AN APPLICATION PROGRAMMING INTERFACE FOR COLLABORATIVE WORKING

B K Aldred, G W Bonsall, H S Lambert, H D Mitchell

IBM UK Laboratories Ltd, England

Personal computeerenow widespreadhroughout the
business communityand many are able to inter-
communicate, either througfixed connections e.g.
local area networks, or througlynamically established
links e.g.ISDN or asyndinesoverthe public switched
telephone network. Increasingly, these connected
personal computerscan be used to enhance
collaborative working between remotedividuals; a
typical example beinthe use of desk top conferencing
software [Ensor et al (1); Clark (5)].Successful
collaborative work generally requires mothan a
simple datalink between the participants; voice
capabilities are normally essentahd video links are
frequently requiredThus remotecollaborative working
canoften be regarded as an extensiothe traditional
telephone call - it being enhanced with the data and
programs available at thdesktop viathe personal
computer -and, onoccasions, enriched withideo
services.

1. An application programming interface
(API) to allow applications to request group
communications and multi-media data
streaming services.

2. Adevice driver interfaceto allow the support
of an extensiblerange of software and
hardware communications sub-systems.

3. A resources interfacethrough which details
can be requested of externally held and
managed information giving details of the
installed communications network, such as
node addresseBnk capabilitiesand directory
data.

4. A data stream which is the information and
associated protocols actualisansmittedover
the physical network, as a cogsence of
application calls through the API.

A broad spectrum of collaborative applicaticzen be
written, rangingfrom utilities taking advantage of the
data andapplications on a workstations, estnaring of
application windows,through to new collaborative

applications designed to meet the needsspécific RESQIFCEs -
classes of remote user edhared editors [Knister and J COLLABORATIVE APPLICATIONS /
Prakash (3)]; real time conferencing [Akuja et al (6)]; [ ——
help desk; remote presentatioasid many more. The oA APPLICATION PLATFORM
common requirements behind these examples are:
DEVICE / HARDWARE SUPPORT —
DRIVER DATA STREAM

1. Support of a wide variety of personal computer
platforms - both hardware and software. _ _
Figure 1. Proposed interfaces
2. Operationover the existing communication
networks. _ .
The API needs to offer the following capabilities:

3. Group communicationand multi-media data

Services. 1. Applications to be able to start the execution of
other localandremote applicationsand share
Experience gained with the implementation of the IBM their combined resources.
Person-to-Person desk top conferencing product (7), _ _
has led to these proposals for an enabling platform 2. Applications to be able to define logical
which supports an extensiveange of collaborative communications channelgtween themselves,
applications. Four interfaces are proposed: suitable for a broadrange of multi-media

traffic, independently of the underlying
physical communications network.This



requirement has aldmeen discusssed by Ahuja
and Ensor (2).

3.  Communications traffic to be able to be:

a. Serialised - sdhat the same data
sequence is received by all
applications.

b. Synchronised in time with other
communications traffic.

c. Merged - sahat multiple sources of
data can be combined.

d. Copied to multiple destinations.

4. A range of attachedorkstation devices to be
supported to allowthe interception and
redirection of databoth from devices and
from other applications.

An architecture forthe API is proposedthat satisfies
these requirementand allows the development of a
network based, real-time collaborative platform.

Major elements of the architecture

Network, nodes and applications

At the highest level, the architectural model proposed is
that of acommunicating set of nodes. Aode is a
computer, typically a workstation capable
communicating with its peersNodes are linked
together, such a collection of inter-communicating
nodes constitutes aetwork. It is fundamental to the
architecturethat anode candynamically join orleave
the network. It is also assumedtiat the network
topologycan rangdrom the simple to theomplex; for
example:

of

1. Theremay bemultiple direct and/or indirect
links between any two nodes.

2. Links may be switchede.g. async, ISDN) or
may be fixed.

3. Links may havevery different characteristics
(e.g. in terms of jitter, latency, reliability and
bandwidth).

4. Certain linksmay offerbandwidth reservation
capabilities.

5. Broadcast mechanismsay exist from a node
to a subset of the other nodes.

Nodescan haveassociated logical devices. lagical
device is a piece of equipment, a computer or a
program that iscommunicating with a node. Logical
devicesare normally controlled by throde to which
theyare attach anttequently supply or receiveata to

or from that node. There is an extensivange of
possible devicesincluding: printers, cameras, disk
drives, modems, codecs,multi-point control units,
application windows and programs.

Multiple applications can be executed at a netbject

to the constraintgnposed bythe operatingystem and
windowing system environment at that node.
Applications may be classified asither aware or
unaware; araware application is defined as on¢hat

is written to usehe services othe API. Theuse of
unaware applications in a collaborative environment
has been discussed by Crowley et al (4).

It is a requirement of the architectuthat one
particular aware application must anning at an
active nodeThis applicatiorplays aunique role athat
node and will be known as thecall manager. This
performs many of the functions of theonference
manager in (4)Many callmanageranay be available
for execution at gparticular node bubnly one can
execute at &ime. The distinguishing feature of the call
manager is that it handlessource managemeiatr the
node and resolves any requesthat are notdirected
specifically at aninstance of an application. Call
managerresponsibility can bepassed from one call
manager to another.

Aware applicationcan share data arrésources with
other aware applications at the same or diffenexles.

To do this the application initiates share request
specifying, by name, the applicatiorand its node
location. The node name issolved by reference to a
network databasethrough queriesssued externally via
the resources interfaceThe application name is
processed at the destination node by the currently active
call manager. It caaccept or rejecthe share request;

if it acceptsthe share it cardecide tohandle the
sharingitself, to launch an application to be shared, or
to share with an existing instance of an application.
This sharing mechanism can bascaded, sucthat if
two applications are alreadsharing,one of them can
initiate a share with a third application. The
consequence dahis is that all threapplications are
then sharing with each othekpplications may make
share requests omehalf of other applications. A



collection of applicationsharing iscalled asharing
set Applications canceasesharing atany time i.e.
withdraw from the sharing set.

Once the addressabilityetweenapplications hadveen
resolvedall subsequent interactiorisetween members
of a sharingsetare direct, using applicatioand node
handles.

Communications, channels and ports

After asharingset of applicationbasbeen established,
there is typically a need forthe applications to

important consequences fothe behaviour of the
constituent channels. Throughreerged channel set
data is combined from multiplshannels andelivered,

to an application, through a single port at each
destination. Through aerialising channel setdata is
combined from differentchannels, serialisedand
delivered to each application sutiiat each receiving
port seesthe samesequence ofdata. Through a
synchronising channel setdata is synchronised, so
that data orseparate channels is tied together in time
(as is required fothe synchronisation ofoice and
video), but deliveredthrough the individual ports
belonging to the channels.

Ports may beonnectedtogether to establish extended

exchange data. This is implemented through a channel communication links, sthat anapplicationmay route

mechanism.Channels are logically dedicated,uni-
directional linksbetweenapplications, intended to pass
a particulartype of data e.g.voice, video, mouse
movements, keystrokes etc. A channel is always defined
by the sending applicaticand itgoes fronthe sending
application to one or more receiving applications. The
ends of channels are termedrts. A sending port
sends datdownthe channel; aeceiving port receives
data from thechannel. There is no direct mapping
betweerthe logical channel structuszen by thaware
applicationsand thephysical communication network
in existence betweethe nodes. Multiplexing or de-
multiplexing of the data is handled below the API.

An application may establish manychannels, of
different capabilities, to another application in its
sharing set, as a convenienvay to communicate
different kinds of dataSome orall of these may be
mapped on to one or more physical links thus will

be invisible to the application.

Channels have a number of characteristics which are
negotiated during the creatigorocess to allowdata
transmission characteristics to be tailored to the
expected traffic; these includmcryption and quality

of service parameters, such as capaciyd latency.
These mechanisms allow suitabldeo channelsyoice
channels and othespecialiseddata channels to be
established.

Channels may be collected togetheinto named
collections known ashannel setsany channel set may
be classified as being of one of four typetandard,
merged, synchronous and serialisethndard channel
setsare the defaultase wherg¢he channels in the set
are conveniently referred toollectively bythe channel
set name, but no otherconsequences follow from
channelset membership. The other thrgges have

its inputs through to another applicatifum processing.
When ports areconnected inthis way no further
application involvement is required after the routing
has been established. Thitowsthe streaming of data
betweenapplicationsand devices. Connected ports can
also bewelded so that theconnection is permanent
and persists even whetie connecting application has
terminated.

Event, commandand null ports are requiredevent
ports generate an event wheata is either available or
is required,command portsread or write dat#éo/from

a buffer,and theapplication has theesponsibility of
filling or emptyingthis buffer; null ports are aspecial
case reserved for portisat areunable to supplylata to
the application e.g. ports on analogue chanrfdsts
can be controlled through commands which are sent to
the port event handler routine supplied by the
application when the channebas created; typical
commands ardpr example rewind or pauseto a tape
drive.

An alternative method of application inter-
communication, avoiding the use of poatsd channels,
is provided for application control data.

One characteristic of ports that they are associated
with a data classand compression hints The data
class describethe kind of data, e.geoice, video, file,
interactive,that is sent by a sending patbwn the
channel, or to bereceived via a receiving port.
Compressionhints allow data compressionduring
transmission, without impacting applications.



Negotiation of quality of service

Certain applications havdixed quality of service
requirements fothe channelsieeded to communicate
with other applications. In theseasesthe channels
may be established directlysing a create_channel
request. Parameters on this requeédentify the
receiving applicationand both the channel and the
sending port characteristics. If theesources are
available, and thereceiving application accepts the
request, then the channel will be created.

Some applicationare moreflexible in their quality of
service requirementand need to determine what is
available to a particular nodand then use this
information in setting the parameters of the
create_channeftequest. This imccomplished through
the query_resource command. The subsequent
create_channetan request an equal or lower quality of
serviceandexpectthe request to be satisfied, if there is
not competition for the communications resource.

Other applications havdlexible quality of service
requirements, but need to compromntise specification
over anumber of channels. This can hehieved by
means of theeserve_resourceommand specifying a
resource set identifierand aquality of service.This
has theeffect ofreservingthatresourceandassociating
it with the specified identifierThis identifier can then
be specified in a subsequeameate_channetommand,
in which casethe resourcesare allocatedrom those
reservesThe query_resoure command can hesed to
determine remaining resources in a resource set.

Certain applications need ttynamically changé¢heir
channel characteristics durirgxecution; for example,
available bandwidth must be re-allocated across
channels. This can bedone through the
change_channelrequest, specifying a resource set
identifier. Theresourcesare given to, or takefrom,
those resources associated wittat identifier. This
technique allows, for example, a fixed resource to be
secured for an application to application
communication, and then re-allocated dynamically
according to the traffic e.gvideo bandwidth can be
temporarily reduced to allow faster file transfer.

Logical devices

Logical devicesare supported by the architecture; these
include: disk drive, printeandwindow; further logical
devices may be defined. Logical deviaas beopened

by an application; thprocess of opening creates a port.
A logical device may be opened mahanonce to have
multiple ports if appropriate; thus a disk drive logical
devicecan haveboth a sendingind areceiving port.
Two classes ofogical deviceare required: real and
virtual. A real logical device when opened, provides a
port thatreads or writes data to a physical or logical
entity, such as a disk drive aystem clipboard. A
virtual logical device however, providegbrimarily for
use with unaware applications, is generally a
replacement for a standadévicedriver. Thus a virtual
printer logical devicecan replace the standapdinter
device on LPT1landredirect the data to a destination
port.

Resource management

Collaborative working frequently requiresthat
resources owned by a node, for examplgrater
device,can be shared with other nodes. Stespurces
are considered to be global resourcasd access is
controlled througlglobal tokens Otherresources are
owned by arapplication, for example shared pointer,
and access to these mmanaged througlapplication
tokens

Applications areexpected to knowthe location of a
globally available resourcdhat they require, and
therefore facilities forthe broadcasting cdvailability
information are noprovided. Instead, the call manager
at the node with thglobal resource is responsible for
resource management. Global tokens may be held by an
application instance on aexclusive orshared basis;
global token ownership maynot be transferred.
Requests for a global token may be queweith the
gueue beindheld abovethe APland managed by the
node call manager.Access to global tokens is not
restricted to an application sharing set.

Management of application resourcemay be
performed by any application in thsharing set.
Application tokens may bdeld on anexclusive or
shared basiand requests for tokens queued, with the
gueue beindield abovethe API,and managed by the
current application token owner. Applicatidioken
ownership may bedransferred across an application
sharing set.



Other networks

Private analogue networks The architecture supports
analogue communications in \a&ry similar way to
digital communications, in those situations where:

1. Analogue links exist between nodes.

2. Connectivityand routing akeach nodecan be
controlled.

3. A digital control channeéxists between the

nodes.

Analogue channels ardogically dedicated, uni-
directional communication links, established by the
sending application, anthey mayterminate in more
than one receiving application. Theymay be
distinguished from digital channels Hyeir dataclass.
Only standard or merged channetay be established;
serialising andsynchronising channebets are not
permitted.

Logical devicescan present analogue ports when
openedthus avideo player logical devicecan beused
as a source of analoguigleo andmay be connected to

port, but with anull connecttypei.e. it cannotsupply
or receive data from an aware application. Port
commands areised to controthe device. First party
connection can be implemented throughmedem
injecting dialling tones into the local lin¢hird party
connectionand multi-way callsthrough commands to
the local switch.

Interfacing to unaware applications

The architecturedescribed above providefacilities
which allow unaware applications to be used for
collaborative working. An aware application supplies
the user interface dialoguand interacts with the
particular unaware application via virtual logical
devices. This same aware applicationthen
communicates with a related aware application at the
remote node to pass the information to the remote user.

An example of this is thaharing of an application
window across a network. Airtual window logical
device is openeduchthat itintercepts the outpuhat

an unaware application is making to its presentation
window onthe sending node. Similarly, a remindow
logical device is opened at the receiving node, shiah
data can belisplayed in a presentatiamndow atthat

an analogue channel. The direct connection of analogue node. The port on the sending node virtuahdow

and digital channels is n@ermitted;howevercertain
logical devices.g. acodec logical devicgrovide both
analogueand digital ports when openednd can be
used to effect such a coupling.

Switched digital networks Switched digital networks
can beused for inter-node communication without
exposing the switched nature of the connection.

Equipment, such as digital telephones, attached to a
switched networkareaccessed by applicatiottsrough
logical devices.Thus anISDN phone logical device
may be opened tpresent receivingnd sendingorts,
with an associated event or command conrgoe;
dialling, and othercontrol functions, are implemented
through port commandsThird party connection
between digital telephone equipment is similarly
affectedthrough commands to an appropridogical
device; this may be physically implementethrough
commands to the local switch.

Public switched analogue networks Analogue
telephonesnd otherequipment, attached to thpeiblic
switched network,are similarly accessed. APSTN
telephone logical devicecan beopened to present a

logical device isghen connected, via &hannel, to the
port on the receiving node reaindow logical device.
A copy of the unaware applicatiowindow is then
displayed athe remote node. The parametspgcified
when the virtualwindow logical device is opened
control whether window snapshots or continuous
updates are captured from the unaware application.

Other facilities

User exits and function hooks are provided to ease
programming and debugging. All ports can be
associated with a user exit to monitmta traffic or
procesgdata. All functions, including calland events,
can behookedand passed to an application supplied
eventhandler. Additionally, a full set ofqueries are
provided, sothat applications need ndteeptrack of
status at their node, nor of the applicatidmsing
shared. Application program debugging is assisted
through allowing collaborative applications to be
shared at a single node; thus avoidipdysical
networks being involvedduring initial program
development.



Discussion

The architecture permits applications dgnamically
interact with each otheand through the call manager
mechanismgives each node control tife application
sharing process atthat node. This control can be
arbitrarily complex and sophisticated. Allowing
applications to share obehalf of each otheallows
switching utilities to be developedhose sole job is to
connect and disconnect other applications.

The channel mechanismbased on multipleuni-
directional, logically dedicated communicatidinks,
requires an application to precisedpecify, its data
communication requirements, without any reference to
the underlying physical network. The mappingthat
network is handled quite independerttgiowthe API.
Moreover, the nature of the datlowing over these
links can be queried independently of the digalf;
thus facilitating one application inter-working with
another andabout which ithad no priorknowledge.

Requiring the data type to be independently specified as

an attribute of the sendirapdreceiving ports permits
the network tooffer data conversion facilitiesagain
assisting inter-application communication.

The ability of one port to sendata to multiple ports;
and the corresponding ability for a single port to
receivedata from multiple sending porteaves open
the question of where data gets clonaagwhere data
flows get combined.This function cantherefore be
distributed within the network by intelligedecisions,
taken dynamically, below the API. Very similar
considerations apply tdata serialisation, which is now
clearly identified as a network function, with the
implementation methodand location dynamically
determined.

Likewise,the compressiothints supplied with the data,
allow the network the option of compressing and
decompressinglata, subject tomeeting the quality of
service constraints specified by the sending application.

The treatment of analogue data identically with digital
data is a recognition of the current state of much of
today's voiceand video technology. It ishelpful to
allow analogue applications to be writtenthe same
manner as digital applications, sbat the ultimate
conversion from analogue to digital is a trivial change
of parameters rathéhan afundamental application re-
design.

Connectionand welding of ports allowglataflows to
be submergedelow the APIwhenever possible. It is
not normallypossible tohandle real-timésochronous
traffic if application level softwarenust move data
between different communicatiorimks, or between
communication linksand devices. The process of

surfacing data up through the communications stack to

the application impacts thability to sustaindata rates
and avoid excesgitter and latency. The connection
mechanismembodied inthe proposed architecture
allows the application todescribe the data flows
required, rathethan bedirectly involved inthe data
flow itself. This permits low level hardware and
software coupling of both devicesid communications
adapters.

References

=

Ensor, J.R., Ahuja, S.R., Horn, D.Nuwcco, S.E.,
1988. Proc. 2nd IEEE Conf. on Computer
Workstations, March52-58

2. Ahuja, S.R., Ensor, J.R., 1992. IEEEEmMm.Mag.,
May, 38-43

3. Knister, M.J., Prakash, A., 1990. ACHlonf. on
Computer-Supporte€ooperativeWork CSCW'90,
343-345

4. Crowley, T., Milazzo, P., BakerE., Forsdick, H.,
Tomlinson, R., 1990. ACMConf. on Computer-
Supported Cooperative Work CSCW'329-342

5. Clark, W.J., 1992. IEEE Comm Mag, Ma4-50

o

Ahuja, S.R., Ensor, J.R_ucco, S.E., 1990. ACM
Conf. on Computer-SupportedCooperative Work
CSCW'90,238-248

7. IBM Person-to-Person/2 PRPQ991. Program
number 7J0332



