very
important that all applications follow the same conventions for implementing
move and copy.

PenPoint User Interface Design Guide, ReD. 0.5, 2/15/91 Page 149

Manipulating Application Objects

Support for Implementing Move and Copy

This section breaks the move and copy operations down into the steps of
invoking the operation, dragging the object and targetting the destination.

It describes both the simple case in which the source and destination are both in
the same document and both visible on the screen, and variations (source is
offscreen, destination offscreen, deferred transfer, etc.)

This standard user interface is supported by a protocol in class embedded win.

Initiating the Move or Copy Operation

Before dragging the object, the user must signal to the system whether the
operation is a move or a copy. Following the dual command path principle,
PenPoint provides two ways to initiate the operation:

• Menu. The user first selects the object, then chooses Move or Copy from the
Edit menu.

• Gesture. The gesture for Move is press-hold: the user touches the object with
the pen and pauses for a moment. The Copy gesture is tap-press-hold: the
user taps the object with the pen, then touches again and pauses.

Move and Copy Marquee

After the user initiates the operation, the system signals that the object is ready to
be dragged by surrounding it with an animat~ dashed outline, called a marquee.

The move marquee is a single outline; the copy marquee is double. This makes it
clear to the user throughout the process whether the drag will result in a move or
a copy.

Page 150 PenPoint User Inter{tla Design Guide, Reo. 0.5, 2/15/91

Move/Copy

Drag Icons

In implementation terms, what actually happens when the move or copy
marquee begins is that a marqueed drag icon is displayed over the selected object.

This section describes how to display the drag icons in various situations.

Ideally, the drag icon should contain an exact rendering of the selected. object, so
that it appears to the user as if the marquee simply begins around the selected
object. Figure 85 gives several examples.

Four scor d years ago.

Figure 85: Drag Icons that Mimic the Selected Object

PenPoint supports this by automatically copying the portion of the screen in the
selected region to the icon.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 151

Manipulating Application Objects

It is not always possible to copy the bits from the screen into the icon.

One problem is that the selected object may be too large to drag - a selected text
span, for example, might well be larger than the screen itself. If the objects in
your application can be so large that they are impractical to drag, you should
limit the size of the drag icon, as shown in Figure 86.

Figure 86: Move Marquee for Large Text Selection

In the above example, the user has selected an entire paragraph, and then chosen
Move from the Edit menu. The application has determined that the selection
spans more than one line, and so has limited the move marquee to a rectangle at
the beginning of the paragraph.

The user can also invoke move or copy from the menu when the selection is
scrolled entirely offscreen.

To support this scenario, PenPoint provides standard drag icons for both move
and copy, as shown in Figure 87.

, · .
:~: .. .
: II i · . · . · . · . I •••••••••••• ~

Figure 87: Standard Drag Icons for Move and Copy

When the selection is entirely offscreen, display the appropriate drag icon in the
center of the application's client area.

Another situation in which the standard drag icons are handy is for dragging
figures in a drawing program across document boundaries. (See Example #6
later in this chapter.).

Page 152 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Move/Copy

Completing the Operation

After initiating the move or copy, the user completes the operation by dragging
the drag icon to the destination with the pen. There are several variations on the
process:

• If the user begins with a gesture, and the destination is already visible on the
screen, the user simply drags as soon as the marquee begins .

• If the user begins with a gesture, and the destination is not already visible on
the screen, the user lifts the pen after the marquee begins, which leaves the
drag icon "floating" on the screen. At this point the user brings the
destination into view by scrolling or turning to another document, then
drags the icon to the destination.

• If the user begins from the menu, then the drag icon appears over the
selected object, and the user then drags it to the destination.

Drag Rectangle

As the user drags, a dashed outline the size of the object - called the drag
rectangle - follows the pen.

The drag rectangle, like the marquee surrounding the object, is single or double
to indicate move or copy.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 153

Manipulating Application Objects

Targetting the Destination

When the destination allows free-form positioning of objects - as is usually the
case in drawing or painting programs - the drag rectangle allows the user to
position the object at the desired destination. When the user lifts the pen, the
object should appear precisely where the outline was.

In such situations, the drag outline should remain in the same position relative to
the pen as when the pen touched the object.

Often the destination application imposes constraints on the positioning of
objects - as, for example, in text, lists and tables.

The user model for targetting the destination in such formatted contexts is to
point the pen at the white space between two adjacent objects. In text, this means
pointing between two words or two paragraphs. In a list, it means pointing
between two items in the list. In a table, it means pointing at the border dividing
two rows or columns.

A usability problem may arise here if the user is unclear whether to target by
reference to the drag rectangle or the pen tip. For example, in text, should the
user point the pen or the left edge of the drag rectangle at the destination?

To avoid this problem, when the user begins dragging in text, snap the drag
outline so that the left edge is under the pen tip. That way the user will succeed
using either the pen tip or the drag rectangle as the reference point for targetting.

Note that because the snapping of the drag rectangle must be done when the
user begins dragging away from the move or copy icon, the decision as to
whether or not to snap the rectangle must be based on whether or not the source
application is formatted.

Page 154 PenPoint User Interface Design Guide, Rev. 05, 2/15/91

Move/Copy

Cancelling the Drag

The user can cancel the move or copy operation at any point short of completion.

When the drag icon is floating (and the pen is not touching the screen) the user
can cancel the operation it by tapping the drag icon.

Changing the selection by selecting another object anywhere in the system will
also cancel the operation and dismiss the drag icon.

The user can cancel even after beginning to drag, by dragging back over the drag
icon and lifting the pen. Or, the user can drag and drop on the title-line or menu
line. The icon will jump to the new position and remain floating, and the user
can then tap it to cancel.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 155

Manipulating Application Objects

Moving and Copying Between Applications

This section discusses implementation issues related to inter-application data
transfer.

Standard Data Types

To facilitate the transfer of data between applications, there is a set of standard
data formats that all PenPoint applications should read and write:

-'.

• ASCII

• Microsoft RTF (Rich Text Format)

• TIFF

• Object

Note: This list of data formats is preliminary, and will be defined further before
the release of PenPoint 1.0.

Object Data Transfer

Ideally, user should be able to move or copy information anywhere in the
PenPoint environment, without regard to the type of the source and destination
or the type of data being transferred.

To facilitate this, there's a special data transfer type called object.

Any region that supports embedding within it will always - even if it doesn't
take the specific data type - accept an object that holds the data. Therefore you
should support the rendering of your data as an object.

This effectively gives the whole system the functionality of a visual clipboard
that accepts any number of objects. For example, the user can select a paragraph
and drag it down to the document's cork margin, where it will remain as an icon
(see example #S in the next section.) Then the user can either move it or copy it
at any time, as desired.

Page 156 PenPoint User Interface Design Guide, Ref1. 0.5,2/15/91

Move/Copy

Regions that Don't Accept Embeddees

When the user drops a drag icon onto a destination that can't accept the type of
data represented by the icon, and won't accept embedded objects of any type, the
destination should refuse to accept the data. The drag icon will jump to the
location of the drop and remain floating.

This happens automatically, so most applications will not have to worry about it.
The title and menu lines are examples of areas that will not accept any type of
data, so users can always "park" a drag icon over them.

Examples

The next several pages give step-by-step examples illustrating moving and
copying in several common scenarios.

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 157

Manipulating Application Objects

Example 1,' Moving a Word in Text

Four scOre[~nd years ago.

~ :
..............

Four score and_years ago.

The user first selects the word to be moved.

Then the user initiates the move with the press­
hold gesture.

When the user drags the pen, the marquee
outline jumps so that the pen tip is centered on
the left edge of the outline.

The user points the pen tip directly at the
desired location - in the gap between two
words.

When the user lifts the pen, the move is
completed and the text reformatted. The newly
moved word remains selected.

Figure 88: Moving a Word in Text

Page 158 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Example 2: Moving an Item in a List

A Clock&k Orange

:.:ii:~:lrn:i~rIl::~i:I::~llii~i!::i:!:;::;ii::ii:::::I;ilimt::l:::!::::::
Chi na Blue
Return of the Secaucus Seven
Tremors

na ue
Return of the Secaucus Seven
Tremors

Tremors

Move/Copy

The user first selects the item to be moved.

Then the user initiates the move with the press­
hold gesture.

The user drags Ol,lt the dashed outline, until the
pen-tip points between the rows where the item
is to be moved. .

When the user lifts the pen, the move is
completed and the list redisplayed.

The newly-moved item remains selected.

Figure 89. Moving an Item in a List

PenPoint User Interface Design Guide, Reo. 0.5,2/15/91 Page 159

Manipulating Application Objects

Example 3: Moving a Figure

D
'~ · .

· . 1_- •••

O· #
• I I~
L. •• 1 D 6. 1 ••••••••• 1

The user first selects the figure to be moved.

The eight resize handles indicate that the figure
is selected.

Then the user initiates the move with the press­
hold gesture.

When the user drags the pen, the application can
either:

1) drag a rendition of the object itself, or

2) drag a dashed outline of the selection.

If an outline is dragged, it should not jump
relative to the pen. It should also be the exact
size of the selection. This allows the user to use
the outline as a guide for positioning the object
precisely.

When the user lifts the pen, the move is
completed.

The newly moved object remains selected.

Figure 90: Moving a Figure

Page 160 PenPoint User Interface Design Guide, Rev. 05, 2/15/91

Example 4: Moving a Figure to a Far Destination

, ,
• I · .
:~: : II : · .
• I · . · . I •••••••••••• .:

. . . r ••••• rI1 ,............. . :

!~!I ! I II i: I
• .' I I • 1 •••••••••••• .= · . · . 1 ••• _ •••••••• -'

Move/Copy

The user first selects the figure (or figures) to be
moved.

Then the user touches the selected figure with
the pen and pauses until the move marquee
appears.

(At this point, the user can drag to a local
destination without lifting the pen, as described
in the previous figure.)

The user lifts the pen at this point, causing the
move icon to appear ..

The move icon has a glyph symbolizing the
move operation, and is surrounded by the move
marquee. It is always the same size, regardless
of the size of the selected object.

While the move icon is displayed, the user
brings the destination into view by turning to
another document (or scrolling within the same
document.)

When the destination is in view, the user
continues the drag by touching the move icon
and dragging out a dashed outline.

When the user lifts the pen, the data transfer
takes place, and the object appears at the
destination.

The object is placed in the same location relative
to the pen as when the move was initiated.

Figure 91: Moving a Figure to a Far Destination

PenPoint User Interface Design Guide, Rez7. 0.5, 2/15/91 Page 161

Manipulating Application Objects

Example 5: Object Data Type: Copying a Paragraph to the Bookshelf

Article Extract
Document Edit Options I nsert Format

........ "' .. ::::.:::::::::::: :;::::::::;::::::::::::::::::::::::::;:::::::::::::::::::::::::::::::: :: ... :::::::::::::::

After an unnervi ng sl ump in the computer market,
industry experts believe demand might rebound in

"1t-ij The user first selects the paragraph
then begins the copy with the tap-p
gesture. '991.

The mai n beneficiaries of any resurgence will pro-

A rti c 1 e Ext ract
Document Edit Options I nsert Format

After an unnervi ng sl ump in the computer market,
industry experts believe demand might rebound in
'991.

A rti c 1 e Ext ract
Document Edit Options I nsert Format

After an unnervi ng sl ump in the computer market,
industry experts believe demand might rebound in
1991.
A combi netion of neW' computer software, new markets
and lower prices will entice customers in the United
States, where business has been bad for more than a
year, and in Europe, where the slowdown set in more
recently.
The ma; n beneficiaries of any resurgence will pro- .~,.

"E1'cl'i"~'~i'~~""""":'::"""'"'''''''''''''''''''''''''''' ~:.:=:.::.:=~:.::

The copy marquee appears around

Note: The drag icon is limited to a 1

around the pen, because the selectic
than one line.

The user drags to the Cork Margin.

The user lifts the pen, dropping the
onto the Cork Margin.

Because the Cork Margin doesn't ac
directly, the data is transferred in tr
fonnat. It appears as an icon in the

Figure 92: Copying a Paragraph to the Bookshelf

Page 162 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Move/Copy

Issues

PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91 Page 163

Chapter 20: Editing Text

This chapter gives guidelines for editing text in several contexts: overwrite fields,
fill-in fields, and full text views.

Manipulating Application Objects

Pop-up Edit Pads

PenPoint provides a standard type of pop-up pad specialized for editing fields
and labels.

Figure 93 shows an edit pad.

Figure 93: Pop-up Edit Pad

Usage by PenPoint

These edit pads are used extensively in PenPoint to provide a unffonn way for
the user to edit fields and labels of all sorts, including:

• document titles on the document

• document and section names in the Table of Contents

• file names in the Disk Viewer

• icon labels

• tab labels

• words and phrases in the text component

Usage by Applications

Unless the context of your application requires a specialized type of input pad,
you should use the standard edit pads for editable fields and labels.

In order to make editing in your application as convenient and efficient as
possible, you may want to design special editing pads that are further specialized
to the types of objects in your application.

In designing these pads, remember the principle of the dual command path, and
allow the user to enter information either through the handwriting engine
(gestures or characters) or by tapping (buttons, menus and scrolling lists).

Page 166 PenPoint User Interface Design Guide, ReD. 05, 2/15/91

Editing Text

[nvoking Edit Pads

The circle is the core PenPoint gesture for the basic Edit operation. Drawing a
circle should always bring up the editing pad for the object under the circle.

Tapping should also display the edit pad, unless there is a more important
operation to map to tap. For example, tapping on a fill-in field in a dialog or
option sheet displays the edit pad for the field, since editing is the primary
operation on the field. But tapping on a tab or Hyperlink button turns to the
associated document, and tapping on a title in the Table of Contents selects the
document. In these cases editing is not the primary operation.

The object being edited should take the selection, so that the user can see at a
glance what the target of the pad is.

The text being edited should appear in the pad's overwrite boxes, with a couple
of blank boxes at the end to allow the user to add one or two characters without
resizing the pad.

I npu t Behavior

The standard edit pads are modal- while they are displayed input to other
parts of the screen is blocked, and they automatically take the focus of keyboard
input.

If you build a specialized edit pad, with more functionality, it may make sense
for the pad to be modeless, like the PenPoint option and dialog sheets, so that the
user can leave it up and use it to edit several objects.

Size Preference

Pads should observe preferences - if you create one and re-use it, you should
check preference each time the pad is displayed.

PenPoint User Interface Design Guide, ReCJ. 0.5,2/15/91 Page 167

Manipulating Application Objects

Using Edit Pads

Edit pads have two different modes of behavior with respect to translation:

• Input mode: Whenever there are no boxes with translated characters, the pad
is considered to be in input mode. The user writes into the boxes, and no
translation occurs until the user taps OK.

• Edit mode: When there is at least one box containing a translated character,
then the user's input is translated automatically when the user lifts the pen
out of proximity to the screen for more than a moment.

This behavior is designed to support the most common usage scenario in which
the user first enters the word or phrase into a blank pad, then taps OK to
translate, then overwrites the characters as needed to correct any translation
errors.

The pads also accept three editing gestures, described under Gestures in Character
Boxes, below.

The edit pad buttons work as follows:

• OK: If there are no boxes with translated characters, tapping OK translates
the contents of all the boxes. If one or more boxes contain translated
characters, then tapping OK returns the contents of the pad to the caller and
dismisses the pad.

• Clear: Clears the pad.

• Cancel: Dismisses the pad without making any change to the object being
edited.

Page 168 PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91

Editing Text

Pop-up Writing Pads

The caret gesture should pop up a writing pad to allow the user to insert new
text.

Before displaying a pop-up writing pad, you should check the state of the Pad
Style option on the Handwriting Preference Sheet, and display the appropriate
form of pad.

Figure 94 shows a ruled pad.

Figure 94 Pop-up Writing Pad (Ruled)

Figure 95 shows a boxed pad.

',~",,,,,,, w. "'1
~

Figure 95: Pop-up Writing Pad (Boxed)

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 169

Manipulating Application Objects

Gestures in Character Boxes

Character boxes accept only three editing gestures, as described below.

Tap-Hold. Makes the box the focus of keyboard input.

Pigtail. Deletes the character in the box.

L
Down-Right. Inserts one or more spaces, depending on the length of the horizontal line.

Page 170 PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91

Editing Text

Gestures in Fill-in Fields

For the Developer's Release of PenPoint, the standard text fields accept the
following gestures:

x

o

L

Tap. Observes the Preferred Input preference. In Pen mode (the default), pops up an edit pad
containing the field's contents. In Keyboard mode, sets the I-beam.

Double-tap. Toggles selection of entire contents of field.

Press-Hold. If field contents are not selected sets the I-beam. If field contents are selected,
initiates move of field contents.

Tap-Hold. If field contents are selected, initiates copy of field contents.

x. Deletes the contents of the field.

Scratchout. Deletes any word touched by the gesture.

Circle. Pops up an edit pad containing the field's contents.

Caret. Pops up an empty writing pad targeted at the tip of the caret. The pad is either ruled
or boxed, depending on the setting of the Pad Style preference.

Pigtail. Deletes the character under the pen-down point.

Down-Right. Inserts a single space at the pen-down point.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 171

Manipulating Application Objects

Gestures in Text Views

In addition to the core gestures, the text component accepts the following gestures:

"
•

/\

-.J -
L -

Page 172

Double Tap. Select word.

Triple Tap, Select sentence.

Double Flick (4 directions). Scroll to the beginning, end, left edge or right edge.

Circle-Line. Replace. Bring up an empty editing pad for the word or selection.

Caret-Tap. Create an embedded insertion pad .

Circ1e-Tap. Create Hyperlink button.

Up Arrow and Down Arrow. Increase/decrease point size for the word or selection by the
increments in the character option sheet.

Up-Right. Insert a single character.

Down-Left. Insert a paragraph break.

Down-Left-Flick. Insert a line break.

Down-Right-Flick. Insert a tab.

Right-Up. Capitalize the first letter the word (or of each word in the selection.)

Right-Up-Flick. Capitalize the word or selection.

Right-Down. Make the word or selection lower case.

Double-Caret. Create embedded document. Pops up the Create Menu.

PenPoint User Interface Design Guide, Reo. 0.5, 2/15/91

V­
B

F

I

p

N

S

U

Editing Text

Check-Tap. Brings up option sheet for the document.

B. Make the word or selection bold.

F. Bring up find sheet, set to start the search from the point of the gesture.

I. Italicize the word or selection.

P. Proof word.

N. Make the word or selection "normal" - i.e; turn off bold, italic, and underlined attributes.

S. Bring up spell sheet, beginning checking from the point of the gesture.

U. Underline the word or selection.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 173

Chapter 21: Forms

Forms are one of the most important classes of applications for PenPoint. This
chapter gives guidelines for designing and supporting forms.

Topics covered include:

• Emulating paper forms. Allowing the user to markup a document.

• Designing forms from scratch. The use of untranslated scribbles as a data type.
Shrink to fi t area.

• Validation in forms. Allowing the user to markup a document.

Note: This chapter to come.

Section VI: Application Architecture
This section describes the several basic ways a PenPoint application can be
structured:

• Document: A page in the user notebook.

• Tool: An accessory that pops up or takes over the entire screen.

• Section: A section in a notebook.

• Notebook: A separate notebook.

• Service: Inbox services, Outbox services, and background servers.

• Components: Inbox services, Outbox services, and background servers.

Note: This entire section is rough.

Chapter 22: Documents

This chapter describes the several basic ways a PenPoint application can be
structured:

• When to structure your application as a document.

• User model: document on a single notebook page.

• Basic document components and layout.

• Local page controls.

• Handling embedding within documents.

Application Architecture

When to Structure Your Application as a Document

If your application makes sense as something that could be found in a notebook,
present it as a document.

This is intended to be a broad category, and include not only such obvious
documents as a word-processor, drawing program, or form, but also applications
that would not ordinarily be though of as documents in the traditional sense,
such as database front ends, games, etc.

User Model: Document on Single Notebook Page

The basic user model for the Notebook User Interface is that each page of the
notebook contains a single document.

The document itself may extend across many printed pages. The user can scroll
the offscreen portions of the document into view by using the scroll margins or
the flick gestures.

Page 180 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Basic Document Layout

Figure 96 shows the basic components and layout for documents.

Ti tle
I

Title li ne June Expense Report
•.• ,.,"", , ••.••••• , u " , ,., , •••• , •••.•.•• , •••••••••••••• ,

Menu Li ne Document Edit
:::::.:::.:.:::::-~~::~~:.:.:.:.:.:::.:.:.:::.:::.:::.:.:;:::::.:,:.:'::.:':.:.:.:,:::':.:.:::::.:':.:':,:.:':':':':,:,:.:':':.:::.:::::'::::':::::.:::::'::::'~:':'~:'::.:::':':':.:::::::::'~:':::::::'::::;:::'::::;:.:.:':.:.:,:.:,:.:.:::.: :::.: :::':::.:;:.:.:.:.:.:.:.:.:::::,:.:,:,:.:,:.:.:.:.:.::

Work Area

v­
I

+-t=========-=======---""'·.::=""''',...,,,='''''=

Figure 96: Basic Document Layout

These components are described briefly on the following page.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Documents

Scroll Margi n

Cork Margi n

Page 181

Application Architecture

The standard document components are:

• Title Line. Contains the title of the document.

• Menu Line. Each label in the menu line represents a category of commands.
The user can show or hide the menu line at any time from the document
option sheet.

• Scroll Margin. Each document takes up one page of the notebook, but the
document itself may be of any length. The scroll margin allows the user to
bring offscreen portions of the document into view. The user can show or
hide the scroll margin at any time from the document option sheet.

• Cork Margin. An margin below the body of the document into which the·
user can place icons (useful for pop-up notes or annotations) and link
buttons (useful for scrolling directly to specific places in the document or for
linking to other documents). The cork margin is not shown by default; the
user can turn it on at any time from the document option sheet.

.; Work Area. The bulk of the page is reserved for the information in the
document itself.

Page 182 PenPoint User Interftzce Design Guide, Rev. 0.5,2/15/91

Documents

Local Page Controls

If your application is naturally structured as a series of pages, it may be
appropriate to provide a visible control for paging within the document. The
next two sections describe the two standard ways to do this.

Local Page Numbers

If your document has numbered pages, put the page control at the right of the
menu line, directly below the notebook page number, as shown in Figure 97.

Fax Paper <24"""

Document Edit Options <1)

------------- -------------.------

Figure 97: Local Page Number on Menu Line

The page control is a standard toolkit control; tapping on the left bracket turns to
the previous page, tapping on the right bracket turns to the next page. Pressing
either of the brackets flips through pages.

PenPoint User Interface Design Guide, Rev. 0.5,2/15/91 Page 183

Application Architecture

Pop-up List on Title Line

As an alternative to the local page number control, you can use a pop-up list on
the title line, as shown in Figure 98.

I en Brewster ~ 1040 < 24.'>

Document Edit Options
:::

.------ -------------

Ian Brewster. 1040
.................................... -.".~ " -.......... "................. 1 040A
Document Edi t Options

.''''''''~'''''''''"'''''''''': "'''''''~.,,::'''':''''':''''::'''':'''':''''''''''''::. 1 0 9 9
1060-44
650-Z

.--------- -------------- ---

/24>

Figure 98: Pop-up List on Title Line

The pop-up list is appropriate when there are a limited number of named pages.

Page 184 PenPoint User Interface Design Guide, Rev. 05, 2/15/91

Documents

Managing Embedded Objects

One of the important innovative features of PenPoint is its support for
live application embedding. This section describes the different ways your
application can make use of this feature.

Applications can be divided into two categories with respect to how they handle
embedded objects: transparent embeddors which rely entirely on the Application
Framework to handle embedded objects, and child-aware embeddors, which take
embedded objects into account when laying out their data.

Transparent Embeddors

Transparent embeddors don't open up holes for their embeddees.

An example would be a simple drawing application which did not contain any
commands to arrange the objects within it, or snap them to a grid.

The embeddees are clipped to the parent, and travel with the parent as it is
moved or copied. The embeddees don't count in the notebook page numbering
sequence, and don't show up in the notebook Table of Contents.

PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91 Page 185

Application Architecture

Child-aware Embeddors

Child-aware embeddors pick up the embedding protocol and modify the
presentation of their contents based on their children. In short, they make room
for their children.

Most applications will fall into this category. Examples include:

• A word processor that makes room for embeddees, either by treating the
embed dee as one huge character, or in some other way, such as flowing text
around it.

• A drawing program that allows the user to snap objects - including
embeddees - to a grid.

• A corkboard-like container that has commands to arrange objects within it
according to various layouts.

• An application such as a spreadsheet, that presents its data in tabular
format. Since opening a space for the embedee to be opened in-line doesn't
make sense in the context of a table, the embeddor can restrict its
embeddees to open in pop-up format, overlapping the work area.

Each of these behaviors requires that the embeddor do some work. For example,
the word processor needs to re-layout its contents when the embeddee is opened,
closed or resized.

You need to think about this at the beginning of the application design process,
so your data structures support embedded objects. For example, a spreadsheet
would need to be able to store an object as well as a formula in a given cell.

Issues

Page 186 PenPoint User Interface Design Guide, Rev. as, 2/15/91

Chapter 23: Tools

This chapter describes structuring applications as tools. Topics include:

• When to structure your application as a tool.

• Pop-up and fullscreen tools.

Application Architecture

If your application doesn't fit well into the form of the notebook, present it as a
tool that the user finds as an icon in the Tools Palette. When the user opens the
icon, the tool either pops up over the notebook, or takes over the entire screen.

Examples of pop-up tools include clocks, calculators, a snapshot program, etc.

If you need to control the layout of the tool exactly, you can specify that it always
be full-screen, and not resizeable. An example of a full-screen tool is the
PenPoint Handwriting Customization application.

It is often straightforward to decide whether an application should be a
document or an accessory. In some cases, however, it may be appropriate for an
application to take both forms.

Take, for example, the PenPoint Disk Manager. Its primary usage is as a pop-up
tool that the user opens from the Bookshelf, uses, and closes. But the user can
also copy an instance of the Disk Manager into a notebook. This supports the
usage scenario of having multiple disk manager instances on multiple notebook
pages, each of which stay open to a particular location on a particular disk.

Issues

Should tools save their state when they are opened/ closed/ opened?

Page 188 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Chapter 24: Component/Application Model

This chapter describes structuring applications components and wrappers.

Application Architecture

One approach you can take in PenPoint is to structure your application in two
parts: a visual component that does most of the work of presenting information
to the user, and an application "wrapper" that provides some other functionality
such as a menu line.

The component can then be used in several applications.

The Minitext application bundled with PenPoint is structured on the
component/ application model.

The component needs to be self contained. None of the basic behavior should be
implemented by the wrapper.

Issues

We don't have a well-known place for component resources -- so, in practice for
now, the application needs to know about the component.

Page 190 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Chapter 25: Notebooks and Notebook Sections

This chapter describes structuring applications as sections in the user notebook,
and as complete notebooks.

Application Architecture

Structuring Your Application as a Section

You can structure your application as a group of separate documents, organized
into a notebook section that manages them. In this architecture each notebook
section embodies an instance of the application.

Figure 99 below shows an ~xample.

Contents <: 1 >

[] len Brewster .3

81040...... 4

~ 1040A... 5

@Ill099 ,,",,".. .. 6

211080-44 7

tJ? ~1 rod Murphy .. "".... ." 8
@J 1040 .. " " 9

~ 1040A "....."

@l1099

EJ 1080-44

.-------------------;:~.;.:. . .::~~:::.......

.. 10

.11

12

13

Figure 99: Application as Section

In the example above, each section contains the tax forms for a different client.

This application architecture has advantages and disadvantages. It fits.in well
with the notebook metaphor, but it is harder to program and coordinate across
the s_eparate processes on each notebook page.

Page 192 PenPoint User Interface Design Guide, Rev. 0.5,2/15/91

Notebooks and Notebook Sections

Subclassing the Table of Contents

While you can use the normal Table of Contents and treat the section as nothing
more than a group of normal documents that can travel together, you can also
subclass the Table of Contents to tailor its functionality or user interface.

Subclassing to Provide Inter-document Functionality

You may want to provide control and coordination functions across the
documents on the different pages - e.g. summing totals of forms, cross-form fill­
in or validation.

Subclassing to Provide a Customized User Interface

For example, suppose an insurance application had a section with separate
documents for different sections of the car that has been damaged. From the
Table of Contents, the section would look normal. But the section itself would
show a picture of a car, with hotspots on the car for turning to each page in the
section.

PenPoint User Interface Design Guide, Rer1. 0.5, 2/15/91 Page 193

Application Architecture

Structuring Your Application as a Notebook

You can also structure your application as a separate notebook.

This is appropriate if your application is a vehicle for delivering information that
makes sense in a notebook format. The PenPoint Help Notebook is an example
of an application that is structured as a notebook.

You can either specialize the notebook by subclassing or you can just use the
ordinary notebook as a delivery vehicle.

Issues

Page 194 PenPoint User Interface Design Guide, Rev. 0.5, 2/15/91

Chapter 26: Services

This chapter describes conventions for services that interact with the InBox and
OutBox.

Topics include:

• Transfer services (Inbox & Outbox).

• Subclassing lnbox and Outbox sections.

• Non-transfer services.

• Tracking the user data font preference.

Application Architecture

There are two types of services:

• Transfer services: Transfer services manage either the sending of information
through the Outbox, or the receiving of information through the Inbox, or
both .

• Non-transfer services: Non-transfer services include such background services
as database servers.

Issues

Page 196 PenPoint User Interface Design Guide, Rev. 05,2/15/91

Chapter 27: Installation of Applications and
Resources

This chapter covers issues related to the installation process, and also gives
guidelines for installable resources such as fonts.

This section describes the building blocks PenPoint provides to build your user
interface.

Topics include:

• Installation process. The installer. Configuring the application.

• Stationery notebook. For documents. Pre-loaded stationery.

• Tools Palette. For tools.

198 Introduction to the Notebook User Interface

When the user installs your application, the PenPoint Installer places an instance
of the application in either the Stationery Notebook, or the Tools Palette,
depending on whether you have specified that the application is a document or a
tool.

If you specify that your application is a document, the installation process results
in the creation of a section in the Stationery Notebook named for the application.
The section contains at least one document - also named for the application -
which is known as the application's default stationery. You can specify that other
stationery be automatically created for the user as part of the installation process.

If you specify that your application is a tool, the installation process results in an
icon of the application being placed in the Tools Palette.

You can also specify multiple tools for a given application.

Issues

Page 198 PenPoint Application Design Guide, Rev. 0.3, 1/22/91

