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INTRODUCTION

In 1827 Gauss presented to the Royal Society of Göttingen his important paper
on the theory of surfaces, which seventy-three years afterward the eminent French
geometer, who has done more than any one else to propagate these principles,
characterizes as one of Gauss’s chief titles to fame, and as still the most finished
and useful introduction to the study of infinitesimal geometry.∗ This memoir may
be called: General Investigations of Curved Surfaces, or the Paper of 1827, to
distinguish it from the original draft written out in 1825, but not published
until 1900. A list of the editions and translations of the Paper of 1827 follows.
There are three editions in Latin, two translations into French, and two into
German. The paper was originally published in Latin under the title:

Ia. Disquisitiones generales circa superficies curvas
auctore Carolo Friderico Gauss.

Societati regiæ oblatæ D. 8. Octob. 1827,
and was printed in: Commentationes societatis regiæ scientiarum Gottingensis
recentiores, Commentationes classis mathematicæ. Tom. VI. (ad a. 1823–1827).
Gottingæ, 1828, pages 99–146. This sixth volume is rare; so much so, indeed,
that the British Museum Catalogue indicates that it is missing in that collection.
With the signatures changed, and the paging changed to pages 1–50, Ia also
appears with the title page added:

Ib. Disquisitiones generales circa superficies curvas
auctore Carolo Friderico Gauss.

Gottingæ. Typis Dieterichianis. 1828.
II. In Monge’s Application de l’analyse à la géométrie, fifth edition, edited

by Liouville, Paris, 1850, on pages 505–546, is a reprint, added by the Editor,
in Latin under the title: Recherches sur la théorie générale des surfaces courbes ;
Par M. C.-F. Gauss.

IIIa. A third Latin edition of this paper stands in: Gauss, Werke, Her-
ausgegeben von der Königlichen Gesellschaft der Wissenschaften zu Göttingen,
Vol. 4, Göttingen, 1873, pages 217–258, without change of the title of the original
paper (Ia).

IIIb. The same, without change, in Vol. 4 of Gauss, Werke, Zweiter Abdruck,
Göttingen, 1880.

IV. A French translation was made from Liouville’s edition, II, by Captain
Tiburce Abadie, ancien élève de l’École Polytechnique, and appears in Nouvelles
Annales de Mathématique, Vol. 11, Paris, 1852, pages 195–252, under the title:
Recherches générales sur les surfaces courbes ; Par M. Gauss. This latter also
appears under its own title.

Va. Another French translation is: Recherches Générales sur les Surfaces
Courbes. Par M. C.-F. Gauss, traduites en français, suivies de notes et d’études
sur divers points de la Théorie des Surfaces et sur certaines classes de Courbes,
par M. E. Roger, Paris, 1855.

∗G. Darboux, Bulletin des Sciences Math. Ser. 2, vol. 24, page 278, 1900.
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Vb. The same. Deuxième Edition. Grenoble (or Paris), 1870 (or 1871),
160 pages.

VI. A German translation is the first portion of the second part, namely,
pages 198–232, of: Otto Böklen, Analytische Geometrie des Raumes, Zweite
Auflage, Stuttgart, 1884, under the title (on page 198): Untersuchungen über
die allgemeine Theorie der krummen Flächen. Von C. F. Gauss. On the title
page of the book the second part stands as: Disquisitiones generales circa
superficies curvas von C. F. Gauss, ins Deutsche übertragen mit Anwendungen
und Zusätzen. . . .

VIIa. A second German translation is No. 5 of Ostwald’s Klassiker der ex-
acten Wissenschaften: Allgemeine Flächentheorie (Disquisitiones generales circa
superficies curvas) von Carl Friedrich Gauss, (1827). Deutsch herausgegeben von
A. Wangerin. Leipzig, 1889. 62 pages.

VIIb. The same. Zweite revidirte Auflage. Leipzig, 1900. 64 pages.
The English translation of the Paper of 1827 here given is from a copy of

the original paper, Ia; but in the preparation of the translation and the notes
all the other editions, except Va, were at hand, and were used. The excellent
edition of Professor Wangerin, VII, has been used throughout most freely for the
text and notes, even when special notice of this is not made. It has been the
endeavor of the translators to retain as far as possible the notation, the form and
punctuation of the formulæ, and the general style of the original papers. Some
changes have been made in order to conform to more recent notations, and the
most important of those are mentioned in the notes.

The second paper, the translation of which is here given, is the abstract
(Anzeige) which Gauss presented in German to the Royal Society of Göttingen,
and which was published in the Göttingische gelehrte Anzeigen. Stück 177.
Pages 1761–1768. 1827. November 5. It has been translated into English from
pages 341–347 of the fourth volume of Gauss’s Works. This abstract is in the
nature of a note on the Paper of 1827, and is printed before the notes on that
paper.

Recently the eighth volume of Gauss’s Works has appeared. This contains on
pages 408–442 the paper which Gauss wrote out, but did not publish, in 1825.
This paper may be called the New General Investigations of Curved Surfaces, or
the Paper of 1825, to distinguish it from the Paper of 1827. The Paper of 1825
shows the manner in which many of the ideas were evolved, and while incomplete
and in some cases inconsistent, nevertheless, when taken in connection with the
Paper of 1827, shows the development of these ideas in the mind of Gauss. In
both papers are found the method of the spherical representation, and, as types,
the three important theorems: The measure of curvature is equal to the product
of the reciprocals of the principal radii of curvature of the surface, The measure
of curvature remains unchanged by a mere bending of the surface, The excess
of the sum of the angles of a geodesic triangle is measured by the area of the
corresponding triangle on the auxiliary sphere. But in the Paper of 1825 the first
six sections, more than one-fifth of the whole paper, take up the consideration of
theorems on curvature in a plane, as an introduction, before the ideas are used in
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space; whereas the Paper of 1827 takes up these ideas for space only. Moreover,
while Gauss introduces the geodesic polar coordinates in the Paper of 1825, in
the Paper of 1827 he uses the general coordinates, p, q, thus introducing a new
method, as well as employing the principles used by Monge and others.

The publication of this translation has been made possible by the liberality of
the Princeton Library Publishing Association and of the Alumni of the University
who founded the Mathematical Seminary.

H. D. Thompson.
Mathematical Seminary,

Princeton University Library,
January 29, 1902.
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GENERAL INVESTIGATIONS
OF

CURVED SURFACES
BY

KARL FRIEDRICH GAUSS

PRESENTED TO THE ROYAL SOCIETY, OCTOBER 8, 1827

1.

Investigations, in which the directions of various straight lines in space are
to be considered, attain a high degree of clearness and simplicity if we employ,
as an auxiliary, a sphere of unit radius described about an arbitrary centre, and
suppose the different points of the sphere to represent the directions of straight
lines parallel to the radii ending at these points. As the position of every point
in space is determined by three coordinates, that is to say, the distances of the
point from three mutually perpendicular fixed planes, it is necessary to consider,
first of all, the directions of the axes perpendicular to these planes. The points
on the sphere, which represent these directions, we shall denote by (1), (2), (3).
The distance of any one of these points from either of the other two will be a
quadrant; and we shall suppose that the directions of the axes are those in which
the corresponding coordinates increase.

2.

It will be advantageous to bring together here some propositions which are
frequently used in questions of this kind.

I. The angle between two intersecting straight lines is measured by the arc
between the points on the sphere which correspond to the directions of the lines.

II. The orientation of any plane whatever can be represented by the great
circle on the sphere, the plane of which is parallel to the given plane.

III. The angle between two planes is equal to the spherical angle between
the great circles representing them, and, consequently, is also measured by the
arc intercepted between the poles of these great circles. And, in like manner, the
angle of inclination of a straight line to a plane is measured by the arc drawn
from the point which corresponds to the direction of the line, perpendicular to
the great circle which represents the orientation of the plane.
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IV. Letting x, y, z; x′, y′, z′ denote the coordinates of two points, r the
distance between them, and L the point on the sphere which represents the
direction of the line drawn from the first point to the second, we shall have

x′ = x+ r cos(1)L,

y′ = y + r cos(2)L,

z′ = z + r cos(3)L.

V. From this it follows at once that, generally,

cos2(1)L+ cos2(2)L+ cos2(3)L = 1,

and also, if L′ denote any other point on the sphere,

cos(1)L · cos(1)L′ + cos(2)L · cos(2)L′ + cos(3)L · cos(3)L′ = cosLL′.

VI. Theorem. If L, L′, L′′, L′′′ denote four points on the sphere, and A the
angle which the arcs LL′, L′′L′′′ make at their point of intersection, then we shall
have

cosLL′′ · cosL′L′′′ − cosLL′′′ · cosL′L′′ = sinLL′ · sinL′′L′′′ · cosA.

Demonstration. Let A denote also the point of intersection itself, and set

AL = t, AL′ = t′, AL′′ = t′′, AL′′′ = t′′′.

Then we shall have

cosLL′′ = cos t cos t′′ + sin t sin t′′ cosA,

cosL′L′′′ = cos t′ cos t′′′ + sin t′ sin t′′′ cosA,

cosLL′′′ = cos t cos t′′′ + sin t sin t′′′ cosA,

cosL′L′′ = cos t′ cos t′′ + sin t′ sin t′′ cosA;

and consequently,

cosLL′′ · cosL′L′′′ − cosLL′′′ · cosL′L′′

= cosA(cos t cos t′′ sin t′ sin t′′′ + cos t′ cos t′′′ sin t sin t′′

− cos t cos t′′′ sin t′ sin t′′ − cos t′ cos t′′ sin t sin t′′′)

= cosA(cos t sin t′ − sin t cos t′)(cos t′′ sin t′′′ − sin t′′ cos t′′′)†

= cosA · sin(t′ − t) · sin(t′′′ − t′′)
= cosA · sinLL′ · sinL′′L′′′.

But as there are for each great circle two branches going out from the point A,
these two branches form at this point two angles whose sum is 180◦. But our
analysis shows that those branches are to be taken whose directions are in the
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sense from the point L to L′, and from the point L′′ to L′′′; and since great
circles intersect in two points, it is clear that either of the two points can be
chosen arbitrarily. Also, instead of the angle A, we can take the arc between
the poles of the great circles of which the arcs LL′, L′′L′′′ are parts. But it is
evident that those poles are to be chosen which are similarly placed with respect
to these arcs; that is to say, when we go from L to L′ and from L′′ to L′′′, both
of the two poles are to be on the right, or both on the left.

VII. Let L, L′, L′′ be the three points on the sphere and set, for brevity,

cos(1)L = x, cos(2)L = y, cos(3)L = z,

cos(1)L′ = x′, cos(2)L′ = y′, cos(3)L′ = z′,

cos(1)L′′ = x′′, cos(2)L′′ = y′′, cos(3)L′′ = z′′;

and also
xy′z′′ + x′y′′z + x′′yz′ − xy′′z′ − x′yz′′ − x′′y′z = ∆.

Let λ denote the pole of the great circle of which LL′ is a part, this pole being
the one that is placed in the same position with respect to this arc as the
point (1) is with respect to the arc (2)(3). Then we shall have, by the preceding
theorem,

yz′ − y′z = cos(1)λ · sin(2)(3) · sinLL′,
or, because (2)(3) = 90◦,

yz′ − y′z = cos(1)λ · sinLL′,

and similarly,

zx′ − z′x = cos(2)λ · sinLL′,
xy′ − x′y = cos(3)λ · sinLL′.

Multiplying these equations by x′′, y′′, z′′ respectively, and adding, we obtain,
by means of the second of the theorems deduced in V,

∆ = cosλL′′ · sinLL′.

Now there are three cases to be distinguished. First, when L′′ lies on the great
circle of which the arc LL′ is a part, we shall have λL′′ = 90◦, and consequently,
∆ = 0. If L′′ does not lie on that great circle, the second case will be when L′′ is
on the same side as λ; the third case when they are on opposite sides. In the last
two cases the points L, L′, L′′ will form a spherical triangle, and in the second
case these points will lie in the same order as the points (1), (2), (3), and in the
opposite order in the third case. Denoting the angles of this triangle simply by



6 karl friedrich gauss

L, L′, L′′ and the perpendicular drawn on the sphere from the point L′′ to the
side LL′ by p, we shall have

sin p = sinL · sinLL′′ = sinL′ · sinL′L′′,

and
λL′′ = 90◦ ∓ p,

the upper sign being taken for the second case, the lower for the third. From
this it follows that

±∆ = sinL · sinLL′ · sinLL′′ = sinL′ · sinLL′ · sinL′L′′
= sinL′′ · sinLL′′ · sinL′L′′.

Moreover, it is evident that the first case can be regarded as contained in the
second or third, and it is easily seen that the expression ±∆ represents six times
the volume of the pyramid formed by the points L, L′, L′′ and the centre of the
sphere. Whence, finally, it is clear that the expression ±1

6
∆ expresses generally

the volume of any pyramid contained between the origin of coordinates and the
three points whose coordinates are x, y, z; x′, y′, z′; x′′, y′′, z′′.

3.

A curved surface is said to possess continuous curvature at one of its points A,
if the directions of all the straight lines drawn from A to points of the surface
at an infinitely small distance from A are deflected infinitely little from one and
the same plane passing through A. This plane is said to touch the surface at
the point A. If this condition is not satisfied for any point, the continuity of the
curvature is here interrupted, as happens, for example, at the vertex of a cone.
The following investigations will be restricted to such surfaces, or to such parts
of surfaces, as have the continuity of their curvature nowhere interrupted. We
shall only observe now that the methods used to determine the position of the
tangent plane lose their meaning at singular points, in which the continuity of
the curvature is interrupted, and must lead to indeterminate solutions.

4.

The orientation of the tangent plane is most conveniently studied by means
of the direction of the straight line normal to the plane at the point A, which is
also called the normal to the curved surface at the point A. We shall represent
the direction of this normal by the point L on the auxiliary sphere, and we shall
set

cos(1)L = X, cos(2)L = Y, cos(3)L = Z;

and denote the coordinates of the point A by x, y, z. Also let x + dx, y + dy,
z + dz be the coordinates of another point A′ on the curved surface; ds its
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distance from A, which is infinitely small; and finally, let λ be the point on the
sphere representing the direction of the element AA′. Then we shall have

dx = ds · cos(1)λ, dy = ds · cos(2)λ, dz = ds · cos(3)λ

and, since λL must be equal to 90◦,

X cos(1)λ+ Y cos(2)λ+ Z cos(3)λ = 0.

By combining these equations we obtain

X dx+ Y dy + Z dz = 0.

There are two general methods for defining the nature of a curved surface.
The first uses the equation between the coordinates x, y, z, which we may suppose
reduced to the form W = 0, where W will be a function of the indeterminates
x, y, z. Let the complete differential of the function W be

dW = P dx+Qdy +Rdz

and on the curved surface we shall have

P dx+Qdy +Rdz = 0,

and consequently,

P cos(1)λ+Q cos(2)λ+R cos(3)λ = 0.

Since this equation, as well as the one we have established above, must be true
for the directions of all elements ds on the curved surface, we easily see that
X, Y , Z must be proportional to P , Q, R respectively, and consequently, since

X2 + Y 2 + Z2 = 1, †

we shall have either

X =
P√

P 2 +Q2 +R2
, Y =

Q√
P 2 +Q2 +R2

, Z =
R√

P 2 +Q2 +R2

or

X =
−P√

P 2 +Q2 +R2
, Y =

−Q√
P 2 +Q2 +R2

, Z =
−R√

P 2 +Q2 +R2
.

The second method expresses the coordinates in the form of functions of two
variables, p, q. Suppose that differentiation of these functions gives

dx = a dp+ a′ dq,

dy = b dp + b′ dq,

dz = c dp + c′ dq.
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Substituting these values in the formula given above, we obtain

(aX + bY + cZ) dp+ (a′X + b′Y + c′Z) dq = 0.

Since this equation must hold independently of the values of the differentials
dp, dq, we evidently shall have

aX + bY + cZ = 0, a′X + b′Y + c′Z = 0.

From this we see that X, Y , Z will be proportioned to the quantities

bc′ − cb′, ca′ − ac′, ab′ − ba′.

Hence, on setting, for brevity,√
(bc′ − cb′)2 + (ca′ − ac′)2 + (ab′ − ba′)2 = ∆,

we shall have either

X =
bc′ − cb′

∆
, Y =

ca′ − ac′
∆

, Z =
ab′ − ba′

∆

or

X =
cb′ − bc′

∆
, Y =

ac′ − ca′
∆

, Z =
ba′ − ab′

∆
.

With these two general methods is associated a third, in which one of the
coordinates, z, say, is expressed in the form of a function of the other two, x, y.
This method is evidently only a particular case either of the first method, or of
the second. If we set

dz = t dx+ u dy

we shall have either

X =
−t√

1 + t2 + u2
, Y =

−u√
1 + t2 + u2

, Z =
1√

1 + t2 + u2

or

X =
t√

1 + t2 + u2
, Y =

u√
1 + t2 + u2

, Z =
−1√

1 + t2 + u2
.

5.

The two solutions found in the preceding article evidently refer to opposite
points of the sphere, or to opposite directions, as one would expect, since the
normal may be drawn toward either of the two sides of the curved surface. If we
wish to distinguish between the two regions bordering upon the surface, and call
one the exterior region and the other the interior region, we can then assign to
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each of the two normals its appropriate solution by aid of the theorem derived
in Art. 2 (VII), and at the same time establish a criterion for distinguishing the
one region from the other.

In the first method, such a criterion is to be drawn from the sign of the
quantity W . Indeed, generally speaking, the curved surface divides those regions
of space in which W keeps a positive value from those in which the value of W
becomes negative. In fact, it is easily seen from this theorem that, if W takes
a positive value toward the exterior region, and if the normal is supposed to be
drawn outwardly, the first solution is to be taken. Moreover, it will be easy to
decide in any case whether the same rule for the sign of W is to hold throughout
the entire surface, or whether for different parts there will be different rules. As
long as the coefficients P , Q, R have finite values and do not all vanish at the
same time, the law of continuity will prevent any change.

If we follow the second method, we can imagine two systems of curved lines
on the curved surface, one system for which p is variable, q constant; the other
for which q is variable, p constant. The respective positions of these lines with
reference to the exterior region will decide which of the two solutions must be
taken. In fact, whenever the three lines, namely, the branch of the line of the
former system going out from the point A as p increases, the branch of the
line of the latter system going out from the point A as q increases, and the
normal drawn toward the exterior region, are similarly placed as the x, y, z
axes respectively from the origin of abscissas (e. g., if, both for the former three
lines and for the latter three, we can conceive the first directed to the left, the
second to the right, and the third upward), the first solution is to be taken.
But whenever the relative position of the three lines is opposite to the relative
position of the x, y, z axes, the second solution will hold.

In the third method, it is to be seen whether, when z receives a positive
increment, x and y remaining constant, the point crosses toward the exterior or
the interior region. In the former case, for the normal drawn outward, the first
solution holds; in the latter case, the second.

6.

Just as each definite point on the curved surface is made to correspond to a
definite point on the sphere, by the direction of the normal to the curved surface
which is transferred to the surface of the sphere, so also any line whatever, or
any figure whatever, on the latter will be represented by a corresponding line
or figure on the former. In the comparison of two figures corresponding to one
another in this way, one of which will be as the map of the other, two important
points are to be considered, one when quantity alone is considered, the other
when, disregarding quantitative relations, position alone is considered.

The first of these important points will be the basis of some ideas which
it seems judicious to introduce into the theory of curved surfaces. Thus, to
each part of a curved surface inclosed within definite limits we assign a total or
integral curvature, which is represented by the area of the figure on the sphere
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corresponding to it. From this integral curvature must be distinguished the
somewhat more specific curvature which we shall call the measure of curvature.
The latter refers to a point of the surface, and shall denote the quotient obtained
when the integral curvature of the surface element about a point is divided by
the area of the element itself; and hence it denotes the ratio of the infinitely small
areas which correspond to one another on the curved surface and on the sphere.
The use of these innovations will be abundantly justified, as we hope, by what
we shall explain below. As for the terminology, we have thought it especially
desirable that all ambiguity be avoided. For this reason we have not thought
it advantageous to follow strictly the analogy of the terminology commonly
adopted (though not approved by all) in the theory of plane curves, according to
which the measure of curvature should be called simply curvature, but the total
curvature, the amplitude. But why not be free in the choice of words, provided
they are not meaningless and not liable to a misleading interpretation?

The position of a figure on the sphere can be either similar to the position
of the corresponding figure on the curved surface, or opposite (inverse). The
former is the case when two lines going out on the curved surface from the same
point in different, but not opposite directions, are represented on the sphere by
lines similarly placed, that is, when the map of the line to the right is also to
the right; the latter is the case when the contrary holds. We shall distinguish
these two cases by the positive or negative sign of the measure of curvature.
But evidently this distinction can hold only when on each surface we choose a
definite face on which we suppose the figure to lie. On the auxiliary sphere we
shall use always the exterior face, that is, that turned away from the centre; on
the curved surface also there may be taken for the exterior face the one already
considered, or rather that face from which the normal is supposed to be drawn.
For, evidently, there is no change in regard to the similitude of the figures, if on
the curved surface both the figure and the normal be transferred to the opposite
side, so long as the image itself is represented on the same side of the sphere.

The positive or negative sign, which we assign to the measure of curvature
according to the position of the infinitely small figure, we extend also to the
integral curvature of a finite figure on the curved surface. However, if we wish
to discuss the general case, some explanations will be necessary, which we can
only touch here briefly. So long as the figure on the curved surface is such
that to distinct points on itself there correspond distinct points on the sphere,
the definition needs no further explanation. But whenever this condition is not
satisfied, it will be necessary to take into account twice or several times certain
parts of the figure on the sphere. Whence for a similar, or inverse position,
may arise an accumulation of areas, or the areas may partially or wholly destroy
each other. In such a case, the simplest way is to suppose the curved surface
divided into parts, such that each part, considered separately, satisfies the above
condition; to assign to each of the parts its integral curvature, determining this
magnitude by the area of the corresponding figure on the sphere, and the sign by
the position of this figure; and, finally, to assign to the total figure the integral
curvature arising from the addition of the integral curvatures which correspond to
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the single parts. So, generally, the integral curvature of a figure is equal to
∫
k dσ,

dσ denoting the element of area of the figure, and k the measure of curvature at
any point. The principal points concerning the geometric representation of this
integral reduce to the following. To the perimeter of the figure on the curved
surface (under the restriction of Art. 3) will correspond always a closed line on
the sphere. If the latter nowhere intersect itself, it will divide the whole surface
of the sphere into two parts, one of which will correspond to the figure on the
curved surface; and its area (taken as positive or negative according as, with
respect to its perimeter, its position is similar, or inverse, to the position of the
figure on the curved surface) will represent the integral curvature of the figure
on the curved surface. But whenever this line intersects itself once or several
times, it will give a complicated figure, to which, however, it is possible to assign
a definite area as legitimately as in the case of a figure without nodes; and
this area, properly interpreted, will give always an exact value for the integral
curvature. However, we must reserve for another occasion the more extended
exposition of the theory of these figures viewed from this very general standpoint.

7.

We shall now find a formula which will express the measure of curvature for
any point of a curved surface. Let dσ denote the area of an element of this
surface; then Z dσ will be the area of the projection of this element on the plane
of the coordinates x, y; and consequently, if dΣ is the area of the corresponding
element on the sphere, Z dΣ will be the area of its projection on the same plane.
The positive or negative sign of Z will, in fact, indicate that the position of
the projection is similar or inverse to that of the projected element. Evidently
these projections have the same ratio as to quantity and the same relation as to
position as the elements themselves. Let us consider now a triangular element on
the curved surface, and let us suppose that the coordinates of the three points
which form its projection are

x, y,

x+ dx, y + dy,

x+ δx, y + δy.

The double area of this triangle will be expressed by the formula

dx · δy − dy · δx,

and this will be in a positive or negative form according as the position of the
side from the first point to the third, with respect to the side from the first point
to the second, is similar or opposite to the position of the y-axis of coordinates
with respect to the x-axis of coordinates.

In like manner, if the coordinates of the three points which form the projection
of the corresponding element on the sphere, from the centre of the sphere as
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origin, are

X, Y,

X + dX, Y + dY,

X + δX, Y + δY,

the double area of this projection will be expressed by

dX · δY − dY · δX,

and the sign of this expression is determined in the same manner as above.
Wherefore the measure of curvature at this point of the curved surface will be

k =
dX · δY − dY · δX
dx · δy − dy · δx .

If now we suppose the nature of the curved surface to be defined according to
the third method considered in Art. 4, X and Y will be in the form of functions
of the quantities x, y. We shall have, therefore,

dX =
∂X

∂x
dx+

∂X

∂y
dy,

δX =
∂X

∂x
δx +

∂X

∂y
δy,

dY =
∂Y

∂x
dx +

∂Y

∂y
dy,

δY =
∂Y

∂x
δx +

∂Y

∂y
δy.

When these values have been substituted, the above expression becomes

k =
∂X

∂x
· ∂Y
∂y
− ∂X

∂y
· ∂Y
∂x

.

Setting, as above,
∂z

∂x
= t,

∂z

∂y
= u

and also
∂2z

∂x2
= T,

∂2z

∂x · ∂y = U,
∂2z

∂y2
= V,

or
dt = T dx+ U dy, du = U dx+ V dy,

we have from the formulæ given above

X = −tZ, Y = −uZ, (1− t2 − u2)Z2 = 1;
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and hence
dX = −Z dt − t dZ,
dY = −Z du− u dZ,

(1 + t2 + u2) dZ + Z(t dt+ u du) = 0;

or

dZ = −Z3(t dt+ u du),

dX = −Z3(1 + u2) dt+ Z3tu du,

dY = +Z3tu dt− Z3(1 + t2) du; †

and so
∂X

∂x
= Z3

(−(1 + u2)T + tuU
)
,

∂X

∂y
= Z3

(−(1 + u2)U + tuV
)
,

∂Y

∂x
= Z3

(
tuT − (1 + t2)U

)
,

∂Y

∂y
= Z3

(
tuU − (1 + t2)V

)
.

Substituting these values in the above expression, it becomes

k = Z6(TV − U2)(1 + t2 + u2) = Z4(TV − U2)

=
TV − U2

(1 + t2 + u2)2
.

8.

By a suitable choice of origin and axes of coordinates, we can easily make
the values of the quantities t, u, U vanish for a definite point A. Indeed, the
first two conditions will be fulfilled at once if the tangent plane at this point be
taken for the xy-plane. If, further, the origin is placed at the point A itself, the
expression for the coordinate z evidently takes the form

z = 1
2
T ◦x2 + U◦xy + 1

2
V ◦y2 + Ω,

where Ω will be of higher degree than the second. Turning now the axes of
x and y through an angle M such that

tan 2M =
2U◦

T ◦ − V ◦ ,

it is easily seen that there must result an equation of the form

z = 1
2
Tx2 + 1

2
V y2 + Ω.

In this way the third condition is also satisfied. When this has been done, it is
evident that



14 karl friedrich gauss

I. If the curved surface be cut by a plane passing through the normal itself
and through the x-axis, a plane curve will be obtained, the radius of curvature

of which at the point A will be equal to
1

T
, the positive or negative sign

indicating that the curve is concave or convex toward that region toward which
the coordinates z are positive.

II. In like manner
1

V
will be the radius of curvature at the point A of the

plane curve which is the intersection of the surface and the plane through the
y-axis and the z-axis.

III. Setting z = r cosφ, y = r sinφ, the equation becomes

z = 1
2
(T cos2 φ+ V sin2 φ)r2 + Ω,

from which we see that if the section is made by a plane through the normal
at A and making an angle φ with the x-axis, we shall have a plane curve whose
radius of curvature at the point A will be

1

T cos2 φ+ V sin2 φ
.

IV. Therefore, whenever we have T = V , the radii of curvature in all the
normal planes will be equal. But if T and V are not equal, it is evident that, since
for any value whatever of the angle φ, T cos2 φ+V sin2 φ falls between T and V ,
the radii of curvature in the principal sections considered in I. and II. refer to
the extreme curvatures; that is to say, the one to the maximum curvature, the
other to the minimum, if T and V have the same sign. On the other hand,
one has the greatest convex curvature, the other the greatest concave curvature,
if T and V have opposite signs. These conclusions contain almost all that the
illustrious Euler was the first to prove on the curvature of curved surfaces.

V. The measure of curvature at the point A on the curved surface takes the
very simple form

k = TV,

whence we have the
Theorem. The measure of curvature at any point whatever of the surface

is equal to a fraction whose numerator is unity, and whose denominator is the
product of the two extreme radii of curvature of the sections by normal planes.

At the same time it is clear that the measure of curvature is positive for
concavo-concave or convexo-convex surfaces (which distinction is not essential),
but negative for concavo-convex surfaces. If the surface consists of parts of each
kind, then on the lines separating the two kinds the measure of curvature ought
to vanish. Later we shall make a detailed study of the nature of curved surfaces
for which the measure of curvature everywhere vanishes.
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9.

The general formula for the measure of curvature given at the end of Art. 7
is the most simple of all, since it involves only five elements. We shall arrive at
a more complicated formula, indeed, one involving nine elements, if we wish to
use the first method of representing a curved surface. Keeping the notation of
Art. 4, let us set also

∂2W

∂x2
= P ′,

∂2W

∂y2
= Q′,

∂2W

∂z2
= R′,

∂2W

∂y · ∂z = P ′′,
∂2W

∂x · ∂z = Q′′,
∂2W

∂x · ∂y = R′′,

so that

dP = P ′ dx+R′′ dy +Q′′ dz,

dQ = R′′ dx+Q′ dy + P ′′ dz,

dR = Q′′ dx+ P ′′ dy +R′ dz.

Now since t = −P
R
, we find through differentiation

R2 dt = −RdP + P dR = (PQ′′ −RP ′) dx+ (PP ′′ −RR′′) dy + (PR′ −RQ′′) dz,

or, eliminating dz by means of the equation

P dx+Qdy +Rdz = 0,

R3 dt = (−R2P ′ + 2PRQ′′ − P 2R′) dx+ (PRP ′′ +QRQ′′ − PQR′ −R2R′′) dy.

In like manner we obtain

R3 du = (PRP ′′ +QRQ′′ − PQR′ −R2R′′) dx+ (−R2Q′ + 2QRP ′′ −Q2R′) dy.

From this we conclude that

R3T = −R2P ′ + 2PRQ′′ − P 2R′,

R3U = PRP ′′ +QRQ′′ − PQR′ −R2R′′,

R3V = −R2Q′ + 2QRP ′′ −Q2R′.

Substituting these values in the formula of Art. 7, we obtain for the measure of
curvature k the following symmetric expression:

(P 2 +Q2 +R2)2k = P 2(Q′R′ − P ′′2) +Q2(P ′R′ −Q′′2) +R2(P ′Q′ −R′′2)
+ 2QR(Q′′R′′ − P ′P ′′) + 2PR(P ′′R′′ −Q′Q′′) + 2PQ(P ′′Q′′ −R′R′′).
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10.

We obtain a still more complicated formula, indeed, one involving fifteen
elements, if we follow the second general method of defining the nature of a
curved surface. It is, however, very important that we develop this formula also.
Retaining the notations of Art. 4, let us put also

∂2x

∂p2
= α,

∂2x

∂p · ∂q = α′,
∂2x

∂q2
= α′′,

∂2y

∂p2
= β,

∂2y

∂p · ∂q = β′,
∂2y

∂q2
= β′′,

∂2z

∂p2
= γ,

∂2z

∂p · ∂q = γ′,
∂2z

∂q2
= γ′′;

and let us put, for brevity,

bc′ − cb′ = A,

ca′ − ac′ = B,

ab′ − ba′ = C.

First we see that
Adx+B dy + C dz = 0,

or
dz = −A

C
dx− B

C
dy.

Thus, inasmuch as z may be regarded as a function of x, y, we have

∂z

∂x
= t = −A

C
,

∂z

∂y
= u = −B

C
.

Then from the formulæ

dx = a dp+ a′ dq, dy = b dp+ b′ dq,

we have

C dp = b′ dx− a′ dy,
C dq = −b dx+ a dy.

Thence we obtain for the total differentials of t, u

C3 dt =

(
A
∂C

∂p
− C ∂A

∂p

)
(b′ dx− a′ dy) +

(
C
∂A

∂q
− A ∂C

∂q

)
(b dx− a dy),

C3 du =

(
B
∂C

∂p
− C ∂B

∂p

)
(b′ dx− a′ dy) +

(
C
∂B

∂q
−B ∂C

∂q

)
(b dx− a dy).
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If now we substitute in these formulæ

∂A

∂p
= c′β + bγ′ − cβ′ − b′γ,

∂A

∂q
= c′β′ + bγ′′ − cβ′′ − b′γ′,

∂B

∂p
= a′γ + cα′ − aγ′ − c′α,

∂B

∂q
= a′γ′ + cα′′ − aγ′′ − c′α′,

∂C

∂p
= b′α + aβ′ − bα′ − a′β,

∂C

∂q
= b′α′ + aβ′′ − bα′′ − a′β′;

and if we note that the values of the differentials dt, du thus obtained must
be equal, independently of the differentials dx, dy, to the quantities T dx +
U dy, U dx + V dy respectively, we shall find, after some sufficiently obvious
transformations,

C3T = αAb′2 + βBb′2 + γCb′2

− 2α′Abb′ − 2β′Bbb′ − 2γ′Cbb′

+ α′′Ab2 + β′′Bb2 + γ′′Cb2,

C3U = −αAa′b′ − βBa′b′ − γCa′b′
+ α′A(ab′ + ba′) + β′B(ab′ + ba′) + γ′C(ab′ + ba′)

− α′′Aab− β′′Bab− γ′′Cab,
C3V = αAa′2 + βBa′2 + γCa′2

− 2α′Aaa′ − 2β′Baa′ − 2γ′Caa′

+ α′′Aa2 + β′′Ba2 + γ′′Ca2.

Hence, if we put, for the sake of brevity,

Aα +Bβ + Cγ = D, †(1)

Aα′ +Bβ′ + Cγ′ = D′,(2)

Aα′′ +Bβ′′ + Cγ′′ = D′′,(3)

we shall have

C3T = Db′2 − 2D′bb′ +D′′b2,

C3U = −Da′b′ +D′(ab′ + ba′)−D′′ab,
C3V = Da′2 − 2D′aa′ +D′′a2.

From this we find, after the reckoning has been carried out,

C6(TV − U2) = (DD′′ −D′2)(ab′ − ba′)2 = (DD′′ −D′2)C2,
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and therefore the formula for the measure of curvature

k =
DD′′ −D′2

(A2 +B2 + C2)2
.

11.

By means of the formula just found we are going to establish another, which
may be counted among the most productive theorems in the theory of curved
surfaces. Let us introduce the following notation:

a2 + b2 + c2 = E,

aa′ + bb′ + cc′ = F,

a′2 + b′2 + c′2 = G;

a α + b β + c γ = m,(4)

a α′ + b β′ + c γ′ = m′,(5)

a α′′ + b β′′ + c γ′′ = m′′;(6)

a′ α + b′ β + c′ γ = n,(7)

a′ α′ + b′ β′ + c′ γ′ = n′,(8)

a′ α′′ + b′ β′′ + c′ γ′′ = n′′;(9)

A2 +B2 + C2 = EG− F 2 = ∆.

Let us eliminate from the equations (1), (4), (7) the quantities β, γ, which
is done by multiplying them by bc′ − cb′, b′C − c′B, cB − bC respectively and
adding. In this way we obtain(

A(bc′ − cb′) + a(b′C − c′B) + a′(cB − bC)
)
α

= D(bc′ − cb′) +m(b′C − c′B) + n(cB − bC),

an equation which is easily transformed into

AD = α∆ + a(nF −mG) + a′(mF − nE).

Likewise the elimination of α, γ or α, β from the same equations gives

BD = β∆ + b(nF −mG) + b′(mF − nE),

CD = γ∆ + c(nF −mG) + c′(mF − nE).

Multiplying these three equations by α′′, β′′, γ′′ respectively and adding, we
obtain

(10) DD′′ = (αα′′ + ββ′′ + γγ′′)∆ +m′′(nF −mG) + n′′(mF − nE).
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If we treat the equations (2), (5), (8) in the same way, we obtain

AD′ = α′∆ + a(n′F −m′G) + a′(m′F − n′E),

BD′ = β′∆ + b(n′F −m′G) + b′(m′F − n′E),

CD′ = γ′∆ + c(n′F −m′G) + c′(m′F − n′E);

and after these equations are multiplied by α′, β′, γ′ respectively, addition gives

D′2 = (α′2 + β′2 + γ′2)∆ +m′(n′F −m′G) + n′(m′F − n′E).

A combination of this equation with equation (10) gives

DD′′ −D′2 = (αα′′ + ββ′′ + γγ′′ − α′2 − β′2 − γ′2)∆
+ E(n′2 − nn′′) + F (nm′′ − 2m′n′ +mn′′) +G(m′2 −mm′′).

It is clear that we have

∂E

∂p
= 2m,

∂E

∂q
= 2m′,

∂F

∂p
= m′ + n,

∂F

∂q
= m′′ + n′,

∂G

∂p
= 2n′,

∂G

∂q
= 2n′′,

or

m = 1
2

∂E

∂p
, m′ = 1

2

∂E

∂q
, m′′ =

∂F

∂q
− 1

2

∂G

∂p
, †

n =
∂F

∂p
− 1

2

∂E

∂q
, n′ = 1

2

∂G

∂p
, n′′ = 1

2

∂G

∂q
.

Moreover, it is easily shown that we shall have

αα′′ + ββ′′ + γγ′′ − α′2 − β′2 − γ′2 =
∂n

∂q
− ∂n′

∂p
=
∂m′′

∂p
− ∂m′

∂q

= −1
2
· ∂

2E

∂q2
+

∂2F

∂p · ∂q −
1
2
· ∂

2G

∂p2
.

If we substitute these different expressions in the formula for the measure of
curvature derived at the end of the preceding article, we obtain the following for-
mula, which involves only the quantities E, F , G and their differential quotients
of the first and second orders:

4(EG− F 2)k = E

(
∂E

∂q
· ∂G
∂q
− 2

∂F

∂p
· ∂G
∂q

+

(
∂G

∂p

)2
)

+ F

(
∂E

∂p
· ∂G
∂q
− ∂E

∂q
· ∂G
∂p
− 2

∂E

∂q
· ∂F
∂q

+ 4
∂F

∂p
· ∂F
∂q
− 2

∂F

∂p
· ∂G
∂p

)
+G

(
∂E

∂p
· ∂G
∂p
− 2

∂E

∂p
· ∂F
∂q

+

(
∂E

∂q

)2
)
−2(EG−F 2)

(
∂2E

∂q2
− 2

∂2F

∂p · ∂q +
∂2G

∂p2

)
.
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12.

Since we always have

dx2 + dy2 + dz2 = E dp2 + 2F dp · dq +Gdq2,

it is clear that √
E dp2 + 2F dp · dq +Gdq2

is the general expression for the linear element on the curved surface. The
analysis developed in the preceding article thus shows us that for finding the
measure of curvature there is no need of finite formulæ, which express the
coordinates x, y, z as functions of the indeterminates p, q; but that the general
expression for the magnitude of any linear element is sufficient. Let us proceed
to some applications of this very important theorem.

Suppose that our surface can be developed upon another surface, curved or
plane, so that to each point of the former surface, determined by the coordinates
x, y, z, will correspond a definite point of the latter surface, whose coordinates
are x′, y′, z′. Evidently x′, y′, z′ can also be regarded as functions of the
indeterminates p, q, and therefore for the element

√
dx′2 + dy′2 + dz′2 we shall

have an expression of the form√
E ′ dp2 + 2F ′ dp · dq +G′ dq2,

where E ′, F ′, G′ also denote functions of p, q. But from the very notion
of the development of one surface upon another it is clear that the elements
corresponding to one another on the two surfaces are necessarily equal. Therefore
we shall have identically

E = E ′, F = F ′, G = G′.

Thus the formula of the preceding article leads of itself to the remarkable
Theorem. If a curved surface is developed upon any other surface whatever,

the measure of curvature in each point remains unchanged.

Also it is evident that any finite part whatever of the curved surface will retain
the same integral curvature after development upon another surface.

Surfaces developable upon a plane constitute the particular case to which
geometers have heretofore restricted their attention. Our theory shows at once
that the measure of curvature at every point of such surfaces is equal to zero.
Consequently, if the nature of these surfaces is defined according to the third
method, we shall have at every point

∂2z

∂x2
· ∂

2z

∂y2
−
(

∂2z

∂x · ∂y
)2

= 0,

a criterion which, though indeed known a short time ago, has not, at least to
our knowledge, commonly been demonstrated with as much rigor as is desirable.
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13.

What we have explained in the preceding article is connected with a particular
method of studying surfaces, a very worthy method which may be thoroughly
developed by geometers. When a surface is regarded, not as the boundary of a
solid, but as a flexible, though not extensible solid, one dimension of which is
supposed to vanish, then the properties of the surface depend in part upon the
form to which we can suppose it reduced, and in part are absolute and remain
invariable, whatever may be the form into which the surface is bent. To these
latter properties, the study of which opens to geometry a new and fertile field,
belong the measure of curvature and the integral curvature, in the sense which
we have given to these expressions. To these belong also the theory of shortest
lines, and a great part of what we reserve to be treated later. From this point
of view, a plane surface and a surface developable on a plane, e. g., cylindrical
surfaces, conical surfaces, etc., are to be regarded as essentially identical; and
the generic method of defining in a general manner the nature of the surfaces
thus considered is always based upon the formula√

E dp2 + 2F dp · dq +Gdq2,

which connects the linear element with the two indeterminates p, q. But before
following this study further, we must introduce the principles of the theory of
shortest lines on a given curved surface.

14.

The nature of a curved line in space is generally given in such a way that the
coordinates x, y, z corresponding to the different points of it are given in the
form of functions of a single variable, which we shall call w. The length of such
a line from an arbitrary initial point to the point whose coordinates are x, y, z,
is expressed by the integral∫

dw ·
√(

dx

dw

)2

+

(
dy

dw

)2

+

(
dz

dw

)2

.

If we suppose that the position of the line undergoes an infinitely small variation,
so that the coordinates of the different points receive the variations δx, δy, δz,
the variation of the whole length becomes∫

dx · d δx+ dy · d δy + dz · d δz√
dx2 + dy2 + dz2

,

which expression we can change into the form

dx · δx+ dy · δy + dz · δz√
dx2 + dy2 + dz2

−
∫ (

δx·d dx√
dx2 + dy2 + dz2

+δy·d dy√
dx2 + dy2 + dz2

+δz·d dz√
dx2 + dy2 + dz2

)
.†
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We know that, in case the line is to be the shortest between its end points, all
that stands under the integral sign must vanish. Since the line must lie on the
given surface, whose nature is defined by the equation

P dx+Qdy +Rdz = 0,

the variations δx, δy, δz also must satisfy the equation

P δx+Qδy +Rδz = 0,

and from this it follows at once, according to well-known rules, that the differ-
entials

d
dx√

dx2 + dy2 + dz2
, d

dy√
dx2 + dy2 + dz2

, d
dz√

dx2 + dy2 + dz2

must be proportional to the quantities P , Q, R respectively. Let dr be the
element of the curved line; λ the point on the sphere representing the direction
of this element; L the point on the sphere representing the direction of the normal
to the curved surface; finally, let ξ, η, ζ be the coordinates of the point λ, and
X, Y , Z be those of the point L with reference to the centre of the sphere. We
shall then have

dx = ξ dr, dy = η dr, dz = ζ dr,

from which we see that the above differentials become dξ, dη, dζ. And since the
quantities P , Q, R are proportional to X, Y , Z, the character of shortest lines
is expressed by the equations

dξ

X
=
dη

Y
=
dζ

Z
.

Moreover, it is easily seen that√
dξ2 + dη2 + dζ2

is equal to the small arc on the sphere which measures the angle between the
directions of the tangents at the beginning and at the end of the element dr,

and is thus equal to
dr

ρ
, if ρ denotes the radius of curvature of the shortest line

at this point. Thus we shall have

ρ dξ = X dr, ρ dη = Y dr, ρ dζ = Z dr.

15.

Suppose that an infinite number of shortest lines go out from a given point A
on the curved surface, and suppose that we distinguish these lines from one
another by the angle that the first element of each of them makes with the first
element of one of them which we take for the first. Let φ be that angle, or,
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more generally, a function of that angle, and r the length of such a shortest line
from the point A to the point whose coordinates are x, y, z. Since to definite
values of the variables r, φ there correspond definite points of the surface, the
coordinates x, y, z can be regarded as functions of r, φ. We shall retain for the
notation λ, L, ξ, η, ζ, X, Y , Z the same meaning as in the preceding article,
this notation referring to any point whatever on any one of the shortest lines.

All the shortest lines that are of the same length r will end on another line
whose length, measured from an arbitrary initial point, we shall denote by v.
Thus v can be regarded as a function of the indeterminates r, φ, and if λ′ denotes
the point on the sphere corresponding to the direction of the element dv, and
also ξ′, η′, ζ ′ denote the coordinates of this point with reference to the centre of
the sphere, we shall have

∂x

∂φ
= ξ′ · ∂v

∂φ
,

∂y

∂φ
= η′ · ∂v

∂φ
,

∂z

∂φ
= ζ ′ · ∂v

∂φ
.

From these equations and from the equations

∂x

∂r
= ξ,

∂y

∂r
= η,

∂z

∂r
= ζ

we have

∂x

∂r
· ∂x
∂φ

+
∂y

∂r
· ∂y
∂φ

+
∂z

∂r
· ∂z
∂φ

= (ξξ′ + ηη′ + ζζ ′) · ∂v
∂φ

= cosλλ′ · ∂v
∂φ
.

Let S denote the first member of this equation, which will also be a function of
r, φ. Differentiation of S with respect to r gives

∂S

∂r
=
∂2x

∂r2
· ∂x
∂φ

+
∂2y

∂r2
· ∂y
∂φ

+
∂2z

∂r2
· ∂z
∂φ

+ 1
2
·
∂

((
∂x

∂r

)2

+

(
∂y

∂r

)2

+

(
∂z

∂r

)2
)

∂φ

=
∂ξ

∂r
· ∂x
∂φ

+
∂η

∂r
· ∂y
∂φ

+
∂ζ

∂r
· ∂z
∂φ

+ 1
2
· ∂(ξ2 + η2 + ζ2)

∂φ
.

But
ξ2 + η2 + ζ2 = 1,

and therefore its differential is equal to zero; and by the preceding article we
have, if ρ denotes the radius of curvature of the line r,

∂ξ

∂r
=
X

ρ
,

∂η

∂r
=
Y

ρ
,

∂ζ

∂r
=
Z

ρ
.

Thus we have

∂S

∂r
=

1

ρ
· (Xξ′ + Y η′ + Zζ ′) · ∂v

∂φ
=

1

ρ
· cosLλ′ · ∂v

∂φ
= 0
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since λ′ evidently lies on the great circle whose pole is L. From this we see that
S is independent of r, and is, therefore, a function of φ alone. But for r = 0

we evidently have v = 0, consequently
∂v

∂φ
= 0, and S = 0 independently of φ.

Thus, in general, we have necessarily S = 0, and so cosλλ′ = 0, i. e., λλ′ = 90◦.
From this follows the

Theorem. If on a curved surface an infinite number of shortest lines of equal
length be drawn from the same initial point, the lines joining their extremities
will be normal to each of the lines.

We have thought it worth while to deduce this theorem from the fundamental
property of shortest lines; but the truth of the theorem can be made apparent
without any calculation by means of the following reasoning. Let AB, AB′ be
two shortest lines of the same length including at A an infinitely small angle,
and let us suppose that one of the angles made by the element BB′ with the
lines BA, B′A differs from a right angle by a finite quantity. Then, by the law
of continuity, one will be greater and the other less than a right angle. Suppose
the angle at B is equal to 90◦−ω, and take on the line AB a point C, such that

BC = BB′ · cosecω.

Then, since the infinitely small triangle BB′C may be regarded as plane, we
shall have

CB′ = BC · cosω,

and consequently

AC +CB′ = AC +BC · cosω = AB−BC · (1− cosω) = AB′−BC · (1− cosω),

i. e., the path from A to B′ through the point C is shorter than the shortest
line, Q. E. A.

16.

With the theorem of the preceding article we associate another, which we
state as follows: If on a curved surface we imagine any line whatever, from the
different points of which are drawn at right angles and toward the same side an
infinite number of shortest lines of the same length, the curve which joins their
other extremities will cut each of the lines at right angles. For the demonstration
of this theorem no change need be made in the preceding analysis, except that
φ must denote the length of the given curve measured from an arbitrary point;
or rather, a function of this length. Thus all of the reasoning will hold here also,
with this modification, that S = 0 for r = 0 is now implied in the hypothesis
itself. Moreover, this theorem is more general than the preceding one, for we
can regard it as including the first one if we take for the given line the infinitely
small circle described about the centre A. Finally, we may say that here also
geometric considerations may take the place of the analysis, which, however, we
shall not take the time to consider here, since they are sufficiently obvious.



general investigations of curved surfaces 25

17.

We return to the formula√
E dp2 + 2F dp · dq +Gdq2,

which expresses generally the magnitude of a linear element on the curved surface,
and investigate, first of all, the geometric meaning of the coefficients E, F , G.
We have already said in Art. 5 that two systems of lines may be supposed to
lie on the curved surface, p being variable, q constant along each of the lines of
the one system; and q variable, p constant along each of the lines of the other
system. Any point whatever on the surface can be regarded as the intersection
of a line of the first system with a line of the second; and then the element
of the first line adjacent to this point and corresponding to a variation dp will
be equal to

√
E · dp, and the element of the second line corresponding to the

variation dq will be equal to
√
G · dq. Finally, denoting by ω the angle between

these elements, it is easily seen that we shall have

cosω =
F√
EG

.

Furthermore, the area of the surface element in the form of a parallelogram
between the two lines of the first system, to which correspond q, q+ dq, and the
two lines of the second system, to which correspond p, p+ dp, will be

√
EG− F 2 dp · dq.

Any line whatever on the curved surface belonging to neither of the two
systems is determined when p and q are supposed to be functions of a new
variable, or one of them is supposed to be a function of the other. Let s be the
length of such a curve, measured from an arbitrary initial point, and in either
direction chosen as positive. Let θ denote the angle which the element

ds =
√
E dp2 + 2F dp · dq +Gdq2

makes with the line of the first system drawn through the initial point of the
element, and, in order that no ambiguity may arise, let us suppose that this
angle is measured from that branch of the first line on which the values of p
increase, and is taken as positive toward that side toward which the values of q
increase. These conventions being made, it is easily seen that

cos θ · ds =
√
E · dp+

√
G · cosω · dq =

E dp+ F dq√
E

,

sin θ · ds =
√
G · sinω · dq =

√
(EG− F 2) · dq√

E
.
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18.

We shall now investigate the condition that this line be a shortest line. Since
its length s is expressed by the integral

s =

∫ √
E dp2 + 2F dp · dq +Gdq2,

the condition for a minimum requires that the variation of this integral arising
from an infinitely small change in the position become equal to zero. The
calculation, for our purpose, is more simply made in this case, if we regard
p as a function of q. When this is done, if the variation is denoted by the
characteristic δ, we have

δs =

∫ (
∂E

∂p
· dp2 + 2

∂F

∂p
· dp · dq +

∂G

∂p
· dq2

)
δp+ (2E dp+ 2F dq) d δp

2 ds

=
E dp+ F dq

ds
· δp

+

∫
δp


∂E

∂p
· dp2 + 2

∂F

∂p
· dp · dq +

∂G

∂p
· dq2

2 ds
− d · E dp+ F dq

ds


and we know that what is included under the integral sign must vanish indepen-
dently of δp. Thus we have

∂E

∂p
· dp2 + 2

∂F

∂p
· dp · dq +

∂G

∂p
· dq2 = 2 ds · d · E dp+ F dq

ds

= 2 ds · d ·
(√

E · cos θ
)

=
ds · dE · cos θ√

E
− 2 ds · dθ ·

√
E · sin θ

=
(E dp+ F dq) dE

E
− 2
√
EG− F 2 · dq · dθ

=

(
E dp+ F dq

E

)
·
(
∂E

∂p
· dp+

∂E

∂q
· dq
)
− 2
√
EG− F 2 · dq · dθ.

This gives the following conditional equation for a shortest line:

√
EG− F 2 · dθ =

1

2
· F
E
· ∂E
∂p
· dp+

1

2
· F
E
· ∂E
∂q
· dq +

1

2
· ∂E
∂q
· dp

− ∂F

∂p
· dp− 1

2
· ∂G
∂p
· dq,

which can also be written
√
EG− F 2 · dθ =

1

2
· F
E
· dE +

1

2
· ∂E
∂q
· dp− ∂F

∂p
· dp− 1

2
· ∂G
∂p
· dq.
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From this equation, by means of the equation

cot θ =
E√

EG− F 2
· dp
dq

+
F√

EG− F 2
,

it is also possible to eliminate the angle θ, and to derive a differential equation
of the second order between p and q, which, however, would become more
complicated and less useful for applications than the preceding.

19.

The general formulæ, which we have derived in Arts. 11, 18 for the measure
of curvature and the variation in the direction of a shortest line, become much
simpler if the quantities p, q are so chosen that the lines of the first system cut
everywhere orthogonally the lines of the second system; i. e., in such a way that
we have generally ω = 90◦, or F = 0. Then the formula for the measure of
curvature becomes

4E2G2k = E·∂E
∂q
·∂G
∂q

+E

(
∂G

∂p

)2

+G·∂E
∂p
·∂G
∂p

+G

(
∂E

∂q

)2

−2EG

(
∂2E

∂q2
+
∂2G

∂p2

)
,

and for the variation of the angle θ
√
EG · dθ =

1

2
· ∂E
∂q
· dp− 1

2
· ∂G
∂p
· dq.

Among the various cases in which we have this condition of orthogonality,
the most important is that in which all the lines of one of the two systems, e. g.,
the first, are shortest lines. Here for a constant value of q the angle θ becomes
equal to zero, and therefore the equation for the variation of θ just given shows

that we must have
∂E

∂q
= 0, or that the coefficient E must be independent of q;

i. e., E must be either a constant or a function of p alone. It will be simplest to
take for p the length of each line of the first system, which length, when all the
lines of the first system meet in a point, is to be measured from this point, or, if
there is no common intersection, from any line whatever of the second system.
Having made these conventions, it is evident that p and q denote now the same
quantities that were expressed in Arts. 15, 16 by r and φ, and that E = 1. Thus
the two preceding formulæ become:

4G2k =

(
∂G

∂p

)2

− 2G
∂2G

∂p2
,

√
G · dθ = −1

2
· ∂G
∂p
· dq;

or, setting
√
G = m,

k = − 1

m
· ∂

2m

∂p2
, dθ = −∂m

∂p
· dq.
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Generally speaking, m will be a function of p, q, and mdq the expression for
the element of any line whatever of the second system. But in the particular
case where all the lines p go out from the same point, evidently we must have
m = 0 for p = 0. Furthermore, in the case under discussion we will take for q the
angle itself which the first element of any line whatever of the first system makes
with the element of any one of the lines chosen arbitrarily. Then, since for an
infinitely small value of p the element of a line of the second system (which can
be regarded as a circle described with radius p) is equal to p dq, we shall have
for an infinitely small value of p, m = p, and consequently, for p = 0, m = 0 at

the same time, and
∂m

∂p
= 1.

20.

We pause to investigate the case in which we suppose that p denotes in a
general manner the length of the shortest line drawn from a fixed point A to
any other point whatever of the surface, and q the angle that the first element
of this line makes with the first element of another given shortest line going
out from A. Let B be a definite point in the latter line, for which q = 0, and
C another definite point of the surface, at which we denote the value of q simply
by A. Let us suppose the points B, C joined by a shortest line, the parts of
which, measured from B, we denote in a general way, as in Art. 18, by s; and,
as in the same article, let us denote by θ the angle which any element ds makes
with the element dp; finally, let us denote by θ◦, θ′ the values of the angle θ
at the points B, C. We have thus on the curved surface a triangle formed by
shortest lines. The angles of this triangle at B and C we shall denote simply by
the same letters, and B will be equal to 180◦ − θ, C to θ′ itself. But, since it is
easily seen from our analysis that all the angles are supposed to be expressed,
not in degrees, but by numbers, in such a way that the angle 57◦ 17′ 45′′, to
which corresponds an arc equal to the radius, is taken for the unit, we must set

θ◦ = π −B, θ′ = C,

where 2π denotes the circumference of the sphere. Let us now examine the
integral curvature of this triangle, which is equal to∫

k dσ,

dσ denoting a surface element of the triangle. Wherefore, since this element is
expressed by mdp · dq, we must extend the integral∫∫

kmdp · dq

over the whole surface of the triangle. Let us begin by integration with respect
to p, which, because

k = − 1

m
· ∂

2m

∂p2
,
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gives

dq ·
(
const.− ∂m

∂p

)
,

for the integral curvature of the area lying between the lines of the first system,
to which correspond the values q, q + dq of the second indeterminate. Since this
integral curvature must vanish for p = 0, the constant introduced by integration

must be equal to the value of
∂m

∂q
for p = 0, i. e., equal to unity. Thus we have

dq

(
1− ∂m

∂p

)
,

where for
∂m

∂p
must be taken the value corresponding to the end of this area on

the line CB. But on this line we have, by the preceding article,

∂m

∂q
· dq = −dθ,

whence our expression is changed into dq + dθ. Now by a second integration,
taken from q = 0 to q = A, we obtain for the integral curvature

A+ θ′ − θ◦,
or

A+B + C − π.
The integral curvature is equal to the area of that part of the sphere which

corresponds to the triangle, taken with the positive or negative sign according
as the curved surface on which the triangle lies is concavo-concave or concavo-
convex. For unit area will be taken the square whose side is equal to unity (the
radius of the sphere), and then the whole surface of the sphere becomes equal
to 4π. Thus the part of the surface of the sphere corresponding to the triangle is
to the whole surface of the sphere as ±(A+B +C − π) is to 4π. This theorem,
which, if we mistake not, ought to be counted among the most elegant in the
theory of curved surfaces, may also be stated as follows:

The excess over 180◦ of the sum of the angles of a triangle formed by shortest
lines on a concavo-concave curved surface, or the deficit from 180◦ of the sum
of the angles of a triangle formed hy shortest lines on a concavo-convex curved
surface, is measured by the area of the part of the sphere which corresponds,
through the directions of the normals, to that triangle, if the whole surface of the
sphere is set equal to 720 degrees.

More generally, in any polygon whatever of n sides, each formed by a shortest
line, the excess of the sum of the angles over (2n− 4) right angles, or the deficit
from (2n − 4) right angles (according to the nature of the curved surface), is
equal to the area of the corresponding polygon on the sphere, if the whole surface
of the sphere is set equal to 720 degrees. This follows at once from the preceding
theorem by dividing the polygon into triangles.
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21.

Let us again give to the symbols p, q, E, F , G, ω the general meanings which
were given to them above, and let us further suppose that the nature of the
curved surface is defined in a similar way by two other variables, p′, q′, in which
case the general linear element is expressed by√

E ′ dp′2 + 2F ′ dp′ · dq′ +G′ dq′2.

Thus to any point whatever lying on the surface and defined by definite values
of the variables p, q will correspond definite values of the variables p′, q′, which
will therefore be functions of p, q. Let us suppose we obtain by differentiating
them

dp′ = α dp+ β dq,

dq′ = γ dp + δ dq.

We shall now investigate the geometric meaning of the coefficients α, β, γ, δ.
Now four systems of lines may thus be supposed to lie upon the curved

surface, for which p, q, p′, q′ respectively are constants. If through the definite
point to which correspond the values p, q, p′, q′ of the variables we suppose the
four lines belonging to these different systems to be drawn, the elements of these
lines, corresponding to the positive increments dp, dq, dp′, dq′, will be

√
E · dp,

√
G · dq,

√
E ′ · dp′,

√
G′ · dq′.

The angles which the directions of these elements make with an arbitrary fixed
direction we shall denote by M , N , M ′, N ′, measuring them in the sense in which
the second is placed with respect to the first, so that sin(N −M) is positive. Let
us suppose (which is permissible) that the fourth is placed in the same sense with
respect to the third, so that sin(N ′ −M ′) also is positive. Having made these
conventions, if we consider another point at an infinitely small distance from the
first point, and to which correspond the values p+ dp, q+ dq, p′+ dp′, q′+ dq′ of
the variables, we see without much difficulty that we shall have generally, i. e.,
independently of the values of the increments dp, dq, dp′, dq′,
√
E · dp · sinM +

√
G · dq · sinN =

√
E ′ · dp′ · sinM ′ +

√
G′ · dq′ · sinN ′,

since each of these expressions is merely the distance of the new point from the
line from which the angles of the directions begin. But we have, by the notation
introduced above,

N −M = ω.

In like manner we set
N ′ −M ′ = ω′,

and also
N −M ′ = ψ.
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Then the equation just found can be thrown into the following form:
√
E · dp · sin(M ′ − ω + ψ) +

√
G · dq · sin(M ′ + ψ)

=
√
E ′ · dp′ · sinM ′ +

√
G′ · dq′ · sin(M ′ + ω′),

or
√
E · dp · sin(N ′ − ω − ω′ + ψ)−

√
G · dq · sin(N ′ − ω′ + ψ)

=
√
E ′ · dp′ · sin(N ′ − ω′) +

√
G′ · dq′ · sinN ′.

And since the equation evidently must be independent of the initial direction,
this direction can be chosen arbitrarily. Then, setting in the second formula
N ′ = 0, or in the first M ′ = 0, we obtain the following equations:

√
E ′ · sinω′ · dp′ =

√
E · sin(ω + ω′ − ψ) · dp+

√
G · sin(ω′ − ψ) · dq,√

G′ · sinω′ · dq′ =
√
E · sin(ψ − ω) · dp+

√
G · sinψ · dq;

and these equations, since they must be identical with

dp′ = α dp+ β dq,

dq′ = γ dp + δ dq,

determine the coefficients α, β, γ, δ. We shall have

α =

√
E

E ′
· sin(ω + ω′ − ψ)

sinω′
, β =

√
G

E ′
· sin(ω′ − ψ)

sinω′
,

γ =

√
E

G′
· sin(ψ − ω)

sinω′
, δ =

√
G

G′
· sinψ

sinω′
.

These four equations, taken in connection with the equations

cosω =
F√
EG

, cosω′ =
F ′√
E ′G′

,

sinω =

√
EG− F 2

EG
, sinω′ =

√
E ′G′ − F ′2

E ′G′
,

may be written

α
√
E ′G′ − F ′2 =

√
EG′ · sin(ω + ω′ − ψ),

β
√
E ′G′ − F ′2 =

√
GG′ · sin(ω′ − ψ),

γ
√
E ′G′ − F ′2 =

√
EE ′ · sin(ψ − ω),

δ
√
E ′G′ − F ′2 =

√
GE ′ · sinψ.

Since by the substitutions

dp′ = α dp+ β dq,

dq′ = γ dp + δ dq,
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the trinomial
E ′ dp′2 + 2F ′ dp′ · dq′ +G′ dq′2

is transformed into
E dp2 + 2F dp · dq +Gdq2,

we easily obtain
EG− F 2 = (E ′G′ − F ′2)(αδ − βγ)2;

and since, vice versa, the latter trinomial must be transformed into the former
by the substitution

(αδ − βγ) dp = δ dp′ − β dq′, (αδ − βγ) dq = −γ dp′ + α dq′,

we find

Eδ2 − 2Fγδ +Gγ2 =
EG− F 2

E ′G′ − F ′2 · E
′,

−Eβδ + F (αδ + βγ)−Gαγ =
EG− F 2

E ′G′ − F ′2 · F
′, †

Eβ2 − 2Fαβ +Gα2 =
EG− F 2

E ′G′ − F ′2 ·G
′.

22.

From the general discussion of the preceding article we proceed to the very
extended application in which, while keeping for p, q their most general meaning,
we take for p′, q′ the quantities denoted in Art. 15 by r, φ. We shall use r, φ
here also in such a way that, for any point whatever on the surface, r will be
the shortest distance from a fixed point, and φ the angle at this point between
the first element of r and a fixed direction. We have thus

E ′ = 1, F ′ = 0, ω′ = 90◦.

Let us set also √
G′ = m,

so that any linear element whatever becomes equal to√
dr2 +m2 dφ2.

Consequently, the four equations deduced in the preceding article for α, β, γ, δ
give

√
E · cos(ω − ψ) =

∂r

∂p
,(1)

√
G · cosψ =

∂r

∂q
,(2)
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√
E · sin(ψ − ω) = m · ∂φ

∂p
,(3)

√
G · sinψ = m · ∂φ

∂q
.(4)

But the last and the next to the last equations of the preceding article give

EG− F 2 = E

(
∂r

∂q

)2

− 2F · ∂r
∂p
· ∂r
∂q

+G

(
∂r

∂p

)2

,(5) (
E · ∂r

∂q
− F · ∂r

∂p

)
· ∂φ
∂q

=

(
F · ∂r

∂q
−G · ∂r

∂p

)
· ∂φ
∂p
.(6)

From these equations must be determined the quantities r, φ, ψ and (if
need be) m, as functions of p and q. Indeed, integration of equation (5) will
give r; r being found, integration of equation (6) will give φ; and one or other
of equations (1), (2) will give ψ itself. Finally, m is obtained from one or other
of equations (3), (4).

The general integration of equations (5), (6) must necessarily introduce two
arbitrary functions. We shall easily understand what their meaning is, if we
remember that these equations are not limited to the case we are here considering,
but are equally valid if r and φ are taken in the more general sense of Art. 16, so
that r is the length of the shortest line drawn normal to a fixed but arbitrary line,
and φ is an arbitrary function of the length of that part of the fixed line which is
intercepted between any shortest line and an arbitrary fixed point. The general
solution must embrace all this in a general way, and the arbitrary functions must
go over into definite functions only when the arbitrary line and the arbitrary
functions of its parts, which φ must represent, are themselves defined. In our
case an infinitely small circle may be taken, having its centre at the point from
which the distances r are measured, and φ will denote the parts themselves of
this circle, divided by the radius. Whence it is easily seen that the equations
(5), (6) are quite sufficient for our case, provided that the functions which they
leave undefined satisfy the condition which r and φ satisfy for the initial point
and for points at an infinitely small distance from this point.

Moreover, in regard to the integration itself of the equations (5), (6), we
know that it can be reduced to the integration of ordinary differential equations,
which, however, often happen to be so complicated that there is little to be
gained by the reduction. On the contrary, the development in series, which are
abundantly sufficient for practical requirements, when only a finite portion of
the surface is under consideration, presents no difficulty; and the formulæ thus
derived open a fruitful source for the solution of many important problems. But
here we shall develop only a single example in order to show the nature of the
method.
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23.

We shall now consider the case where all the lines for which p is constant
are shortest lines cutting orthogonally the line for which φ = 0, which line we
can regard as the axis of abscissas. Let A be the point for which r = 0, D any
point whatever on the axis of abscissas, AD = p, B any point whatever on the
shortest line normal to AD at D, and BD = q, so that p can be regarded as
the abscissa, q the ordinate of the point B. The abscissas we assume positive on
the branch of the axis of abscissas to which φ = 0 corresponds, while we always
regard r as positive. We take the ordinates positive in the region in which φ is
measured between 0 and 180◦.

By the theorem of Art. 16 we shall have

ω = 90◦, F = 0, G = 1,

and we shall set also √
E = n.

Thus n will be a function of p, q, such that for q = 0 it must become equal to
unity. The application of the formula of Art. 18 to our case shows that on any
shortest line whatever we must have

dθ =
∂n

∂q
· dp, †

where θ denotes the angle between the element of this line and the element of
the line for which q is constant. Now since the axis of abscissas is itself a shortest
line, and since, for it, we have everywhere θ = 0, we see that for q = 0 we must
have everywhere

∂n

∂q
= 0.

Therefore we conclude that, if n is developed into a series in ascending powers
of q, this series must have the following form:

n = 1 + fq2 + gq3 + hq4 + etc.,

where f , g, h, etc., will be functions of p, and we set

f = f ◦ + f ′p+ f ′′p2 + etc.,
g = g◦ + g′p + g′′p2 + etc.,
h = h◦ + h′p + h′′p2 + etc.,

or

n = 1 + f ◦q2 + f ′pq2 + f ′′p2q2 + etc.
+ g◦q3 + g′pq3 + etc.

+ h◦q4 + etc. etc.
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24.

The equations of Art. 22 give, in our case,

n sinψ =
∂r

∂p
, cosψ =

∂r

∂q
, −n cosψ = m · ∂φ

∂r
, sinψ = m · ∂φ

∂q
,

n2 = n2

(
∂r

∂q

)2

+

(
∂r

∂p

)2

, n2 · ∂r
∂q
· ∂φ
∂q

+
∂r

∂p
· ∂φ
∂p

= 0.

By the aid of these equations, the fifth and sixth of which are contained in the
others, series can be developed for r, φ, ψ, m, or for any functions whatever of
these quantities. We are going to establish here those series that are especially
worthy of attention.

Since for infinitely small values of p, q we must have

r2 = p2 + q2,

the series for r2 will begin with the terms p2 + q2. We obtain the terms of higher
order by the method of undetermined coefficients,∗ by means of the equation(

1

n
· ∂(r2)

∂p

)2

+

(
∂(r2)

∂q

)2

= 4r2.

Thus we have

r2 = p2 + 2
3
f ◦p2q2 + 1

2
f ′p3q2 + (2

5
f ′′ − 4

45
f ◦2)p4q2 etc.[1]

+ q2 + 1
2
g◦p2q3 + 2

5
g′p3q3

+ (2
5
h◦ − 7

45
f ◦2)p2q4.

Then we have, from the formula

r sinψ =
1

2n
· ∂(r2)

∂p
,

r sinψ = p− 1
3
f ◦pq2 − 1

4
f ′p2q2 − (1

5
f ′′ + 8

45
f ◦2)p3q2 etc.[2]

− 1
2
g◦pq3 − 2

5
g′p2q3

− (3
5
h◦ − 8

45
f ◦2)pq4;

and from the formula
r cosψ = 1

2

∂(r2)

∂q
,

r cosψ = q + 2
3
f ◦p2q + 1

2
f ′p3q + (2

5
f ′′ − 4

45
f ◦2)p4q etc.[3]

+ 3
4
g◦p2q2 + 3

5
g′p3q2

+ (4
5
h◦ − 14

45
f ◦2)p2q3.

∗We have thought it useless to give the calculation here, which can be somewhat abridged
by certain artifices.
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These formulæ give the angle ψ. In like manner, for the calculation of the
angle φ, series for r cosφ and r sinφ are very elegantly developed by means of
the partial differential equations

∂ · r cosφ

∂p
= n cosφ · sinψ − r sinφ · ∂φ

∂p
,

∂ · r cosφ

∂q
= cosφ · cosψ − r sinφ · ∂φ

∂q
,

∂ · r sinφ

∂p
= n sinφ · sinψ + r cosφ · ∂φ

∂p
,

∂ · r sinφ

∂q
= sinφ · cosψ + r cosφ · ∂φ

∂q
,

n cosψ · ∂φ
∂q

+ sinψ · ∂φ
∂p

= 0.

A combination of these equations gives

r sinψ

n
· ∂ · r cosφ

∂p
+ r cosψ · ∂ · r cosφ

∂q
= r cosφ,

r sinψ

n
· ∂ · r sinφ

∂p
+ r cosψ · ∂ · r sinφ

∂q
= r sinφ.

From these two equations series for r cosφ, r sinφ are easily developed, whose
first terms must evidently be p, q respectively. The series are

r cosφ = p+ 2
3
f ◦pq2 + 5

12
f ′p2q2 + ( 3

10
f ′′ − 8

45
f ◦2)p3q2 etc.[4]

+ 1
2
g◦pq3 + 7

20
g′p2q3

+ (2
5
h◦ − 7

45
f ◦2)pq4,

r sinφ = q − 1
3
f ◦p2q − 1

6
f ′p3q − ( 1

10
f ′′ − 7

90
f ◦2)p4q etc.[5]

− 1
4
g◦p2q2 − 3

20
g′p3q2

− (1
5
h◦ + 13

90
f ◦2)p2q3.

From a combination of equations [2], [3], [4], [5] a series for r2 cos(ψ + φ), may
be derived, and from this, dividing by the series [1], a series for cos(ψ+φ), from
which may be found a series for the angle ψ+ φ itself. However, the same series
can be obtained more elegantly in the following manner. By differentiating the
first and second of the equations introduced at the beginning of this article, we
obtain

sinψ · ∂n
∂q

+ n cosψ · ∂ψ
∂q

+ sinψ · ∂ψ
∂p

= 0,

and this combined with the equation

n cosψ · ∂φ
∂q

+ sinψ · ∂φ
∂p

= 0
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gives
r sinψ

n
· ∂n
∂q

+
r sinψ

n
· ∂(ψ + φ)

∂p
+ r cosψ · ∂(ψ + φ)

∂q
= 0.

From this equation, by aid of the method of undetermined coefficients, we can
easily derive the series for ψ + φ, if we observe that its first term must be 1

2
π,

the radius being taken equal to unity and 2π denoting the circumference of the
circle,

ψ + φ = 1
2
π − f ◦pq − 2

3
f ′p2q − (1

2
f ′′ − 1

6
f ◦2)p3q etc.[6]

− g◦pq2 − 3
4
g′p2q2

− (h◦ − 1
3
f ◦2)pq3.

It seems worth while also to develop the area of the triangle ABD into a
series. For this development we may use the following conditional equation,
which is easily derived from sufficiently obvious geometric considerations, and in
which S denotes the required area:

r sinψ

n
· ∂S
∂p

+ r cosψ · ∂S
∂q

=
r sinψ

n
·
∫
n dq, †

the integration beginning with q = 0. From this equation we obtain, by the
method of undetermined coefficients,

S = 1
2
pq − 1

12
f ◦p3q − 1

20
f ′p4q − ( 1

30
f ′′ − 1

60
f ◦2)p5q etc.[7]

− 1
12
f ◦pq3 − 3

40
g◦p3q2 − 1

20
g′p4q2

− 7
120
f ′p2q3 − ( 1

15
h◦ + 2

45
f ′′ + 1

60
f ◦2)p3q3

− 1
10
g◦pq4 − 3

40
g′p2q4

− ( 1
10
h◦ − 1

30
f ◦2)pq5.

25.

From the formulæ of the preceding article, which refer to a right triangle
formed by shortest lines, we proceed to the general case. Let C be another point
on the same shortest line DB, for which point p remains the same as for the
point B, and q′, r′, φ′, ψ′, S ′ have the same meanings as q, r, φ, ψ, S have for
the point B. There will thus be a triangle between the points A, B, C, whose
angles we denote by A, B, C, the sides opposite these angles by a, b, c, and
the area by σ. We represent the measure of curvature at the points A, B, C
by α, β, γ respectively. And then supposing (which is permissible) that the
quantities p, q, q − q′ are positive, we shall have

A = φ− φ′, B = ψ, C = π − ψ′,
a = q − q′, b = r′, c = r, σ = S − S ′.
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We shall first express the area σ by a series. By changing in [7] each of the
quantities that refer to B into those that refer to C, we obtain a formula for S ′.
Whence we have, exact to quantities of the sixth order,

σ = 1
2
p(q − q′)(1− 1

6
f ◦(p2 + q2 + qq′ + q′2)

− 1
60
f ′p(6p2 + 7q2 + 7qq′ + 7q′2)

− 1
20
g◦(q + q′)(3p2 + 4q2 + 4q′2)

)
.†

This formula, by aid of series [2], namely,

c sinB = p(1− 1
3
f ◦q2 − 1

4
f ′pq2 − 1

2
g◦q3 − etc.)

can be changed into the following:

σ = 1
2
ac sinB

(
1− 1

6
f ◦(p2 − q2 + qq′ + q′2)

− 1
60
f ′p(6p2 − 8q2 + 7qq′ + 7q′2)

− 1
20
g◦(3p2q + 3p2q′ − 6p3 + 4q2q′ + 4qq′2 + 4q′3)

)
.

The measure of curvature for any point whatever of the surface becomes (by
Art. 19, where m, p, q were what n, q, p are here)

k = − 1

n
· ∂

2n

∂q2
= −2f + 6gq + 12hq2 + etc.

1 + fq2 + etc.
= −2f − 6gq − (12h− 2f 2)q2 − etc.

Therefore we have, when p, q refer to the point B,

β = −2f ◦ − 2f ′p− 6g◦q − 2f ′′p2 − 6g′pq − (12h◦ − 2f ◦2)q2 − etc.

Also

γ = −2f ◦ − 2f ′p− 6g◦q′ − 2f ′′p2 − 6g′pq′ − (12h◦ − 2f ◦2)q′2 − etc.,
α = −2f ◦.

Introducing these measures of curvature into the expression for σ, we obtain the
following expression, exact to quantities of the sixth order (exclusive):

σ = 1
2
ac sinB

(
1 + 1

120
α(4p2 − 2q2 + 3qq′ + 3q′2)

+ 1
120
β(3p2 − 6q2 + 6qq′ + 3q′2)

+ 1
120
γ(3p2 − 2q2 + qq′ + 4q′2)

)
.†

The same precision will remain, if for p, q, q′ we substitute c sinB, c cosB,
c cosB − a. This gives

σ = 1
2
ac sinB

(
1 + 1

120
α(3a2 + 4c2 − 9ac cosB)[8]

+ 1
120
β(3a2 + 3c2 − 12ac cosB)

+ 1
120
γ(4a2 + 3c2 − 9ac cosB)

)
.
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Since all expressions which refer to the line AD drawn normal to BC have
disappeared from this equation, we may permute among themselves the points
A, B, C and the expressions that refer to them. Therefore we shall have, with
the same precision,

σ = 1
2
bc sinA

(
1 + 1

120
α(3b2 + 3c2 − 12bc cosA)[9]

+ 1
120
β(3b2 + 4c2 − 9bc cosA)

+ 1
120
γ(4b2 + 3c2 − 9bc cosA)

)
,

σ = 1
2
ab sinC

(
1 + 1

120
α(3a2 + 4b2 − 9ab cosC)[10]

+ 1
120
β(4a2 + 3b2 − 9ab cosC)

+ 1
120
γ(3a2 + 3b2 − 12ab cosC)

)
.

26.

The consideration of the rectilinear triangle whose sides are equal to a, b, c
is of great advantage. The angles of this triangle, which we shall denote by
A∗, B∗, C∗, differ from the angles of the triangle on the curved surface, namely,
from A, B, C, by quantities of the second order; and it will be worth while to
develop these differences accurately. However, it will be sufficient to show the
first steps in these more tedious than difficult calculations.

Replacing in formulæ [1], [4], [5] the quantities that refer to B by those that
refer to C, we get formulæ for r′2, r′ cosφ′, r′ sinφ′. Then the development of
the expression

r2 + r′2 − (q − q′)2 − 2r cosφ · r′ cosφ′ − 2r sinφ · r′ sinφ′
= b2 + c2 − a2 − 2bc cosA

= 2bc(cosA∗ − cosA),

combined with the development of the expression

r sinφ · r′ cosφ′ − r cosφ · r′ sinφ′ = bc sinA,

gives the following formula:

cosA∗ − cosA = −(q − q′)p sinA
(

1
3
f ◦ + 1

6
f ′p+ 1

4
g◦(q + q′)

+ ( 1
10
f ′′ − 1

45
f ◦2)p2 + 3

20
g′p(q + q′)

+ (1
5
h◦ − 7

90
f ◦2)(q2 + qq′ + q′2) + etc.

)
From this we have, to quantities of the fifth order,

A∗ − A = +(q − q′)p(1
3
f ◦ + 1

6
f ′p+ 1

4
g◦(q + q′) + 1

10
f ′′p2

+ 3
20
g′p(q + q′) + 1

5
h◦(q2 + qq′ + q′2)

− 1
90
f ◦2(7p2 + 7q2 + 12qq′ + 7q′2)

)
.†
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Combining this formula with

2σ = ap
(
1− 1

6
f ◦(p2 + q2 + qq′ + q′2)− etc.

)
and with the values of the quantities α, β, γ found in the preceding article, we
obtain, to quantities of the fifth order,

A∗ = A− σ(1
6
α + 1

12
β + 1

12
γ + 2

15
f ′′p2 + 1

5
g′p(q + q′)[11]

+ 1
5
h◦(3q2 − 2qq′ + 3q′2)

+ 1
90
f ◦2(4p2 − 11q2 + 14qq′ − 11q′2)

)
.

By precisely similar operations we derive

B∗ = B − σ( 1
12
α + 1

6
β + 1

12
γ + 1

10
f ′′p2 + 1

10
g′p(2q + q′)[12]

+ 1
5
h◦(4q2 − 4qq′ + 3q′2)

− 1
90
f ◦2(2p2 + 8q2 − 8qq′ + 11q′2)

)
,

C∗ = C − σ( 1
12
α + 1

12
β + 1

6
γ + 1

10
f ′′p2 + 1

10
g′p(q + 2q′)[13]

+ 1
5
h◦(3q2 − 4qq′ + 4q′2)

− 1
90
f ◦2(2p2 + 11q2 − 8qq′ + 8q′2)

)
.

From these formulæ we deduce, since the sum A∗+B∗+C∗ is equal to two right
angles, the excess of the sum A+B + C over two right angles, namely,

A+B + C = π + σ
(

1
3
α + 1

3
β + 1

3
γ + 1

3
f ′′p2 + 1

2
g′p(q + q′)[14]

+ (2h◦ − 1
3
f ◦2)(q2 − qq′ + q′2)

)
.

This last equation could also have been derived from formula [6].

27.

If the curved surface is a sphere of radius R, we shall have

α = β = γ = −2f ◦ =
1

R2
; f ′′ = 0, g′ = 0, 6h◦ − f ◦2 = 0,

or
h◦ =

1

24R4
.

Consequently, formula [14] becomes

A+B + C = π +
σ

R2
,

which is absolutely exact. But formulæ [11], [12], [13] give

A∗ = A− σ

3R2
− σ

180R4
(2p2 − q2 + 4qq′ − q′2),

B∗ = B − σ

3R2
+

σ

180R4
(p2 − 2q2 + 2qq′ + q′2),

C∗ = C − σ

3R2
+

σ

180R4
(p2 + q2 + 2qq′ − 2q′2);
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or, with equal exactness,

A∗ = A− σ

3R2
− σ

180R4
(b2 + c2 − 2a2),

B∗ = B − σ

3R2
− σ

180R4
(a2 + c2 − 2b2),

C∗ = C − σ

3R2
− σ

180R4
(a2 + b2 − 2c2).

Neglecting quantities of the fourth order, we obtain from the above the well-
known theorem first established by the illustrious Legendre.

28.

Our general formulæ, if we neglect terms of the fourth order, become ex-
tremely simple, namely:

A∗ = A− 1
12
σ(2α + β + γ),

B∗ = B − 1
12
σ(α + 2β + γ),

C∗ = C − 1
12
σ(α + β + 2γ).

Thus to the angles A, B, C on a non-spherical surface, unequal reductions
must be applied, so that the sines of the changed angles become proportional
to the sides opposite. The inequality, generally speaking, will be of the third
order; but if the surface differs little from a sphere, the inequality will be of a
higher order. Even in the greatest triangles on the earth’s surface, whose angles
it is possible to measure, the difference can always be regarded as insensible.
Thus, e. g., in the greatest of the triangles which we have measured in recent
years, namely, that between the points Hohehagen, Brocken, Inselberg, where the
excess of the sum of the angles was 14′′.85348, the calculation gave the following
reductions to be applied to the angles:

Hohehagen . . . . . . −4′′.95113,
Brocken . . . . . . . . .−4′′.95104,
Inselberg . . . . . . . . −4′′.95131.

29.

We shall conclude this study by comparing the area of a triangle on a curved
surface with the area of the rectilinear triangle whose sides are a, b, c. We shall
denote the area of the latter by σ∗; hence

σ∗ = 1
2
bc sinA∗ = 1

2
ac sinB∗ = 1

2
ab sinC∗.

We have, to quantities of the fourth order,

sinA∗ = sinA− 1
12
σ cosA · (2α + β + γ),
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or, with equal exactness,

sinA = sinA∗ · (1 + 1
24
bc cosA · (2α + β + γ)

)
.

Substituting this value in formula [9], we shall have, to quantities of the sixth
order,

σ = 1
2
bc sinA∗ · (1 + 1

120
α(3b2 + 3c2 − 2bc cosA)

+ 1
120
β(3b2 + 4c2 − 4bc cosA)

+ 1
120
γ(4b2 + 3c2 − 4bc cosA)

)
,

or, with equal exactness,

σ = σ∗
(
1 + 1

120
α(a2 + 2b2 + 2c2) + 1

120
β(2a2 + b2 + 2c2) + 1

120
γ(2a2 + 2b2 + c2).

For the sphere this formula goes over into the following form:

σ = σ∗
(
1 + 1

24
α(a2 + b2 + c2)

)
.

It is easily verified that, with the same precision, the following formula may be
taken instead of the above:

σ = σ∗
√

sinA · sinB · sinC
sinA∗ · sinB∗ · sinC∗ .

If this formula is applied to triangles on non-spherical curved surfaces, the error,
generally speaking, will be of the fifth order, but will be insensible in all triangles
such as may be measured on the earth’s surface.
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On the 8th of October, Hofrath Gauss presented to the Royal Society a
paper:

Disquisitiones generales circa superficies curvas.

Although geometers have given much attention to general investigations of
curved surfaces and their results cover a significant portion of the domain of
higher geometry, this subject is still so far from being exhausted, that it can
well be said that, up to this time, but a small portion of an exceedingly fruitful
field has been cultivated. Through the solution of the problem, to find all
representations of a given surface upon another in which the smallest elements
remain unchanged, the author sought some years ago to give a new phase to
this study. The purpose of the present discussion is further to open up other
new points of view and to develop some of the new truths which thus become
accessible. We shall here give an account of those things which can be made
intelligible in a few words. But we wish to remark at the outset that the new
theorems as well as the presentations of new ideas, if the greatest generality is to
be attained, are still partly in need of some limitations or closer determinations,
which must be omitted here.

In researches in which an infinity of directions of straight lines in space is
concerned, it is advantageous to represent these directions by means of those
points upon a fixed sphere, which are the end points of the radii drawn parallel
to the lines. The centre and the radius of this auxiliary sphere are here quite
arbitrary. The radius may be taken equal to unity. This procedure agrees
fundamentally with that which is constantly employed in astronomy, where all
directions are referred to a fictitious celestial sphere of infinite radius. Spherical
trigonometry and certain other theorems, to which the author has added a new
one of frequent application, then serve for the solution of the problems which
the comparison of the various directions involved can present.

If we represent the direction of the normal at each point of the curved surface
by the corresponding point of the sphere, determined as above indicated, namely,
in this way, to every point on the surface, let a point on the sphere correspond;
then, generally speaking, to every line on the curved surface will correspond a
line on the sphere, and to every part of the former surface will correspond a
part of the latter. The less this part differs from a plane, the smaller will be
the corresponding part on the sphere. It is, therefore, a very natural idea to use
as the measure of the total curvature, which is to be assigned to a part of the
curved surface, the area of the corresponding part of the sphere. For this reason
the author calls this area the integral curvature of the corresponding part of the
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curved surface. Besides the magnitude of the part, there is also at the same time
its position to be considered. And this position may be in the two parts similar
or inverse, quite independently of the relation of their magnitudes. The two cases
can be distinguished by the positive or negative sign of the total curvature. This
distinction has, however, a definite meaning only when the figures are regarded as
upon definite sides of the two surfaces. The author regards the figure in the case
of the sphere on the outside, and in the case of the curved surface on that side
upon which we consider the normals erected. It follows then that the positive
sign is taken in the case of convexo-convex or concavo-concave surfaces (which
are not essentially different), and the negative in the case of concavo-convex
surfaces. If the part of the curved surface in question consists of parts of these
different sorts, still closer definition is necessary, which must be omitted here.

The comparison of the areas of two corresponding parts of the curved surface
and of the sphere leads now (in the same manner as, e. g., from the comparison of
volume and mass springs the idea of density) to a new idea. The author designates
as measure of curvature at a point of the curved surface the value of the fraction
whose denominator is the area of the infinitely small part of the curved surface
at this point and whose numerator is the area of the corresponding part of the
surface of the auxiliary sphere, or the integral curvature of that element. It is
clear that, according to the idea of the author, integral curvature and measure
of curvature in the case of curved surfaces are analogous to what, in the case of
curved lines, are called respectively amplitude and curvature simply. He hesitates
to apply to curved surfaces the latter expressions, which have been accepted more
from custom than on account of fitness. Moreover, less depends upon the choice
of words than upon this, that their introduction shall be justified by pregnant
theorems.

The solution of the problem, to find the measure of curvature at any point of
a curved surface, appears in different forms according to the manner in which the
nature of the curved surface is given. When the points in space, in general, are
distinguished by three rectangular coordinates, the simplest method is to express
one coordinate as a function of the other two. In this way we obtain the simplest
expression for the measure of curvature. But, at the same time, there arises a
remarkable relation between this measure of curvature and the curvatures of the
curves formed by the intersections of the curved surface with planes normal to
it. Euler, as is well known, first showed that two of these cutting planes which
intersect each other at right angles have this property, that in one is found the
greatest and in the other the smallest radius of curvature; or, more correctly,
that in them the two extreme curvatures are found. It will follow then from the
above mentioned expression for the measure of curvature that this will be equal
to a fraction whose numerator is unity and whose denominator is the product of
the extreme radii of curvature. The expression for the measure of curvature will
be less simple, if the nature of the curved surface is determined by an equation
in x, y, z. And it will become still more complex, if the nature of the curved
surface is given so that x, y, z are expressed in the form of functions of two new
variables p, q. In this last case the expression involves fifteen elements, namely,
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the partial differential coefficients of the first and second orders of x, y, z with
respect to p and q. But it is less important in itself than for the reason that it
facilitates the transition to another expression, which must be classed with the
most remarkable theorems of this study. If the nature of the curved surface be
expressed by this method, the general expression for any linear element upon
it, or for

√
dx2 + dy2 + dz2, has the form

√
E dp2 + 2F dp · dq +Gdq2, where

E, F , G are again functions of p and q. The new expression for the measure of
curvature mentioned above contains merely these magnitudes and their partial
differential coefficients of the first and second order. Therefore we notice that,
in order to determine the measure of curvature, it is necessary to know only
the general expression for a linear element; the expressions for the coordinates
x, y, z are not required. A direct result from this is the remarkable theorem:
If a curved surface, or a part of it, can be developed upon another surface, the
measure of curvature at every point remains unchanged after the development.
In particular, it follows from this further: Upon a curved surface that can be
developed upon a plane, the measure of curvature is everywhere equal to zero.
From this we derive at once the characteristic equation of surfaces developable
upon a plane, namely,

∂2z

∂x2
· ∂

2z

∂y2
−
(

∂2z

∂x · ∂y
)2

= 0,

when z is regarded as a function of x and y. This equation has been known for
some time, but according to the author’s judgment it has not been established
previously with the necessary rigor.

These theorems lead to the consideration of the theory of curved surfaces from
a new point of view, where a wide and still wholly uncultivated field is open to
investigation. If we consider surfaces not as boundaries of bodies, but as bodies
of which one dimension vanishes, and if at the same time we conceive them as
flexible but not extensible, we see that two essentially different relations must be
distinguished, namely, on the one hand, those that presuppose a definite form of
the surface in space; on the other hand, those that are independent of the various
forms which the surface may assume. This discussion is concerned with the latter.
In accordance with what has been said, the measure of curvature belongs to this
case. But it is easily seen that the consideration of figures constructed upon
the surface, their angles, their areas and their integral curvatures, the joining
of the points by means of shortest lines, and the like, also belong to this case.
All such investigations must start from this, that the very nature of the curved
surface is given by means of the expression of any linear element in the form√
E dp2 + 2F dp · dq +Gdq2. The author has embodied in the present treatise a

portion of his investigations in this field, made several years ago, while he limits
himself to such as are not too remote for an introduction, and may, to some
extent, be generally helpful in many further investigations. In our abstract, we
must limit ourselves still more, and be content with citing only a few of them as
types. The following theorems may serve for this purpose.
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If upon a curved surface a system of infinitely many shortest lines of equal
lengths be drawn from one initial point, then will the line going through the end
points of these shortest lines cut each of them at right angles. If at every point
of an arbitrary line on a curved surface shortest lines of equal lengths be drawn
at right angles to this line, then will all these shortest lines be perpendicular also
to the line which joins their other end points. Both these theorems, of which the
latter can be regarded as a generalization of the former, will be demonstrated
both analytically and by simple geometrical considerations. The excess of the
sum of the angles of a triangle formed by shortest lines over two right angles is
equal to the total curvature of the triangle.

It will be assumed here that that angle (57◦ 17′ 45′′) to which an arc equal to
the radius of the sphere corresponds will be taken as the unit for the angles, and
that for the unit of total curvature will be taken a part of the spherical surface,
the area of which is a square whose side is equal to the radius of the sphere.
Evidently we can express this important theorem thus also: the excess over two
right angles of the angles of a triangle formed by shortest lines is to eight right
angles as the part of the surface of the auxiliary sphere, which corresponds to it
as its integral curvature, is to the whole surface of the sphere. In general, the
excess over 2n− 4 right angles of the angles of a polygon of n sides, if these are
shortest lines, will be equal to the integral curvature of the polygon.

The general investigations developed in this treatise will, in the conclusion,
be applied to the theory of triangles of shortest lines, of which we shall introduce
only a couple of important theorems. If a, b, c be the sides of such a triangle
(they will be regarded as magnitudes of the first order); A, B, C the angles
opposite; α, β, γ the measures of curvature at the angular points; σ the area of
the triangle, then, to magnitudes of the fourth order, 1

3
(α+β+ γ)σ is the excess

of the sum A + B + C over two right angles. Further, with the same degree of
exactness, the angles of a plane rectilinear triangle whose sides are a, b, c, are
respectively

A− 1
12

(2α + β + γ)σ,

B − 1
12

(α + 2β + γ)σ,

C − 1
12

(α + β + 2γ)σ.

We see immediately that this last theorem is a generalization of the familiar
theorem first established by Legendre. By means of this theorem we obtain
the angles of a plane triangle, correct to magnitudes of the fourth order, if we
diminish each angle of the corresponding spherical triangle by one-third of the
spherical excess. In the case of non-spherical surfaces, we must apply unequal
reductions to the angles, and this inequality, generally speaking, is a magnitude
of the third order. However, even if the whole surface differs only a little from
the spherical form, it will still involve also a factor denoting the degree of the
deviation from the spherical form. It is unquestionably important for the higher
geodesy that we be able to calculate the inequalities of those reductions and
thereby obtain the thorough conviction that, for all measurable triangles on the
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surface of the earth, they are to be regarded as quite insensible. So it is, for
example, in the case of the greatest triangle of the triangulation carried out
by the author. The greatest side of this triangle is almost fifteen geographical∗
miles, and the excess of the sum of its three angles over two right angles amounts
almost to fifteen seconds. The three reductions of the angles of the plane triangle
are 4′′.95113, 4′′.95104, 4′′.95131. Besides, the author also developed the missing
terms of the fourth order in the above expressions. Those for the sphere possess
a very simple form. However, in the case of measurable triangles upon the
earth’s surface, they are quite insensible. And in the example here introduced
they would have diminished the first reduction by only two units in the fifth
decimal place and increased the third by the same amount.

∗This German geographical mile is four minutes of arc at the equator, namely, 7.42 kilo-
meters, and is equal to about 4.6 English statute miles. [Translators.]
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Art. 1, p. 3. Gauss got the idea of using the auxiliary sphere from astronomy.
Cf. Gauss’s Abstract, page 43.

Art. 2, p. 3. In the Latin text situs is used for the direction or orientation
of a plane, the position of a plane, the direction of a line, and the position of a
point.

Art. 2, p. 4. In the Latin texts the notation

cos(1)L2 + cos(2)L2 + cos(3)L2 = 1

is used. This is replaced in the translations (except Böklen’s) by the more recent
notation

cos2(1)L+ cos2(2)L+ cos2(3)L = 1.

Art. 2, p. 4. This stands in the original and in Liouville s reprint,

cosA(cos t sin t′ − sin t cos t′)(cos t′′ sin t′′′ − sin t′′ sin t′′′).

Art. 2, pp. 4–6. Theorem VI is original with Gauss, as is also the method
of deriving VII. The following figures show the points and lines of Theorems
VI and VII:

A

L′′′ L′′

L′
L

A

(1)

(2)(3)

L′
L

L′′

p

λ

Art. 3, p. 6. The geometric condition here stated, that the curvature be
continuous for each point of the surface, or part of the surface, considered is
equivalent to the analytic condition that the first and second derivatives of the
function or functions defining the surface be finite and continuous for all points
of the surface, or part of the surface, considered.

Art. 4, p. 7. In the Latin texts the notation XX for X2, etc., is used.
Art. 4, p. 7. “The second method of representing a surface (the expression of

the coordinates by means of two auxiliary variables) was first used by Gauss for
arbitrary surfaces in the case of the problem of conformal mapping. [Astronomis-
che Abhandlungen, edited by H. C. Schumacher, vol. III, Altona, 1825; Gauss,
Werke, vol. IV, p. 189; reprinted in vol. 55 of Ostwald’s Klassiker.—Cf. also
Gauss, Theoria attractionis corporum sphaer. ellipt., Comment. Gött. II, 1813;
Gauss, Werke, vol. V, p. 10.] Here he applies this representation for the first

‡Line number references in the translators’ notes are omitted. Descriptions such as “top
of page n” are retained, but may not match this ebook’s pagination. [Transcriber ]
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time to the determination of the direction of the surface normal, and later also to
the study of curvature and of geodetic lines. The geometrical significance of the
variables p, q is discussed more fully in Art. 17. This method of representation
forms the source of many new theorems, of which these are particularly worthy
of mention: the corollary, that the measure of curvature remains unchanged by
the bending of the surface (Arts. 11, 12); the theorems of Arts. 15, 16 concerning
geodetic lines; the theorem of Art. 20; and, finally, the results derived in the
conclusion, which refer a geodetic triangle to the rectilinear triangle whose sides
are of the same length.” [Wangerin.]

Art. 5, p. 8. “To decide the question, which of the two systems of values
found in Art. 4 for X, Y , Z belong to the normal directed outwards, which to
the normal directed inwards, we need only to apply the theorem of Art. 2 (VII),
provided we use the second method of representing the surface. If, on the
contrary, the surface is defined by the equation between the coordinates W = 0,
then the following simpler considerations lead to the answer. We draw the line dσ
from the point A towards the outer side, then, if dx, dy, dz are the projections
of dσ, we have

P dx+Qdy +Rdz > 0.

On the other hand, if the angle between σ and the normal taken outward is
acute, then

dx

dσ
X +

dy

dσ
Y +

dz

dσ
Z > 0.

This condition, since dσ is positive, must be combined with the preceding, if the
first solution is taken for X, Y , Z. This result is obtained in a similar way, if
the surface is analytically defined by the third method.” [Wangerin.]

Art. 6, p. 10. The definition of measure of curvature here given is the one
generally used. But Sophie Germain defined as a measure of curvature at a
point of a surface the sum of the reciprocals of the principal radii of curvature
at that point, or double the so-called mean curvature. Cf. Crelle’s Journ. für
Math., vol. VII. Casorati defined as a measure of curvature one-half the sum of
the squares of the reciprocals of the principal radii of curvature at a point of the
surface. Cf. Rend. del R. Istituto Lombardo, ser. 2, vol. 22, 1889; Acta Mathem.
vol. XIV, p. 95, 1890.

Art. 6, p. 11. Gauss did not carry out his intention of studying the most
general cases of figures mapped on the sphere.

Art. 7, p. 11. “That the consideration of a surface element which has the
form of a triangle can be used in the calculation of the measure of curvature,
follows from this fact that, according to the formula developed on page 11, k is
independent of the magnitudes dx, dy, δx, δy, and that, consequently, k has the
same value for every infinitely small triangle at the same point of the surface,
therefore also for surface elements of any form whatever lying at that point.”
[Wangerin.]
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Art. 7, p. 12. The notation in the Latin text for the partial derivatives:

dX

dx
,

dX

dy
, etc.,

has been replaced throughout by the more recent notation:

∂X

∂x
,

∂X

∂y
, etc.

Art. 7, p. 11. This formula, as it stands in the original and in Liouville’s
reprint, is

dY = −Z3tu dt− Z3(1 + t2) du.

The incorrect sign in the second member has been corrected in the reprint in
Gauss, Werke, vol. IV, and in the translations.

Art. 8, p. 14. Euler’s work here referred to is found in Mem. de l’Acad.
de Berlin, vol. XVI, 1760.

Art. 10, p. 17. Instead of D, D′, D′′ as here defined, the Italian geometers
have introduced magnitudes denoted by the same letters and equal, in Gauss’s
notation, to

D√
EG− F 2

,
D′√

EG− F 2
,

D′′√
EG− F 2

respectively.
Art. 11, p. 19. In the original and in Liouville’s reprint, two of these formulæ

are incorrectly given:

∂F

∂q
= m′′ + n, n =

∂F

∂q
− 1

2
· ∂E
∂q

.

The proper corrections have been made in Gauss, Werke, vol. IV, and in the
translations.

Art. 13, p. 21. Gauss published nothing further on the properties of devel-
opable surfaces.

Art. 14, p. 21. The transformation is easily made by means of integration by
parts.

Art. 17, p. 25. If we go from the point p, q to the point (p + dp, q), and if
the Cartesian coordinates of the first point are x, y, z, and of the second x+ dx,
y + dy, z + dz; with ds the linear element between the two points, then the
direction cosines of ds are

cosα =
dx

ds
, cos β =

dy

ds
, cos γ =

dz

ds
.

Since we assume here q = Constant or dq = 0, we have also

dx =
∂x

∂p
· dp, dy =

∂y

∂p
· dp, dz =

∂z

∂p
· dp, ds = ±

√
E · dp.
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If dp is positive, the change ds will be taken in the positive direction. Therefore
ds =

√
E · dp,

cosα =
1√
E
· ∂x
∂p
, cos β =

1√
E
· ∂y
∂p
, cos γ =

1√
E
· ∂z
∂p
.

In like manner, along the line p = Constant, if cosα′, cos β′, cos γ′ are the
direction cosines, we obtain

cosα′ =
1√
G
· ∂x
∂q
, cos β′ =

1√
G
· ∂y
∂q
, cos γ′ =

1√
G
· ∂z
∂q
.

And since

cosω = cosα cosα′ + cos β cos β′ + cos γ cos γ′,

cosω =
F√
EG

.

From this follows

sinω =

√
EG− F 2

√
EG

.

And the area of the quadrilateral formed by the lines p, p+ dp, q, q + dq is

dσ =
√
EG− F 2 · dp · dq.

Art. 21, p. 32. In the original, in Liouville’s reprint, in the two French
translations, and in Böklen’s translation, the next to the last formula of this
article is written

Eβδ − F (αδ + βγ) +Gαγ =
EG− F 2

E ′G′ − F ′2 · F
′.

The proper correction in sign has been made in Gauss, Werke, vol. IV, and in
Wangerin’s translation.

Art. 23, p. 34. In the Latin texts and in Roger’s and Böklen’s translations
this formula has a minus sign on the right hand side. The correction in sign has
been made in Abadie’s and Wangerin’s translations.

Art. 23, p. 34. The figure below represents the lines and angles mentioned in
this and the following articles.

Art. 24, p. 35. Derivation of formula [1].
Let

r2 = p2 + q2 +R3 +R4 +R5 +R6 + etc.

where R3 is the aggregate of all the terms of the third degree in p and q, R4 of
all the terms of the fourth degree, etc. Then by differentiating, squaring, and
omitting terms above the sixth degree, we obtain(

∂(r2)

∂p

)2

= 4p2 +

(
∂R3

∂p

)2

+

(
∂R4

∂p

)2

+ 4p
∂R3

∂p
+ 4p

∂R4

∂p

+ 4p
∂R5

∂p
+ 4p

∂R6

∂p
+ 2p

∂R3

∂p

∂R4

∂p
+ 2p

∂R3

∂p

∂R5

∂p
,
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A

B

B′

B′′

C

D

D′

p
dp

q′

q − q′

r′

r

φ φ′
90

ψ′

π − ψ′

ψ

and (
∂(r2)

∂q

)2

= 4q2 +

(
∂R3

∂q

)2

+

(
∂R4

∂q

)2

+ 4q
∂R3

∂q
+ 4q

∂R4

∂q

+ 4q
∂R5

∂q
+ 4q

∂R6

∂q
+ 2q

∂R3

∂q

∂R4

∂q
+ 2q

∂R3

∂q

∂R5

∂q
.

Hence we have(
∂(r2)
∂p

)2

+
(
∂(r2)
∂q

)2

− 4r2

= 4
(
p
∂R3

∂p
+ q

∂R3

∂q
−R3

)
+ 4

(
p
∂R4

∂p
+ q

∂R4

∂q
−R4 + 1

4

(
∂R3

∂p

)2

+ 1
4

(
∂R3

∂q

)2
)

+ 4
(
p
∂R5

∂p
+ q

∂R5

∂q
−R5 + 1

2

∂R3

∂p

∂R4

∂p
+ 1

2

∂R3

∂q

∂R4

∂q

)
+ 4

(
p
∂R6

∂p
+ q

∂R6

∂q
−R6 + 1

4

(
∂R4

∂p

)2

+ 1
4

(
∂R4

∂q

)2

+ 1
2

∂R3

∂p

∂R5

∂p
+ 1

2

∂R3

∂q

∂R5

∂q

)

= 8R3 + 4

(
3R4 + 1

4

(
∂R3

∂p

)2

+ 1
4

(
∂R3

∂q

)2
)

+ 4
(

4R5 + 1
2

∂R3

∂p

∂R4

∂p
+ 1

2

∂R3

∂q

∂R4

∂q

)

+ 4

(
5R6 + 1

4

(
∂R4

∂p

)2

+ 1
4

(
∂R4

∂q

)2

+ 1
2

∂R3

∂p

∂R5

∂p
+ 1

2

∂R3

∂q

∂R5

∂q

)
,

since, according to a familiar theorem for homogeneous functions,

p
∂R3

∂p
+ q

∂R3

∂q
= 3R3, etc.
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By dividing unity by the square of the value of n, given at the end of Art. 23,
and omitting terms above the fourth degree, we have

1− 1

n2
= 2f ◦q2 + 2f ′pq2 + 2g◦q3 − 3f ◦2q4 + 2f ′′p2q2 + 2g′pq3 + 2h◦q4.

This, multiplied by the last equation but one of the preceding page, on rejecting
terms above the sixth degree, becomes(

1− 1

n2

)(
∂(r2)

∂p

)2

= 8f ◦p2q2 + 8f ′p3q2 − 12f ◦2p2q4 + 8h◦p2q4

+ 8g◦p2q3 + 8f ′′p4q2 + 2f ◦q2

(
∂R3

∂p

)2

+ 8f ◦pq2∂R3

∂p
+ 8g′p3q3 + 8f ′p2q2∂R3

∂p
+ 8g◦pq3∂R3

∂p

+ 8f ◦pq2∂R4

∂p
.

Therefore, since from the fifth equation of Art. 24:(
∂(r2)

∂p

)2

+

(
∂(r2)

∂q

)2

− 4r2 =

(
1− 1

n2

)(
∂(r2)

∂p

)2

,

we have

8R3 + 4

(
3R4 + 1

4

(
∂R3

∂p

)2

+ 1
4

(
∂R3

∂q

)2
)

+ 4
(

4R5 + 1
2

∂R3

∂p

∂R4

∂p
+ 1

2

∂R3

∂q

∂R4

∂q

)

+ 4

(
5R6 + 1

4

(
∂R4

∂p

)2

+ 1
4

(
∂R4

∂q

)2

+ 1
2

∂R3

∂p

∂R5

∂p
+ 1

2

∂R3

∂q

∂R5

∂q

)

= 8f◦p2q2 + 8f ′p3q2 + 8g◦p2q3 + 8f◦pq2
∂R3

∂p
− 12f◦2p2q4 + 8f ′′p4q2

+ 8g′p3q3 + 8h◦p2q4 + 2f◦q2
(
∂R3

∂p

)2

+ 8f ′p2q2
∂R3

∂p
+ 8f◦pq2

∂R4

∂p
+ 8g◦pq3

∂R3

∂p
.

Whence, by the method of undetermined coefficients, we find

R3 = 0, R4 = 2
3
f ◦p2q2, R5 = 1

2
f ′p3q2 + 1

2
g◦p2q3,

R6 = (2
5
f ′′ − 4

45
f ◦2)p4q2 + 2

5
g′p3q3 + (2

5
h◦ − 7

45
f ◦2)p2q4.

And therefore we have

r2 = p2 + 2
5
f ◦p2q2 + 1

2
f ′p3q2 + (2

5
f ′′ − 4

45
f ◦2)p4q2 + etc.[1]

+ q2 + 1
2
g◦p2q3 + 2

5
g′p3q3

+ (2
5
h◦ − 7

45
f ◦2)p2q4.
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This method for deriving formula [1] is taken from Wangerin.
Art. 24, p. 35. Derivation of formula [2].
By taking one-half the reciprocal of the series for n given in Art. 23, p. 34,

we obtain

1

2n
= 1

2

[
1− f ◦q2 − f ′pq2 − g◦q3 − f ′′p2q2 − g′pq3 − (h◦ − f ◦2)q4 − etc.

]
.

And by differentiating formula [1] with respect to p, we obtain

∂(r2)

∂p
= 2
[
p+ 1

2
f ◦pq2 + 3

4
f ′p2q2 + 2(2

5
f ′′ − 4

45
f ◦2)p3q2

+ 1
2
g◦pq3 + 3

5
g′p2q3

+ (2
5
h◦ − 7

45
f ◦2)pq4 + etc.

]
.

Therefore, since

r sinψ =
1

2n
· ∂(r2)

∂p
,

we have, by multiplying together the two series above,

r sinψ = p− 1
3
f ◦pq2 − 1

4
f ′p2q2 − (1

5
f ′′ + 8

45
f ◦2)p3q2 − etc.[2]

− 1
2
g◦pq3 − 2

5
g′p2q3

− (3
5
h◦ − 8

45
f ◦2)pq4.

Art. 24, p. 35. Derivation of formula [3].
By differentiating [1] on page 53 with respect to q, we find

∂(r2)

∂q
= 2
[
q + 2

3
f ◦p2q + 1

2
f ′p3q + (2

5
f ′′ − 4

45
f ◦2)p4q

+ 3
4
g◦p2q2 + 3

5
g′p3q2 + (4

5
h◦ − 14

45
f ◦2)p2q3 + etc.

]
.

Therefore we have, since

r cosψ = 1
2

∂(r2)

∂q
,

r cosψ = q + 2
3
f ◦p2q + 1

2
f ′p3q + (2

5
f ′′ − 4

45
f ◦2)p4q + etc.

+ 3
4
g◦p2q2 + 3

5
g′p3q2 + ( 4

15
h◦ − 14

45
f ◦2)p2q3.

[3]

Art. 24, p. 36. Derivation of formula [4].
Since r cosφ becomes equal to p for infinitely small values of p and q, the

series for r cosφ must begin with p. Hence we set

(1) r cosφ = p+R2 +R3 +R4 +R5 + etc.
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Then, by differentiating, we obtain

∂(r cosφ)

∂p
= 1 +

∂R2

∂p
+
∂R3

∂p
+
∂R4

∂p
+
∂R5

∂p
+ etc.,(2)

∂(r cosφ)

∂q
=

∂R2

∂q
+
∂R3

∂q
+
∂R4

∂q
+
∂R5

∂q
+ etc.(3)

By dividing [2] page 53 by n on page 34, we obtain

r sinψ

n
= p− 4

3
f ◦pq2 − 5

4
f ′p2q2 − (6

5
f ′′ + 8

45
f ◦2)p3q2 − etc.(4)

− 3
2
g◦pq3 − 7

5
g′p2q3 − (8

5
h◦ − 68

45
f ◦2)pq4.

Multiplying (2) by (4), we have

(5)
r sinψ

n
· ∂(r cosφ)

∂p

= p+ p
∂R2

∂p
+ p

∂R3

∂p
+ p

∂R4

∂p
+ p

∂R5

∂p
− (6

5
f ′′ + 8

45
f ◦2)p2q2

−4
3
f ◦pq2 − 4

3
f ◦pq2∂R2

∂p
− 4

3
f ◦pq2∂R3

∂p
− 7

5
g′p2q3

− 5
4
f ′p2q2 − 5

4
f ′p2q2∂R2

∂p
− (8

5
h◦ − 68

45
f ◦2)pq4

− 3
2
g◦pq3 − 3

2
g◦pq3∂R2

∂p
− etc.

Multiplying (3) by [3] page 54, we have

(6) r cosψ · ∂(r cosφ)

∂q

= q
∂R2

∂q
+ q

∂R3

∂q
+ q

∂R4

∂q
+ q

∂R5

∂q
+ 1

2
f ′p3q

∂R2

∂q

+ 2
3
f ◦p2q

∂R2

∂q
+ 2

3
f ◦p2q

∂R3

∂q
+ 3

4
g◦p2q2∂R2

∂q
+ etc.

Since

r sinψ

n
· ∂(r cosφ)

∂p
+ r cosψ · ∂(r cosφ)

∂q
= r cosφ,
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we have, by setting (1) equal to the sum of (5) and (6),

p+R2 +R3 +R4 +R5 + etc.

= p+ p
∂R2

∂p
+ p

∂R3

∂p
+ p

∂R4

∂p
+ p

∂R5

∂p
− (8

5
h◦ − 68

45
f ◦2)pq4

+ q
∂R2

∂q
− 4

3
f ◦pq2 − 4

3
f ◦pq2∂R2

∂p
− 4

3
f ◦pq2∂R3

∂p
+ q

∂R5

∂q

+ q
∂R3

∂q
− 5

4
f ′p2q2 − 5

4
f ′p2q2∂R2

∂p
+ 2

3
f ◦p2q

∂R3

∂q

− 3
2
g◦pq3 − 3

2
g◦pq3∂R2

∂p
+ 1

2
f ′p3q

∂R2

∂q

+ q
∂R4

∂q
− (6

5
f ′′ + 8

45
f ◦2)p3q2 + 3

4
g◦p2q2∂R2

∂q

+ 2
3
f ◦p2q

∂R2

∂q
− 7

5
g′p2q3 + etc.,

from which we find

R2 = 0, R3 = 2
3
f ◦pq2, R4 = 5

12
f ′p2q2 + 1

2
g◦pq3,

R5 = 7
20
g′p2q3 + (2

5
h◦ − 7

45
f ◦2)pq4 + ( 3

10
f ′′ − 8

45
f ◦2)p3q2.

Therefore we have finally

r cosφ = p+ 2
3
f ◦pq2 + 5

12
f ′p2q2 + ( 3

10
f ′′ − 8

45
f ◦2)p3q2 + etc.[4]

+ 1
2
g◦pq3 + 7

20
g′p2q3

+ (2
5
h◦ − 7

45
f ◦2)pq4.

Art. 24, p. 36. Derivation of formula [5].
Again, since r sinφ becomes equal to q for infinitely small values of p and q,

we set

(1) r sinφ = q +R2 +R3 +R4 +R5 + etc.

Then we have by differentiation
∂(r sinφ)

∂p
=

∂R2

∂p
+
∂R3

∂p
+
∂R4

∂p
+
∂R5

∂p
+ etc.(2)

∂(r sinφ)

∂q
= 1 +

∂R2

∂q
+
∂R3

∂q
+
∂R4

∂q
+
∂R5

∂q
+ etc.(3)

Multiplying (4) page 54 by this (2), we obtain

(4)
r sinψ

n
· ∂(r sinφ)

∂p

= p
∂R2

∂p
+ p

∂R3

∂p
+ p

∂R4

∂p
+ p

∂R5

∂p
− 5

4
f ′p2q2∂R2

∂p

− 4
3
f ◦pq2∂R2

∂p
− 4

3
f ◦pq2∂R3

∂p
− 3

2
g◦pq3∂R2

∂p
− etc.
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Likewise from (3) and [3] page 54, we obtain

(5) r cosψ · ∂(r sinφ)

∂q

= q + q
∂R2

∂q
+ q

∂R3

∂q
+ q

∂R4

∂q
+ q

∂R5

∂q
+ (2

5
f ′′ − 4

45
f ◦2)p4q

+2
3
f ◦p2q + 2

3
f ◦p2q

∂R2

∂q
+ 2

3
f ◦p2q

∂R3

∂q
− 3

5
g′p3q2

+1
2
f ′p3q + 1

2
f ′p3q

∂R2

∂q
+ (4

5
h◦ − 14

45
f ◦2)p2q3

+3
4
g◦p2q2 + 3

4
g◦p2q2∂R2

∂q
+ etc.

Since
r sinψ

n
· ∂(r sinφ)

∂p
+ r cosψ · ∂(r sinφ)

∂q
= r sinφ,

by setting (1) equal to the sum of (4) and (5), we have

q +R2 +R3 +R4 +R5 + etc.

= q + p
∂R2

∂p
+ p

∂R3

∂p
+ p

∂R4

∂p
+ 1

2f
′p3q + p

∂R5

∂p
+ 1

2f
′p3q

∂R2

∂q
+ q

∂R5

∂q
+ etc.

+ q
∂R2

∂q
+ q

∂R3

∂q
+ q

∂R4

∂q
+ 3

4g
◦p2q2 − 4

3f
◦pq2

∂R3

∂p
+ 3

4g
◦p2q2

∂R3

∂q
+ 2

3f
◦p2q

∂R3

∂q

+ 2
3f
◦p2q − 4

3f
◦pq2

∂R2

∂p
− 5

4f
′p2q2

∂R2

∂p
+ (2

5f
′′ − 4

45f
◦2)p4q

+ 2
3f
◦p2q

∂R2

∂q
− 3

2g
◦pq3

∂R2

∂p
+ 3

5g
′p3q2 + (4

5h
◦ − 14

45f
◦2)p2q3,

from which we find

R2 = 0, R3 = −1
3
f ◦p2q, R4 = −1

6
f ′p3q − 1

4
g◦p2q2,

R5 = −( 1
10
f ′′ − 7

90
f ◦2)p4q − 3

20
g′p3q2 − (1

5
h◦ + 13

90
f ◦2)p2q3.

Therefore, substituting these values in (1), we have

r sinφ = q − 1
3
f ◦p2q − 1

6
f ′p3q − ( 1

10
f ′′ − 7

90
f ◦2)p4q − etc.[5]

− 1
4
g◦p2q2 − 3

20
g′p3q2

− (1
5
h◦ + 13

90
f ◦2)p2q3.

Art. 24, p. 37. Derivation of formula [6].
Differentiating n on page 34 with respect to q, we obtain

∂n

∂q
= 2f ◦q + 2f ′pq + 2f ′′p2q + etc.(1)

+ 3g◦q2 + 3g′pq2 + etc.
+ 4h◦q3 + etc. etc.,
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and hence, multiplying this series by (4) on page 54, we find

r sinψ

n
· ∂n
∂q

= 2f ◦pq + 2f ′p2q + 2f ′′p3q + 3g′p2q2 + etc.(2)

+ 3g◦pq2 + (4h◦ − 8
3
f ◦2)pq3.

For infinitely small values of r, ψ + φ =
π

2
, as is evident from the figure on

page 52. Hence we set

ψ + φ =
π

2
+R1 +R2 +R3 +R4 + etc.

Then we shall have, by differentiation,

∂(ψ + φ)

∂p
=
R1

∂p
+
R2

∂p
+
R3

∂p
+
R4

∂p
+ etc.,(3)

∂(ψ + φ)

∂q
=
R1

∂q
+
R2

∂q
+
R3

∂q
+
R4

∂q
+ etc.(4)

Therefore, multiplying (4) on page 54 by (3), we find

r sinψ

n
· ∂(ψ + φ)

∂p
= p

R1

∂p
+ p

R2

∂p
+ p

R3

∂p
+ p

R4

∂p
+ etc.(5)

− 4
3
f ◦pq2∂R1

∂p
− 4

3
f ◦pq2∂R2

∂p

− 5
4
f ′p2q2∂R1

∂p

− 3
2
g◦pq3∂R1

∂p
,

and, multiplying [3] on page 54 by (4), we find

r cosψ · ∂(ψ + φ)

∂q
= q

R1

∂q
+ q

R2

∂q
+ q

R3

∂q
+ q

R4

∂q
+ etc.(6)

+ 2
3
f ◦p2q

∂R1

∂q
+ 2

3
f ◦p2q

∂R2

∂q

+ 1
2
f ′p3q

∂R1

∂q

+ 3
4
g◦p2q2∂R1

∂q
.

And since

r sinψ

n
· ∂n
∂q

+
r sinψ

n
· ∂(ψ + φ)

∂p
+ r cosψ · ∂(ψ + φ)

∂p
= 0,
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we shall have, by adding (2), (5), and (6),

0 = p
∂R1

∂p
+ 2f ◦pq + 2f ′p2q + 2f ′′p3q − 3

2
g◦pq3∂R1

∂p

+ q
∂R1

∂q
+ p

∂R2

∂p
+ 3g◦pq2 + 3g′p2q2 + q

∂R4

∂q

+ q
∂R2

∂q
+ p

∂R3

∂p
+ (4h◦ − 8

3
f ◦)pq3 + 2

3
f ◦p2q

∂R2

∂q

− 4
3
f ◦pq2∂R1

∂p
+ p

∂R4

∂p
+ 1

2
f ′p3q

∂R1

∂q

+ q
∂R3

∂q
− 4

3
f ◦pq2∂R2

∂p
+ 3

4
g◦p2q2∂R1

∂q

+ 2
3
f ◦p2q

∂R1

∂q
− 5

4
f ◦p2q2∂R1

∂p
+ etc.

From this equation we find

R1 = 0, R2 = −f ◦pq, R3 = −2
3
f ′p2q − g◦pq2,

R4 = −(1
2
f ′′ − 1

6
f ◦2)p3q − 3

4
g′p2q2 − (h◦ − 1

3
f ◦2)pq3.

Therefore we have finally

ψ + φ =
π

2
− f ◦pq − 2

3
f ′p2q − (1

2
f ′′ − 1

6
f ◦2)p3q − etc.[6]

− g◦pq2 − 3
4
g′p2q2

− (h◦ − 1
3
f ◦2)pq3.

Art. 24, p. 37. The differential equation from which formula [7] follows is
derived in the following manner. In the figure on page 52, prolong AD to D′,
making DD′ = dp. Through D′ perpendicular to AD′ draw a geodesic line, which
will cut AB in B′. Finally, take D′B′′ = DB, so that BB′′ is perpendicular
to B′D′. Then, if by ABD we mean the area of the triangle ABD,

∂S

∂r
= lim

AB′D′ − ABD
BB′

= lim
BDD′B′

BB′
= lim

BDD′B′′

DD′
· lim DD′

BB′
,

since the surface BDD′B′′ differs from BDD′B′ only by an infinitesimal of the
second order. And since

BDD′B′′ = dp ·
∫
n dq, or lim

BDD′B′′

DD′
=

∫
n dq,

and since, further,

lim
DD′

BB′
=
∂p

∂r
,

consequently
∂S

∂r
=
∂p

∂r
·
∫
n dq.
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Therefore also
∂S

∂p
· ∂p
∂r

+
∂S

∂q
· ∂q
∂r

=
∂p

∂r
·
∫
n dq.

Finally, from the values for
∂r

∂p
,
∂r

∂q
given at the beginning of Art. 24, p. 35, we

have
∂p

∂r
=

1

n
sinψ,

∂q

∂r
= cosψ,

so that we have
∂S

∂p
· sinψ

n
+
∂S

∂q
· cosψ =

sinψ

n
·
∫
n dq.

[Wangerin.]
Art. 24, p. 37. Derivation of formula [7].
For infinitely small values of p and q, the area of the triangle ABC becomes

equal to 1
2
pq. The series for this area, which is denoted by S, must therefore

begin with 1
2
pq, or R2. Hence we put

S = R2 +R3 +R4 +R5 +R6 + etc.

By differentiating, we obtain

∂S

∂p
=
∂R2

∂p
+
∂R3

∂p
+
∂R4

∂p
+
∂R5

∂p
+
∂R6

∂p
+ etc.,(1)

∂S

∂q
=
∂R2

∂q
+
∂R3

∂q
+
∂R4

∂q
+
∂R5

∂q
+
∂R6

∂q
+ etc.,(2)

and therefore, by multiplying (4) on page 54 by (1), we obtain

(3)
r sinψ

n
· ∂S
∂p

= p
∂R2

∂p
+ p

∂R3

∂p
+ p

∂R4

∂p
+ p

∂R5

∂p
+ p

∂R6

∂p
+ etc.

− 4
3
f ◦pq2∂R2

∂p
− 4

3
f ◦pq2∂R3

∂p
− 4

3
f ◦pq2∂R4

∂p

− 5
4
f ′p2q2∂R2

∂p
− 5

4
f ′p2q2∂R3

∂p

− 3
2
g◦pq3∂R2

∂p
− 3

2
g◦pq3∂R3

∂p

− (6
5
f ′′ + 8

45
f ◦2)p3q2∂R2

∂p

− 7
5
g′p2q3∂R2

∂p

− (3
5
h◦ − 68

45
f ◦2)pq4∂R2

∂p
,
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and multiplying [3] on page 54 by (2), we obtain

(4) r cosψ · ∂S
∂q

= q
∂R2

∂q
+ q

∂R3

∂q
+ q

∂R4

∂q
+ q

∂R5

∂q
+ q

∂R6

∂q
+ etc.

+ 2
3
f ◦p2q

∂R2

∂q
+ 2

3
f ◦p2q

∂R3

∂q
+ 2

3
f ◦p2q

∂R4

∂q

+ 1
2
f ′p3q

∂R2

∂q
+ 1

2
f ′p3q

∂R3

∂q

+ 3
4
g◦p2q2∂R2

∂q
+ 3

4
g◦p2q2∂R3

∂q

+ (2
5
f ′′ − 4

45
f ◦2)p4q

∂R2

∂q

+ 3
5
g′p3q2∂R2

∂q

+ (4
5
h◦ − 14

45
f ◦2)p2q3∂R2

∂q
.

Integrating n on page 34 with respect to q, we find

∫
n dq = q + 1

2
f ◦q3 + 1

3
f ′pq3 + 1

3
f ′′p2q3 + etc.(5)

+ 1
4
g◦q4 + 1

4
g′pq4 + etc.

+ 1
5
h◦q5 + etc. etc.

Multiplying (4) on page 54 by (5), we find

r sinψ

n
·
∫
n dq = pq − f ◦pq3 − 11

12
f ′p2q3 − (13

15
f ′′ + 8

45
f ◦2)p3q3 − etc.(6)

− 5
4
g◦pq4 − 23

20
g′p2q4

− (7
5
h◦ − 16

15
f ◦2)pq5.

Since

r sinψ

n
· ∂S
∂p

+ r cosψ · ∂S
∂q

=
r sinψ

n
·
∫
n dq,
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we obtain, by setting (6) equal to the sum of (3) and (4),

pq − f◦pq3 − 11
12f
′p2q3 − ( 13

15f
′′ + 8

45f
◦2)p3q3 − etc.

− 5
4g
◦pq4 − 23

20g
′p2q4

− ( 7
5h
◦ − 16

15f
◦2)pq5

= p
∂R2

∂p
+ p

∂R3

∂p
+ p

∂R4

∂p
+ p

∂R5

∂p
+ q

∂R5

∂q
+ p

∂R6

∂p
+ 3

4g
◦p2q2

∂R3

∂q
+ etc.

+ q
∂R2

∂q
+ q

∂R3

∂q
+ q

∂R4

∂q
− 4

3f
◦pq2

∂R3

∂p
+ q

∂R6

∂q
− ( 6

5f
′′ + 8

45f
◦2)p3q2

∂R2

∂p

− 4
3f
◦pq2

∂R2

∂p
+ 2

3f
◦p2q

∂R3

∂q
− 4

3f
◦pq2

∂R4

∂p
+ ( 2

5f
′′ − 4

45f
◦2)p4q

∂R2

∂q

+ 2
3f
◦p2q

∂R2

∂q
− 5

4f
′p2q2

∂R2

∂p
+ 2

3f
◦p2q

∂R4

∂q
− 7

5g
′p2q3

∂R2

∂p

+ 1
2f
′p3q

∂R2

∂q
− 5

4f
′p2q2

∂R3

∂p
+ 3

5g
′p3q2

∂R2

∂q

− 3
2g
◦pq3

∂R2

∂p
+ 1

2f
′p3q

∂R3

∂q
− ( 8

5h
◦ − 68

45f
◦2)pq4

∂R2

∂p

+ 3
4g
◦p2q2

∂R2

∂q
− 3

2g
◦pq3

∂R3

∂p
+ ( 4

5h
◦ − 14

45f
◦2)p2q3

∂R2

∂q
.

From this equation we find

R2 = 1
2
pq, R3 = 0, R4 = − 1

12
f ◦pq3 − 1

12
f ◦p3q,

R5 = − 1
20
f ′p4q − 3

40
g◦p3q2 − 7

120
f ′p2q3 − 1

10
g◦pq4,

R6 = −( 1
10
h◦ − 1

30
f ◦2)pq5 − ( 1

15
h◦ + 2

45
f ′′ + 1

60
f ◦2)p3q3

− 3
40
g′p2q4 − ( 1

30
f ′′ − 1

60
f ◦2)p5q − 1

20
g′p4q2.

Therefore we have

S = 1
2
pq − 1

12
f ◦pq3 − 1

20
f ′p4q − ( 1

30
f ′′ − 1

60
f ◦2)p5q − etc.[7]

− 1
12
f ◦p3q − 3

40
g◦p3q2 − 1

20
g′p4q2

− 7
120
f ′p2q3 − ( 1

15
h◦ + 2

45
f ′′ + 1

60
f ◦2)p3q3

− 1
10
g◦pq4 − 3

40
g′p2q4

− ( 1
10
h◦ − 1

30
f ◦2)pq5.

Art. 25, p. 38. 3p2 + 4q2 + 4qq′ + 4q′2 is replaced by 3p2 + 4q2 + 4q′2. This
error appears in all the reprints and translations (except Wangerin’s).

Art. 25, p. 38. 3p2− 2q2 + qq′+ 4qq′ is replaced by 3p2− 2q2 + qq′+ 4q′2. This
correction is noted in all the translations, and in Liouville’s reprint.

Art. 25, p. 38. Derivation of formulæ [8], [9], [10].
By priming the q’s in [7] we obtain at once a series for S ′. Then, since

σ = S − S ′, we have

σ = 1
2
p(q − q′)− 1

12
f ◦p3(q − q′) − 1

20
f ′p4(q − q′) − 3

40
g◦p3(q2 − q′2)

− 1
12
f ◦p(q3 − q′3)− 7

120
f ′p2(q3 − q′3)− 1

10
g◦p(q4 − q′4),
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correct to terms of the sixth degree. This expression may be written as follows:

σ = 1
2
p(q − q′)(1− 1

6
f ◦(p2 + q2 + qq′ + q′2)

− 1
60
f ′p(6p2 + 7q2 + 7qq′ + 7q′2)

− 1
20
g◦(q + q′)(3p2 + 4q2 + 4q′2)

)
,

or, after factoring,

(1) σ = 1
2p(q − q′)

(
1− 1

3f
◦q2 − 1

4f
′pq2 − 1

2g
◦q3
)(

1− 1
6f
◦(p2 − q2 + qq′ + q′2)

− 1
60f
′p(6p2 − 8q2 + 7qq′ + 7q′2)− 1

20g
◦(3p2q + 3p2q′ − 6q3 + 4q2q′ + 4qq′2 + 4q′3)

)
.

The last factor on the right in (1) can be written, thus:(
1− 2

120
f ◦(4p2) − 2

120
f ◦(3p2) − 2

120
f ′p(6qq′) − 2

120
f ◦(3p2) − 2

120
f ′p(qq′)

+ 2
120
f ◦(2q2) + 2

120
f ◦(6q2) − 2

120
f ′p(3q′2) + 2

120
f ◦(2q2) − 2

120
f ′p(4q′2)

− 2
120
f ◦(3qq′)− 2

120
f ◦(6qq′) − 6

120
g◦q(3p2) − 2

120
f ◦(qq′) − 6

120
g◦q′(3p2)

− 2
120
f ◦(3q′2) − 2

120
f ◦(3q′2) + 6

120
g◦q(6q2) − 2

120
f ◦(4q′2) + 6

120
g◦q′(2q2)

− 2
120
f ′p(3p2)− 6

120
g◦q(6qq′)− 2

120
f ′p(3p2)− 6

120
g◦q′(qq′)

+ 2
120
f ′p(6q2) − 6

120
g◦q(3q′2) + 2

120
f ′p(2q2) − 6

120
g◦q′(4q′2)

)
.

We know, further, that

k = − 1

n
· ∂

2n

∂q2
= −2f − 6gq − (12h− 2f 2)q2 − etc.,

f = f ◦ + f ′p+ f ′′p2 + etc.,
g = g◦ + g′p + g′′p2 + etc.,
h = h◦ + h′p + h′′p2 + etc.

Hence, substituting these values for f , g, and h in k, we have at B where k = β,
correct to terms of the third degree,

β = −2f ◦ − 2f ′p− 6g◦q − 2f ′′p2 − 6g′pq − (12h◦ − 2f ◦2)q2.

Likewise, remembering that q becomes q′ at C, and that both p and q vanish
at A, we have

γ = −2f ◦ − 2f ′p− 6g◦q′ − 2f ′′p2 − 6g′pq′ − (12h◦ − 2f ◦2)q′2,

α = −2f ◦.

And since c sinB = r sinψ,

c sinB = p(1− 1
3
f ◦q2 − 1

4
f ′pq2 − 1

2
g◦q3 − etc.).

Now, if we substitute in (1) c sinB, α, β, γ for the series which they represent,
and a for q − q′, we obtain (still correct to terms of the sixth degree)

σ = 1
2
ac sinB

(
1 + 1

120
α(4p2 − 2q2 + 3qq′ + 3q′2)

+ 1
120
β(3p2 − 6q2 + 6qq′ + 3q′2)

+ 1
120
γ(3p2 − 2q2 + qq′ + 4q′2)

)
.
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And if in this equation we replace p, q, q′ by c sinB, c cosB, c cosB − a,
respectively, we shall have

σ = 1
2
ac sinB

(
1 + 1

120
α(3a2 + 4c2 − 9ac cosB)[8]

+ 1
120
β(3a2 + 3c2 − 12ac cosB)

+ 1
120
γ(4a2 + 3c2 − 9ac cosB)

)
.

By writing for B, α, β, a in [8], A, β, α, b respectively, we obtain at once
formula [9]. Likewise by writing for B, β, γ, c in [8], C, γ, β, b respectively, we
obtain formula [10]. Formulæ [9] and [10] can, of course, also be derived by the
method used to derive [8].

Art. 26, p. 39. The right hand side of this equation should have the positive
sign. All the editions prior to Wangerin’s have the incorrect sign.

Art. 26, p. 40. Derivation of formula [11].
We have

r2 + r′2 − (q − q′)2 − 2r cosφ · r′ cosφ′ − 2r sinφ · r′ sinφ′(1)

= b2 + c2 − a2 − 2bc cos(φ− φ′)
= 2bc(cosA∗ − cosA),

since b2 + c2 − a2 = 2bc cosA∗ and cos(φ− φ′) = cosA.
By priming the q’s in formulæ [1], [4], [5] we obtain at once series for r′2,

r′ cosφ′, r′ sinφ′. Hence we have series for all the terms in the above expression,
and also for the terms in the expression:

(2) r sinφ · r′ cosφ′ − r cosφ · r′ sinφ′ = bc sinA,

namely,

r2 = p2 + 2
3
f ◦p2q2 + 1

2
f ′p3q2 + (2

5
f ′′ − 4

45
f ◦2)p4q2 + etc.(3)

+ q2 + 1
2
g◦p2q3 + 2

5
g′p3q3

+ (2
5
h◦ − 7

45
f ◦2)p2q4,

r′2 = p2 + 2
3
f ◦p2q′2 + 1

2
f ′p3q′2 + (2

5
f ′′ − 4

45
f ◦2)p4q′2 + etc.(4)

+ q′2 + 1
2
g◦p2q′3 + 2

5
g′p3q′3

+ (2
5
h◦ − 7

45
f ◦2)p2q′4,

(5) − (q − q′)2 = −q2 + 2qq′ − q′2,

2r cosφ = 2p+ 4
3
f ◦pq2 + 10

12
f ′p2q2 + ( 6

10
f ′′ − 16

45
f ◦2)p3q2 + etc.(6)

+ g◦pq3 + 14
20
g′p2q3

+ (4
5
h◦ − 14

45
f ◦2)pq4,
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r′ cosφ′ = p+ 2
3
f ◦pq′2 + 5

12
f ′p2q′2 + ( 3

10
f ′′ − 8

45
f ◦2)p3q′2 + etc.(7)

+ 1
2
g◦pq′3 + 7

20
g′p2q′3

+ (2
5
h◦ − 7

45
f ◦2)pq′4,

2r sinφ = 2q − 2
3
f ◦p2q − 2

6
f ′p3q − ( 2

10
f ′′ − 14

90
f ◦2)p4q − etc.(8)

− 2
4
g◦p2q2 − 6

20
g′p3q2

− (2
5
h◦ + 26

90
f ◦2)p2q3,

r′ sinφ′ = q′ − 1
3
f ◦p2q′ − 1

6
f ′p3q′ − ( 1

10
f ′′ − 7

90
f ◦2)p4q′ + etc.(9)

− 1
4
g◦p2q′2 − 3

20
g′p3q′2

− (1
5
h◦ + 13

90
f ◦2)p2q′3.

By adding (3), (4), and (5), we obtain

(10) r2 + r′2 − (q − q′)2

= 2p2 + 2
3
f ◦p2(q2 + q′2) + 1

2
f ′p3(q2 + q′2) + (2

5
f ′′ − 4

45
f ◦2)p4(q2 + q′2) + etc.

+ 2qq′ + 1
2
g◦p2(q3 + q′3) + 2

5
g′p3(q3 + q′3)

+ (2
5
h◦ − 7

45
f ◦2)p2(q4 + q′4).

On multiplying (6) by (7), we obtain

(11) 2r cosφ · r′ cosφ′

= 2p2 + 4
3
f ◦p2(q2 + q′2) + 5

6
f ′p3(q2 + q′2) + (3

5
f ′′ − 16

45
f ◦2)p4(q2 + q′2) + etc.

+ g◦p2(q3 + q′3) + 7
10
g′p3(q3 + q′3)

+ (4
5
h◦ − 14

45
f ◦2)p2(q4 + q′4)

+ 8
9
f ◦2p2q2q′2,

and multiplying (8) by (9), we obtain

2r sinφ · r′ sinφ′(12)

= 2qq′ − 4
3
f ◦p2qq′ − 2

3
f ′p3qq′ − (2

5
f ′′ − 24

45
f ◦2)p4qq′ − etc.

− 1
2
g◦p2qq′(q + q′)− 3

10
g′p3qq′(q + q′)

− (2
5
h◦ + 13

45
f ◦2)p2qq′(q2 + q′2).

Hence by adding (11) and (12), we have

(13) 2bc cosA

= 2p2 + 4
3f
◦p2(q2 + q′2) + 1

6f
′p3(5q2 − 4qq′ + 5q′2)− 8

45f
◦2p4(2q2 + 2q′2 − 3qq′) + etc.

+ 2qq′ − 4
3f
◦p2qq′ + 1

2g
◦p2(2q3 + 2q′3 − q2q′ − qq′2)
− 1

45f
◦2p2(14q4 + 14q′4 + 13q3q′ + 13qq′3 − 40q2q′2)

+ 1
10g
′p3(7q3 + 7q′3 − 3q2q′ − 3qq′2)

+ 1
5f
′′p4(3q2 + 3q′2 − 2qq′)

+ 2
5h
◦p2(2q4 + 2q′4 − q3q′ − qq′3).
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Therefore we have, by subtracting (13) from (10),

2bc(cosA∗ − cosA)

= −2
3f
◦p2(q2 + q′2 − 2qq′)− 1

3f
′p3(q2 + q′2 − 2qq′) + 4

15f
◦2p4(q2 + q′2 − 2qq′)− etc.

− 1
2g
◦p2(q3 + q′3 − q2q′ − qq′2)− 1

5f
′′p4(q2 + q′2 − 2qq′)

+ 1
45f
◦2p2(7q4 + 7q′4 + 13q3q′ + 13qq′3 − 40q2q′2)

− 2
5h
◦p2(q4 + q′4 − q3q′ − qq′3)

− 3
10g
′p3(q3 + q′3 − q2q′ − qq′2),

which we can write thus:

(14) 2bc(cosA∗ − cosA)

= −2p2(q − q′)2
(

1
3
f ◦ + 1

6
f ′p+ 1

4
g◦(q + q′) + 1

10
f ′′p2

+ 1
5
h◦(q2 + qq′ + q′2) + 3

20
g′p(q + q′)

− 2
15
f ◦2p2 − 1

90
f ◦2(7q2 + 7q′2 + 27qq′)

)
,

correct to terms of the seventh degree.
If we multiply (7) by [5] on page 35, we obtain

r sinφ · r′ cosφ′ = pq + 2
3
f ◦pqq′2 + 5

12
f ′p2qq′2 + ( 3

10
f ′′ − 8

45
f ◦2)p3qq′2 − etc.(15)

− 1
3
f ◦p3q + 1

2
g◦pqq′3 + 7

20
g′p2qq′3

− 1
6
f ′p4q + (2

5
h◦ − 7

45
f ◦2)pqq′4

− 1
4
g◦p3q2 − 2

9
f ◦2p3qq′2

− ( 1
10
f ′′ − 7

90
f ◦2)p5q

− 3
20
g′p4q2

− (1
5
h◦ + 13

90
f ◦2)p3q3.

And multiplying (9) by formula [4] on page 35, we obtain

r cosφ · r′ sinφ′ = pq′ − 1
3
f ◦p3q′ − 1

6
f ′p4q′ − ( 1

16
f ′′ − 7

90
f ◦2)p5q′ + etc.(16)

+ 2
3
f ◦pq2q′ − 1

4
g◦p3q′2 − 3

20
g′p4q′2

+ 5
12
f ′p2q2q′ − (1

5
h◦ + 13

90
f ◦2)p3q′3

+ ( 3
10
f ′′ − 8

45
f ◦2)p3q2q′

+ 7
20
g′p2q3q′

+ (2
5
h◦ − 7

45
f ◦2)pq4q′.
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Therefore we have, by subtracting (16) from (15),

(17) bc sinA

= p(q − q′)(1− 1
3
f ◦p2 − 5

12
f ′pqq′ − ( 3

10
f ′′ − 8

45
f ◦2)p2qq′

− 2
3
f ◦qq′ − 1

6
f ′p3 − ( 1

10
f ′′ − 7

90
f ◦2)p4

− 1
2
g◦qq′(q + q′)− 7

20
g′pqq′(q + q′)

− 1
4
g◦p2(q + q′) − 3

20
g′p3(q + q′)

− (1
5
h◦ + 13

90
f ◦2)p2(q2 + qq′ + q′2)

− (2
5
h◦ − 7

45
f ◦2)qq′(q2 + qq′ + q′2)

+ 2
9
f ◦2p2qq′

)
,

correct to terms of the seventh degree.
Let A∗−A = ζ, whence A∗ = A+ζ, ζ being a magnitude of the second order.

Hence we have, expanding sin ζ and cos ζ, and rejecting powers of ζ above the
second,

cosA∗ = cosA ·
(

1− ζ2

2

)
− sinA · ζ,

or
cosA∗ − cosA = −cosA

2
· ζ2 − sinA · ζ;

or, multiplying both members of this equation by 2bc,

(18) 2bc(cosA∗ − cosA) = −bc cosA · ζ2 − 2bc sinA · ζ.
Further, let ζ = R2 + R3 + R4 + etc., where the R’s have the same meaning
as before. If now we substitute in (18) for its various terms the series derived
above, we shall have, on rejecting terms above the sixth degree,

(p2 + qq′)R2
2 + 2p(q − q′)(1− 1

3
f ◦(p2 + 2qq′)

)(
R2 +R3 +R4

)
= 2p2(q − q′)2

(
1
3
f ◦ + 1

6
f ′p+ 1

4
g◦(q + q′) + 1

10
f ′′p2 + 3

20
g′p(q + q′)

+ 1
5
h◦(q2 + qq′ + q′2)− 1

90
f ◦2(12p2 + 7q2 + 7q′2 + 27qq′)

)
.)

Equating terms of like powers, and solving for R2, R3, R4, we find

R2 = p(q − q′) · 1
3
f ◦, R3 = p(q − q′)(1

6
f ′p+ 1

4
g◦(q + q′)

)
,

R4 = p(q − q′)( 1
10
f ′′p2 + 3

20
g′p(q + q′) + 1

5
h◦(q2 + qq′ + q′2)

− 1
90
f ◦2(7p2 + 7q2 + 7q′2 + 12qq′)

)
.

Therefore we have

A∗ − A = p(q − q′)(1
3
f ◦2 + 1

6
f ′p+ 1

4
g◦(q + q′) + 1

10
f ′′p2

+ 3
20
g′p(q + q′) + 1

5
h◦(q2 + qq′ + q′2)

− 1
90
f ◦2(7p2 + 7q2 + 12qq′ + 7q′2)

)
,



68 notes.

correct to terms of the fifth degree.
This equation may be written as follows:

A∗ = A+ ap
(
1− 1

6
f ◦(p2 + q2 + q′2 + qq′)

)(
1
3
f ◦ + 1

6
f ′p+ 1

4
g◦(q + q′)

+ 1
10
f ′′p2 + 3

20
g′p(q + q′) + 1

5
h◦(q2 + qq′ + q′2)− 1

90
f ◦2(2p2 + 2q2 + 7qq′ + 2q′2)

)
.

But, since
2σ = ap

(
1− 1

6
f ◦(p2 + q2 + qq′ + q′2) + etc.

)
,

the above equation becomes

A∗ = A− σ(−2
3
f ◦ − 1

3
f ′p− 1

2
g◦(q + q′)− 1

5
f ′′p2 − 3

10
g′p(q + q′)

− 2
5
h◦(q2 + qq′ + q′2) + 1

90
f ◦2(4p2 + 4q2 + 14qq′ + 4q′2)

)
,

or

A∗ = A− σ(−2
6
f ◦ − 2

12
f ◦ − 2

12
f ◦

− 2
12
f ′p − 2

12
f ′p

− 6
12
g◦q − 6

12
g◦q′

− 2
12
f ′′p2 − 2

12
f ′′p2 + 2

15
f ′′p2

− 6
12
g′pq − 6

12
g′pq′ + 1

5
g′p(q + q′)

− 12
12
h◦q2 − 12

12
h◦q′2 + 1

5
h◦(3q2 − 2qq′ + 3q′2)

+ 2
12
f ◦2q2 + 2

12
f ◦2q′2 + 1

90
f ◦2(4p2 − 11q2 + 14qq′ − 11q′2)

)
.

Therefore, if we substitute in this equation α, β, γ for the series which they
represent, we shall have

A∗ = A− σ(1
6
α + 1

12
β + 1

12
γ + 2

15
f ′′p2 + 1

5
g′p(q + q′)[11]

+ 1
5
h◦(3q2 − 2qq′ + 3q′2) + 1

90
f ◦2(4p2 − 11q2 + 14qq′ − 11q′2)

)
.

Art. 26, p. 40. Derivation of formula [12].
We form the expressions (q−q′)2 +r2−r′2−2(q−q′)r cosψ and (q−q′)r sinψ.

Then, since

(q − q′)2 + r2 − r′2 = a2 + c2 − b2 = 2ac cosB∗,

2(q − q′)r cosψ = 2ac cosB,

we have

(q − q′)2 + r2 − r′2 − 2(q − q′)r cosψ = 2ac(cosB∗ − cosB).

We have also
(q − q′)r sinψ = ac sinB.
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Subtracting (4) on page 64 from [1] on page 34, and adding this difference to
(q − q′)2, we obtain

(1) (q − q′)2 + r2 − r′2, or 2ac cosB∗

= 2q(q − q′) + 2
3
f ◦p2(q2 − q′2) + 1

2
f ′p3(q2 − q′2) + (2

5
f ′′ − 4

45
f ◦2)p4(q2 − q′2) + etc.

+ 1
2
g◦p2(q3 − q′3) + 2

5
g′p3(q3 − q′3)

+ (2
5
h◦ − 7

45
f ◦2)p2(q4 − q′4).

If we multiply [3] on page 35 by 2(q − q′), we obtain

(2) 2(q − q′)r cosψ, or 2ac cosB

= 2q(q − q′) + 4
3
f ◦p2q(q − q′) + f ′p3q(q − q′) + (4

5
f ′′ − 8

45
f ◦2)p4q(q − q′) + etc.

+ 3
2
g◦p2q2(q − q′) + 6

5
g′p3q2(q − q′)

+ (8
5
h◦ − 28

45
f ◦2)p2q3(q − q′).

Subtracting (2) from (1), we have

(3) 2ac(cosB∗ − cosB)

= −2p2(q − q′)2
(

1
3
f ◦ + 1

4
f ′p + (1

5
f ′′ − 2

45
f ◦2)p2 + etc.

+ 1
4
g◦(2q + q′) + 1

5
g′p(2q + q′)

+ (1
5
h◦ − 7

20
f ◦2)(3q2 + 2qq′ + q′2)

)
.

Multiplying [2] on page 34 by (q − q′), we obtain at once

(4) (q − q′)r sinψ, or ac sinB

= p(q − q′)(1− 1
3
f ◦q2 − 1

4
f ′pq2 − (1

5
f ′′ + 8

45
f ◦2)p2q2 + etc.

− 1
2
g◦q3 − 2

5
g′pq3

− (2
5
h◦ − 8

45
f ◦2)q4

)
.

We now set B∗ −B = ζ, whence B∗ = B + ζ, and therefore

cosB∗ = cosB cos ζ − sinB sin ζ.

This becomes, after expanding cos ζ and sin ζ and neglecting powers of ζ above
the second,

cosB∗ − cosB = −cosB

2
· ζ2 − sinB · ζ.

Multiplying both members of this equation by 2ac, we obtain

(5) 2ac(cosB∗ − cosB) = −ac cosB · ζ2 − 2ac sinB · ζ.

Again, let ζ = R2 + R3 + R4 + etc., where the R’s have the same meaning as
before. Hence, replacing the terms in (5) by the proper series and neglecting
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terms above the sixth degree, we have

(6) q(q − q′)R2
2 + 2p(q − q′)(1− 1

3
f ◦q2)(R2 +R3 −R4)

= 2p2(q − q′)2
(

1
3
f ◦ + 1

4
f ′p + (1

5
f ′′ − 2

45
f ◦2)p2

+ 1
4
g◦(2q + q′) + 1

5
g′p(2q + q′)

+ (1
5
h◦ − 7

90
f ◦2)(3q2 + 2qq′ + q′2)

)
.

From this equation we find

R2 = p(q − q′) · 1
3
f ◦, R3 = p(q − q′)(1

4
f ′p+ 1

4
g◦(2q + q′)

)
,

R4 = p(q − q′)(1
5
f ′′p2 + 1

5
g′p(2q + q′) + 1

5
h◦(3q2 + 2qq′ + q′2)

− 1
90
f ◦2(4p2 + 16q2 + 9qq′ + 7q′2)

)
.

Therefore we have, correct to terms of the fifth degree,

B∗ −B = p(q − q′)(1
3
f ◦ + 1

4
f ′p + 1

5
f ′′p2 + 1

5
g′p(2q + q′)

+ 1
4
g◦(2q + q′) + 1

5
h◦(3q2 + 2qq′ + q′2)

− 1
90
f ◦2(4p2 + 16q2 + 9qq′ + 7q′2)

)
,

or, after factoring the last factor on the right,

(7) B∗ −B − 1
2
p(q − q′)(1− 1

6
f ◦(p2 + q2 + qq′ + q′2)

)(−2
3
f ◦ − 1

2
f ′p− 1

2
g◦(2q + q′)

− 2
5
f ′′p2 − 2

5
g′p(2q + q′)− 2

5
h◦(3q2 + 2qq′ + q′2)

− 1
90
f ◦2(−2p2 + 22q2 + 8qq′ + 4q′2)

)
.

The last factor on the right in (7) may be put in the form:(− 2
12
f ◦ − 2

6
f ◦ − 2

6
f ◦

− 2
6
f ′p − 2

12
f ′p

− 6
6
g◦q − 6

12
g◦q′

− 2
6
f ′′p2 − 2

12
f ′′p2 + 1

10
f ′′p2

− 6
6
g′pq − 6

12
g′pq′ + 1

10
g′p(2q + q′)

− 12
6
h◦q2 − 12

12
h◦q′2 + 1

5
h◦(4q2 + 3q′2 − 4qq′)

+ 2
6
f ◦2q2 + 2

12
f ◦2q′2 − 1

90
f ◦2(2p2 + 8q2 + 11q′2 − 8qq′)

)
.

Finally, substituting in (7) σ, α, β, γ for the expressions which they represent,
we obtain, still correct to terms of the fifth degree,

B∗ = B − σ( 1
12
α + 1

6
β + 1

12
γ + 1

10
f ′′p2[12]

+ 1
10
g′p(2q + q′) + 1

5
h◦(4q2 − 4qq′ + 3q′2)

− 1
90
f ◦2(2p2 + 8q2 − 8qq′ + 11q′2)

)
.
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Art. 26, p. 40. Derivation of formula [13].
Here we form the expressions (q − q′)2 + r′2 − r2 − 2(q − q′)r′ cos(π − ψ′) and

(q − q′)r′ sin(π − ψ′) and expand them into series. Since

(q − q′)2 + r′2 − r2 = a2 + b2 − c2 = 2ab cosC∗,

2(q − q′)r′ cos(π − ψ′) = 2ab cosC,

we have

(q − q′)2 + r′2 − r2 − 2(q − q′)r′ cos(π − ψ′) = 2ab(cosC∗ − cosC).

We have also
(q − q′)r′ sin(π − ψ′) = ab sinC.

Subtracting (3) on page 64 from (4) on the same page, and adding the result
to (q − q′)2, we find

(1) (q − q′)2 + r′2 − r2, or 2ab cosC∗

= −2q′(q − q′)− 2
3f
◦p2(q2 − q′2)− 1

2f
′p3(q2 − q′2) − (2

5f
′′ − 4

45f
◦2))p4(q2 − q′2)− etc.

− 1
2g
◦p2(q3 − q′3)− 2

5g
′p3(q3 − q′3)

− (2
5h
◦ − 7

45f
◦2)p2(q4 − q′4).

By priming the q’s in formula [3] on page 35, we get a series for r cosψ′, or for
−r′ cos(π−ψ′). If we multiply this series for −r′ cos(π−ψ′) by 2(q− q′), we find

(2) − 2(q − q′)r′ cos(π − ψ′), or − 2ab cosC

= 2(q − q′)(q′ + 2
3
f ◦p2q′ + 1

2
fp3q′ + (2

5
f ′′ − 4

45
f ◦2)p4q′ + etc.

+ 3
4
g◦p2q′2 + 3

5
g′p3q′2

+ (4
5
h◦ − 14

45
f ◦2)p2q′3

)
.

And therefore, by adding (1) and (2), we obtain

(3) 2ab(cosC∗ − cosC)

= −2p2(q − q′)2
(

1
3
f ◦q′2 + 1

4
f ′p + (1

5
f ′′ − 2

45
f ◦2)p2 + etc.

+ 1
4
g◦(q + 2q′) + 1

5
g′p(q + 2q′)

+ (1
5
h◦ − 7

90
f ◦2)(q2 + 2qq′ + 3q′2)

)
.

By priming the q’s in [2] on page 34, we obtain a series for r′ sinψ′, or for
r′ sin(π − ψ′). Then, multiplying this series for r′ sin(π − ψ′) by (q − q′), we find

(4) (q − q′)r′ sin(π − ψ′), or ab sinC

= p(q − q′)(1− 1
3
f ◦q′2 − 1

4
f ′pq′2 − (1

5
f ′′ + 8

45
f ◦2)p2q′2 − etc.

− 1
2
g◦q′3 − 2

5
g′pq′3

− (3
5
h◦ − 8

45
f ◦2)q′4

)
.
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As before, let C∗ − C = ζ, whence C∗ = C + ζ, and therefore

cosC∗ = cosC cos ζ − sinC sin ζ.

Expanding cos ζ and sin ζ and neglecting powers of ζ above the second, this
equation becomes

cosC∗ − cosC = −cosC

2
· ζ2 − sinC · ζ,

or, after multiplying both members by 2ab,

(5) 2ab(cosC∗ − cosC) = −ab cosC · ζ2 − 2ab sinC · ζ.
Again we put ζ = R2 + R3 + R4 + etc., the R’s having the same meaning as
before. Now, by substituting (2), (3), (4) in (5), and omitting terms above the
sixth degree, we obtain

q′(q − q′)R2
2 − 2p(q − q′)(1− 1

3
f ◦q′2)(R2 +R3 +R4)

= −2p2(q − q′)2
(

1
3
f ◦ + 1

4
f ′p + (1

5
f ′′ − 2

45
f ◦2)p2

+ 1
4
g◦(q + 2q′) + 1

5
g′p(q + 2q′)

+ (1
5
h◦ − 7

90
f ◦2)(q2 + 2qq′ + 3q′2)

)
,

from which we find

R2 = p(q − q′) · 1
3
f ◦, R3 = p(q − q′)(1

4
f ′p+ 1

4
g◦(q + 2q′)

)
,

R4 = p(q − q′)(1
5
f ′′p2 + 1

5
g′p(q + 2q′) + 1

5
h◦(q2 + 2qq′ + 3q′2)

− 1
90
f ◦2(4p2 + 7q2 + 9qq′ + 16q′2)

)
.

Therefore we have, correct to terms of the fifth degree,

C∗ − C = p(q − q′)(1
3
f ◦ + 1

4
f ′p + 1

5
f ′′p2 + 1

5
g′p(q + 2q′)(6)

+ 1
4
g◦(q + 2q′) + 1

5
h◦(q2 + 2qq′ + 3q′2)

− 1
90
f ◦2(4p2 + 7q2 + 9qq′ + 16q′2)

)
.

The last factor on the right in (6) may be written as the product of two factors,
one of which is 1

2

(
1− 1

6
f ◦(p2 + q2 + qq′ + q′2)

)
, and the other,

2
(

1
3
f ◦ + 1

4
f ′p+ 1

4
g◦(q + 2q′) + 1

5
f ′′p2 + 1

5
g′p(q + 2q′)

+ 1
5
h◦(q2 + 3q′2 + 2qq′)− 1

90
f ◦2(−p2 + 2q2 + 4qq′ + 11q′2)

)
,

or, in another form,

−(− 2
12
f ◦ − 2

12
f ◦ − 2

6
f ◦

− 2
12
f ′p − 2

6
f ′p

− 6
12
g◦q − 6

6
g◦q′

− 2
12
f ′′p2 − 2

6
f ′′p2 + 1

10
f ′′p2

− 6
12
g′pq − 6

6
g′pq′ + 1

10
g′p(q + 2q′)

− 12
12
h◦q2 − 12

6
h◦q′2 + 1

5
h◦(3q2 − 4qq′ + 4q′2)

+ 2
12
f ◦2q2 + 2

6
f ◦2q′2 − 1

90
f ◦2(2p2 + 11q2 − 8qq′ + 8q′2)

)
.
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Hence (6) becomes, on substituting σ, α, β, γ for the expressions which they
represent,

C∗ = C − σ( 1
12
α + 1

12
β + 1

6
γ + 1

10
f ′′p2[13]

+ 1
10
g′p(q + 2q′) + 1

5
h◦(3q2 − 4qq′ + 4q′2)

− 1
90
f ◦2(2p2 + 11q2 − 8qq′ + 8q′2)

)
.

Art. 26, p. 40. Derivation of formula [14].
This formula is derived at once by adding formulæ [11], [12], [13]. But, as

Gauss suggests, it may also be derived from [6], page 36. By priming the q’s
in [6] we obtain a series for (ψ′+φ′). Subtracting this series from [6], and noting
that φ − φ′ + ψ + π − ψ′ = A + B + C, we have, correct to terms of the fifth
degree,

A+B + C = π − p(q − q′)(f ◦ + 2
3
f ′p+ 1

2
f ′′p2 + 3

4
g′p(q + q′)(1)

+ g◦(q + q′) + h◦(q2 + qq′ + q′2)

− 1
6
f ◦2(p2 + 2q2 + 2qq′ + 2q′2)

)
.

The second term on the right in (1) may be written

+1
2
ap
(
1− 1

6
f ◦(p2 + q2 + qq′ + q′2)

) · 2(−f ◦ − 2
3
f ′p− 1

2
f ′′p2 − 3

4
g′p(q + q′)

− g◦(q + q′)− h◦(q2 + qq′ + q′2)

+ 1
6
f ◦2(q2 + qq′ + q′2)

)
,

of which the last factor may be thrown into the form:(−2
3
f ◦ − 2

3
f ◦ − 2

3
f ◦

− 2
3
f ′p − 2

3
f ′p

− 6
3
g◦q − 6

3
g◦q′

− 2
3
f ′′p2 − 2

3
f ′′p2 + 1

3
f ′′p2

− 6
3
g′pq − 6

3
g′pq′ + 1

2
g′p(q + q′)

− 12
3
h◦q2 − 12

3
h◦q′2 + 2h◦(q2 + q′2 − qq′)

+ 2
3
f ◦2q2 + 2

3
f ◦2q′2 − 1

3
f ◦2(q2 + q′2 − qq′)).

Hence, by substituting σ, α, β, γ for the expressions they represent, (1) becomes

A+B + C = π + σ
(

1
3
α + 1

3
β + 1

3
γ + 1

3
f ′′p2[14]

+ 1
2
g′p(q + q′) + (2h◦ − 1

3
f ◦2)(q2 − qq′ + q′2)

)
.

Art. 27, p. 40. Omitting terms above the second degree, we have

a2 = q2 − 2qq′ + q′2, b2 = p2 + q′2, c2 = p2 + q2.
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The expressions in the parentheses of the first set of formulæ for A∗, B∗, C∗
in Art. 27 may be arranged in the following manner:

( 2p2− q2+ 4qq′− q′2 =
(

(p2 + q′2)+ (p2 + q2)− 2(q2 − 2qq′ + q′2)
)
,

( p2− 2q2+ 2qq′+ q′2 =
(

2(p2 + q′2)− (p2 + q2)− (q2 − 2qq′ + q′2)
)
,

( p2+ q2+ 2qq′− 2q′2 =
(−(p2 + q′2)+ 2(p2 + q2)− (q2 − 2qq′ + q′2)

)
.

Now substituting a2, b2, c2 for q2 − 2qq′ + q′2), (p2 + q′2), (p2 + q2) respectively,
and changing the signs of both members of the last two of these equations, we
have

( 2p2− q2+ 4qq′− q′2 = (b2+ c2− 2a2),
−( p2− 2q2+ 2qq′+ q′2 = (a2+ c2− 2b2),
−( p2+ q2+ 2qq′− 2q′2 = (a2+ b2− 2c2).

And replacing the expressions in the parentheses in the first set of formulæ for
A∗, B∗, C∗ by their equivalents, we get the second set.

Art. 27, p. 40. f ◦ = − 1

2R2
, f ′′ = 0, etc., may obtained directly, without the

use of the general considerations of Arts. 25 and 26, in the following way. In the
case of the sphere

ds2 = cos2
( q
R

)
· dp2 + dq2,

hence
n = cos

( q
R

)
= 1− q2

2R2
+

q4

24R4
− etc.,

i. e.,

f ◦ = − 1

2R2
, h◦ =

1

24R4
, f ′ = g◦ = f ′′ = g′ = 0. [Wangerin.]

Art. 27, p. 40. This theorem of Legendre is found in the Mémoires (Histoire)
de l’Académie Royale de Paris, 1787, p. 358, and also in his Trigonometry,
Appendix, § V. He states it as follows in his Trigonometry :

The very slightly curved spherical triangle, whose angles are A, B, C and
whose sides are a, b, c, always corresponds to a rectilinear triangle, whose sides
a, b, c are of the same lengths, and whose opposite angles are A − 1

3
e, B − 1

3
e,

C − 1
3
e, e being the excess of the sum of the angles in the given spherical triangle

over two right angles.

Art. 28, p. 41. The sides of this triangle are Hohehagen-Brocken, Inselberg-
Hohehagen, Brocken-Inselberg, and their lengths are about 107, 85, 69 kilometers
respectively, according to Wangerin.

Art. 29, p. 41. Derivation of the relation between σ and σ∗.
In Art. 28 we found the relation

A∗ = A− 1
12
σ(2α + β + γ).

Therefore

sinA∗ = sinA cos
(

1
12
σ(2α + β + γ)

)− cosA sin
(

1
12
σ(2α + β + γ)

)
,
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which, after expanding cos
(

1
12
σ(2α + β + γ)

)
and sin

(
1
12
σ(2α + β + γ)

)
and

rejecting powers of
(

1
12
σ(2α + β + γ)

)
above the first, becomes

(1) sinA∗ = sinA− cosA · ( 1
12
σ(2α + β + γ)

)
,

correct to terms of the fourth degree.
But, since σ and σ∗ differ only by terms above the second degree, we may

replace in (1) σ by the value of σ∗, 1
2
bc sinA∗. We thus obtain, with equal

exactness,

(2) sinA = sinA∗
(
1 + 1

24
bc cosA · (2α + β + γ)

)
.

Substituting this value for sinA in [9], page 38, we have, correct to terms of
the sixth degree, the first formula for σ given in Art. 29. Since 2bc cosA∗, or
b2 + c2 − a2, differs from 2bc cosA only by terms above the second degree, we
may replace 2bc cosA in this formula for σ by b2 + c2 − a2. Also σ∗ = 1

2
bc sinA∗.

Hence, if we make these substitutions in the first formula for σ, we obtain the
second formula for σ with the same exactness. In the case of a sphere, where
α = β = γ, the second formula for σ reduces to the third.

When the surface is spherical, (2) becomes

sinA = sinA∗(1 +
α

6
bc cosA).

And replacing 2bc cosA in this equation by (b2 + c2 − a2), we have

sinA = sinA∗
(
1 +

α

12
(b2 + c2 − a2)

)
,

or
sinA

sinA∗
=
(
1 +

α

12
(b2 + c2 − a2)

)
.

And likewise we can find

sinB

sinB∗
=
(
1 +

α

12
(a2 + c2 − b2)), sinC

sinC∗
=
(
1 +

α

12
(a2 + b2 − c2)).

Multiplying together the last three equations and rejecting the terms containing
α2 and α3, we have

1 +
α

12
(a2 + b2 + c2) =

sinA · sinB · sinC
sinA∗ · sinB∗ · sinC∗ .

Finally, taking the square root of both members of this equation, we have, with
the same exactness,

σ = 1 +
α

24
(a2 + b2 + c2) =

√
sinA · sinB · sinC

sinA∗ · sinB∗ · sinC∗ .

The method here used to derive the last formula from the next to the last
formula of Art. 29 is taken from Wangerin.
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NEW GENERAL INVESTIGATIONS
OF

CURVED SURFACES
[1825]

Although the real purpose of this work is the deduction of new theorems
concerning its subject, nevertheless we shall first develop what is already known,
partly for the sake of consistency and completeness, and partly because our
method of treatment is different from that which has been used heretofore. We
shall even begin by advancing certain properties concerning plane curves from
the same principles.

1.

In order to compare in a convenient manner the different directions of straight
lines in a plane with each other, we imagine a circle with unit radius described
in the plane about an arbitrary centre. The position of the radius of this circle,
drawn parallel to a straight line given in advance, represents then the position
of that line. And the angle which two straight lines make with each other
is measured by the angle between the two radii representing them, or by the
arc included between their extremities. Of course, where precise definition is
necessary, it is specified at the outset, for every straight line, in what sense it is
regarded as drawn. Without such a distinction the direction of a straight line
would always correspond to two opposite radii.

2.

In the auxiliary circle we take an arbitrary radius as the first, or its terminal
point in the circumference as the origin, and determine the positive sense of
measuring the arcs from this point (whether from left to right or the contrary);
in the opposite direction the arcs are regarded then as negative. Thus every
direction of a straight line is expressed in degrees, etc., or also by a number
which expresses them in parts of the radius.

Such lines as differ in direction by 360◦, or by a multiple of 360◦, have,
therefore, precisely the same direction, and may, generally speaking, be regarded
as the same. However, in such cases where the manner of describing a variable
angle is taken into consideration, it may be necessary to distinguish carefully
angles differing by 360◦.

If, for example, we have decided to measure the arcs from left to right, and if
to two straight lines l, l′ correspond the two directions L, L′, then L′ − L is the
angle between those two straight lines. And it is easily seen that, since L′ − L
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falls between −180◦ and +180◦, the positive or negative value indicates at once
that l′ lies on the right or the left of l, as seen from the point of intersection.
This will be determined generally by the sign of sin(L′ − L).

If aa′ is a part of a curved line, and if to the tangents at a, a′ correspond
respectively the directions α, α′, by which letters shall be denoted also the
corresponding points on the auxiliary circles, and if A, A′ be their distances
along the arc from the origin, then the magnitude of the arc αα′ or A′ − A is
called the amplitude of aa′.

The comparison of the amplitude of the arc aa′ with its length gives us the
notion of curvature. Let l be any point on the arc aa′, and let λ, Λ be the same
with reference to it that α, A and α′, A′ are with reference to a and a′. If now
αλ or Λ − A be proportional to the part al of the arc, then we shall say that
aa′ is uniformly curved throughout its whole length, and we shall call

Λ− A
al

the measure of curvature, or simply the curvature. We easily see that this
happens only when aa′ is actually the arc of a circle, and that then, according

to our definition, its curvature will be ±1

r
if r denotes the radius. Since we

always regard r as positive, the upper or the lower sign will hold according as
the centre lies to the right or to the left of the arc aa′ (a being regarded as the
initial point, a′ as the end point, and the directions on the auxiliary circle being
measured from left to right). Changing one of these conditions changes the sign,
changing two restores it again.

On the contrary, if Λ − A be not proportional to al, then we call the arc
non-uniformly curved and the quotient

Λ− A
al

may then be called its mean curvature. Curvature, on the contrary, always
presupposes that the point is determined, and is defined as the mean curvature
of an element at this point; it is therefore equal to

dΛ

d al
.

We see, therefore, that arc, amplitude, and curvature sustain a similar relation
to each other as time, motion, and velocity, or as volume, mass, and density.
The reciprocal of the curvature, namely,

d al

dΛ
,

is called the radius of curvature at the point l. And, in keeping with the above
conventions, the curve at this point is called concave toward the right and convex
toward the left, if the value of the curvature or of the radius of curvature happens
to be positive; but, if it happens to be negative, the contrary is true.



new general investigations of curved surfaces [1825] 81

3.

If we refer the position of a point in the plane to two perpendicular axes
of coordinates to which correspond the directions 0 and 90◦, in such a manner
that the first coordinate represents the distance of the point from the second
axis, measured in the direction of the first axis; whereas the second coordinate
represents the distance from the first axis, measured in the direction of the
second axis; if, further, the indeterminates x, y represent the coordinates of a
point on the curved line, s the length of the line measured from an arbitrary
origin to this point, φ the direction of the tangent at this point, and r the radius
of curvature; then we shall have

dx = cosφ · ds,
dy = sinφ · ds,
r =

ds

dφ
.

If the nature of the curved line is defined by the equation V = 0, where V is
a function of x, y, and if we set

dV = p dx+ q dy,

then on the curved line
p dx+ q dy = 0.

Hence
p cosφ+ q sinφ = 0,

and therefore
tanφ = −p

q
.

We have also

cosφ · dp+ sinφ · dq − (p sinφ− q cosφ) dφ = 0.

If, therefore, we set, according to a well known theorem,

dp = P dx+Qdy,

dq = Qdx+Rdy,

then we have

(P cos2 φ+ 2Q cosφ sinφ+R sin2 φ) ds = (p sinφ− q cosφ) dφ, †

therefore
1

r
=
P cos2 φ+ 2Q cosφ sinφ+R sin2 φ

p sinφ− q cosφ
,

or, since

cosφ =
∓q√
p2 + q2

, sinφ =
±p√
p2 + q2

; †

±1

r
=
Pq2 − 2Qpq +Rp2

(p2 + q2)3/2
.
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4.

The ambiguous sign in the last formula might at first seem out of place,
but upon closer consideration it is found to be quite in order. In fact, since
this expression depends simply upon the partial differentials of V , and since the
function V itself merely defines the nature of the curve without at the same
time fixing the sense in which it is supposed to be described, the question,
whether the curve is convex toward the right or left, must remain undetermined
until the sense is determined by some other means. The case is similar in the
determination of φ by means of the tangent, to single values of which correspond
two angles differing by 180◦. The sense in which the curve is described can be
specified in the following different ways.

I. By means of the sign of the change in x. If x increases, then cosφ must
be positive. Hence the upper signs will hold if q has a negative value, and the
lower signs if q has a positive value. When x decreases, the contrary is true.

II. By means of the sign of the change in y. If y increases, the upper signs
must be taken when p is positive, the lower when p is negative. The contrary is
true when y decreases.

III. By means of the sign of the value which the function V takes for
points not on the curve. Let δx, δy be the variations of x, y when we go out
from the curve toward the right, at right angles to the tangent, that is, in the
direction φ + 90◦; and let the length of this normal be δρ. Then, evidently, we
have

δx = δρ · cos(φ+ 90◦),

δy = δρ · sin(φ+ 90◦),

or

δx = −δρ · sinφ,
δy = +δρ · cosφ.

Since now, when δρ is infinitely small,

δV = p δx+ q δy

= (−p sinφ+ q cosφ) δρ

= ∓δρ
√
p2 + q2,

and since on the curve itself V vanishes, the upper signs will hold if V , on
passing through the curve from left to right, changes from positive to negative,
and the contrary. If we combine this with what is said at the end of Art. 2, it
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follows that the curve is always convex toward that side on which V receives the
same sign as

Pq2 − 2Qpq +Rp2.

For example, if the curve is a circle, and if we set

V = x2 + y2 − a2,

then we have

p = 2x, q = 2y,

P = 2, Q = 0, R = 2,

P q2 − 2Qpq +Rp2 = 8y2 + 8x2 = 8a2,

(p2 + q2)3/2 = 8a3,

r = ±a;

and the curve will be convex toward that side for which

x2 + y2 > a2,

as it should be.
The side toward which the curve is convex, or, what is the same thing, the

signs in the above formulæ, will remain unchanged by moving along the curve,
so long as

δV

δρ

does not change its sign. Since V is a continuous function, such a change can take
place only when this ratio passes through the value zero. But this necessarily
presupposes that p and q become zero at the same time. At such a point the
radius of curvature becomes infinite or the curvature vanishes. Then, generally
speaking, since here

−p sinφ+ q cosφ

will change its sign, we have here a point of inflexion.

5.

The case where the nature of the curve is expressed by setting y equal to a
given function of x, namely, y = X, is included in the foregoing, if we set

V = X − y.
If we put

dX = X ′ dx, dX ′ = X ′′ dx,

then we have

p = X ′, q = −1,

P = X ′′, Q = 0, R = 0,
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therefore
±1

r
=

X ′′

(1 +X ′2)3/2
.

Since q is negative here, the upper sign holds for increasing values of x. We
can therefore say, briefly, that for a positive X ′′ the curve is concave toward the
same side toward which the y-axis lies with reference to the x-axis; while for a
negative X ′′ the curve is convex toward this side.

6.

If we regard x, y as functions of s, these formulæ become still more elegant.
Let us set

dx

ds
= x′,

dx′

ds
= x′′,

dy

ds
= y′,

dy′

ds
= y′′.

Then we shall have

x′ = cosφ, y′ = sinφ,

x′′ = −sinφ

r
, y′′ =

cosφ

r
;

or

y′ = −rx′′, x′ = ry′′,

or also
1 = r(x′y′′ − y′x′′),

so that
x′y′′ − y′x′′

represents the curvature, and
1

x′y′′ − y′x′′
the radius of curvature.

7.

We shall now proceed to the consideration of curved surfaces. In order
to represent the directions of straight lines in space considered in its three
dimensions, we imagine a sphere of unit radius described about an arbitrary
centre. Accordingly, a point on this sphere will represent the direction of all
straight lines parallel to the radius whose extremity is at this point. As the
positions of all points in space are determined by the perpendicular distances
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x, y, z from three mutually perpendicular planes, the directions of the three
principal axes, which are normal to these principal planes, shall be represented on
the auxiliary sphere by the three points (1), (2), (3). These points are, therefore,
always 90◦ apart, and at once indicate the sense in which the coordinates are
supposed to increase. We shall here state several well known theorems, of which
constant use will be made.

1) The angle between two intersecting straight lines is measured by the
arc [of the great circle] between the points on the sphere which represent their
directions.

2) The orientation of every plane can be represented on the sphere by means
of the great circle in which the sphere is cut by the plane through the centre
parallel to the first plane.

3) The angle between two planes is equal to the angle between the great
circles which represent their orientations, and is therefore also measured by the
angle between the poles of the great circles.

4) If x, y, z; x′, y′, z′ are the coordinates of two points, r the distance
between them, and L the point on the sphere which represents the direction of
the straight line drawn from the first point to the second, then

x′ = x+ r cos(1)L,

y′ = y + r cos(2)L,

2′ = z + r cos(3)L.

5) It follows immediately from this that we always have

cos2(1)L+ cos2(2)L+ cos2(3)L = 1

[and] also, if L′ is any other point on the sphere,

cos(1)L · cos(1)L′ + cos(2)L · cos(2)L′ + cos(3)L · cos(3)L′ = cosLL′.

We shall add here another theorem, which has appeared nowhere else, as far
as we know, and which can often be used with advantage.

Let L, L′, L′′, L′′′ be four points on the sphere, and A the angle which LL′′′
and L′L′′ make at their point of intersection. [Then we have]

cosLL′ · cosL′′L′′′ − cosLL′′ · cosL′L′′′ = sinLL′′′ · sinL′L′′ · cosA.

The proof is easily obtained in the following way. Let

AL = t, AL′ = t′, AL′′ = t′′, AL′′′ = t′′′;
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we have then

cosLL′ = cos t cos t′ + sin t sin t′ cosA,

cosL′′L′′′ = cos t′′ cos t′′′ + sin t′′ sin t′′′ cosA,

cosLL′′ = cos t cos t′′ + sin t sin t′′ cosA,

cosL′L′′′ = cos t′ cos t′′′ + sin t′ sin t′′′ cosA.

Therefore

cosLL′ cosL′′L′′′ − cosLL′′ cosL′L′′

= cosA{cos t cos t′ sin t′′ sin t′′′ + cos t′′ cos t′′′ sin t sin t′

− cos t cos t′′ sin t′ sin t′′′ − cos t′ cos t′′′ sin t sin t′′}
= cosA(cos t sin t′′′ − cos t′′′ sin t)(cos t′ sin t′′ − cos t′′ sin t′)

= cosA sin(t′′′ − t) sin(t′′ − t′)
= cosA sinLL′′′ sinL′L′′.

Since each of the two great circles goes out from A in two opposite directions,
two supplementary angles are formed at this point. But it is seen from our
analysis that those branches must be chosen, which go in the same sense from L
toward L′′′ and from L′ toward L′′.

Instead of the angle A, we can take also the distance of the pole of the great
circle LL′′′ from the pole of the great circle L′L′′. However, since every great
circle has two poles, we see that we must join those about which the great circles
run in the same sense from L toward L′′′ and from L′ toward L′′, respectively.

The development of the special case, where one or both of the arcs
LL′′′ and L′L′′ are 90◦, we leave to the reader.

6) Another useful theorem is obtained from the following analysis. Let
L, L′, L′′ be three points upon the sphere and put

cosL (1) = x, cosL (2) = y, cosL (3) = z,

cosL′ (1) = x′, cosL′ (2) = y′, cosL′ (3) = z′,

cosL′′(1) = x′′, cosL′′(2) = y′′, cosL′′(3) = z′′.

We assume that the points are so arranged that they run around the triangle
included by them in the same sense as the points (1), (2), (3). Further, let λ be
that pole of the great circle L′L′′ which lies on the same side as L. We then
have, from the above lemma,

y′z′′ − z′y′′ = sinL′L′′ · cosλ(1),

z′x′′ − x′z′′ = sinL′L′′ · cosλ(2),

x′y′′ − y′x′′ = sinL′L′′ · cosλ(3).
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Therefore, if we multiply these equations by x, y, z respectively, and add the
products, we obtain

xy′z′′ + x′y′′z + x′′yz′ − xy′′z′ − x′yz′′ − x′′y′z = sinL′L′′ · cosλL, †

wherefore, we can write also, according to well known principles of spherical
trigonometry,

sinL′L′′· sinLL′′ · sinL′
= sinL′L′′· sinLL′ · sinL′′
= sinL′L′′· sinL′L′′ · sinL,

if L, L′, L′′ denote the three angles of the spherical triangle. At the same time
we easily see that this value is one-sixth of the pyramid whose angular points
are the centre of the sphere and the three points L, L′, L′′ (and indeed positive,
if etc.).

8.

The nature of a curved surface is defined by an equation between the coor-
dinates of its points, which we represent by

f(x, y, z) = 0.†

Let the total differential of f(x, y, z) be

P dx+Qdy +Rdz,

where P , Q, R are functions of x, y, z. We shall always distinguish two sides
of the surface, one of which we shall call the upper, and the other the lower.
Generally speaking, on passing through the surface the value of f changes its
sign, so that, as long as the continuity is not interrupted, the values are positive
on one side and negative on the other.

The direction of the normal to the surface toward that side which we regard
as the upper side is represented upon the auxiliary sphere by the point L. Let

cosL(1) = X, cosL(2) = Y, cosL(3) = Z.

Also let ds denote an infinitely small line upon the surface; and, as its direction
is denoted by the point λ on the sphere, let

cosλ(1) = ξ, cosλ(2) = η, cosλ(3) = ζ.

We then have
dx = ξ ds, dy = η ds, dz = ζ ds,

therefore
Pξ +Qη +Rζ = 0,
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and, since λL must be equal to 90◦, we have also

Xξ + Y η + Zζ = 0.

Since P , Q, R, X, Y , Z depend only on the position of the surface on which
we take the element, and since these equations hold for every direction of the
element on the surface, it is easily seen that P , Q, R must be proportional to
X, Y , Z. Therefore

P = Xµ, Q = Y µ, R = Zµ.

Therefore, since

X2 + Y 2 + Z2 = 1;

µ = PX +QY +RZ

and

µ2 = P 2 +Q2 +R2,

or

µ = ±
√
P 2 +Q2 +R2.

If we go out from the surface, in the direction of the normal, a distance equal
to the element δρ, then we shall have

δx = X δρ, δy = Y δρ, δz = Z δρ

and
δf = P δx+Qδy +Rδz = µ δρ.

We see, therefore, how the sign of µ depends on the change of sign of the value
of f in passing from the lower to the upper side.

9.

Let us cut the curved surface by a plane through the point to which our
notation refers; then we obtain a plane curve of which ds is an element, in
connection with which we shall retain the above notation. We shall regard as
the upper side of the plane that one on which the normal to the curved surface
lies. Upon this plane we erect a normal whose direction is expressed by the
point L of the auxiliary sphere. By moving along the curved line, λ and L will
therefore change their positions, while L remains constant, and λL and λL are
always equal to 90◦. Therefore λ describes the great circle one of whose poles

is L. The element of this great circle will be equal to
ds

r
, if r denotes the radius

of curvature of the curve. And again, if we denote the direction of this element
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upon the sphere by λ′, then λ′ will evidently lie in the same great circle and be
90◦ from λ as well as from L. If we now set

cosλ′(1) = ξ′, cosλ′(2) = η′, cosλ′(3) = ζ ′,

then we shall have

dξ = ξ′
ds

r
, dη = η′

ds

r
, dζ = ζ ′

ds

r
,

since, in fact, ξ, η, ζ are merely the coordinates of the point λ referred to the
centre of the sphere.

Since by the solution of the equation f(x, y, z) = 0 the coordinate z may
be expressed in the form of a function of x, y, we shall, for greater simplicity,
assume that this has been done and that we have found

z = F (x, y).

We can then write as the equation of the surface

z − F (x, y) = 0,

or
f(x, y, z) = z − F (x, y).

From this follows, if we set

dF (x, y) = t dx+ u dy,

P = −t, Q = −u, R = 1,

where t, u are merely functions of x and y. We set also

dt = T dx+ U dy, du = U dx+ V dy.

Therefore upon the whole surface we have

dz = t dx+ u dy

and therefore, on the curve,
ζ = tξ + uη.

Hence differentiation gives, on substituting the above values for dξ, dη, dζ,

(ζ ′ − tξ′ − uη′)ds
r

= ξ dt+ η du

= (ξ2T + 2ξηU + η2V ) ds,

or
1

r
=
ξ2T + 2ξηU + η2V

−ξ′t− η′u+ ζ ′

=
Z(ξ2T + 2ξηU + η2V )

Xξ′ − Y η′ + Zζ ′

=
Z(ξ2T + 2ξηU + η2V )

cosLλ′
.
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10.

Before we further transform the expression just found, we will make a few
remarks about it.

A normal to a curve in its plane corresponds to two directions upon the
sphere, according as we draw it on the one or the other side of the curve. The
one direction, toward which the curve is concave, is denoted by λ′, the other
by the opposite point on the sphere. Both these points, like L and L, are
90◦ from λ, and therefore lie in a great circle. And since L is also 90◦ from λ,
LL = 90◦ − Lλ′, or = Lλ′ − 90◦. Therefore

cosLλ′ = ± sin LL,

where sin LL is necessarily positive. Since r is regarded as positive in our
analysis, the sign of cosLλ′ will be the same as that of

Z(ξ2T + 2ξηU + η2V ).

And therefore a positive value of this last expression means that Lλ′ is less
than 90◦, or that the curve is concave toward the side on which lies the
projection of the normal to the surface upon the plane. A negative value, on the
contrary, shows that the curve is convex toward this side. Therefore, in general,
we may set also

1

r
=
Z(ξ2T + 2ξηU + η2V )

sin LL
,

if we regard the radius of curvature as positive in the first case, and negative in
the second. LL is here the angle which our cutting plane makes with the plane
tangent to the curved surface, and we see that in the different cutting planes
passed through the same point and the same tangent the radii of curvature are
proportional to the sine of the inclination. Because of this simple relation, we
shall limit ourselves hereafter to the case where this angle is a right angle, and
where the cutting plane, therefore, is passed through the normal of the curved
surface. Hence we have for the radius of curvature the simple formula

1

r
= Z(ξ2T + 2ξηU + η2V ).

11.

Since an infinite number of planes may be passed through this normal,
it follows that there may be infinitely many different values of the radius of
curvature. In this case T , U , V , Z are regarded as constant, ξ, η, ζ as variable.
In order to make the latter depend upon a single variable, we take two fixed
points M , M ′ 90◦ apart on the great circle whose pole is L. Let their coordinates
referred to the centre of the sphere be α, β, γ; α′, β′, γ′. We have then

cosλ(1) = cosλM · cosM(1) + cosλM ′ · cosM ′(1) + cosλL · cosL(1).
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If we set
λM = φ,

then we have
cosλM ′ = sinφ,

and the formula becomes

ξ = α cosφ+ α′ sinφ,

and likewise

η = β cosφ+ β′ sinφ,

ζ = γ cosφ+ γ′ sinφ.

Therefore, if we set

A = (α2T + 2αβU + β2V )Z,

B = (αα′T + (α′β + αβ′)U + ββ′V )Z, †

C = (α′2T + 2α′β′U + β′2V )Z,

we shall have
1

r
= A cos2 φ+ 2B cosφ sinφ+ C sin2 φ

=
A+ C

2
+
A− C

2
cos 2φ+B sin 2φ.

If we put

A− C
2

= E cos 2θ,

B = E sin 2θ,

where we may assume that E has the same sign as
A− C

2
, then we have

1

r
= 1

2
(A+ C) + E cos 2(φ− θ).

It is evident that φ denotes the angle between the cutting plane and another plane
through this normal and that tangent which corresponds to the direction M .

Evidently, therefore,
1

r
takes its greatest (absolute) value, or r its smallest,

when φ = θ; and
1

r
its smallest absolute value, when φ = θ + 90◦. Therefore

the greatest and the least curvatures occur in two planes perpendicular to each

other. Hence these extreme values for
1

r
are

1
2
(A+ C)±

√(
A− C

2

)2

+B2.
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Their sum is A + C and their product AC − B2, or the product of the two
extreme radii of curvature is

=
1

AC −B2
.

This product, which is of great importance, merits a more rigorous development.
In fact, from formulæ above we find

AC −B2 = (αβ′ − βα′)2(TV − U2)Z2.

But from the third formula in [Theorem] 6, Art. 7, we easily infer that

αβ′ − βα′ = ±Z, †

therefore
AC −B2 = Z4(TV − U2).

Besides, from Art. 8,

Z = ± R√
P 2 +Q2 +R2

= ± 1√
1 + t2 + u2

,

therefore
AC −B2 =

TV − U2

(1 + t2 + u2)2
.

Just as to each point on the curved surface corresponds a particular point L
on the auxiliary sphere, by means of the normal erected at this point and the
radius of the auxiliary sphere parallel to the normal, so the aggregate of the
points on the auxiliary sphere, which correspond to all the points of a line on
the curved surface, forms a line which will correspond to the line on the curved
surface. And, likewise, to every finite figure on the curved surface will correspond
a finite figure on the auxiliary sphere, the area of which upon the latter shall be
regarded as the measure of the amplitude of the former. We shall either regard
this area as a number, in which case the square of the radius of the auxiliary
sphere is the unit, or else express it in degrees, etc., setting the area of the
hemisphere equal to 360◦.

The comparison of the area upon the curved surface with the corresponding
amplitude leads to the idea of what we call the measure of curvature of the
surface. If the former is proportional to the latter, the curvature is called
uniform; and the quotient, when we divide the amplitude by the surface, is
called the measure of curvature. This is the case when the curved surface is a
sphere, and the measure of curvature is then a fraction whose numerator is unity
and whose denominator is the square of the radius.

We shall regard the measure of curvature as positive, if the boundaries of
the figures upon the curved surface and upon the auxiliary sphere run in the
same sense; as negative, if the boundaries enclose the figures in contrary senses.
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If they are not proportional, the surface is non-uniformly curved. And at each
point there exists a particular measure of curvature, which is obtained from
the comparison of corresponding infinitesimal parts upon the curved surface and
the auxiliary sphere. Let dσ be a surface element on the former, and dΣ the
corresponding element upon the auxiliary sphere, then

dΣ

dσ

will be the measure of curvature at this point.
In order to determine their boundaries, we first project both upon the xy-

plane. The magnitudes of these projections are Z dσ, Z dΣ. The sign of Z will
show whether the boundaries run in the same sense or in contrary senses around
the surfaces and their projections. We will suppose that the figure is a triangle;
the projection upon the xy-plane has the coordinates

x, y; x+ dx, y + dy; x+ δx, y + δy.

Hence its double area will be

2Z dσ = dx · δy − dy · δx.
To the projection of the corresponding element upon the sphere will correspond
the coordinates:

X,

X +
∂X

∂x
· dx+

∂X

∂y
· dy,

X +
∂X

∂x
· δx+

∂X

∂y
· δy,

Y,

Y +
∂Y

∂x
· dx+

∂Y

∂y
· dy,

Y +
∂Y

∂x
· δx+

∂Y

∂y
· δy,

From this the double area of the element is found to be

2Z dΣ =

(
∂X

∂x
· dx+

∂X

∂y
· dy
)(

∂Y

∂x
· δx+

∂Y

∂y
· δy
)

−
(
∂X

∂x
· δx+

∂X

∂y
· δy
)(

∂Y

∂x
· dx+

∂Y

∂y
· dy
)

=

(
∂X

∂x
· ∂Y
∂y
− ∂X

∂y
· ∂Y
∂x

)
(dx · δy − dy · δx).

The measure of curvature is, therefore,

=
∂X

∂x
· ∂Y
∂y
− ∂X

∂y
· ∂Y
∂x

= ω.

Since

X = −tZ, Y = −uZ,
(1 + t2 + u2)Z2 = 1,



94 karl friedrich gauss

we have

dX = −Z3(1 + u2) dt+ Z3tu · du,
dY = +Z3tu · dt− Z3(1 + t2) du,

therefore

∂X

∂x
= Z3

{−(1 + u2)T + tuU
}
,

∂Y

∂x
= Z3

{
tuT − (1 + t2)U

}
,

∂X

∂y
= Z3

{−(1 + u2)U + tuV
}
,

∂Y

∂y
= Z3

{
tuU − (1 + t2)V

}
,

and

ω = Z6(TV − U2)
(
(1 + t2)(1 + u2)− t2u2

)
= Z6(TV − U2)(1 + t2 + u2)

= Z4(TV − U2)

=
TV − U2

(1 + t2 + u2)2
,

the very same expression which we have found at the end of the preceding article.
Therefore we see that

The measure of curvature is always expressed by means of a fraction whose
numerator is unity and whose denominator is the product of the maximum and
minimum radii of curvature in the planes passing through the normal.

12.

We will now investigate the nature of shortest lines upon curved surfaces.
The nature of a curved line in space is determined, in general, in such a way
that the coordinates x, y, z of each point are regarded as functions of a single
variable, which we shall call w. The length of the curve, measured from an
arbitrary origin to this point, is then equal to

∫ √(
dx

dw

)2

+

(
dy

dw

)2

+

(
dz

dw

)2

· dw.

If we allow the curve to change its position by an infinitely small variation, the
variation of the whole length will then be

=
∫ dx

dw
· d δx+

dy

dw
· d δy +

dz

dw
· d δz√(

dx

dw

)2

+
(
dy

dw

)2

+
(
dz

dw

)2
=

dx

dw
· δx+

dy

dw
· δy +

dz

dw
· δz√(

dx

dw

)2

+
(
dy

dw

)2

+
(
dz

dw

)2
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−
∫
δx · d

dx

dw√(
dx

dw

)2

+
(
dy

dw

)2

+
(
dz

dw

)2
+δy ·d

dy

dw√(
dx

dw

)2

+
(
dy

dw

)2

+
(
dz

dw

)2

+ δz · d
dz

dw√(
dx

dw

)2

+
(
dy

dw

)2

+
(
dz

dw

)2

 .

The expression under the integral sign must vanish in the case of a minimum, as
we know. Since the curved line lies upon a given curved surface whose equation
is

P dx+Qdy +Rdz = 0,

the equation between the variations δx, δy, δz

P δz +Qδy +Rδz = 0

must also hold. From this, by means of well known principles, we easily conclude
that the differentials

d ·
dx

dw√(
dx

dw

)2

+

(
dy

dw

)2

+

(
dz

dw

)2
,

d ·
dy

dw√(
dx

dw

)2

+

(
dy

dw

)2

+

(
dz

dw

)2
,

d ·
dz

dw√(
dx

dw

)2

+

(
dy

dw

)2

+

(
dz

dw

)2

must be proportional to the quantities P , Q, R respectively. If ds is an element of
the curve; λ the point upon the auxiliary sphere, which represents the direction
of this element; L the point giving the direction of the normal as above; and
ξ, η, ζ; X, Y , Z the coordinates of the points λ, L referred to the centre of the
auxiliary sphere, then we have

dx = ξ ds, dy = η ds, dz = ζ ds,

ξ2 + η2 + ζ2 = 1.
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Therefore we see that the above differentials will be equal to dξ, dη, dζ. And
since P , Q, R are proportional to the quantities X, Y , Z, the character of the
shortest line is such that

dξ

X
=
dη

Y
=
dζ

Z
.

13.

To every point of a curved line upon a curved surface there correspond two
points on the sphere, according to our point of view; namely, the point λ, which
represents the direction of the linear element, and the point L, which represents
the direction of the normal to the surface. The two are evidently 90◦ apart. In
our former investigation (Art. 9), where [we] supposed the curved line to lie in
a plane, we had two other points upon the sphere; namely, L, which represents
the direction of the normal to the plane, and λ′, which represents the direction
of the normal to the element of the curve in the plane. In this case, therefore,
L was a fixed point and λ, λ′ were always in a great circle whose pole was L. In
generalizing these considerations, we shall retain the notation L, λ′, but we must
define the meaning of these symbols from a more general point of view. When
the curve s is described, the points L, λ also describe curved lines upon the
auxiliary sphere, which, generally speaking, are no longer great circles. Parallel
to the element of the second line, we draw a radius of the auxiliary sphere to
the point λ′, but instead of this point we take the point opposite when λ′ is
more than 90◦ from L. In the first case, we regard the element at λ as positive,
and in the other as negative. Finally, let L be the point on the auxiliary sphere,
which is 90◦ from both λ and λ′, and which is so taken that λ, λ′, L lie in the
same order as (1), (2), (3).

The coordinates of the four points of the auxiliary sphere, referred to its
centre, are for

L X Y Z

λ ξ η ζ

λ′ ξ′ η′ ζ ′

L α β γ.

Hence each of these 4 points describes a line upon the auxiliary sphere, whose
elements we shall express by dL, dλ, dλ′, dL. We have, therefore,

dξ = ξ′ dλ,

dη = η′ dλ,

dζ = ζ ′ dλ.

In an analogous way we now call
dλ

ds
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the measure of curvature of the curved line upon the curved surface, and its
reciprocal

ds

dλ

the radius of curvature. If we denote the latter by ρ, then

ρ dξ = ξ′ ds,

ρ dη = η′ ds,

ρ dζ = ζ ′ ds.

If, therefore, our line be a shortest line, ξ′, η′, ζ ′ must be proportional to the
quantities X, Y , Z. But, since at the same time

ξ′2 + η′2 + ζ ′2 = X2 + Y 2 + Z2 = 1,

we have
ξ′ = ±X, η′ = ±Y, ζ ′ = ±Z,

and since, further,

ξ′X + η′Y + ζ ′Z = cosλ′L

= ±(X2 + Y 2 + Z2)

= ±1,

and since we always choose the point λ′ so that

λ′L < 90◦,

then for the shortest line
λ′L = 0,

or λ′ and L must coincide. Therefore

ρ dξ = X ds,

ρ dη = Y ds,

ρ dζ = Z ds,

and we have here, instead of 4 curved lines upon the auxiliary sphere, only 3 to
consider. Every element of the second line is therefore to be regarded as lying
in the great circle Lλ. And the positive or negative value of ρ refers to the
concavity or the convexity of the curve in the direction of the normal.

14.

We shall now investigate the spherical angle upon the auxiliary sphere, which
the great circle going from L toward λ makes with that one going from L toward
one of the fixed points (1), (2), (3); e. g., toward (3). In order to have something
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definite here, we shall consider the sense from L(3) to Lλ the same as that in
which (1), (2), and (3) lie. If we call this angle φ, then it follows from the
theorem of Art. 7 that

sinL(3) · sinLλ · sinφ = Y ξ −Xη, †

or, since Lλ = 90◦ and

sinL(3) =
√
X2 + Y 2 =

√
1− Z2,

we have
sinφ =

Y ξ −Xη√
X2 + Y 2

.

Furthermore,
sinL(3) · sinLλ · cosφ = ζ,

or
cosφ =

ζ√
X2 + Y 2

and
tanφ =

Y ξ −Xη
ζ

=
ζ ′

ζ
.

Hence we have

dφ =
ζY dξ − ζX dη − (Y ξ −Xη) dζ + ξζ dY − ηζ dX

(Y ξ −Xη)2 + ζ2
.

The denominator of this expression is

= Y 2ξ2 − 2XY ξη −X2η2 + ζ2

= −(Xξ + Y η)2 + (X2 + Y 2)(ξ2 + η2) + ζ2

= −Z2ζ2 + (1− Z2)(1− ζ2) + ζ2

= 1− Z2,

or
dφ =

ζY dξ − ζX dη + (Xη − Y ξ) dζ − ηζ dX + ξζ dY

1− Z2
.

We verify readily by expansion the identical equation

ηζ(X2 + Y 2 + Z2) + Y Z(ξ2 + η2 + ζ2)

= (Xξ + Y η + Zζ)(Zη + Y ζ) + (Xζ − Zξ)(Xη − Y ξ),

and likewise

ξζ(X2 + Y 2 + Z2) +XZ(ξ2 + η2 + ζ2)

= (Xξ + Y η + Zζ)(Xζ + Zξ) + (Y ξ −Xη)(Y ζ − Zη).
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We have, therefore,

ηζ = −Y Z + (Xζ − Zξ)(Xη − Y ξ),
ξζ = −XZ + (Y ξ −Xη)(Y ζ − Zη).

Substituting these values, we obtain

dφ =
Z

1− Z2
(Y dX −X dY ) +

ζY dξ − ζX dη

1− Z2

+
Xη − Y ξ
1− Z2

{
dζ − (Xζ − Zξ) dX − (Y ζ − Zη) dY

}
.

Now

X dX + Y dY + Z dZ = 0,

ξ dX + η dY + ζ dZ = −X dξ − Y dη − Z dζ.
On substituting we obtain, instead of what stands in the parenthesis,

dζ − Z(X dξ + Y dη + Z dζ).

Hence

dφ =
Z

1− Z2
(Y dX −X dY ) +

dξ

1− Z2
{ζY − ηX2Z + ξXY Z}

− dη

1− Z2
{ζX + ηXY Z − ξY 2Z}†

+ dζ(ηX − ξY ).

Since, further,

ηX2Z − ξXY Z = ηX2Z + ηY 2Z + ζZY Z

= ηZ(1− Z2) + ζY Z2,

ηXY Z − ξY 2Z = −ξX2Z − ζXZ2 − ξY 2Z

= −ξZ(1− Z2)− ζXZ2,

our whole expression becomes

dφ =
Z

1− Z2
(Y dX −X dY )

+ (ζY − ηZ) dξ + (ξZ − ζX) dη + (ηX − ξY ) dζ.

15.

The formula just found is true in general, whatever be the nature of the
curve. But if this be a shortest line, then it is clear that the last three terms
destroy each other, and consequently

dφ = − Z

1− Z2
(X dY − Y dX).†
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But we see at once that
Z

1− Z2
(X dY − Y dX)

is nothing but the area of the part of the auxiliary sphere, which is formed
between the element of the line L, the two great circles drawn through its
extremities and (3), and the element thus intercepted on the great circle through

(2) (1)

(3)

+

(2) (1)

(3)

−
(2) (1)

(3)

−P P ′

L
L′

P P ′

L
L′

P P ′

L L′

(1) and (2). This surface is considered positive, if L and (3) lie on the same side
of (1) (2), and if the direction from P to P ′ is the same as that from (2) to (1);
negative, if the contrary of one of these conditions hold; positive again, if the
contrary of both conditions be true. In other words, the surface is considered
positive if we go around the circumference of the figure LL′P ′P in the same
sense as (1) (2) (3); negative, if we go in the contrary sense.

If we consider now a finite part of the line from L to L′ and denote by φ, φ′
the values of the angles at the two extremities, then we have

φ′ = φ+ AreaLL′P ′P,

the sign of the area being taken as explained.
Now let us assume further that, from the origin upon the curved surface,

infinitely many other shortest lines go out, and denote by A that indefinite angle
which the first element, moving counter-clockwise, makes with the first element
of the first line; and through the other extremities of the different curved lines
let a curved line be drawn, concerning which, first of all, we leave it undecided
whether it be a shortest line or not. If we suppose also that those indefinite
values, which for the first line were φ, φ′, be denoted by ψ, ψ′ for each of these
lines, then ψ′ − ψ is capable of being represented in the same manner on the
auxiliary sphere by the space LL′1P ′1P . Since evidently ψ = φ− A, the space

LL′1P
′
1P
′L′L = ψ′ − ψ − φ′ + φ

= ψ′ − φ′ + A

= LL′1L
′L+ L′L′1P

′
1P
′.†

P P ′ P ′
1

L

L′

L′
1

If the bounding line is also a shortest line, and, when prolonged, makes with
LL′, LL′1 the angles B, B1; if, further, χ, χ1 denote the same at the points
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L′, L′1, that φ did at L in the line LL′, then we have

χ1 = χ+ AreaL′L′1P
′
1P
′,

ψ′ − φ′ + A = LL′1L
′L+ χ1 − χ;

but

φ′ = χ+B,

ψ′ = χ1 +B1,

therefore
B1 −B + A = LL′1L

′L.

The angles of the triangle LL′L′1 evidently are

A, 180◦ −B, B1,

therefore their sum is
180◦ + LL′1L

′L.

The form of the proof will require some modification and explanation, if the
point (3) falls within the triangle. But, in general, we conclude

The sum of the three angles of a triangle, which is formed of shortest lines
upon an arbitrary curved surface, is equal to the sum of 180◦ and the area of
the triangle upon the auxiliary sphere, the boundary of which is formed by the
points L, corresponding to the points in the boundary of the original triangle,
and in such a manner that the area of the triangle may be regarded as positive
or negative according as it is inclosed by its boundary in the same sense as the
original figure or the contrary.

Wherefore we easily conclude also that the sum of all the angles of a polygon
of n sides, which are shortest lines upon the curved surface, is [equal to] the sum
of (n− 2)180◦ + the area of the polygon upon the sphere etc.

16.

If one curved surface can be completely developed upon another surface, then
all lines upon the first surface will evidently retain their magnitudes after the
development upon the other surface; likewise the angles which are formed by
the intersection of two lines. Evidently, therefore, such lines also as are shortest
lines upon one surface remain shortest lines after the development. Whence,
if to any arbitrary polygon formed of shortest lines, while it is upon the first
surface, there corresponds the figure of the zeniths upon the auxiliary sphere,
the area of which is A, and if, on the other hand, there corresponds to the same
polygon, after its development upon another surface, a figure of the zeniths upon
the auxiliary sphere, the area of which is A′, it follows at once that in every case

A = A′.
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Although this proof originally presupposes the boundaries of the figures to be
shortest lines, still it is easily seen that it holds generally, whatever the boundary
may be. For, in fact, if the theorem is independent of the number of sides, nothing
will prevent us from imagining for every polygon, of which some or all of its sides
are not shortest lines, another of infinitely many sides all of which are shortest
lines.

Further, it is clear that every figure retains also its area after the transfor-
mation by development.

We shall here consider 4 figures:

1) an arbitrary figure upon the first surface,

2) the figure on the auxiliary sphere, which corresponds to the zeniths of
the previous figure,

3) the figure upon the second surface, which No. 1 forms by the development,

4) the figure upon the auxiliary sphere, which corresponds to the zeniths of
No. 3.

Therefore, according to what we have proved, 2 and 4 have equal areas, as
also 1 and 3. Since we assume these figures infinitely small, the quotient obtained
by dividing 2 by 1 is the measure of curvature of the first curved surface at this
point, and likewise the quotient obtained by dividing 4 by 3, that of the second
surface. From this follows the important theorem:

In the transformation of surfaces by development the measure of curvature at
every point remains unchanged.

This is true, therefore, of the product of the greatest and smallest radii of
curvature.

In the case of the plane, the measure of curvature is evidently everywhere
zero. Whence follows therefore the important theorem:

For all surfaces developable upon a plane the measure of curvature everywhere
vanishes,

or (
∂2z

∂x ∂y

)2

−
(
∂2z

∂x2

)(
∂2z

∂x2

)
= 0,

which criterion is elsewhere derived from other principles, though, as it seems to
us, not with the desired rigor. It is clear that in all such surfaces the zeniths of
all points can not fill out any space, and therefore they must all lie in a line.

17.

From a given point on a curved surface we shall let an infinite number of
shortest lines go out, which shall be distinguished from one another by the angle
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which their first elements make with the first element of a definite shortest line.
This angle we shall call θ. Further, let s be the length [measured from the given
point] of a part of such a shortest line, and let its extremity have the coordinates
x, y, z. Since θ and s, therefore, belong to a perfectly definite point on the
curved surface, we can regard x, y, z as functions of θ and s. The direction of
the element of s corresponds to the point λ on the sphere, whose coordinates
are ξ, η, ζ. Thus we shall have

ξ =
∂x

∂s
, η =

∂y

∂s
, ζ =

∂z

∂s
.

The extremities of all shortest lines of equal lengths s correspond to a curved
line whose length we may call t. We can evidently consider t as a function of
s and θ, and if the direction of the element of t corresponds upon the sphere to
the point λ′ whose coordinates are ξ′, η′, ζ ′, we shall have

ξ′ · ∂t
∂θ

=
∂x

∂θ
, η′ · ∂t

∂θ
=
∂y

∂θ
, ζ ′ · ∂t

∂θ
=
∂z

∂θ
.

Consequently

(ξξ′ + ηη′ + ζζ ′)
∂t

∂θ
=
∂x

∂s
· ∂x
∂θ

+
∂y

∂s
· ∂y
∂θ

+
∂z

∂s
· ∂z
∂θ
.

This magnitude we shall denote by u, which itself, therefore, will be a function
of θ and s.

We find, then, if we differentiate with respect to s,

∂u

∂s
=
∂2x

∂s2
· ∂x
∂θ

+
∂2y

∂s2
· ∂y
∂θ

+
∂2z

∂s2
· ∂z
∂θ

+ 1
2

∂

{(
∂x

∂s

)2

+

(
∂y

∂s

)2

+

(
∂z

∂s

)2
}

∂θ

=
∂2x

∂s2
· ∂x
∂θ

+
∂2y

∂s2
· ∂y
∂θ

+
∂2z

∂s2
· ∂z
∂θ
,

because (
∂x

∂s

)2

+

(
∂y

∂s

)2

+

(
∂z

∂s

)2

= 1,

and therefore its differential is equal to zero.
But since all points [belonging] to one constant value of θ lie on a shortest

line, if we denote by L the zenith of the point to which s, θ correspond and by
X, Y , Z the coordinates of L, [from the last formulæ of Art. 13],

∂2x

∂s2
=
X

p
,

∂2y

∂s2
=
Y

p
,

∂2z

∂s2
=
Z

p
,

if p is the radius of curvature. We have, therefore,

p · ∂u
∂s

= X
∂x

∂θ
+ Y

∂y

∂θ
+ Z

∂z

∂θ
=
∂t

∂θ
(Xξ′ + Y η′ + Zζ ′).
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But
Xξ′ + Y η′ + Zζ ′ = cosLλ′ = 0,

because, evidently, λ′ lies on the great circle whose pole is L. Therefore we have

∂u

∂s
= 0,

or u independent of s, and therefore a function of θ alone. But for s = 0, it is

evident that t = 0,
∂t

∂θ
= 0, and therefore u = 0. Whence we conclude that, in

general, u = 0, or
cosλλ′ = 0.

From this follows the beautiful theorem:
If all lines drawn from a point on the curved surface are shortest lines of

equal lengths, they meet the line which joins their extremities everywhere at right
angles.

We can show in a similar manner that, if upon the curved surface any curved
line whatever is given, and if we suppose drawn from every point of this line
toward the same side of it and at right angles to it only shortest lines of equal
lengths, the extremities of which are joined by a line, this line will be cut at
right angles by those lines in all its points. We need only let θ in the above
development represent the length of the given curved line from an arbitrary
point, and then the above calculations retain their validity, except that u = 0
for s = 0 is now contained in the hypothesis.

18.

The relations arising from these constructions deserve to be developed still

more fully. We have, in the first place, if, for brevity, we write m for
∂t

∂θ
,

∂x

∂s
= ξ,

∂y

∂s
= η,

∂z

∂s
= ζ,(1)

∂x

∂θ
= mξ′,

∂y

∂θ
= mη′,

∂z

∂θ
= mζ ′,(2)

ξ2 + η2 + ζ2 = 1,(3)

ξ′2 + η′2 + ζ ′2 = 1,(4)

ξξ′ + ηη′ + ζζ ′ = 0.(5)

Furthermore,

X2 + Y 2 + Z2 = 1,(6)

Xξ + Y η + Zζ = 0,(7)

Xξ′ + Y η′ + Zζ ′ = 0,(8)
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and 
X = ζη′ − ηζ ′,
Y = ξζ ′ − ζξ′,
Z = ηξ′ − ξη′;

[9]


ξ′ = ηZ − ζY,
η′ = ζX − ξZ,
ζ ′ = ξY − ηX;

[10]


ξ = Y ζ ′ − Zη′,
η = Zξ′ −Xζ ′,
ζ = Xη′ − Y ξ′.

[11]

Likewise,
∂ξ

∂s
,
∂η

∂s
,
∂ζ

∂s
are proportional to X, Y , Z, and if we set

∂ξ

∂s
= pX,

∂η

∂s
= pY,

∂ζ

∂s
= pZ,

where
1

p
denotes the radius of curvature of the line s, then

p = X
∂ξ

∂s
+ Y

∂η

∂s
+ Z

∂ζ

∂s
.

By differentiating (7) with respect to s, we obtain

−p = ξ
∂X

∂s
+ η

∂Y

∂s
+ ζ

∂Z

∂s
.

We can easily show that
∂ξ′

∂s
,
∂η′

∂s
,
∂ζ ′

∂s
also are proportional to X, Y , Z. In

fact, [from 10] the values of these quantities are also [equal to]

η
∂Z

∂s
− ζ ∂Y

∂s
, ζ

∂X

∂s
− ξ ∂Z

∂s
, ξ

∂Y

∂s
− η ∂X

∂s
,

therefore

Y
∂ξ′

∂s
−X ∂η′

∂s
= −ζ

(
Y ∂Y

∂s
+
X ∂X

∂s

)
+
∂Z

∂s
(Y η +Xξ)

= −ζ
(
X ∂X + Y ∂Y + Z ∂Z

∂s

)
+
∂Z

∂s
(Xξ + Y η + Zζ)

= 0,

and likewise the others. We set, therefore,

∂ξ′

∂s
= p′X,

∂η′

∂s
= p′Y,

∂ζ ′

∂s
= p′Z,
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whence

p′ = ±
√(

∂ξ′

∂s

)2

+

(
∂η′

∂s

)2

+

(
∂ζ ′

∂s

)2

,

and also
p′ = X

∂ξ′

∂s
+ Y

∂η′

∂s
+ Z

∂ζ ′

∂s
.

Further [we obtain], from the result obtained by differentiating (8),

−p′ = ξ′
∂X

∂s
+ η′

∂Y

∂s
+ ζ ′

∂Z

∂s
.

But we can derive two other expressions for this. We have

∂mξ′

∂s
=
∂ξ

∂θ
,

[
∂mη′

∂s
=
∂η

∂θ
,

∂mζ ′

∂s
=
∂ζ

∂θ
,

]
therefore [because of (8)]

mp′ = X
∂ξ

∂θ
+ Y

∂η

∂θ
+ Z

∂ζ

∂θ
.

[and therefore, from (7),]

−mp′ = ξ
∂X

∂θ
+ η

∂Y

∂θ
+ ζ

∂Z

∂θ
.

After these preliminaries [using (2) and (4)] we shall now first put m in the
form

m = ξ′
∂x

∂θ
+ η′

∂y

∂θ
+ ζ ′

∂z

∂θ
,

and differentiating with respect to s, we have∗

∂m

∂s
=
∂x

∂θ
· ∂ξ

′

∂s
+
∂y

∂θ
· ∂η

′

∂s
+
∂z

∂θ
· ∂ζ

′

∂s
+ ξ′

∂2x

∂s ∂θ
+ η′

∂2y

∂s ∂θ
+ ζ ′

∂2z

∂s ∂θ

= mp′(ξ′X + η′Y + ζ ′Z) + ξ′
∂ξ

∂θ
+ η′

∂η

∂θ
+ ζ ′

∂ζ

∂θ

∗It is better to differentiate m2. [In fact from (2) and (4)

m2 =
(
∂x

∂θ

)2

+
(
∂y

∂θ

)2

+
(
∂z

∂θ

)2

,

therefore

m
∂m

∂s
=
∂x

∂θ
· ∂

2x

∂θ ∂s
+
∂y

∂θ
· ∂

2y

∂θ ∂s
+
∂z

∂θ
· ∂

2z

∂θ ∂s

= mξ′
∂ξ

∂θ
+mη′

∂η

∂θ
+mζ ′

∂ζ

∂θ
.]
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= ξ′
∂ξ

∂θ
+ η′

∂η

∂θ
+ ζ ′

∂ζ

∂θ
.

If we differentiate again with respect to s, and notice that

∂2ξ

∂s ∂θ
=
∂(pX)

∂θ
, etc.,

and that
Xξ′ + Y η′ + Zζ ′ = 0,

we have

∂2m

∂s2
= p

(
ξ′
∂X

∂θ
+ η′

∂Y

∂θ
+ ζ ′

∂Z

∂θ

)
+ p′

(
X
∂ξ

∂θ
+ Y

∂η

∂θ
+ Z

∂ζ

∂θ

)
= p

(
ξ′
∂X

∂θ
+ η′

∂Y

∂θ
+ ζ ′

∂Z

∂θ

)
+mp′2

= −
(
ξ
∂X

∂s
+ η

∂Y

∂s
+ ζ

∂Z

∂s

)(
ξ′
∂X

∂θ
+ η′

∂Y

∂θ
+ ζ ′

∂Z

∂θ

)
+
(
ξ′
∂X

∂s
+ η′

∂Y

∂s
+ ζ ′

∂Z

∂s

)(
ξ
∂X

∂θ
+ η

∂Y

∂θ
+ ζ

∂Z

∂θ

)
=
(
∂Y

∂θ

∂Z

∂s
− ∂Y

∂s

∂Z

∂θ

)
X +

(
∂Z

∂θ

∂X

∂s
− ∂Z

∂s

∂X

∂θ

)
Y +

(
∂X

∂θ

∂Y

∂s
− ∂X

∂s

∂Y

∂θ

)
Z.†

[But if the surface element
mds dθ

belonging to the point x, y, z be represented upon the auxiliary sphere of unit
radius by means of parallel normals, then there corresponds to it an area whose
magnitude is{
X

(
∂Y

∂s

∂Z

∂θ
− ∂Y

∂θ

∂Z

∂s

)
+ Y

(
∂Z

∂s

∂X

∂θ
− ∂Z

∂θ

∂X

∂s

)
+ Z

(
∂X

∂s

∂Y

∂θ
− ∂X

∂θ

∂Y

∂s

)}
ds dθ.

Consequently, the measure of curvature at the point under consideration is equal
to

− 1

m

∂2m

∂s2
.]



NOTES.‡

The parts enclosed in brackets are additions of the editor of the German
edition or of the translators.

“The foregoing fragment, Neue allgemeine Untersuchungen über die krummen
Flächen, differs from the Disquisitiones not only in the more limited scope of the
matter, but also in the method of treatment and the arrangement of the theorems.
There [paper of 1827] Gauss assumes that the rectangular coordinates x, y, z
of a point of the surface can be expressed as functions of any two independent
variables p and q, while here [paper of 1825] he chooses as new variables the
geodesic coordinates s and θ. Here [paper of 1825] he begins by proving the
theorem, that the sum of the three angles of a triangle, which is formed by
shortest lines upon an arbitrary curved surface, differs from 180◦ by the area of
the triangle, which corresponds to it in the representation by means of parallel
normals upon the auxiliary sphere of unit radius. From this, by means of simple
geometrical considerations, he derives the fundamental theorem, that ‘in the
transformation of surfaces by bending, the measure of curvature at every point
remains unchanged.’ But there [paper of 1827] he first shows, in Art. 11, that the
measure of curvature can be expressed simply by means of the three quantities
E, F , G, and their derivatives with respect to p and q, from which follows
the theorem concerning the invariant property of the measure of curvature as a
corollary; and only much later, in Art. 20, quite independently of this, does he
prove the theorem concerning the sum of the angles of a geodesic triangle.”

Remark by Stäckel, Gauss’s Works, vol. viii, p. 443.
Art. 3, p. 81. cos2 φ, etc., is used here where the German text has cosφ2, etc.
Art. 3, p. 81. p2, etc., is used here where the German text has pp, etc.
Art. 7, p. 87. Since λL is less than 90◦, cosλL is always positive and,

therefore, the algebraic sign of the expression for the volume of this pyramid
depends upon that of sinL′L′′. Hence it is positive, zero, or negative according
as the arc L′L′′ is less than, equal to, or greater than 180◦.

Art. 7, p. 87. As is seen from the paper of 1827 (see page 5), Gauss corrected
this statement. To be correct it should read: for which we can write also,
according to well known principles of spherical trigonometry,

sinLL′ · sinL′ · sinL′L′′ = sinL′L′′ · sinL′′ · sinL′′L = sinL′′L · sinL · sinLL′,
if L, L′, L′′ denote the three angles of the spherical triangle, where L is the angle
measured from the arc LL′′ to LL′, and so for the other angles. At the same time
we easily see that this value is one-sixth of the pyramid whose angular points
are the centre of the sphere and the three points L, L′, L′′; and this pyramid
is positive when the points L, L′, L′′ are arranged in the same order about this
triangle as the points (1), (2), (3) about the triangle (1) (2) (3).

Art. 8, p. 87. In the German text V stands for f in this equation and in the
next line but one.

‡Line number references in the translators’ notes are omitted. Descriptions such as “top
of page n” are retained, but may not match this ebook’s pagination. [Transcriber ]
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Art. 11, p. 91. In the German text, in the expression for B, (αβ′ + αβ′)
stands for (α′β + αβ′).

Art. 11, p. 92. The vertices of the triangle are M , M ′, (3), whose coordinates
are α, β, γ; α′, β′, γ′; 0, 0, 1, respectively. The pole of the arc MM ′ on the
same side as (3) is L, whose coordinates are X, Y , Z. Now applying the formula
on page 86,

x′y′′ − y′x′′ = sinL′L′′ cosλ(3),

to this triangle, we obtain

αβ′ − βα′ = sinMM ′ cosL(3)

or, since
MM ′ = 90◦, and cosL(3) = ±Z

we have
αβ′ − βα′ = ±Z.

Art. 14, p. 98. Here X, Y , Z; ξ, η, ζ; 0, 0, 1 take the place of x, y, z;
x′, y′, z′; x′′, y′′, z′′ of the top of page 86. Also (3), λ take the place of L′, L′′,
and φ is the angle L in the note at the top of this page.

Art. 14, p. 99. In the German text {ζX − ηXY Z + ξY 2Z} stands for
{ζX + ηXY Z − ξY 2Z}.

Art. 15, p. 99. Transforming to polar coordinates, r, θ, ψ, by the substitutions
(since on the auxiliary sphere r = 1)

X = sin θ sinψ, Y = sin θ cosψ, Z = cos θ,

dX = sin θ cosψ dψ + cos θ sinψ dθ, dY = − sin θ sinψ dψ + cos θ cosψ dθ,

− Z

1− Z2
(X dY − Y dX) becomes cos θ dψ.(1)

In the figures on page 100, PL and P ′L′ are arcs of great circles intersecting
in the point (3), and the element LL′, which is not necessarily the arc of a great
circle, corresponds to the element of the geodesic line on the curved surface.
(2)PP ′(1) also is the arc of a great circle. Here P ′P = dψ, Z = cos θ = Altitude
of the zone of which LL′P ′P is a part. The area of a zone varies as the altitude
of the zone. Therefore, in the case under consideration,

Area of zone
2π

=
Z

1
.

Also
AreaLL′P ′P
Area of zone

=
dψ

2π
.

From these two equations,

(2) AreaLL′P ′P = Z dψ, or cos θ dψ.
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From (1) and (2)

− Z

1− Z2
(X dY − Y dX) = AreaLL′P ′P.

Art. 15, p. 100. The point (3) in the figures on this page was added by the
translators.

Art. 15, p. 100. It has been shown that dφ = AreaLL′P ′P,= dA, say. Then∫ φ′

φ

dφ =

∫ A

0

dA,

or
φ′ − φ = A, the finite area LL′P ′P .

Art. 15, p. 100. Let A, B′, B1 be the vertices of a geodesic triangle on
the curved surface, and let the corresponding triangle on the auxiliary sphere
be LL′L′1L, whose sides are not necessarily arcs of great circles. Let A, B′, B1

denote also the angles of the geodesic triangle. Here B′ is the supplement of the
angle denoted by B on page 100. Let φ be the angle on the sphere between the
great circle arcs Lλ, L(3), i. e., φ = (3)Lλ, λ corresponding to the direction of
the element at A on the geodesic line AB′, and let φ′ = (3)L′λ1, λ1 corresponding
to the direction of the element at B′ on the line AB′. Similarly, let ψ = (3)Lµ,
ψ′ = (3)L′1µ1, µ, µ1 denoting the directions of the elements at A, B1, respectively,
on the line AB1. And let χ = (3)L′ν, χ1 = (3)L′1ν1, ν, ν1 denoting the directions
of the elements at B′, B1, respectively, on the line B′B1.

Then from the first formula on page 100,

φ′ − φ = AreaLL′P ′P,

ψ′ − ψ = AreaLL′1P
′
1P,

χ1 − χ = AreaL′L′1P
′
1P
′, P P ′ P ′

1

L
L′

L′
1

ψ′ − ψ − (φ′ − φ)− (χ1 − χ) = AreaL′L′1P
′
1P
′ − AreaLL′P ′P − AreaL′L′1P

′
1P
′,

or

(1) (φ− ψ) + (χ− φ′) + (ψ′ − χ1) = AreaLL′1L
′L.

Since λ, µ represent the directions of the linear elements at A on the
geodesic lines AB′, AB1 respectively, the absolute value of the angle A on
the surface is measured by the arc µλ, or by the spherical angle µLλ. But
φ− ψ = (3)Lλ− (3)Lµ = µLλ.
Therefore

A = φ− ψ.
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Similarly

180◦ −B′ = −(χ− φ′),
B1 = ψ′ − χ1.

Therefore, from (1),

A+B′ +B1 − 180◦ = AreaLL′1L
′L.

Art. 15, p. 100. In the German text LL′P ′P stands for LL′1P ′1P , which
represents the angle ψ′ − ψ.

Art. 15, p. 101. This general theorem may be stated as follows:
The sum of all the angles of a polygon of n sides, which are shortest lines

upon the curved surface, is equal to the sum of (n− 2)180◦ and the area of the
polygon upon the auxiliary sphere whose boundary is formed by the points L
which correspond to the points of the boundary of the given polygon, and in
such a manner that the area of this polygon may be regarded positive or negative
according as it is enclosed by its boundary in the same sense as the given figure
or the contrary.

Art. 16, p. 101. The zenith of a point on the surface is the corresponding
point on the auxiliary sphere. It is the spherical representation of the point.

Art. 18, p. 107. The normal to the surface is here taken in the direction
opposite to that given by [9] page 104.





BIBLIOGRAPHY





BIBLIOGRAPHY.

This bibliography is limited to books, memoirs, etc., which use Gauss’s
method and which treat, more or less generally, one or more of the following
subjects: curvilinear coordinates, geodesic and isometric lines, curvature of
surfaces, deformation of surfaces, orthogonal systems, and the general theory
of surfaces. Several papers which lie beyond these limitations have been added
because of their importance or historic interest. For want of space, generally,
papers on minimal surfaces, congruences, and other subjects not mentioned above
have been excluded.

Generally, the numbers following the volume number give the pages on which
the paper is found.

C. R. will be used as an abbreviation for Comptes Rendus hebdomadaires
des séances de l’Académie des Sciences, Paris.

Adam, Paul Sur les systèmes triples orthogonaux. Thesis. 80 pp., Paris, 1887.

Sur les surfaces isothermiques à lignes de courbure planes dans un
système ou dans les deux systèmes. Ann. de l’École Normale, ser. 3,
vol. 10, 319–358, 1893; C. R., vol. 116, 1036–1039, 1893.

Sur les surfaces admettant pour lignes de courbure deux séries de cercles
géodésiques orthogonaux. Bull. de la Soc. Math. de France, vol. 22, 110–115,
1894.

Mémoire sur la déformation des surfaces. Bull. de la Soc. Math. de
France, vol. 23, 219–240, 1895.

Sur la déformation des surfaces. Bull. de la Soc. Math. de France,
vol. 23, 106–111, 1895; C. R., vol. 121, 551–553, 1895.

Sur la déformation des surfaces avec conservation des lignes de courbure.
Bull. de la Soc. Math. de France, vol. 23, 195–196, 1895.

Théorème sur la déformation des surfaces de translation. Bull. de la
Soc. Math. de France, vol. 23, 204–209, 1895.

Sur un problème de déformation. Bull. de la Soc. Math. de France,
vol. 24, 28–39, 1896.

Albeggiani, L. Linee geodetiche tracciate sopra taluni superficie. Rend. del
Circolo Mat. di Palermo, vol. 3, 80–119, 1889.

Allé, M. Zur Theorie des Gauss’schen Krümmungsmaasses. Sitzungsb. der Ksl.
Akad. der Wissenschaften zu Wien, vol. 74, 9–38, 1876.

Aoust, L. S. X. B. Des coordonnées curvilignes se coupant sous un angle
quelconque. Journ. für Math., vol. 58, 352–368, 1861.

Théorie géométrique des coordonnées curvilignes quelconques. C. R.,
vol. 54, 461–463, 1862.



116 bibliography.

Sur la courbure des surfaces. C. R., vol. 57, 217–219, 1863.

Théorie des coordonnées curvilignes quelconques. Annali di Mat., vol. 6,
65–87, 1864; ser. 2, vol. 2, 39–64, vol. 3, 55–69, 1868–69; ser. 2, vol. 5,
261–288, 1873.

August, T. Ueber Flächen mit gegebener Mittelpunktsfläche und über Krüm-
mungsverwandschaft. Archiv der Math. und Phys., vol. 68, 315–352, 1882.

Babinet. Sur la courbure des surfaces. C. R., vol. 49, 418–424, 1859.

Bäcklund, A. V. Om ytar med konstant negativ kröking. Lunds Univ. Årsskrift,
vol. 19, 1884.

Banal, R. Di una classe di superficie a tre dimensioni a curvatura totale nulla.
Atti del Reale Instituto Veneto, ser. 7, vol. 6, 998–1004, 1895.

Beliankén, J. Principles of the theory of the development of surfaces. Surfaces
of constant curvature. (Russian.) Kief Univ. Reports, Nos. 1 and 3; and
Kief, ii + 129 pp., 1898.

Beltrami, Eugenio. Di alcune formole relative alla curvatura delle superficie.
Annali di Mat., vol. 4, 283–284, 1861.

Richerche di analisi applicata alla geometria. Giornale di Mat., vol. 2,
267–282, 297–306, 331–339, 355–375, 1864; vol. 3, 15–22, 33–41, 82–91,
228–240, 311–314, 1865.

Delle variabili complesse sopra una superficie qualunque. Annali di
Mat., ser. 2, vol. 1, 329–366, 1867.

Sulla teorica generale dei parametri differenziali. Mem. dell’Accad. di
Bologna, ser. 2, vol. 8, 549–590, 1868.

Sulla teoria generale delle superficie. Atti dell’Ateneo Veneto, vol. 5,
1869.

Zur Theorie des Krümmungsmaasses. Math. Annalen, vol. 1, 575–582,
1869.

Bertrand, J. Mémoire sur la théorie des surfaces. Journ. de Math., vol. 9,
133–154, 1844.

Betti, E. Sopra i sistemi di superficie isoterme e orthogonali. Annali di Mat.,
ser. 2, vol. 8, 138–145, 1877.

Bianchi, Luigi. Sopra la deformazione di una classe di superficie. Giornale di
Mat., vol. 16, 267–269, 1878.

Ueber die Flächen mit constanter negativer Krümmung. Math. Annalen,
vol. 16, 577–582, 1880.



bibliography. 117

Sulle superficie a curvatura costante positiva. Giornale di Mat., vol. 20,
287–292, 1882.

Sui sistemi tripli cicilici di superficie orthogonali. Giornale di Mat.,
vol. 21, 275–292, 1883; vol. 22, 333–373, 1884.

Sopra i sistemi orthogonali di Weingarten. Atti della Reale Accad. dei
Lincei, ser. 4, vol. 1, 163–166, 243–246, 1885; Annali di Mat., ser. 2, vol. 13,
177–234, 1885, and ser. 2, vol. 14, 115–130, 1886.

Sopra una classe di sistemi tripli di superficie orthogonali, che con-
tengono un sistema di elicoidi aventi a comune l’asse ed il passo. Annali di
Mat., ser. 2, vol. 13, 39–52, 1885.

Sopra i sistemi tripli di superficie orthogonali che contengono un sistema
di superficie pseudosferiche. Atti della Reale Accad. dei Lincei, ser. 4, vol. 2,
19–22, 1886.

Sulle forme differenziali quadratiche indefinite. Atti della Reale Accad.
dei Lincei, vol. 42, 278, 1888; Mem. della Reale Accad. dei Lincei, ser. 4,
vol. 5, 539–603, 1888.

Sopra alcune nuove classi di superficie e di sistemi tripli orthogonali.
Annali di Mat., ser. 2, vol. 18, 301–358, 1890.

Sopra una nuova classe di superficie appartenenti a sistemi tripli or-
thogonali. Atti della Reale Accad. dei Lincei, ser. 4, vol. 61, 435–438,
1890.

Sulle superficie i cui piani principali hanno costante il rapporto delle
distanze da un punto fisso. Atti della Reale Accad. dei Lincei, ser. 5,
vol. 32, 77–84, 1894.

Sulla superficie a curvatura nulla negli spazi curvatura costante. Atti
della Reale Accad. di Torino, vol. 30, 743–755, 1895.

Lezioni di geometria differenziale. viii + 541 pp., Pisa, 1894. Transla-
tion into German by Max Lukat, Vorlesungen über Differentialgeometrie.
xvi + 659 pp., Leipzig, 1896–99.

Sopra una classe di superficie collegate alle superficie pseudosferiche.
Atti della Reale Accad. dei Lincei, ser. 5, vol. 51, 133–137, 1896.

Nuove richerche sulle superficie pseudosferiche. Annali di Mat., ser. 2,
vol. 24, 347–386, 1896.

Sur deux classes de surfaces qui engendrent par un mouvement hélicoidal
une famille de Lamé. Ann. Faculté des sci. de Toulouse, vol. 11 H, 1–8,
1897.

Bianchi, Luigi. Sopra le superficie a curvatura costante positiva. Atti della
Reale Accad. dei Lincei, ser. 5, vol. 81, 223–228, 371–377, 484–489, 1899.

Sulla teoria delle transformazioni delle superficie a curvatura costante.
Annali di Mat., ser. 3, vol. 3, 185–298, 1899.



118 bibliography.

Blutel, E. Sur les surfaces à lignes de courbure sphérique. C. R., vol. 122,
301–303, 1896.

Bonnet, Ossian. Mémoire sur la théorie des surfaces isothermes orthogonales.
Journ. de l’École Polyt., cahier 30, vol. 18, 141–164, 1845.

Sur la théorie générale des surfaces. Journ. de l’École Polyt., cahier 32,
vol. 19, 1–146, 1848; C. R., vol. 33, 89–92, 1851; vol. 37, 529–532, 1853.

Sur les lignes géodésiques. C. R., vol. 41, 32–35, 1855.

Sur quelques propriétés des lignes géodésiques. C. R., vol. 40, 1311–1313,
1855.

Mémoire sur les surfaces orthogonales. C. R., vol. 54, 554–559, 655–659,
1862.

Démonstration du théorème de Gauss relatif aux petits triangles géodé-
siques situés sur une surface courbe quelconque. C. R., vol. 58, 183–188,
1864.

Mémoire sur la théorie des surfaces applicables sur une surface donnée.
Journ. de l’École Polyt., cahier 41, vol. 24, 209–230, 1865; cahier 42, vol. 25,
1–151, 1867.

Démonstration des propriétés fondamentales du système de coordonnées
polaires géodésiques. C. R., vol. 97, 1422–1424, 1883.

Bour, Edmond. Théorie de la déformation des surfaces. Journ. de l’École
Polyt., cahier 39, vol. 22, 1–148, 1862.

Brill, A. Zur Theorie der geodätischen Linie und des geodätischen Dreiecks.
Abhandl. der Kgl. Gesell. der Wissenschaften zu München, vol. 14, 111–
140, 1883.

Briochi, Francesco. Sulla integrazione della equazione della geodetica. Annali di
sci. Mat. e Fis., vol. 4, 133–135, 1853.

Sulla teoria delle coordinate curvilinee. Annali di Mat., ser. 2, vol. 1,
1–22, 1867.

Brisse, C. Exposition analytique de la théorie des surfaces. Ann. de l’École
Normale, ser. 2, vol. 3, 87–146, 1874; Journ. de l’École Polyt., cahier 53,
213–233, 1883.

Bukrejew, B. Surface elements of the surface of constant curvature. (Russian.)
Kief Univ. Reports, No. 7, 4 pp., 1897.

Elements of the theory of surfaces. (Russian.) Kief Univ. Reports,
Nos. 1, 9, and 12, 1897–99.

Burali-Forti, C. Sopra alcune questioni di geometria differenziale. Rend. del
Circolo Mat. di Palermo, vol. 12, 111–132, 1898.



bibliography. 119

Burgatti, P. Sulla torsione geodetica delle linee tracciate sopra una superficie.
Rend. del Circolo Mat. di Palermo, vol. 10, 229–240, 1896.

Burnside, W. The lines of zero length on a surface as curvilinear coordinates.
Mess. of Math., ser. 2, vol. 19, 99–104, 1889.

Campbell, J. Transformations which leave the lengths of arcs on surfaces unal-
tered. Proceed. London Math. Soc., vol. 29, 249–264, 1898.

Carda, K. Zur Geometrie auf Flächen constanter Krümmung. Sitzungsb. der
Ksl. Akad. der Wissenschaften zu Wien, vol. 107, 44–61, 1898.

Caronnet, Th. Sur les centres de courbure géodésiques. C. R., vol. 115, 589–592,
1892.

Sur des couples de surfaces applicables. Bull. de la Soc. Math. de France,
vol. 21, 134–140, 1893.

Sur les surfaces à lignes de courbure planes dans les deux systèmes et
isothermes. C. R., vol. 116, 1240–1242, 1893.

Recherches sur les surfaces isothermiques et les surfaces dont rayons de
courbure sont fonctions l’un de l’autre. Thesis, 66 pp., Paris, 1894.

Casorati, Felice. Nuova definizione della curvatura delle superficie e suo con-
fronto con quella di Gauss. Reale Istituto Lombardo di sci. e let., ser. 2,
vol. 22, 335–346, 1889.

Mesure de la courbure des surfaces suivant l’idee commune. Ses rapports
avec les mesures de courbure Gaussienne et moyenne. Acta Matematica,
vol. 14, 95–110, 1890.

Catalan, E. Mémoire sur les surfaces dont les rayons de courbure en chaque
point sont égaux et de signes contraires. Journ. de l’École Polyt., cahier 37,
vol. 21, 130–168, 1858; C. R., vol. 41, 35–38, 274–276, 1019–1023, 1855.

Cayley, Arthur. On the Gaussian theory of surfaces. Proceed. London Math.
Soc., vol. 12, 187–192, 1881.

On the geodesic curvature of a curve on a surface. Proceed. London
Math. Soc., vol. 12, 110–117, 1881.

On some formulas of Codazzi and Weingarten in relation to the appli-
cation of surfaces to each other. Proceed. London Math. Soc., vol. 24,
210–223, 1893.

Cesàro, E. Theoria intrinseca delle deformazioni infinitesime. Rend. dell’Accad.
di Napoli, ser. 2, vol. 8, 149–154, 1894.

Chelini, D. Sulle formole fondamentali risguardanti la curvatura delle superficie
e delle linee. Annali di Sci. Mat. e Fis., vol. 4, 337–396, 1853.



120 bibliography.

Della curvatura delle superficie, con metodo diretto ed intuitivo. Rend.
dell’Accad. di Bologna, 1868, 119; Mem. dell’Accad. di Bologna, ser. 2,
vol. 8, 27, 1868.

Teoria delle coordinate curvilinee nello spazio e nelle superficie. Mem.
dell’Accad. di Bologna, ser. 2, vol. 8, 483–533, 1868.

Christoffel, Elwin. Allgemeine Theorie der geodätische Dreiecke. Abhandl. der
Kgl. Akad. der Wissenschaften zu Berlin, 1868, 119–176.

Codazzi, Delfino. Sulla teorica delle coordinate curvilinee e sull uogo de’centri
di curvatura d’una superficie qualunque. Annali di sci. Mat. e Fis., vol. 8,
129–165, 1857.

Sulle coordinate curvilinee d’una superficie e dello spazio. Annali di
Mat., ser. 2, vol. 1, 293–316; vol. 2, 101–119, 269–287; vol. 4, 10–24; vol. 5,
206–222; 1867–1871.

Combescure, E. Sur les déterminants fonctionnels et les coordonnèes curvilignes.
Ann. de l’École Normale, ser. 1, vol. 4, 93–131, 1867.

Sur un point de la théorie des surfaces. C. R., vol. 74, 1517–1520, 1872.

Cosserat, E. Sur les congruences des droites et sur la théorie des surfaces. Ann.
Faculté des sci. de Toulouse, vol. 7 N, 1–62, 1893.

Sur la déformation infinitésimale d’une surface flexible et inextensible et
sur les congruences de droites. Ann. Faculté des sci. de Toulouse, vol. 8 E,
1–46, 1894.

Sur les surfaces rapportées à leurs lignes de longeur nulle. C. R.,
vol. 125, 159–162, 1897.

Craig, T. Sur les surfaces à lignes de courbure isométriques. C. R., vol. 123,
794–795, 1896.

Darboux, Gaston. Sur les surfaces orthogonales. Thesis, 45 pp., Paris, 1866.

Sur une série de lignes analogues aux lignes géodésiques. Ann. de l’École
Normale, vol. 7, 175–180, 1870.

Mémoire sur la théorie des coordonnées curvilignes et des systèmes
orthogonaux. Ann. de l’École Normale, ser. 2, vol. 7, 101–150, 227–260,
275–348, 1878.

Sur les cercles géodésiques. C. R., vol. 96, 54–56, 1883.

Sur les surfaces dont la courbure totale est constante. Sur les surfaces
à courbure constante. Sur l’équation aux dérivées partielles des surfaces à
courbure constante. C. R., vol. 97, 848–850, 892–894, 946–949, 1883.

Sur la représentation sphérique des surfaces. C. R., vol. 68, 253–256,
1869; vol. 94, 120–122, 158–160, 1290–1293, 1343–1345, 1882; vol. 96,
366–368, 1883; Ann. de l’École Normale, ser. 3, vol. 5, 79–96, 1888.



bibliography. 121

Leçons sur la théorie générale des surfaces et les applications géométriques
du calcul infinitésimale. 4 vols. Paris, 1887–1896.

Sur les surfaces dont la courbure totale est constante. Ann. de l’École
Normale, ser. 3, vol. 7, 9–18, 1890.

Sur une classe remarkable de courbes et de surfaces algebriques. Second
edition. Paris, 1896.

Leçons sur les systèmes orthogonaux et les coordonnées curvilignes.
Vol. 1. Paris, 1898.

Darboux, Gaston. Sur les transformations des surfaces à courbure totale con-
stante. C. R., vol. 128, 953–958, 1899.

Sur les surfaces à courbure constante positive. C. R., vol. 128, 1018–
1024, 1899.

Demartres, G. Sur les surfaces réglées dont l’élément linéaire est réductible à la
forme de Liouville. C. R., vol. 110, 329–330, 1890.

Demoulin, A. Sur la correspondence par orthogonalité des éléments. C. R.,
vol. 116, 682–685, 1893.

Sur une propriété caractéristique de l’élément linéaire des surfaces de
révolution. Bull. de la Soc. Math. de France, vol. 22, 47–49, 1894.

Note sur la détermination des couples de surfaces applicables telles que
la distance de deux points correspondants soit constante. Bull. de la Soc.
Math. de France, vol. 23, 71–75, 1895.

de Salvert, see (de) Salvert.

de Tannenberg, see (de) Tannenberg.

Dickson, Benjamin. On the general equations of geodesic lines and lines of
curvature on surfaces. Camb. and Dub. Math. Journal, vol. 5, 166–171,
1850.

Dini, Ulisse. Sull’equazione differenzialle delle superficie applicabili su di una
superficie data. Giornale di Mat., vol. 2, 282–288, 1864.

Sulla teoria delle superficie. Giornale di Mat., vol. 3, 65–81, 1865.

Ricerche sopra la teorica delle superficie. Atti della Soc. Italiana dei XL.
Firenze, 1869.

Sopra alcune formole generali della teoria delle superficie e loro appli-
cazioni. Annali di Mat., ser. 2, vol. 4, 175–206, 1870.

van Dorsten, R. Theorie der Kromming von lijnen op gebogen oppervlakken.
Diss. Leiden. Brill. 66 pp., 1885.



122 bibliography.

Egorow, D. On the general theory of the correspondence of surfaces. (Russian.)
Math. Collections, pub. by Math. Soc. of Moscow, vol. 19, 86–107, 1896.

Enneper, A. Bemerkungen zur allgemeinen Theorie der Flächen. Nachr. der
Kgl. Gesell. der Wissenschaften zu Göttingen, 1873, 785–804.

Ueber ein geometrisches Problem. Nachr. der Kgl. Gesell. der Wis-
senschaften zu Göttingen, 1874, 474–485.

Untersuchungen über orthogonale Flächensysteme. Math. Annalen,
vol. 7, 456–480, 1874.

Bemerkungen über die Biegung einiger Flächen. Nachr. der Kgl. Gesell.
der Wissenschaften zu Göttingen, 1875, 129–162.

Bemerkungen über einige Flächen mit constantem Krümmungsmaass.
Nachr. der Kgl. Gesell. der Wissenschaften zu Göttingen, 1876, 597–619.

Ueber die Flächen mit einem system sphärischer Krümmungslinien.
Journ. für Math., vol. 94, 829–341, 1883.

Bemerkungen über einige Transformationen von Flächen. Math. An-
nalen, vol. 21, 267–298, 1883.

Ermakoff, W. On geodesic lines. (Russian.) Math. Collections, pub. by Math.
Soc. of Moscow, vol. 15, 516–580, 1890.

von Escherich, G. Die Geometrie auf den Flächen constanter negativer Krüm-
mung. Sitzungsb. der Ksl. Akad. der Wissenschaften zu Wien, vol. 69,
part II, 497–526, 1874.

Ableitung des allgemeinen Ausdruckes für das Krümmungsmaass der
Flächen. Archiv für Math. und Phys., vol. 57 385–392, 1875.

Fibbi, C. Sulle superficie che contengono un sistema di geodetiche a torsione
costante. Annali della Reale Scuola Norm. di Pisa, vol. 5, 79–164, 1888.

Firth, W. On the measure of curvature of a surface referred to polar coordinates.
Oxford, Camb., and Dub. Mess., vol. 5, 66–76, 1869.

Fouché, M. Sur les systèmes des surfaces triplement orthogonales où les surfaces
d’une même famille admettent la même représentation sphérique de leurs
lignes de courbure. C. R., vol. 126, 210–213, 1898.

Frattini, G. Alcune formole spettanti alla teoria infinitesimale delle superficie.
Giornale di Mat., vol. 13, 161–167, 1875.

Un esempio sulla teoria delle coordinate curvilinee applicata al calcolo
integrale. Giornale di Mat., vol. 15, 1–27, 1877.

Frobenius, G. Ueber die in der Theorie der Flächen auftretenden Differentialpa-
rameter. Journ. für Math., vol. 110, 1–36, 1892.



bibliography. 123

Gauss, K. F. Allgemeine Auflösung der Aufgabe: Die Theile einer gegebenen
Fläche auf einer anderen gegebenen Fläche so abzubilden, dass die Abbildung
dem Abgebildeten in den kleinsten Theilen ähnlich wird. Astronomische
Abhandlungen, vol. 3, edited hy H. C. Schumacher, Altona, 1825. The
same, Gauss’s Works, vol. 4, 189–216, 1880; Ostwald’s Klassiker, No. 55,
edited by A. Wangerin, 57–81, 1894.

Geiser, C. F. Sur la théorie des systèmes triples orthogonaux. Bibliothèque
universelle, Archives des sciences, ser. 4, vol. 6, 363–364, 1898.

Zur Theorie der tripelorthogonalen Flächensysteme. Vierteljahrschrift
der Naturf. Gesell. in Zurich, vol. 43, 317–326, 1898.

Germain, Sophie. Mémoire sur la courbure des surfaces. Journ. für Math.,
vol. 7, 1–29, 1831.

Gilbert, P. Sur l’emploi des cosinus directeurs de la normale dans la théorie
de la courbure des surfaces. Ann. de la Soc. sci. de Bruxelles, vol. 18 B,
1–24, 1894.

Genty, E. Sur les surfaces à courbure totale constante. Bull. de la Soc. Math.
de France, vol. 22, 106–109, 1894.

Genty, E. Sur la déformation infinitésimale de surfaces. Ann. de la Faculté des
sci. de Toulouse, vol. 9 E, 1–11, 1895.

Goursat, E. Sur les systèmes orthogonaux. C. R., vol. 121, 883–884, 1895.

Sur les équations d’une surface rapportée à ses lignes de longueur nulle.
Bull. de la Soc. Math. de France, vol. 26, 83–84, 1898.

Grassmann, H. Anwendung der Ausdehnungslehre auf die allgemeine Theorie
der Raumcurven und krummen Flächen. Diss. Halle, 1893.

Guichard, C. Surfaces rapportées à leur lignes asymptotiques et congruences
rapportées à leurs dévéloppables. Ann. de l’École Normale, ser. 3, vol. 6,
333–348, 1889.

Recherches sur les surfaces à courbure totale constante et certaines
surfaces qui s’y rattachent. Ann. de l’École Normale, ser. 3, vol. 7, 233–
264, 1890.

Sur les surfaces qui possèdent un réseau de géodésiques conjuguées.
C. R., vol. 110, 995–997, 1890.

Sur la déformation des surfaces. Journ. de Math., ser. 5, vol. 2, 123–215,
1896.

Sur les surfaces à courbure totale constante. C. R., vol. 126, 1556–1558,
1616–1618, 1898.

Sur les systémes orthogonaux et les systémes cycliques. Ann. de l’École
Normale, ser. 3, vol. 14, 467–516, 1897; vol. 15, 179–227, 1898.



124 bibliography.

Guldberg, Alf. Om Bestemmelsen af de geodaetiske Linier paa visse specielle
Flader. Nyt Tidsskrift for Math. Kjöbenhavn, vol. 6 B, 1–6, 1895.

Hadamard, J. Sur les lignes géodésiques des surfaces spirales et les équations
différentielles qui s’y rapportent. Procès verbeaux de la Soc. des sci. de
Bordeaux, 1895–96, 55–58.

Sur les lignes géodésiques des surfaces à courbures opposées. C. R.,
vol. 124, 1503–1505, 1897.

Les surfaces à courbures opposées et leurs lignes géodésiques. Journ. de
Math., ser. 5, vol. 4, 27–73, 1898.

Haenig, Conrad. Ueber Hansen’s Methode, ein geodätisches Dreieck auf die
Kugel oder in die Ebene zu übertragen. Diss., 36 pp., Leipzig, 1888.

Hansen, P. A. Geodätische Untersuchungen. Abhandl. der Kgl. Gesell. der
Wissenschaften zu Leipzig, vol. 18, 1865; vol. 9, 1–184, 1868.

Hathaway, A. Orthogonal surfaces. Proc. Indiana Acad., 1896, 85–86.

Hatzidakis, J. N. Ueber einige Eigenschaften der Flächen mit constantem Krüm-
mungsmaass. Journ. für Math., vol. 88, 68–73, 1880.

Ueber die Curven, welche sich so bewegen können, dass sie stets geodätis-
che Linien der von ihnen erzeugten Flächen bleiben. Journ. für Math.,
vol. 95, 120–139, 1883.

Hatzidakis, J. N. Biegung mit Erhaltung der Hauptkrümmungsradien. Journ.
für Math., vol. 117, 42–56, 1897.

Hilbert, D. Ueber Flächen von constanter Gaussscher Krümmung. Trans. Amer.
Math. Society, vol. 2, 87–99, 1901.

Hirst, T. Sur la courbure d’une série de surfaces et de lignes. Annali di Mat.,
vol. 2, 95–112, 148–167, 1859.

Hoppe, R. Zum Problem des dreifach orthogonalen Flächensystems. Archiv für
Math. und Phys., vol. 55, 362–391, 1873; vol. 56, 153–163, 1874; vol. 57,
89–107, 255–277, 366–385, 1875; vol. 58, 37–48, 1875.

Principien der Flächentheorie. Archiv für Math. und Phys., vol. 59,
225–323, 1876; Leipzig, Koch, 179 pp., 1876.

Geometrische Deutung der Fundamentalgrössen zweiter Ordnung der
Flächentheorie. Archiv für Math. und Phys., vol. 60, 65–71, 1876.

Nachträge zur Curven- und Flächentheorie. Archiv für Math. und Phys.,
vol. 60, 376–404, 1877.

Ueber die kürzesten Linien auf den Mittelpunktsflächen. Archiv für
Math. und Phys., vol. 63, 81–93, 1879.



bibliography. 125

Untersuchungen über kürzeste Linien. Archiv für Math. und Phys.,
vol. 64, 60–74, 1879.

Ueber die Bedingung, welcher eine Flächenschaar genügen muss, um
einen dreifach orthogonalen system anzugehören. Archiv für Math. und
Phys., vol. 63, 285–294, 1879.

Nachtrag zur Flächentheorie. Archiv für Math. und Phys., vol. 68,
439–440, 1882.

Ueber die sphärische Darstellung der asymptotischen Linien einer
Fläche. Archiv für Math. und Phys., ser. 2, vol. 10, 443–446, 1891.

Eine neue Beziehung zwischen den Krümmungen von Curven und
Flächen. Archiv für Math. und Phys., ser. 2, vol. 16, 112, 1898.

Jacobi, C. G. J. Demonstratio et amplificatio nova theorematis Gaussiani de
quadratura integra trianguli in data superficie e lineis brevissimis formati.
Journ. für Math., vol. 16, 344–350, 1837.

Jamet, V. Sur la théorie des lignes géodésiques. Marseille Annales, vol. 8,
117–128, 1897.

Joachimsthal, F. Demonstrationes theorematum ad superficies curvas spectan-
tium. Journ. für Math., vol. 30, 347–350, 1846.

Anwendung der Differential- und Integralrechnung auf die allgemeine
Theorie der Flächen und Linien doppelter Krümmung. Leipzig, Teubner,
first ed., 1872; second ed., 1881; third ed., x + 308 pp., revised by
L. Natani, 1890.

Knoblauch, Johannes. Einleitung in die allegemeine Theorie der krummen
Flächen. Leipzig, Teubner, viii + 267 pp., 1888.

Ueber Fundamentalgrössen in der Flächentheorie. Journ. für Math.,
vol. 103, 25–39, 1888.

Ueber die geometrische Bedeutung der flächentheoretischen Fundamen-
talgleichungen. Acta Mathematica, vol. 15, 249–257, 1891.

Königs, G. Résumé d’un mémoire sur les lignes géodésiques. Ann. Faculté des
sci. de Toulouse, vol. 6 P, 1–34, 1892.

Une théorème de géométrie infinitésimale. C. R., vol. 116, 569, 1893.

Mémoire sur les lignes géodésiques. Mém. présentés par savants à
l’Acad. des sci. de l’Inst. de France, vol. 31, No. 6, 318 pp., 1894.

Kommerell, V. Beiträge zur Gauss’schen Flächentheorie. Diss., iii + 46 pp.,
Tübingen, 1890.

Eine neue Formel für die mittlere Krümmung und das Krümmungsmaass
einer Fläche. Zeitschrift für Math. und Phys., vol. 41, 123–126, 1896.



126 bibliography.

Köttfritzsch, Th. Zur Frage über isotherme Coordinatensysteme. Zeitschrift für
Math. und Phys., vol. 19, 265–270, 1874.

Kummer, E. E. Allgemeine Theorie der geradlinigen Strahlensysteme. Journ.
für Math., vol. 57, 189–230, 1860.

Laguerre. Sur les formules fondamentales de la théorie des surfaces. Nouv.
Ann. de Math., ser. 2, vol. 11, 60–66, 1872.

Lamarle, E. Exposé géométrique du calcul differential et integral. Chaps. x–
xiii. Mém. couronnés et autr. mém. publ. par l’Acad. Royale de Belgique,
vol. 15, 418–605, 1863.

Lamé, Gabriel. Mémoire sur les coordonnées curvilignes. Journ. de Math.,
vol. 5, 313–347, 1840.

Leçons sur les coordonnées curvilignes. Paris, 1859.

Lecornu, L. Sur l’équilibre des surfaces flexibles et inextensibles. Journ. de
l’École Polyt., cahier 48, vol. 29, 1–109, 1880.

Legoux, A. Sur l’integration de l’équation ds2 = E du2 + 2F du dv+Gdv2. Ann.
de la Faculté des sci. de Toulouse, vol. 3 F, 1–2, 1889.

Lévy, L. Sur les systèmes de surfaces triplement orthogonaux. Mém. couronnés
et mém. des sav. publiés par l’Acad. Royale de Belgique, vol. 54, 92 pp.,
1896.

Lévy, Maurice. Sur une transformation des coordonnées curvilignes orthogonales
et sur les coordonnées curvilignes comprenant une famille quelconque de
surfaces du second ordre. Thesis, 33 pp., Paris, 1867.

Mémoire sur les coordonnées curvilignes orthogonales. Journ. de l’École
Polyt., cahier 43, vol. 26, 157–200, 1870.

Sur une application industrielle du théorème de Gauss relatif à la cour-
bure des surfaces. C. R., vol. 86, 111–113, 1878.

Lie, Sophus. Ueber Flächen, deren Krümmungsradien durch eine Relation
verknüpft sind. Archiv for Math. og Nat., Christiania, vol. 4, 507–512,
1879.

Zur Theorie der Flächen constanter Krümmung. Archiv for Math. og
Nat., Christiania, vol. 4, 345–354, 355–366, 1879; vol. 5 282–306, 328–358,
518–541, 1881.

Untersuchungen über geodätische Curven. Math. Annalen, vol. 20 357–
454, 1882.

Zur Geometrie einer Monge’schen Gleichung. Berichte der Kgl. Gesell.
der Wissenschaften zu Leipzig, vol. 50 1–2, 1898.



bibliography. 127

von Lilienthal, Reinhold. Allgemeine Eigenschaften von Flächen, deren Co-
ordinaten sich durch reellen Teile dreier analytischer Functionen einer
complexen Veränderlichen darstellen lassen. Journ. für Math., vol. 98,
131–147, 1885.

Untersuchungen zur allgemeinen Theorie der krummen Oberflächen und
geradlinigen Strahlensysteme. Bonn, E. Weber, 112 pp., 1886.

Zur Theorie der Krümmungsmittelpunktsflächen. Math. Annalen,
vol. 30, 1–14, 1887.

Ueber die Krümmung der Curvenschaaren. Math. Annalen, vol. 32,
545–565, 1888.

Zur Krümmungstheorie der Flächen. Journ. für Math., vol. 104, 341–
347, 1889.

Zur Theorie des Krümmungsmaasses der Flächen. Acta Mathematica,
vol. 16, 143–152, 1892.

Ueber geodätische Krümmung. Math. Annalen, vol. 42, 505–525, 1893.
Ueber die Bedingung, unter der eine Flächenschaar einem dreifach

orthogonalen Flächensystem angehört. Math. Annalen, vol. 44, 449–457,
1894.

Lipschitz, Rudolf. Beitrag zur Theorie der Krümmung. Journ. für Math.,
vol. 81, 230–242, 1876.

Untersuchungen über die Bestimmung von Oberflächen mit vor-
geschriebenen, die Krümmungsverhältnisse betreffenden Eigenschaften.
Sitzungsb. der Kgl. Akad. der Wissenschaften zu Berlin, 1882, 1077–1087;
1883, 169–188.

Untersuchungen über die Bestimmung von Oberflächen mit vorge-
schriebenem Ausdruck des Linearelements. Sitzungsb. der Kgl. Akad. der
Wissenschaften zu Berlin, 1883, 541–560.

Zur Theorie der krummen Oberflächen. Acta Mathematica, vol. 10,
131–136, 1887.

Liouville, Joseph. Sur un théorème de M. Gauss concernant le produit des deux
rayons de courbure principaux en chaque point d’une surface. Journ. de
Math., vol. 12, 291–304, 1847.

Liouville, Joseph. Sur la théorie générale des surfaces. Journ. de Math., vol. 16,
130–132, 1851.

Notes on Monge’s Applications, see Monge.

Liouville, R. Sur le caractère auquel se reconnaît l’équation differentielle d’un
système géodésique. C. R., vol. 108, 495–496, 1889.

Sur les représentations géodésiques des surfaces. C. R., vol. 108, 335–
337, 1889.



128 bibliography.

Loria, G. Sulla teoria della curvatura delle superficie. Rivista di Mat. Torino,
vol. 2, 84–95, 1892.

Il passato ed il presente d. pr. Teorie geometriche. 2nd ed., 346 pp.,
Turin, 1896.

Lüroth, J. Verallgemeinerung des Problems der kürzesten Linien. Zeitschrift für
Math. und Phys., vol. 13, 156–160, 1868.

Mahler, E. Ueber allgemeine Flächentheorie. Archiv für Math. and Phys.,
vol. 57, 96–97, 1881.

Die Fundamentalsätze der allgemeinen Flächentheorie. Vienna; Heft. I,
1880; Heft. II, 1881.

Mangeot, S. Sur les éléments de la courbure des courbes et surfaces. Ann. de
l’École Normale, ser. 3, vol. 10, 87–89, 1893.

von Mangoldt, H. Ueber diejenigen Punkte auf positiv gekrümmten Flächen,
welche die Eigenschaft haben, dass die von ihnen ausgehenden geodätischen
Linien nie aufhören, kürzeste Linien zu sein. Journ. für Math., vol. 91,
23–53, 1881.

Ueber die Klassification der Flächen nach der Verschiebbarkeit ihrer
geodätischen Dreiecke. Journ. für Math., vol. 94, 21–40, 1883.

Maxwell, J. Clerk. On the Transformation of Surfaces by Bending. Trans. of
Camb. Philos. Soc., vol. 9, 445–470, 1856.

Minding, Ferdinand. Ueber die Biegung gewisser Flächen. Journ. für Math.,
vol. 18, 297–302, 365–368, 1838.

Wie sich entscheiden lässt, ob zwei gegebene krumme Flächen auf einan-
der abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von
veränderlichen Krümmungsmaasse. Journ. für Math., vol. 19, 370–387,
1839.

Beiträge zur Theorie der kürzesten Linien auf krummen Flächen. Journ.
für Math., vol. 20, 323–327, 1840.

Ueber einen besondern Fall bei der Abwickelung krummer Flächen.
Journ. für Math., vol. 20, 171–172, 1840.

Ueber die mittlere Krümmung der Flächen. Bull. de l’Acad. Imp. de
St. Petersburg, vol. 20, 1875.

Zur Theorie der Curven kürzesten Umrings, bei gegebenem Flächenin-
halt, auf krummen Flächen. Journ. für Math., vol. 86, 279–289, 1879.

Mlodzieiowski, B. Sur la déformation des surfaces. Bull. de sci. Math., ser. 2,
vol. 15, 97–101, 1891.



bibliography. 129

Monge, Gaspard. Applications de l’Analyse à la Géométrie; revue, corrigée et
annotée par J. Liouville. Paris; fifth ed., 1850.

Motoda, T. Note to J. Knoblauch’s paper, “Ueber Fundamentalgrössen in der
Flächentheorie” in Journ. für Math., vol. 103. Journ. of the Phil. Soc. in
Tokio, 3 pp., 1889.

Moutard, T. F. Lignes de courbure d’une classe de surfaces du quatrième ordre.
C. R., vol. 59, 243, 1864.

Note sur la transformation par rayons vecteurs reciproques. Nouv. Ann.
de Math. ser. 2, vol. 3, 306–309, 1864.

Sur les surface anallagmatique du quatrième ordre. Nouv. Ann. de
Math. ser. 2, vol. 3, 536–539, 1864.

Sur la déformation des surfaces. Bull. de la Soc. Philomatique, p. 45,
1869.

Sur la construction des équations de la forme
1

x
· ∂2x

∂x ∂y
= λ(x, y),

qui admettent une intégrale générale explicite. Journ. de l’École Polyt.,
cahier 45, vol. 28, 1–11, 1878.

Nannei, E. Le superficie ipercicliche. Rend. dell’Accad. di Napoli, ser. 2, vol. 2,
119–121, 1888; Giornale di Mat., vol. 26, 201–233, 1888.

Naccari, G. Deduzioue delle principali formule relative alla curvatura della
superficie in generale e dello sferoide in particolare con applicazione al
meridiano di Venezia. L’Ateneo Veneto, ser. 17, vol. 1, 237–249, 1893;
vol. 2, 133–161, 1893.

Padova, E. Sopra un teorema di geometria differenziale. Reale Ist. Lombardo
di sci. e let., vol. 23, 840–844, 1890.

Sulla teoria generale delle superficie. Mem. della R. Accad. dell’ Ist. di
Bologna, ser. 4, vol. 10, 745–772, 1890.

Pellet, A. Mém. sur la théorie des surfaces et des courbes. Ann. de l’École
Normale, ser. 3, vol. 14, 287–310, 1897.

Sur les surfaces de Weingarten. C. R., vol. 125, 601–602, 1897.

Sur les systèmes de surfaces orthogonales et isothermes. C. R., vol. 124,
552–554, 1897.

Sur les surfaces ayant même représentation sphérique. C. R., vol. 124,
1291–1294, 1897.

Sur les surfaces isométriques. C. R., vol. 124, 1337–1339, 1897.

Sur la théorie des surfaces. Bull. de la Soc. Math. de France, vol. 26,
138–159, 1898; C. R., vol. 124, 451–452, 739–741, 1897; Thesis, Paris, 1878.



130 bibliography.

Sur les surfaces applicables sur une surface de révolution. C. R., vol. 125,
1159–1160, 1897; vol. 126, 392–394, 1898.

Peter, A. Die Flächen, deren Haupttangentencurven linearen Complexen ange-
hören. Archiv for Math. og Nat., Christiania, vol. 17, No. 8, 1–91, 1895.

Petot, A. Sur les surfaces dont l’élément linéaire est réductible à la forme
ds2 = F (U + V )(du2 + dv2). C. R., vol. 110, 330–333, 1890.

Picard, Émile. Surfaces applicables. Traité d’Analyse, vol. 1, chap. 15, 420–457;
first ed., 1891; second ed., 1901.

Pirondini, G. Studi geometrici relativi specialmente alle superficie gobbe. Gior-
nale di Mat., vol. 23, 288–331, 1885.

Teorema relativo alle linee di curvatura delle superficie e sue applicazioni.
Annali di Mat., ser. 2, vol. 16, 61–84, 1888; vol. 21, 33–46, 1893.

Plücker, Julius. Ueber die Krümmung einer beliebigen Fläche in einem gegebenen
Puncte. Journ. für Math., vol. 3, 324–336, 1828.

Poincaré, H. Rapport sur un Mémoire de M. Hadamard, intitulé: Sur les lignes
géodésiques des surfaces à courbures opposées. C. R., vol. 125, 589–591,
1897.

Probst, F. Ueber Flächen mit isogonalen systemen von geodätischen Kreisen.
Inaug.-diss. 46 pp., Würzburg, 1893.

Raffy, L. Sur certaines surfaces, dont les rayons de courbure sont liés par une
relation. Bull. de la Soc. Math. de France, vol. 19, 158–169, 1891.

Détermination des éléments linéaires doublement harmoniques. Journ.
de Math., ser. 4, vol. 10, 331–390, 1894.

Quelques propriétés des surfaces harmoniques. Ann. de la Faculté des
sci. de Toulouse, vol. 9 C, 1–44, 1895.

Sur les spirales harmoniques. Ann. de l’École Normale, ser. 3, vol. 12,
145–196, 1895.

Surfaces rapportées à un réseau conjugué azimutal. Bull. de la Soc.
Math. de France, vol. 24, 51–56, 1896.

Leçons sur les applications géométriques de l’analyse. Paris, vi + 251 pp.,
1897.

Contribution à la théorie des surfaces dont les rayons de courbure sont
liés par une relation. Bull. de la Soc. Math. de France, vol. 25, 147–172,
1897.

Sur les formules fondamentales de la théorie des surfaces. Bull. de la
Soc. Math. de France, vol. 25, 1–3, 1897.



bibliography. 131

Détermination d’une surface par ses deux formes quadratiques fonda-
mentales. C. R., vol. 126, 1852–1854, 1898.

Razzaboni, Amilcare. Sulla rappresentazzione di una superficie su di un’ altra
al modo di Gauss. Giornali di Mat., vol. 27, 274–302, 1889.

Delle superficie sulle quali due serie di geodetiche formano un sistema
conjugato. Mem. della R. Accad. dell’Ist. di Bologna, ser. 4, vol. 9, 765–776,
1889.

Reina, V. Sulle linee conjugate di una superficie. Atti della Reale Accad. dei
Lincei, ser. 4, vol. 61, 156–165, 203–209, 1890.

Di alcune formale relative alla teoria delle superficie. Atti della Reale
Accad. dei Lincei, ser. 4, vol. 62, 103–110, 176, 1890.

Resal, H. Exposition de la théorie des surfaces. 1 vol., xiii + 171 pp., Paris,
1891. Bull. des sci. Math., ser. 2, vol. 15, 226–227, 1891; Journ. de Math.
spèciale à l’usage des candidats aux École Polyt., ser. 3, vol. 5, 165–166,
1891.

Ribaucour, A. Sur la théorie de l’application des surfaces l’une sur l’autre.
L’Inst. Journ. universel des sci. et des soc. sav. en France, sect. I, vol. 37,
371–382, 1869.

Sur les surfaces orthogonales. L’Inst. Journ. universel des sci. et des
soc. sav. en France, sect. I, vol. 37, 29–30, 1869.

Sur la déformation des surfaces. L’Inst. Journ. universel des sci. et des
soc. sav. en France, sect. I, vol. 37, 389, 1869; C. R., vol. 70, 330, 1870.

Sur la théorie des surfaces. L’Inst. Journ. universel des sci. et des soc.
sav. en France, sect. I, vol. 38, 60–61, 141–142, 236–237, 1870.

Sur la représentation sphérique des surfaces. C. R., vol. 75, 533–536,
1872.

Sur les courbes enveloppes de cercles et sur les surfaces enveloppes de
sphères. Nouvelle Correspondance Math., vol. 5, 257–263, 305–315, 337–
343, 385–393, 417–425, 1879; vol. 6, 1–7, 1880.

Mémoire sur la théorie générale des surfaces courbes. Journ. de Math.,
ser. 4, vol. 7, 5–108, 219–270, 1891.

Ricci, G. Dei sistemi di coordinate atti a ridurre la expressione del quadrato dell’
elemento lineaire di una superficie alla forma ds2 = (U + V )(du2 + dv2).
Atti della Reale Accad. dei Lincei, ser. 5, vol. 21, 73–81, 1893.

A proposito di una memoria sulle linee geodetiche del sig. G. Königs.
Atti della Reale Accad. dei Lincei, ser. 5, vol. 22, 146–148, 338–339, 1893.

Sulla teoria delle linee geodetiche e dei sistemi isotermi di Liouville.
Atti del Reale Ist. Veneto, ser. 7, vol. 5, 643–681, 1894.



132 bibliography.

Della equazione fondamentale di Weingarten nella teoria delle superficie
applicabili. Atti del Reale Inst. Veneto, ser. 7, vol. 8, 1230–1238, 1897.

Lezioni sulla teoria delle superficie. viii + 416 pp., Verona, 1898.

Rothe, R. Untersuchung über die Theorie der isothermen Flächen. Diss., 42 pp.,
Berlin, 1897.

Röthig, O. Zur Theorie der Flächen. Journ. für Math., vol. 85, 250–263, 1878.

Ruffini, F. Di alcune proprietà della rappresentazione sferica del Gauss. Mem.
dell’Accad. Reale di sci. dell’Ist. di Bologna, ser. 4, vol. 8, 661–680, 1887.

Ruoss, H. Zur Theorie des Gauss’schen Krümmungsmaases. Zeitschrift für
Math. und Phys., vol. 37, 378–381, 1892.

Saint Loup. Sur les propriétés des lignes géodésiques. Thesis, 33–96, Paris,
1857.

Salmon, George. Analytische Geometrie des Raumes. Revised by Wilhelm
Fielder. Vol. II, lxxii + 696 pp., Leipzig, 1880.

de Salvert, F. Mémoire sur la théorie de la courbure des surfaces. Ann. de la
Soc. sci. de Bruxelles, vol. 5 B, 291–473, 1881; Paris, Gauthier-villars, 1881.

Mémoire sur l’emploi des coordonnées curvilignes dans les problèmes de
Mècanique et les lignes géodésiques des surfaces isothermes. Ann. de la Soc.
sci. de Bruxelles, vol. 11 B, 1–138, 1887. Paris, 1887.

Mémoire sur la recherche la plus générale d’un système orthogonal
triplement isotherme. Ann. de la Soc. sci. de Bruxelles, vol. 13 B, 117–260,
1889; vol. 14 B, 121–283, 1890; vol. 15 B, 201–394, 1891; vol. 16 B, 273–366,
1892; vol. 17 B, 103–272, 1893; vol. 18 B, 61–64, 1894.

Théorie nouvelle du système orthogonal triplement isotherme et son
application aux coordonnées curvilignes. 2 vols., Paris, 1894.

Scheffers, G. Anwendung der Differential- und Integralrechung auf Geometrie.
vol. I, x + 360 pp., Leipzig, Veit & Co., 1901.

Schering, E. Erweiterung des Gauss’schen Fundamentalsatzes für Dreiecke in
stetig gekrümmten Flächen. Nachr. der Kgl. Gesell. der Wissenschaften zu
Göttingen, 1867, 389–391; 1868, 389–391.

Serret, Paul. Sur la courbure des surfaces. C. R., vol. 84, 543–546, 1877.

Servais, C. Sur la courbure dans les surfaces. Bull. de l’Acad. Royale de
Belgique, ser. 3, vol. 24, 467–474, 1892.

Quelques formules sur la courbure des surfaces. Bull. de l’Acad. Royale
de Belgique, ser. 3, vol. 27, 896–904, 1894.



bibliography. 133

Simonides, J. Ueber die Krümmung der Flächen. Zeitschrift zur Pflege der
Math. und Phys., vol. 9, 267, 1880.

Stäckel, Paul. Zur Theorie des Gauss’schen Krümmungsmaasses. Journ. für
Math., vol. 111, 205–206, 1893; Berichte der Kgl. Gesell. der Wissenschaften
zu Leipzig, vol. 45, 163–169, 170–172, 1893.

Bemerkungen zur Geschichte der geodätischen Linien. Berichte der Kgl.
Gesell. der Wissenschaften zu Leipzig, vol. 45, 444–467, 1893.

Sur la déformation des surfaces. C. R., vol. 123, 677–680, 1896.

Biegungen und conjugirte Systeme. Math. Annalen, vol. 49, 255–310,
1897.

Beiträge zur Flächentheorie. Berichte der Kgl. Gesell. der Wis-
senschaften zu Leipzig, vol. 48, 478–504, 1896; vol. 50, 3–20, 1898.

Stahl und Kommerell. Die Grundformeln der allgemeinen Flächentheorie.
vi + 114 pp., Leipzig, 1893.

Staude, O. Ueber das Vorzeichen der geodätischen Krümmung. Dorpat Naturf.
Ges. Ber., 1895, 72–83.

Stecker, H. F. On the determination of surfaces capable of conformal represen-
tation upon the plane in such a manner that geodetic lines are represented
by algebraic curves. Trans. Amer. Math. Society, vol. 2, 152–165, 1901.

Stouff, X. Sur la valeur de la courbure totale d’une surface aux points d’une
arête de rebroussement. Ann. de l’École Normale, ser. 3, vol. 9, 91–100,
1892.

Sturm, Rudolf. Ein Analogon zu Gauss’ Satz von der Krümmung der Flächen.
Math. Annalen, vol. 21, 379–384, 1883.

Stuyvaert, M. Sur la courbure des lignes et des surfaces. Mém. couronnés et
autr. mém. publ. par l’Acad. Royale de Belgique, vol. 55, 19 pp., 1898.

de Tannenberg, W. Leçons sur les applications géométriques du calcul differentiel.
192 pp., Paris, A. Hermann, 1899.

van Dorsten, see (van) Dorsten.

von Escherich, see (von) Escherich.

von Lilienthal, see (von) Lilienthal.

von Mangoldt, see (von) Mangoldt.



134 bibliography.

Vivanti, G. Ueber diejenigen Berührungstransformationen, welche das Ver-
hältniss der Krümmungsmaasse irgend zwei sich berührender Flächen im
Berührungspunkte unverändert lassen. Zeitschrift für Math. und Phys.,
vol. 37, 1–7, 1892.

Sulle superficie a curvatura media costante. Reale Ist. Lombardo di sci.
e let. Milano. Ser. 2, vol. 28, 353–364, 1895.

Voss, A. Ueber ein neues Princip der Abbildung krummer Oberflächen. Math.
Annalen, vol. 19, 1–26, 1882.

Ueber dirjenigen Flächen, auf denen zwei Scharen geodätischer Lin-
ien ein conjugirtes System bilden. Sitzungsb. der Kgl. Bayer. Akad. der
Wissenschaften zu München, vol. 18, 95–102, 1888.

Zur Theorie der Krümmung der Flächen. Math. Annalen, vol. 39,
179–256, 1891.

Ueber die Fundamentalgleichungen der Flächentheorie. Sitzungsb. der
Kgl. Bayer. Akad. der Wissenschaften zu München, vol. 22, 247–278, 1892.

Ueber isometrische Flächen. Math. Annalen, vol. 46, 97–132, 1895.

Ueber infinitesimale Flächendeformationen. Jahresb. der Deutschen
Math. Vereinigung, vol. 4, 132–137, 1897.

Zur Theorie der infinitesimalen Biegungsdeformationen einer Fläche.
Sitzungsb. der Kgl. Akad. der Wissenschaften zu München, vol. 27, 229–
301, 1897.

Waelsch, E. Sur les surfaces à élément linéaire de Liouville et les surfaces à
courbure constante. C. R., vol. 116, 1435–1437, 1893.

Sur les lignes géodésiques de certaines surfaces. C. R., vol. 125, 521–523,
1897.

Ueber Flächen mit Liouville’schen Bogenelement. Sitzungsb. der Ksl.
Akad. der Wissenschaften zu Wien, vol. 106, 323–328, 1897.

Warren, J. W. An improved form of writing the formula of C. F. Gauss for the
measure of curvature. Quart. Journ. of Math., vol. 16, 219–224, 1879.

Exercises in curvilinear and normal coordinates. Trans. of Camb. Philos.
Society, vol. 12, 455–522, 531–545, 1879.

Weierstrass, Karl. Ueber die Flächen, deren mittlere Krümmung überall gleich
Null ist. Monatsb. der Akad. der Wissenschaften zu Berlin, 1866, 612–625.

Weingarten, Julius. Ueber eine Klasse auf einander abwickelbarer Flächen.
Journ. für Math., vol. 59, 382–393, 1861.

Ueber die Flächen deren Normalen eine gegebene Fläche berühren.
Journ. für Math., vol. 62, 61–63, 1863.



bibliography. 135

Ueber die Oberflächen, für welche einer der beiden Hauptkrümmung-
shalbmesser eine Function des andern ist. Journ. für Math., vol. 62,
160–173, 1863; vol. 103, 184, 1888.

Ueber die Verschiebbarkeit geodätischer Dreiecke in krummen Flächen.
Sitzungsb. der Kgl. Akad. der Wissenschaften zu Berlin, 1882, 453–456.

Ueber die Eigenschaften des Linienelements der Flächen von constantem
Krümmungsmaass. Journ. für Math., vol. 94, 181–202, 1883; vol. 95, 325–
329, 1883.

Ueber die Theorie der auf einander Abwickelbaren Oberflächen. Festschrift
d. Techn. Hochschule Berlin, 1884.

Ueber die unendlich kleinen Deformationen einer biegsamen, unausdehn-
bahren Fläche. Sitzungsb. der Kgl. Akad. der Wissenschaften zu Berlin,
1886, 83–91.

Eine neue Klasse auf einander abwickelbarer Flächen. Nachr. der Kgl.
Gesell. der Wissenschaften zu Göttingen, 1887, 28–31.

Ueber die Deformationen einer biegsamen unausdehnbaren Fläche.
Journ. für Math., vol. 100, 296–310, 1887.

Sur la théorie des surfaces applicables sur une surface donnée. Extrait
d’une lettre à M. Darboux. C. R., vol. 112, 607–610, 706–707, 1891.

Sur la déformation des surfaces. Acta Mathematica, vol. 20, 159–200,
1897; note on same, vol. 22, 193–199, 1899.

Weyr, Ed. Sur l’équation des lignes géodésiques. Chicago Congr. Papers,
408–411, 1896.

Ueber das System der Orthogonalflächen. Zeitschrift zur Pflege der
Math. und Phys., vol. 25, 42–46, 1896.

Willgrod, Heinrich. Ueber Flächen, welche sich durch ihre Krümmungslinien in
unendlich kleine Quadrate theilen lassen. Diss., vi + 51 pp., Göttingen,
1883.

Williamson, Benjamin. On curvilinear coordinates. Trans. of the Royal Irish
Acad., Dublin, vol. 29, part 15, 515–552, 1890.

On Gauss’s theorem of the measure of curvature at any point of a
surface. Quart. Journ. of Math., vol. 11, 362–366, 1871.

Wostokow, J. On the geodesic curvature of curves on a surface, (Russian.)
Works of the Warsaw Soc. of Sci., sect. 6, No. 8, 1896.

Woudstra, M. Kromming van oppervlakken volgens de theorie van Gauss. Diss.,
Groningen, 1879.



136 bibliography.

Zorawski, K. On deformation of surfaces. Trans. of the Krakau Acad. of
Sciences, (Polish), ser. 2, vol. 1, 225–291, 1891.

Ueber Biegungsinvarianten. Eine Anwendung der Lie’schen Gruppenthe-
orie. Diss., Leipzig, 1891; Acta Mathematica, vol. 16, 1–64, 1892.

On the fundamental magnitudes of the general theory of surfaces. Mem-
oirs of the Krakau Acad. of Science, (Polish), vol. 28, 1–7, 1895.

On some relations in the theory of surfaces. Bull. of the Krakau Acad.
of Sciences, (Polish), vol. 33, 106–119, 1898.



End of the Project Gutenberg EBook of General Investigations of Curved
Surfaces of 1827 and 1825, by Karl Friedrich Gauss

*** END OF THIS PROJECT GUTENBERG EBOOK INVESTIGATIONS OF CURVED SURFACES ***

***** This file should be named 36856-tex.tex or 36856-tex.zip *****
This and all associated files of various formats will be found in:

http://www.gutenberg.org/3/6/8/5/36856/

Produced by Andrew D. Hwang, with special thanks to Brenda Lewis.

Updated editions will replace the previous one--the old editions
will be renamed.

Creating the works from public domain print editions means that no
one owns a United States copyright in these works, so the Foundation
(and you!) can copy and distribute it in the United States without
permission and without paying copyright royalties. Special rules,
set forth in the General Terms of Use part of this license, apply to
copying and distributing Project Gutenberg-tm electronic works to
protect the PROJECT GUTENBERG-tm concept and trademark. Project
Gutenberg is a registered trademark, and may not be used if you
charge for the eBooks, unless you receive specific permission. If you
do not charge anything for copies of this eBook, complying with the
rules is very easy. You may use this eBook for nearly any purpose
such as creation of derivative works, reports, performances and
research. They may be modified and printed and given away--you may do
practically ANYTHING with public domain eBooks. Redistribution is
subject to the trademark license, especially commercial
redistribution.

*** START: FULL LICENSE ***

THE FULL PROJECT GUTENBERG LICENSE
PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg-tm mission of promoting the free
distribution of electronic works, by using or distributing this work
(or any other work associated in any way with the phrase "Project
Gutenberg"), you agree to comply with all the terms of the Full Project
Gutenberg-tm License (available with this file or online at
http://gutenberg.net/license).

Section 1. General Terms of Use and Redistributing Project Gutenberg-tm
electronic works

1.A. By reading or using any part of this Project Gutenberg-tm
electronic work, you indicate that you have read, understand, agree to
and accept all the terms of this license and intellectual property
(trademark/copyright) agreement. If you do not agree to abide by all
the terms of this agreement, you must cease using and return or destroy
all copies of Project Gutenberg-tm electronic works in your possession.
If you paid a fee for obtaining a copy of or access to a Project
Gutenberg-tm electronic work and you do not agree to be bound by the
terms of this agreement, you may obtain a refund from the person or
entity to whom you paid the fee as set forth in paragraph 1.E.8.



II license.

1.B. "Project Gutenberg" is a registered trademark. It may only be
used on or associated in any way with an electronic work by people who
agree to be bound by the terms of this agreement. There are a few
things that you can do with most Project Gutenberg-tm electronic works
even without complying with the full terms of this agreement. See
paragraph 1.C below. There are a lot of things you can do with Project
Gutenberg-tm electronic works if you follow the terms of this agreement
and help preserve free future access to Project Gutenberg-tm electronic
works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation"
or PGLAF), owns a compilation copyright in the collection of Project
Gutenberg-tm electronic works. Nearly all the individual works in the
collection are in the public domain in the United States. If an
individual work is in the public domain in the United States and you are
located in the United States, we do not claim a right to prevent you from
copying, distributing, performing, displaying or creating derivative
works based on the work as long as all references to Project Gutenberg
are removed. Of course, we hope that you will support the Project
Gutenberg-tm mission of promoting free access to electronic works by
freely sharing Project Gutenberg-tm works in compliance with the terms of
this agreement for keeping the Project Gutenberg-tm name associated with
the work. You can easily comply with the terms of this agreement by
keeping this work in the same format with its attached full Project
Gutenberg-tm License when you share it without charge with others.

1.D. The copyright laws of the place where you are located also govern
what you can do with this work. Copyright laws in most countries are in
a constant state of change. If you are outside the United States, check
the laws of your country in addition to the terms of this agreement
before downloading, copying, displaying, performing, distributing or
creating derivative works based on this work or any other Project
Gutenberg-tm work. The Foundation makes no representations concerning
the copyright status of any work in any country outside the United
States.

1.E. Unless you have removed all references to Project Gutenberg:

1.E.1. The following sentence, with active links to, or other immediate
access to, the full Project Gutenberg-tm License must appear prominently
whenever any copy of a Project Gutenberg-tm work (any work on which the
phrase "Project Gutenberg" appears, or with which the phrase "Project
Gutenberg" is associated) is accessed, displayed, performed, viewed,
copied or distributed:

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.net

1.E.2. If an individual Project Gutenberg-tm electronic work is derived
from the public domain (does not contain a notice indicating that it is
posted with permission of the copyright holder), the work can be copied
and distributed to anyone in the United States without paying any fees
or charges. If you are redistributing or providing access to a work
with the phrase "Project Gutenberg" associated with or appearing on the
work, you must comply either with the requirements of paragraphs 1.E.1
through 1.E.7 or obtain permission for the use of the work and the



license. III

Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or
1.E.9.

1.E.3. If an individual Project Gutenberg-tm electronic work is posted
with the permission of the copyright holder, your use and distribution
must comply with both paragraphs 1.E.1 through 1.E.7 and any additional
terms imposed by the copyright holder. Additional terms will be linked
to the Project Gutenberg-tm License for all works posted with the
permission of the copyright holder found at the beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm
License terms from this work, or any files containing a part of this
work or any other work associated with Project Gutenberg-tm.

1.E.5. Do not copy, display, perform, distribute or redistribute this
electronic work, or any part of this electronic work, without
prominently displaying the sentence set forth in paragraph 1.E.1 with
active links or immediate access to the full terms of the Project
Gutenberg-tm License.

1.E.6. You may convert to and distribute this work in any binary,
compressed, marked up, nonproprietary or proprietary form, including any
word processing or hypertext form. However, if you provide access to or
distribute copies of a Project Gutenberg-tm work in a format other than
"Plain Vanilla ASCII" or other format used in the official version
posted on the official Project Gutenberg-tm web site (www.gutenberg.net),
you must, at no additional cost, fee or expense to the user, provide a
copy, a means of exporting a copy, or a means of obtaining a copy upon
request, of the work in its original "Plain Vanilla ASCII" or other
form. Any alternate format must include the full Project Gutenberg-tm
License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg-tm works
unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or providing
access to or distributing Project Gutenberg-tm electronic works provided
that

- You pay a royalty fee of 20% of the gross profits you derive from
the use of Project Gutenberg-tm works calculated using the method
you already use to calculate your applicable taxes. The fee is
owed to the owner of the Project Gutenberg-tm trademark, but he
has agreed to donate royalties under this paragraph to the
Project Gutenberg Literary Archive Foundation. Royalty payments
must be paid within 60 days following each date on which you
prepare (or are legally required to prepare) your periodic tax
returns. Royalty payments should be clearly marked as such and
sent to the Project Gutenberg Literary Archive Foundation at the
address specified in Section 4, "Information about donations to
the Project Gutenberg Literary Archive Foundation."

- You provide a full refund of any money paid by a user who notifies
you in writing (or by e-mail) within 30 days of receipt that s/he
does not agree to the terms of the full Project Gutenberg-tm
License. You must require such a user to return or
destroy all copies of the works possessed in a physical medium
and discontinue all use of and all access to other copies of



IV license.

Project Gutenberg-tm works.

- You provide, in accordance with paragraph 1.F.3, a full refund of any
money paid for a work or a replacement copy, if a defect in the
electronic work is discovered and reported to you within 90 days
of receipt of the work.

- You comply with all other terms of this agreement for free
distribution of Project Gutenberg-tm works.

1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm
electronic work or group of works on different terms than are set
forth in this agreement, you must obtain permission in writing from
both the Project Gutenberg Literary Archive Foundation and Michael
Hart, the owner of the Project Gutenberg-tm trademark. Contact the
Foundation as set forth in Section 3 below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend considerable
effort to identify, do copyright research on, transcribe and proofread
public domain works in creating the Project Gutenberg-tm
collection. Despite these efforts, Project Gutenberg-tm electronic
works, and the medium on which they may be stored, may contain
"Defects," such as, but not limited to, incomplete, inaccurate or
corrupt data, transcription errors, a copyright or other intellectual
property infringement, a defective or damaged disk or other medium, a
computer virus, or computer codes that damage or cannot be read by
your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right
of Replacement or Refund" described in paragraph 1.F.3, the Project
Gutenberg Literary Archive Foundation, the owner of the Project
Gutenberg-tm trademark, and any other party distributing a Project
Gutenberg-tm electronic work under this agreement, disclaim all
liability to you for damages, costs and expenses, including legal
fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT
LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE
PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE
TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE
LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR
INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a
defect in this electronic work within 90 days of receiving it, you can
receive a refund of the money (if any) you paid for it by sending a
written explanation to the person you received the work from. If you
received the work on a physical medium, you must return the medium with
your written explanation. The person or entity that provided you with
the defective work may elect to provide a replacement copy in lieu of a
refund. If you received the work electronically, the person or entity
providing it to you may choose to give you a second opportunity to
receive the work electronically in lieu of a refund. If the second copy
is also defective, you may demand a refund in writing without further
opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set forth
in paragraph 1.F.3, this work is provided to you ’AS-IS’ WITH NO OTHER



license. V

WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of damages.
If any disclaimer or limitation set forth in this agreement violates the
law of the state applicable to this agreement, the agreement shall be
interpreted to make the maximum disclaimer or limitation permitted by
the applicable state law. The invalidity or unenforceability of any
provision of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the
trademark owner, any agent or employee of the Foundation, anyone
providing copies of Project Gutenberg-tm electronic works in accordance
with this agreement, and any volunteers associated with the production,
promotion and distribution of Project Gutenberg-tm electronic works,
harmless from all liability, costs and expenses, including legal fees,
that arise directly or indirectly from any of the following which you do
or cause to occur: (a) distribution of this or any Project Gutenberg-tm
work, (b) alteration, modification, or additions or deletions to any
Project Gutenberg-tm work, and (c) any Defect you cause.

Section 2. Information about the Mission of Project Gutenberg-tm

Project Gutenberg-tm is synonymous with the free distribution of
electronic works in formats readable by the widest variety of computers
including obsolete, old, middle-aged and new computers. It exists
because of the efforts of hundreds of volunteers and donations from
people in all walks of life.

Volunteers and financial support to provide volunteers with the
assistance they need are critical to reaching Project Gutenberg-tm’s
goals and ensuring that the Project Gutenberg-tm collection will
remain freely available for generations to come. In 2001, the Project
Gutenberg Literary Archive Foundation was created to provide a secure
and permanent future for Project Gutenberg-tm and future generations.
To learn more about the Project Gutenberg Literary Archive Foundation
and how your efforts and donations can help, see Sections 3 and 4
and the Foundation web page at http://www.pglaf.org.

Section 3. Information about the Project Gutenberg Literary Archive
Foundation

The Project Gutenberg Literary Archive Foundation is a non profit
501(c)(3) educational corporation organized under the laws of the
state of Mississippi and granted tax exempt status by the Internal
Revenue Service. The Foundation’s EIN or federal tax identification
number is 64-6221541. Its 501(c)(3) letter is posted at
http://pglaf.org/fundraising. Contributions to the Project Gutenberg
Literary Archive Foundation are tax deductible to the full extent
permitted by U.S. federal laws and your state’s laws.

The Foundation’s principal office is located at 4557 Melan Dr. S.
Fairbanks, AK, 99712., but its volunteers and employees are scattered
throughout numerous locations. Its business office is located at
809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email
business@pglaf.org. Email contact links and up to date contact



VI license.

information can be found at the Foundation’s web site and official
page at http://pglaf.org

For additional contact information:
Dr. Gregory B. Newby
Chief Executive and Director
gbnewby@pglaf.org

Section 4. Information about Donations to the Project Gutenberg
Literary Archive Foundation

Project Gutenberg-tm depends upon and cannot survive without wide
spread public support and donations to carry out its mission of
increasing the number of public domain and licensed works that can be
freely distributed in machine readable form accessible by the widest
array of equipment including outdated equipment. Many small donations
($1 to $5,000) are particularly important to maintaining tax exempt
status with the IRS.

The Foundation is committed to complying with the laws regulating
charities and charitable donations in all 50 states of the United
States. Compliance requirements are not uniform and it takes a
considerable effort, much paperwork and many fees to meet and keep up
with these requirements. We do not solicit donations in locations
where we have not received written confirmation of compliance. To
SEND DONATIONS or determine the status of compliance for any
particular state visit http://pglaf.org

While we cannot and do not solicit contributions from states where we
have not met the solicitation requirements, we know of no prohibition
against accepting unsolicited donations from donors in such states who
approach us with offers to donate.

International donations are gratefully accepted, but we cannot make
any statements concerning tax treatment of donations received from
outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg Web pages for current donation
methods and addresses. Donations are accepted in a number of other
ways including including checks, online payments and credit card
donations. To donate, please visit: http://pglaf.org/donate

Section 5. General Information About Project Gutenberg-tm electronic
works.

Professor Michael S. Hart is the originator of the Project Gutenberg-tm
concept of a library of electronic works that could be freely shared
with anyone. For thirty years, he produced and distributed Project
Gutenberg-tm eBooks with only a loose network of volunteer support.

Project Gutenberg-tm eBooks are often created from several printed
editions, all of which are confirmed as Public Domain in the U.S.
unless a copyright notice is included. Thus, we do not necessarily
keep eBooks in compliance with any particular paper edition.



license. VII

Most people start at our Web site which has the main PG search facility:

http://www.gutenberg.net

This Web site includes information about Project Gutenberg-tm,
including how to make donations to the Project Gutenberg Literary
Archive Foundation, how to help produce our new eBooks, and how to
subscribe to our email newsletter to hear about new eBooks.


	PG Boilerplate.
	Transcriber's Note.
	Front Matter.
	Introduction.
	Contents.

	Main Matter.
	Paper of 1827
	Gauss's Abstract.
	Notes (1827)
	Paper of 1825
	Notes (1825)

	Back Matter.
	Bibliography.

	PG License.

