
AN APPLICATION PROGRAMMING INTERFACE FOR COLLABORATIVE WORKING

B K Aldred, G W Bonsall, H S Lambert, H D Mitchell

IBM UK Laboratories Ltd, England

Personal computers are now widespread throughout the
business community and many are able to inter-
communicate, either through fixed connections e.g.
local area networks, or through dynamically established
links e.g. ISDN or async lines over the public switched
telephone network. Increasingly, these connected
personal computers can be used to enhance
collaborative working between remote individuals; a
typical example being the use of desk top conferencing
software [Ensor et al (1); Clark (5)]. Successful
collaborative work generally requires more than a
simple data link between the participants; voice
capabilities are normally essential and video links are
frequently required. Thus remote collaborative working
can often be regarded as an extension to the traditional
telephone call - it being enhanced with the data and
programs available at the desktop via the personal
computer - and, on occasions, enriched with video
services.

A broad spectrum of collaborative applications can be
written, ranging from utilities taking advantage of the
data and applications on a workstations, e.g. sharing of
application windows, through to new collaborative
applications designed to meet the needs of specific
classes of remote user e.g. shared editors [Knister and
Prakash (3)]; real time conferencing [Akuja et al (6)];
help desk; remote presentations; and many more. The
common requirements behind these examples are:

1. Support of a wide variety of personal computer
platforms - both hardware and software.

2. Operation over the existing communication
networks.

3. Group communications and multi-media data
services.

Experience gained with the implementation of the IBM
Person-to-Person desk top conferencing product (7),
has led to these proposals for an enabling platform
which supports an extensive range of collaborative
applications. Four interfaces are proposed:

1. An application programming interface
(API) to allow applications to request group
communications and multi-media data
streaming services.

2. A device driver interface to allow the support
of an extensible range of software and
hardware communications sub-systems.

3. A resources interface through which details
can be requested of externally held and
managed information giving details of the
installed communications network, such as
node addresses, link capabilities and directory
data.

4. A data stream, which is the information and
associated protocols actually transmitted over
the physical network, as a consequence of
application calls through the API.

COLLABORATIVE APPLICATIONS

APPLICATION PLATFORM

HARDWARE SUPPORT

API

RESOURCES
I/F

DEVICE
DRIVER

I/F

NETWORK
DATA

DATA STREAM

Figure 1. Proposed interfaces

The API needs to offer the following capabilities:

1. Applications to be able to start the execution of
other local and remote applications, and share
their combined resources.

2. Applications to be able to define logical
communications channels between themselves,
suitable for a broad range of multi-media
traffic, independently of the underlying
physical communications network. This

requirement has also been discusssed by Ahuja
and Ensor (2).

3. Communications traffic to be able to be:

a. Serialised - so that the same data
sequence is received by all
applications.

b. Synchronised in time with other
communications traffic.

c. Merged - so that multiple sources of
data can be combined.

d. Copied to multiple destinations.

4. A range of attached workstation devices to be
supported to allow the interception and
redirection of data, both from devices and
from other applications.

An architecture for the API is proposed that satisfies
these requirements and allows the development of a
network based, real-time collaborative platform.

Major elements of the architecture

Network, nodes and applications

At the highest level, the architectural model proposed is
that of a communicating set of nodes. A node is a
computer, typically a workstation capable of
communicating with its peers. Nodes are linked
together, such a collection of inter-communicating
nodes constitutes a network. It is fundamental to the
architecture that a node can dynamically join or leave
the network. It is also assumed that the network
topology can range from the simple to the complex; for
example:

1. There may be multiple direct and/or indirect
links between any two nodes.

2. Links may be switched (e.g. async, ISDN) or
may be fixed.

3. Links may have very different characteristics
(e.g. in terms of jitter, latency, reliability and
bandwidth).

4. Certain links may offer bandwidth reservation
capabilities.

5. Broadcast mechanisms may exist from a node
to a subset of the other nodes.

Nodes can have associated logical devices. A logical
device is a piece of equipment, a computer or a
program that is communicating with a node. Logical
devices are normally controlled by the node to which
they are attach and frequently supply or receive data to
or from that node. There is an extensive range of
possible devices including: printers, cameras, disk
drives, modems, codecs, multi-point control units,
application windows and programs.

Multiple applications can be executed at a node, subject
to the constraints imposed by the operating system and
windowing system environment at that node.
Applications may be classified as either aware or
unaware; an aware application is defined as one that
is written to use the services of the API. The use of
unaware applications in a collaborative environment
has been discussed by Crowley et al (4).

It is a requirement of the architecture that one
particular aware application must be running at an
active node. This application plays a unique role at that
node and will be known as the call manager. This
performs many of the functions of the conference
manager in (4). Many call managers may be available
for execution at a particular node but only one can
execute at a time. The distinguishing feature of the call
manager is that it handles resource management for the
node and resolves any requests that are not directed
specifically at an instance of an application. Call
manager responsibility can be passed from one call
manager to another.

Aware applications can share data and resources with
other aware applications at the same or different nodes.
To do this the application initiates a share request,
specifying, by name, the application and its node
location. The node name is resolved by reference to a
network data base through queries issued externally via
the resources interface. The application name is
processed at the destination node by the currently active
call manager. It can accept or reject the share request;
if it accepts the share it can decide to handle the
sharing itself, to launch an application to be shared, or
to share with an existing instance of an application.
This sharing mechanism can be cascaded, such that if
two applications are already sharing, one of them can
initiate a share with a third application. The
consequence of this is that all three applications are
then sharing with each other. Applications may make
share requests on behalf of other applications. A

collection of applications sharing is called a sharing
set. Applications can cease sharing at any time i.e.
withdraw from the sharing set.

Once the addressability between applications has been
resolved all subsequent interactions between members
of a sharing set are direct, using application and node
handles.

Communications, channels and ports

After a sharing set of applications has been established,
there is typically a need for the applications to
exchange data. This is implemented through a channel
mechanism. Channels are logically dedicated, uni-
directional links between applications, intended to pass
a particular type of data e.g. voice, video, mouse
movements, keystrokes etc. A channel is always defined
by the sending application and it goes from the sending
application to one or more receiving applications. The
ends of channels are termed ports. A sending port
sends data down the channel; a receiving port receives
data from the channel. There is no direct mapping
between the logical channel structure seen by the aware
applications and the physical communication network
in existence between the nodes. Multiplexing or de-
multiplexing of the data is handled below the API.

An application may establish many channels, of
different capabilities, to another application in its
sharing set, as a convenient way to communicate
different kinds of data. Some or all of these may be
mapped on to one or more physical links but this will
be invisible to the application.

Channels have a number of characteristics which are
negotiated during the creation process to allow data
transmission characteristics to be tailored to the
expected traffic; these include encryption and quality
of service parameters, such as capacity and latency.
These mechanisms allow suitable video channels, voice
channels and other specialised data channels to be
established.

Channels may be collected together into named
collections known as channel sets; any channel set may
be classified as being of one of four types: standard,
merged, synchronous and serialised. Standard channel
sets are the default case where the channels in the set
are conveniently referred to collectively by the channel
set name, but no other consequences follow from
channel set membership. The other three types have

important consequences for the behaviour of the
constituent channels. Through a merged channel set
data is combined from multiple channels and delivered,
to an application, through a single port at each
destination. Through a serialising channel set data is
combined from different channels, serialised, and
delivered to each application such that each receiving
port sees the same sequence of data. Through a
synchronising channel set data is synchronised, so
that data on separate channels is tied together in time
(as is required for the synchronisation of voice and
video), but delivered through the individual ports
belonging to the channels.

Ports may be connected together to establish extended
communication links, so that an application may route
its inputs through to another application for processing.
When ports are connected in this way no further
application involvement is required after the routing
has been established. This allows the streaming of data
between applications and devices. Connected ports can
also be welded, so that the connection is permanent
and persists even when the connecting application has
terminated.

Event, command and null ports are required; event
ports generate an event when data is either available or
is required; command ports read or write data to/from
a buffer, and the application has the responsibility of
filling or emptying this buffer; null ports are a special
case reserved for ports that are unable to supply data to
the application e.g. ports on analogue channels. Ports
can be controlled through commands which are sent to
the port event handler routine supplied by the
application when the channel was created; typical
commands are, for example, rewind or pause to a tape
drive.

An alternative method of application inter-
communication, avoiding the use of ports and channels,
is provided for application control data.

One characteristic of ports is that they are associated
with a data class and compression hints. The data
class describes the kind of data, e.g. voice, video, file,
interactive, that is sent by a sending port down the
channel, or to be received via a receiving port.
Compression hints allow data compression during
transmission, without impacting applications.

Negotiation of quality of service

Certain applications have fixed quality of service
requirements for the channels needed to communicate
with other applications. In these cases the channels
may be established directly, using a create_channel
request. Parameters on this request identify the
receiving application and both the channel and the
sending port characteristics. If the resources are
available, and the receiving application accepts the
request, then the channel will be created.

Some applications are more flexible in their quality of
service requirements and need to determine what is
available to a particular node and then use this
information in setting the parameters of the
create_channel request. This is accomplished through
the query_resource command. The subsequent
create_channel can request an equal or lower quality of
service and expect the request to be satisfied, if there is
not competition for the communications resource.

Other applications have flexible quality of service
requirements, but need to compromise the specification
over a number of channels. This can be achieved by
means of the reserve_resource command specifying a
resource set identifier and a quality of service. This
has the effect of reserving that resource and associating
it with the specified identifier. This identifier can then
be specified in a subsequent create_channel command,
in which case the resources are allocated from those
reserves. The query_resource command can be used to
determine remaining resources in a resource set.

Certain applications need to dynamically change their
channel characteristics during execution; for example,
available bandwidth must be re-allocated across
channels. This can be done through the
change_channel request, specifying a resource set
identifier. The resources are given to, or taken from,
those resources associated with that identifier. This
technique allows, for example, a fixed resource to be
secured for an application to application
communication, and then re-allocated dynamically
according to the traffic e.g. video bandwidth can be
temporarily reduced to allow faster file transfer.

Logical devices

Logical devices are supported by the architecture; these
include: disk drive, printer and window; further logical
devices may be defined. Logical devices can be opened

by an application; the process of opening creates a port.
A logical device may be opened more than once to have
multiple ports if appropriate; thus a disk drive logical
device can have both a sending and a receiving port.
Two classes of logical device are required: real and
virtual. A real logical device, when opened, provides a
port that reads or writes data to a physical or logical
entity, such as a disk drive or system clipboard. A
virtual logical device however, provided primarily for
use with unaware applications, is generally a
replacement for a standard device driver. Thus a virtual
printer logical device can replace the standard printer
device on LPT1, and redirect the data to a destination
port.

Resource management

Collaborative working frequently requires that
resources owned by a node, for example a printer
device, can be shared with other nodes. Such resources
are considered to be global resources and access is
controlled through global tokens. Other resources are
owned by an application, for example a shared pointer,
and access to these is managed through application
tokens.

Applications are expected to know the location of a
globally available resource that they require, and
therefore facilities for the broadcasting of availability
information are not provided. Instead, the call manager
at the node with the global resource is responsible for
resource management. Global tokens may be held by an
application instance on an exclusive or shared basis;
global token ownership may not be transferred.
Requests for a global token may be queued, with the
queue being held above the API and managed by the
node call manager. Access to global tokens is not
restricted to an application sharing set.

Management of application resources may be
performed by any application in the sharing set.
Application tokens may be held on an exclusive or
shared basis and requests for tokens queued, with the
queue being held above the API, and managed by the
current application token owner. Application token
ownership may be transferred across an application
sharing set.

Other networks

Private analogue networks: The architecture supports
analogue communications in a very similar way to
digital communications, in those situations where:

1. Analogue links exist between nodes.

2. Connectivity and routing at each node can be
controlled.

3. A digital control channel exists between the
nodes.

Analogue channels are logically dedicated, uni-
directional communication links, established by the
sending application, and they may terminate in more
than one receiving application. They may be
distinguished from digital channels by their data class.
Only standard or merged channels may be established;
serialising and synchronising channel sets are not
permitted.

Logical devices can present analogue ports when
opened; thus a video player logical device can be used
as a source of analogue video and may be connected to
an analogue channel. The direct connection of analogue
and digital channels is not permitted; however certain
logical devices e.g. a codec logical device provide both
analogue and digital ports when opened and can be
used to effect such a coupling.

Switched digital networks: Switched digital networks
can be used for inter-node communication without
exposing the switched nature of the connection.

Equipment, such as digital telephones, attached to a
switched network, are accessed by applications through
logical devices. Thus an ISDN phone logical device
may be opened to present receiving and sending ports,
with an associated event or command connect type;
dialling, and other control functions, are implemented
through port commands. Third party connection
between digital telephone equipment is similarly
affected through commands to an appropriate logical
device; this may be physically implemented through
commands to the local switch.

Public switched analogue networks: Analogue
telephones and other equipment, attached to the public
switched network, are similarly accessed. A PSTN
telephone logical device can be opened to present a

port, but with a null connect type i.e. it cannot supply
or receive data from an aware application. Port
commands are used to control the device. First party
connection can be implemented through a modem
injecting dialling tones into the local line; third party
connection, and multi-way calls through commands to
the local switch.

Interfacing to unaware applications

The architecture described above provides facilities
which allow unaware applications to be used for
collaborative working. An aware application supplies
the user interface dialogue and interacts with the
particular unaware application via virtual logical
devices. This same aware application then
communicates with a related aware application at the
remote node to pass the information to the remote user.

An example of this is the sharing of an application
window across a network. A virtual window logical
device is opened such that it intercepts the output that
an unaware application is making to its presentation
window on the sending node. Similarly, a real window
logical device is opened at the receiving node, such that
data can be displayed in a presentation window at that
node. The port on the sending node virtual window
logical device is then connected, via a channel, to the
port on the receiving node real window logical device.
A copy of the unaware application window is then
displayed at the remote node. The parameters specified
when the virtual window logical device is opened
control whether window snapshots or continuous
updates are captured from the unaware application.

Other facilities

User exits and function hooks are provided to ease
programming and debugging. All ports can be
associated with a user exit to monitor data traffic or
process data. All functions, including calls and events,
can be hooked and passed to an application supplied
event handler. Additionally, a full set of queries are
provided, so that applications need not keep track of
status at their node, nor of the applications being
shared. Application program debugging is assisted
through allowing collaborative applications to be
shared at a single node; thus avoiding physical
networks being involved during initial program
development.

Discussion

The architecture permits applications to dynamically
interact with each other, and through the call manager
mechanism, gives each node control of the application
sharing process at that node. This control can be
arbitrarily complex and sophisticated. Allowing
applications to share on behalf of each other allows
switching utilities to be developed, whose sole job is to
connect and disconnect other applications.

The channel mechanism, based on multiple uni-
directional, logically dedicated communication links,
requires an application to precisely specify, its data
communication requirements, without any reference to
the underlying physical network. The mapping to that
network is handled quite independently below the API.
Moreover, the nature of the data flowing over these
links can be queried independently of the data itself;
thus facilitating one application inter-working with
another and about which it had no prior knowledge.
Requiring the data type to be independently specified as
an attribute of the sending and receiving ports permits
the network to offer data conversion facilities, again
assisting inter-application communication.

The ability of one port to send data to multiple ports;
and the corresponding ability for a single port to
receive data from multiple sending ports leaves open
the question of where data gets cloned, and where data
flows get combined. This function can therefore be
distributed within the network by intelligent decisions,
taken dynamically, below the API. Very similar
considerations apply to data serialisation, which is now
clearly identified as a network function, with the
implementation method and location dynamically
determined.

Likewise, the compression hints supplied with the data,
allow the network the option of compressing and
decompressing data, subject to meeting the quality of
service constraints specified by the sending application.

The treatment of analogue data identically with digital
data is a recognition of the current state of much of
today's voice and video technology. It is helpful to
allow analogue applications to be written in the same
manner as digital applications, so that the ultimate
conversion from analogue to digital is a trivial change
of parameters rather than a fundamental application re-
design.

Connection and welding of ports allows data flows to
be submerged below the API whenever possible. It is
not normally possible to handle real-time isochronous
traffic if application level software must move data
between different communications links, or between
communication links and devices. The process of
surfacing data up through the communications stack to
the application impacts the ability to sustain data rates
and avoid excess jitter and latency. The connection
mechanism embodied in the proposed architecture
allows the application to describe the data flows
required, rather than be directly involved in the data
flow itself. This permits low level hardware and
software coupling of both devices and communications
adapters.

References

1. Ensor, J.R., Ahuja, S.R., Horn, D.N., Lucco, S.E.,
1988. Proc. 2nd IEEE Conf. on Computer
Workstations, March, 52-58

2. Ahuja, S.R., Ensor, J.R., 1992. IEEE Comm. Mag.,
May, 38-43

3. Knister, M.J., Prakash, A., 1990. ACM Conf. on
Computer-Supported Cooperative Work CSCW'90,
343-345

4. Crowley, T., Milazzo, P., Baker, E., Forsdick, H.,
Tomlinson, R., 1990. ACM Conf. on Computer-
Supported Cooperative Work CSCW'90, 329-342

5. Clark, W.J., 1992. IEEE Comm Mag, May, 44-50

6. Ahuja, S.R., Ensor, J.R., Lucco, S.E., 1990. ACM
Conf. on Computer-Supported Cooperative Work
CSCW'90, 238-248

7. IBM Person-to-Person/2 PRPQ, 1991. Program
number 7J0332

