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Transcriber’s Notes.

A large number of printer errors have been corrected. These are shaded
like this, and details can be found in the source code in the syntax
\correction{corrected}{original}. In addition, the formatting of a few lem-
mas, corollaries etc. has been made consistent with the others.

The unusual inequality sign >
= used a few times in the book in addition to = has been

preserved, although it may reflect the printing rather than the author’s intention. The

notation
| |
a b for intervals is not in common use today, and the reader able to run

LATEX will find it easy to redefine this macro to give a modern equivalent. Similarly,
the original did not mark the ends of proofs in any way and so nor does this version,
but the reader who wishes can easily redefine \qedsymbol in the source.
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PREFACE

A course dealing with the fundamental theorems of infinitesimal calculus in a rigorous
manner is now recognized as an essential part of the training of a mathematician. It
appears in the curriculum of nearly every university, and is taken by students as “Advanced
Calculus” in their last collegiate year, or as part of “Theory of Functions” in the first
year of graduate work. This little volume is designed as a convenient reference book for
such courses; the examples which may be considered necessary being supplied from other
sources. The book may also be used as a basis for a rather short theoretical course on real
functions, such as is now given from time to time in some of our universities.

The general aim has been to obtain rigor of logic with a minimum of elaborate machin-
ery. It is hoped that the systematic use of the Heine-Borel theorem has helped materially
toward this end, since by means of this theorem it is possible to avoid almost entirely
the sequential division or “pinching” process so common in discussions of this kind. The
definition of a limit by means of the notion “value approached” has simplified the proofs
of theorems, such as those giving necessary and sufficient conditions for the existence of
limits, and in general has largely decreased the number of ε’s and δ’s. The theory of limits
is developed for multiple-valued functions, which gives certain advantages in the treatment
of the definite integral.

In each chapter the more abstract subjects and those which can be omitted on a first
reading are placed in the concluding sections. The last chapter of the book is more advanced
in character than the other chapters and is intended as an introduction to the study of a
special subject. The index at the end of the book contains references to the pages where
technical terms are first defined.

When this work was undertaken there was no convenient source in English containing
a rigorous and systematic treatment of the body of theorems usually included in even
an elementary course on real functions, and it was necessary to refer to the French and
German treatises. Since then one treatise, at least, has appeared in English on the Theory
of Functions of Real Variables. Nevertheless it is hoped that the present volume, on account
of its conciseness, will supply a real want.

The authors are much indebted to Professor E. H. Moore of the University of Chicago
for many helpful criticisms and suggestions; to Mr. E. B. Morrow of Princeton University
for reading the manuscript and helping prepare the cuts; and to Professor G. A. Bliss of
Princeton, who has suggested several desirable changes while reading the proof-sheets.
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Chapter 1

THE SYSTEM OF REAL
NUMBERS.

§ 1 Rational and Irrational Numbers.

The real number system may be classified as follows:

(1) All integral numbers, both positive and negative, including zero.

(2) All numbers m
n
, where m and n are integers (n 6= 0).

(3) Numbers not included in either of the above classes, such as
√

2 and π.1

Numbers of classes (1) and (2) are called rational or commensurable numbers, while
the numbers of class (3) are called irrational or incommensurable numbers.

As an illustration of an irrational number consider the square root of 2. One ordinarily
says that

√
2 is 1.4+, or 1.41+, or 1.414+, etc. The exact meaning of these statements is

expressed by the following inequalities:2

(1.4)2 < 2 < (1.5)2,

(1.41)2 < 2 < (1.42)2,

(1.414)2 < 2 < (1.415)2,

etc.

Moreover, by the foot-note above no terminating decimal is equal to the square root of 2.
Hence Horner’s Method, or the usual algorithm for extracting the square root, leads to an

1It is clear that there is no number m
n such that m2

n2 = 2, for if m2

n2 = 2, then m2 = 2n2, where m2

and 2n2 are integral numbers, and 2n2 is the square of the integral number m. Since in the square of
an integral number every prime factor occurs an even number of times, the factor 2 must occur an even
number of times both in n2 and 2n2, which is impossible because of the theorem that an integral number
has only one set of prime factors.

2a < b signifies that a is less than b. a > b signifies that a is greater than b.

1



2 INFINITESIMAL ANALYSIS.

infinite sequence of rational numbers which may be denoted by a1, a2, a3, . . . , an, . . . (where
a1 = 1.4, a2 = 1.41, etc.), and which has the property that for every positive integral value
of n

an ≤ an+1, a2
n < 2 <

(
an +

1

10n

)2

.

Suppose, now, that there is a least number a greater than every an. We easily see that
if the ordinary laws of arithmetic as to equality and inequality and addition, subtraction,
and multiplication hold for a and a2, then a2 is the rational number 2. For if a2 < 2, let
2− a2 = ε, whence 2 = a2 + ε. If n were so taken that 1

10n < ε
5
, we should have from the

last inequality3

2 <

(
an +

1

10n

)2

= a2
n + 2an ·

1

10n
+

(
1

10n

)2

< a2
n + 4

ε

5
+

ε

5
< a2 + ε,

so that we should have both 2 = a2 + ε and 2 < a2 + ε. On the other hand, if a2 > 2, let
a2 − 2 = ε′ or 2 + ε′ = a2. Taking n such that 1

10n < ε
5
, we should have(

an +
1

10n

)2

< (a2
n) + ε′ < 2 + ε′ < a;

and since an+ 1
10n is greater than ak for all values of k, this would contradict the hypothesis

that a is the least number greater than every number of the sequence a1, a2, a3, . . . We also
see without difficulty that a is the only number such that a2 = 2.

§ 2 Axiom of Continuity.

The essential step in passing from ordinary rational numbers to the number corresponding
to the symbol

√
2 is thus made to depend upon an assumption of the existence of a number

a bearing the unique relation just described to the sequence a1, a2,a3 ,. . . In order to state
this hypothesis in general form we introduce the following definitions:

Definition.—The notation [x] denotes a set,4 any element of which is denoted by x alone,
with or without an index or subscript.

A set of numbers [x] is said to have an upper bound, M , if there exists a number M
such that there is no number of the set greater than M . This may be denoted by M = [x].

A set of numbers [x] is said to have a lower bound, m, if there exists a number m such
that no number of the set is less than m. This we denote by m 5 [x].

3This involves the assumption that for every number, ε, however small there is a positive integer n such
that 1

10n < ε
5 . This is of course obvious when ε is a rational number. If ε is an irrational number, however,

the statement will have a definite meaning only after the irrational number has been fully defined.
4Synonyms of set are class, aggregate, collection, assemblage, etc.



THE SYSTEM OF REAL NUMBERS. 3

Following are examples of sets of numbers:

(1) 1, 2, 3.

(2) 2, 4, 6, . . . , 2k, . . .

(3) 1/2, 1/22, 1/23, . . . , 1/2n, . . .

(4) All rational numbers less than 1.

(5) All rational numbers whose squares are less than 2.

Of the first set 1, or any smaller number, is a lower bound and 3, or any larger number,
is an upper bound. The second set has no upper bound, but 2, or any smaller number, is a
lower bound. The number 3 is the least upper bound of the first set, that is, the smallest
number which is an upper bound. The least upper and the greatest lower bounds of a set
of numbers [x] are called by some writers the upper and lower limits respectively. We shall
denote them by B[x] and B[x] respectively. By what precedes, the set (5) would have no
least upper bound unless

√
2 were counted as a number.

We now state our hypothesis of continuity in the following form:

Axiom K.—If a set [r] of rational numbers having an upper bound has no rational least
upper bound, then there exists one and only one number B[r] such that

(a) B[r] > r′, where r′ is any number of [r] or any rational number less than some
number of [r].

(b) B[r] < r′′, where r′′ is any rational upper bound of [r].5

Definition.—The number B[r] of axiom K is called the least upper bound of [r], and as
it cannot be a rational number it is called an irrational number. The set of all rational
and irrational numbers so defined is called the continuous real number system. It is also
called the linear continuum. The set of all real numbers between any two real numbers is
likewise called a linear continuum.

Theorem 1. If two sets of rational numbers [r] and [s], having upper bounds, are such
that no r is greater than every s and no s greater than every r, then B[r] and B[s] are the
same; that is, in symbols,

B[r] = B[s].

Proof. If B[r] is rational, it is evident, and if B[r] is irrational, it is a consequence of
Axiom K that

B[r] > s′,

5This axiom implies that the new (irrational) numbers have relations of order with all the rational
numbers, but does not explicitly state relations of order among the irrational numbers themselves. Cf.
Theorem 2.



4 INFINITESIMAL ANALYSIS.

where s′ is any rational number not an upper bound of [s]. Moreover, if s′′ is rational and
greater than every s, it is greater than every r. Hence

B[r] < s′′,

where s′′ is any rational upper bound of [s]. Then, by the definition of B[s],

B[r] = B[s],

Definition.—If a number x (in particular an irrational number) is the least upper bound
of a set of rational numbers [r], then the set [r] is said to determine the number x.

Corollary 1. The irrational numbers i and i′ determined by the two sets [r] and [r′] are
equal if and only if there is no number in either set greater than every number in the other
set.

Corollary 2. Every irrational number is determined by some set of rational numbers.

Definition.—If i and i′ are two irrational numbers determined respectively by sets of
rational numbers [r] and [r′] and if some number of [r] is greater than every number of [r′],
then

i > i′ and i′ < i.

From these definitions and the order relations among the rational numbers we prove
the following theorem:

Theorem 2. If a and b are any two distinct real numbers, then a < b or b < a; if a < b,
then not b < a; if a < b and b < c, then a < c.

Proof. Let a, b, c all be irrational and let [x], [y], [z] be sets of rational numbers deter-
mining a, b, c. In the two sets [x] and [y] there is either a number in one set greater than
every number of the other or there is not. If there is no number in either set greater than
every number in the other, then, by Theorem 1, a = b. If there is a number in [x] greater
than every number in [y], then no number in [y] is greater than every number in [x]. Hence
the first part of the theorem is proved, that is, either a = b or a < b or b < a, and if one
of these, then neither of the other two. If a number y1 of [y] is greater than every number
of [x], and a number z1 of [z] is greater than every number of [y], then z1 is greater than
every number of [x]. Therefore if a < b and b < c, then a < c.

We leave to the reader the proof in case one or two of the numbers a, b, and c are
rational.

Lemma.—If [r] is a set of rational numbers determining an irrational number, then there
is no number r1 of the set [r] which is greater than every other number of the set.

This is an immediate consequence of axiom K.
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Theorem 3. If a and b are any two distinct numbers, then there exists a rational number
c such that a < c and c < b, or b < c and c < a.

Proof. Suppose a < b. When a and b are both rational b−a
2

is a number of the required
type. If a is rational and b irrational, then the theorem follows from the lemma and
Corollary 2, page 4. If a and b are both irrational, it follows from Corollary 1, page 4. If
a is irrational and b rational, then there are rational numbers less than b and greater than
every number of the set [x] which determines a, since otherwise b would be the smallest
rational number which is an upper bound of [x], whereas by definition there is no least
upper bound of [x] in the set of rational numbers.

Corollary.—A rational number r is the least upper bound of the set of all numbers which
are less than r, as well as of the set of all rational numbers less than r.

Theorem 4. Every set of numbers [x] which has an upper bound, has a least upper bound.

Proof. Let [r] be the set of all rational numbers such that no number of the set [r] is
greater than every number of the set [x]. Then B[r] is an upper bound of [x], since if there
were a number x1 of [x] greater than B[r], then, by Theorem 3, there would be a rational
number less than x1 and greater than B[r], which would be contrary to the definition of [r]
and B[r]. Further, B[r] is the least upper bound of [x], since if a number N less than B[r]
were an upper bound of [x], then by Theorem 3 there would be rational numbers greater
than N and less than B[r], which again is contrary to the definition of [r].

Theorem 5. Every set [x] of numbers which has a lower bound has a greatest lower bound.

Proof. The proof may be made by considering the least upper bound of the set [y] of all
numbers, such that every number of [y] is less than every number of [x]. The details are
left to the reader.

Theorem 6. If all numbers are divided into two sets [x] and [y] such that x < y for every
x and y of [x] and [y], then there is a greatest x or a least y, but not both.

Proof. The proof is left to the reader.

The proofs of the above theorems are very simple, but experience has shown that not
only the beginner in this kind of reasoning but even the expert mathematician is likely
to make mistakes. The beginner is advised to write out for himself every detail which is
omitted from the text.

Theorem 4 is a form of the continuity axiom due to Weierstrass, and 6 is the so-called
Dedekind Cut Axiom. Each of Theorems 4, 5, and 6 expresses the continuity of the real
number system.
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§ 3 Addition and Multiplication of Irrationals.

It now remains to show how to perform the operations of addition, subtraction, multipli-
cation, and division on these numbers. A definition of addition of irrational numbers is
suggested by the following theorem: “If a and b are rational numbers and [x] is the set of
all rational numbers less than a, and [y] the set of all rational numbers less than b, then
[x + y] is the set of all rational numbers less than a + b.” The proof of this theorem is left
to the reader.

Definition.—If a and b are not both rational and [x] is the set of all rationals less than
a and [y] the set of all rationals less than b, then a + b is the least upper bound of [x + y],
and is called the sum of a and b.

It is clear that if b is rational, [x+ b] is the same set as [x+ y]; for a given x+ b is equal
to x′ + (b− (x′ − x)) = x′ + y′, where x′ is any rational number such that x < x′ < a; and
conversely, any x + y is equal to (x− b + y) + b = x′′+ b. It is also clear that a + b = b + a,
since [x+y] is the same set as [y+x]. Likewise (a+b)+c = a+(b+c), since [(x+y)+z] is
the same as [x + (y + z)]. Furthermore, in case b < a, c = B[x′− y′], where a < x′ < b and
a < y′ < b, is such that b + c = a, and in case b < a, c = B[x′− y′] is such that b + c = a; c
is denoted by a− b and called the difference between a and b. The negative of a, or −a, is
simply 0− a. We leave the reader to verify that if a > 0, then a + b > b, and that if a < 0,
then a + b < b for irrational numbers as well as for rationals.

The theorems just proved justify the usual method of adding infinite decimals. For
example: π is the least upper bound of decimals like 3.1415, 3.14159, etc. Therefore π + 2
is the least upper bound of such numbers as 5.1415, 5.14159, etc. Also e is the least upper
bound of 2.7182818, etc. Therefore π + e is the least upper bound of 5, 5.8, 5.85, 5.859,
etc.

The definition of multiplication is suggested by the following theorem, the proof of
which is also left to the reader.

Let a and b be rational numbers not zero and let [x] be the set of all rational numbers
between 0 and a, and [y] be the set of all rationals between 0 and b. Then if

a > 0, b > 0, it follows that ab = B[xy];
a < 0, b < 0, “ “ “ ab = B[xy];
a < 0, b > 0, “ “ “ ab = B[xy];
a > 0, b < 0, “ “ “ ab = B[xy].

Definition.—If a and b are not both rational and [x] is the set of all rational numbers
between 0 and a, and [y] the set of all rationals between 0 and b, then if a > 0, b > 0, ab
means B[xy]; if a < 0, b < 0, ab means B[xy]; if a < 0, b > 0, ab means B[xy]; if a > 0,
b < 0, ab means B[xy]. If a or b is zero, then ab = 0.

It is proved, just as in the case of addition, that ab = ba, that a(bc) = (ab)c, that if a
is rational [ay] is the same set as [xy], that if a > 0, b > 0, ab > 0. Likewise the quotient a

b
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is defined as a number c such that ac = b, and it is proved that in case a > 0, b > 0, then
c = B

[
x
y′

]
, where [y′] is the set of all rationals greater than b. Similarly for the other cases.

Moreover, the same sort of reasoning as before justifies the usual method of multiplying
non-terminated decimals.

To complete the rules of operation we have to prove what is known as the distributive
law, namely, that

a(b + c) = ab + ac.

To prove this we consider several cases according as a, b, and c are positive or negative.
We shall give in detail only the case where all the numbers are positive, leaving the other
cases to be proved by the reader. In the first place we easily see that for positive numbers
e and f , if [t] is the set of all the rationals between 0 and e, and [T ] the set of all rationals
less than e, while [u] and [U ] are the corresponding sets for f , then

e + f = B[T + U ] = B[t + u].

Hence if [x] is the set of all rationals between 0 and a, [y] between 0 and b, [z] between 0
and c,

b + c = B[y + z] and hence a(b + c) = B[x(y + z)].

On the other hand ab = B[xy], ac = B[xz], and therefore ab+ac = B[(xy+xz)]. But since
the distributive law is true for rationals, x(y+z) = xy+xz. Hence B[x(y+z)] = B[(xy+xz)]
and hence

a(b + c) = ab + ac.

We have now proved that the system of rational and irrational numbers is not only
continuous, but also is such that we may perform with these numbers all the operations of
arithmetic. We have indicated the method, and the reader may detail that every rational
number may be represented by a terminated decimal,

ak10k + ak−110k−1 + . . . + a0 +
a−1

10
+ . . . +

a−n

10n
= akak−1 . . . a0a−1a−2 . . . a−n,

or by a circulating decimal,

akak−1 . . . a0a−1a−2 . . . a−i . . . a−ja−i . . . a−j . . . ,

where i and j are any positive integers such that i < j; whereas every irrational number
may be represented by a non-repeating infinite decimal,

akak−1 . . . a0a−1a−2 . . . a−n . . .

The operations of raising to a power or extracting a root on irrational numbers will be
considered in a later chapter (see page 41). An example of elementary reasoning with the
symbol B[x] is to be found on pages 12 and 14. For the present we need only that xn,
where n is an integer, means the number obtained by multiplying x by itself n times.
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It should be observed that the essential parts of the definitions and arguments of this
section are based on the assumption of continuity which was made at the outset. A clear
understanding of the irrational number and its relations to the rational number was first
reached during the latter half of the last century, and then only after protracted study and
much discussion. We have sketched only in brief outline the usual treatment, since it is
believed that the importance and difficulty of a full discussion of such subjects will appear
more clearly after reading the following chapters.

Among the good discussions of the irrational number in the English language are: H. P.
Manning, Irrational Numbers and their Representation by Sequences and Series, Wiley
& Sons, New York; H. B. Fine, College Algebra, Part I, Ginn & Co., Boston; Dedekind,
Essays on the Theory of Number (translated from the German), Open Court Pub. Co.,
Chicago; J. Pierpont, Theory of Functions of Real Variables, Chapters I and II, Ginn &
Co., Boston.

§ 4 General Remarks on the Number System.

Various modes of treatment of the problem of the number system as a whole are possible.
Perhaps the most elegant is the following: Assume the existence and defining properties
of the positive integers by means of a set of postulates or axioms. From these postulates
it is not possible to argue that if p and q are prime there exists a number a such that
a · p = q or a = q

p
, i.e., in the field of positive integers the operation of division is not

always possible. The set of all pairs of integers {m,n}, if {mk, nk} (k being an integer) is
regarded as the same as {m, n}, form an example of a set of objects which can be added,
subtracted, and multiplied according to the laws holding for positive integers, provided
addition, subtraction, and multiplication are defined by the equations,6

{m, n} ⊗ {p, q} = {mp, nq}
{m, n} ⊕ {p, q} = {mq + np, nq}.

The operations with the subset of pairs {m, 1} are exactly the same as the operations with
the integers.

This example shows that no contradiction will be introduced by adding a further axiom
to the effect that besides the integers there are numbers, called fractions, such that in the
extended system division is possible. Such an axiom is added and the order relations among
the fractions are defined as follows:

p

q
<

m

n
if pn < qm.

By an analogous example7 the possibility of negative numbers is shown and an axiom

6The details needed to show that these integer pairs satisfy the algebraic laws of operation are to be
found in Chapter I, pages 5–12, of Pierpont’s Theory of Real Functions. Pierpont’s exposition differs
from that indicated above, in that he says that the integer pairs actually are the fractions.

7Cf. Pierpont, loc. cit., pages 12–19.
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assuming their existence is justified. This completes the rational number system and brings
the discussion to the point where this book begins.

Our Axiom K, which completes the real number system, assuming that every bounded
set has a least upper bound, should, as in the previous cases, be accompanied by an example
to show that no contradiction with previous axioms is introduced by Axiom K. Such an
example is the set of all lower segments, a lower segment, S, being defined as any bounded
set of rational numbers such that if x is a number of S, every rational number less than
x is in S. For instance, the set of all rational numbers less than a rational number a is a
lower segment. Of two lower segments one is always a subset of the other. We may denote
that S is a subset of S ′ by the symbol

S < S ′.

According to the order relation, <, every bounded set of lower segments [S] has a least
upper bound, namely the lower segment, consisting of every number in any S of [S]. If S
and T are lower segments whose least upper bounds are s and t, we may define

S ⊕ T

and
S ⊗ T

as those lower segments whose least upper bounds are s + t and s × t respectively. It is
now easy to see that the set of lower segments contains a subset that satisfies the same
conditions as the rational numbers, and that the set as a whole satisfies axiom K. The
legitimacy of axiom K from the logical point of view is thus established, since our example
shows that it cannot contradict any previous theorem of arithmetic.

Further axioms might now be added, if desired, to postulate the existence of imaginary
numbers, e.g. of a number x for each triad of real numbers a, b, c, such that ax2+bx+c = 0.
These axioms are to be justified by an example to show that they are not in contradiction
with previous assumptions. The theory of the complex variable is, however, beyond the
scope of this book.

§ 5 Axioms for the Real Number System.

A somewhat more summary way of dealing with the problem is to set down at the outset a
set of postulates for the system of real numbers as a whole without distinguishing directly
between the rational and the irrational number. Several sets of postulates of this kind have
been published by E. V. Huntington in the 3d, 4th, and 5th volumes of the Transactions
of the American Mathematical Society. The following set is due to Huntington.8

The system of real numbers is a set of elements related to one another by the rules of
addition (+), multiplication (×), and magnitude or order (<) specified below.

8Bulletin of the American Mathematical Society, Vol. XII, page 228.
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A 1. Every two elements a and b determine uniquely an element a + b called their sum.

A 2. (a + b) + c = a + (b + c).

A 3. (a + b) = (b + a).

A 4. If a + x = a + y, then x = y.

A 5. There is an element z, such that z + z = z. (This element z proves to be unique, and
is called 0.)

A 6. For every element a there is an element a′, such that a + a′ = 0.

M 1. Every two elements a and b determine uniquely an element ab called their product ;
and if a 6= 0 and b 6= 0, then ab 6= 0.9

M 2. (ab)c = a(bc).

M 3. ab = ba.

M 4. If ax = ay, and a 6= 0, then x = y.

M 5. There is an element u, different from 0, such that uu = u. This element proves to be
uniquely determined, and is called 1.

M 6. For every element a, not 0, there is an element a′′, such that aa′′ = 1.

A M 1. a(b + c) = ab + ac.

O 1. If a 6= b, then either a < b or b < a.

O 2. If a < b, then a 6= b.

O 3. If a < b and b < c, then a < c.

O 4. (Continuity.) If [x] is any set of elements such that for a certain element b and every
x, x < b, then there exists an element B such that—

(1) For every x of [x], x < B;

(2) If y < B, then there is an x1 of x such that y < x1.

A O 1. If x < y, then a + x < a + y.

M O 1. If a > 0 and b > 0, then ab > 0.

9The latter part of M 1 may be omitted from the list of axioms, since it can be proved as a theorem
from A 4 and A M 1.
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These postulates may be regarded as summarizing the properties of the real number
system. Every theorem of real analysis is a logical consequence of them. For convenience
of reference later on we summarize also the rules of operation with the symbol |x|, which
indicates the “numerical” or “absolute” value of x. That is, if x is positive, |x| = x, and if
x is negative, |x| = −x.

|x|+ |y| = |x + y|. (1)

∴
n∑

k=1

|xk| =
∣∣∣ n∑
k=1

xk

∣∣∣, (2)

where
∑n

k=1 xk = x1 + x2 + . . . + xn.∣∣|x| − |y|∣∣ 5 |x− y| = |y − x| 5 |x|+ |y|. (3)

|x · y| = |x| · |y|. (4)

|x|
|y|

=

∣∣∣∣xy
∣∣∣∣ . (5)

If |x− y| < e1, |y − z| < e2, then |x− z| < e1 + e2. (6)

If [x] is any bounded set,

B[x]−B[x] = B[|x1 − x2|]. (7)

§ 6 The Number e.

In the theory of the exponential and logarithmic functions (see page 76) the irrational
number e plays an important rôle. This number may be defined as follows:

e = B[En], (1)

where

En = 1 +
1

1!
+

1

2!
+ . . . +

1

n!
,

where [n] is the set of all positive integers, and

n! = 1 · 2 · 3 . . . n.

It is obvious that (1) defines a finite number and not infinity, since

En = 1 +
1

1!
+

1

2!
+ . . . +

1

n!
< 1 + 1 +

1

2
+

1

22
+ . . . +

1

2n−1
= 3− 1

2n−1
.



12 INFINITESIMAL ANALYSIS.

The number e may very easily be computed to any number of decimal places, as follows:

E0 = 1

1

1!
= 1

1

2!
= .5

1

3!
= .166666+

1

4!
= .041666+

1

5!
= .008333+

1

6!
= .001388+

1

7!
= .000198+

1

8!
= .000024+

1

9!
= .000002+

E9 = 2.7182 . . .

Lemma.—If k > e, then Ek > e− 1
k!
.

Proof. From the definitions of e and En it follows that

e− Ek = B

[
1

(k + 1)!
+

1

(k + 2)!
+ . . .

1

(k + l)!

]
,

where [l] is the set of all positive integers. Hence

e− Ek =
1

(k + 1)!
·B
[
1 +

1

k + 2
+

1

(k + 2)(k + 3)
+ . . . +

1

(k + 2) . . . (k + l)

]
,

or

e− Ek <
1

(k + 1)!
· e.

If k > e, this gives

Ek > e− 1

k!
.

Theorem 7.

e = B

[(
1 +

1

n

)n]
,

where [n] is the set of all positive integers.
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Proof. By the binomial theorem for positive integers(
1 +

1

n

)n

= 1 + n

(
1

n

)
+

n(n− 1)

2!
·
(

1

n

)2

+ . . . +

(
1

n

)n

.

Hence

En −
(

1 +
1

n

)n

=
n∑

k=2

(
1

k!
− n(n− 1) . . . (n− k + 1)

k! nk

)
=

n∑
k=2

nk − n(n− 1) . . . (n− k + 1)

k! nk
, (a)

<

n∑
k=2

nk − (n− k + 1)k

k! nk
.

Hence by factoring

En −
(

1 +
1

n

)n

<
n∑

k=2

(k − 1)(nk−1 + nk−2(n− k + 1) + . . . + (n− k + 1)k−1)

k! nk

<
n∑

k=2

(k − 1)knk−1

k! nk

<
1

n

n∑
k=2

(k − 1)k

k!

i.e.,

En −
(

1 +
1

n

)n

<
1

n

(
1 +

n−2∑
l=1

1

l!

)
<

e

n
. (b)

From (a)

En >

(
1 +

1

n

)n

(1)

and from (b) (
1 +

1

n

)n

> En −
e

n
, (2)

whence by the lemma (
1 +

1

n

)n

> e− 1

n!
− e

n
. (3)

From (1) it follows that e is an upper bound of[(
1 +

1

n

)n]
,
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and from (3) it follows that no smaller number can be an upper bound. Hence

B

[(
1 +

1

n

)n]
= e.

§ 7 Algebraic and Transcendental Numbers.

The distinction between rational and irrational numbers, which is a feature of the discussion
above, is related to that between algebraic and transcendental numbers. A number is
algebraic if it may be the root of an algebraic equation,

a0x
n + a1x

n−1 + . . . + an−1x + an = 0,

where n and a0, a1, . . . , an are integers and n > 0. A number is transcendental if not
algebraic. Thus every rational number m

n
is algebraic because it is the root of the equation

nx−m = 0,

while every transcendental number is irrational. Examples of transcendental numbers are,
e, the base of the system of natural logarithms, and π, the ratio of the circumference of a
circle to its diameter.

The proof that these numbers are transcendental follows on page 14, though it makes
use of infinite series which will not be defined before page 56, and the function ex, which
is defined on page 44.

The existence of transcendental numbers was first proved by J. Liouville, Comptes
Rendus, 1844. There are in fact an infinitude of transcendental numbers between any
two numbers. Cf. H. Weber, Algebra, Vol. 2, p. 822. No particular number was proved
transcendental till, in 1873, C. Hermite (Crelle’s Journal, Vol. 76, p. 303) proved e to be
transcendental. In 1882 E. Lindemann (Mathematische Annalen, Vol. 20, p. 213) showed
that π is also transcendental.

The latter result has perhaps its most interesting application in geometry, since it
shows the impossibility of solving the classical problem of constructing a square equal in
area to a given circle by means of the ruler and compass. This is because any construction
by ruler and compass corresponds, according to analytic geometry, to the solution of a
special type of algebraic equation. On this subject, see F. Klein, Famous Problems of
Elementary Geometry (Ginn & Co., Boston), and Weber and Wellstein, Encyclopädie
der Elementarmathematik, Vol. 1, pp. 418–432 (B. G. Teubner, Leipzig).

§ 8 The Transcendence of e.

Theorem 8. If c, c1, c2, c3, . . . , cn are integers (or zero but c 6= 0), then

c + c1e + c2e
2 + . . . + cne

n 6= 0. (1)
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Proof. The scheme of proof is to find a number such that when it is multiplied into (1)
the product becomes equal to a whole number distinct from zero plus a number between
+1 and −1, a sum which surely cannot be zero. To find this number N , we study the
series10 for ek, where k is an integer <

=n:

ek = 1 +
k

1!
+

k2

2!
+

k3

3!
+ . . . .

Multiplying this series successively by the arbitrary factors i!·bi, we obtain the following
equations:

ek · 1! · b1 = b1 · 1! + b1k
(
1 + k

2
+ k2

2·3 + . . .
)

;

ek · 2! · b2 = b2 · 2!
(
1 + k

1

)
+ b2 · k2

(
1 + k

3
+ k2

3·4 + . . .
)

;

ek · 3! · b3 = b3 · 3!
(
1 + k

1!
+ k2

2!

)
+ b3 · k3

(
1 + k

4
+ k2

4·5 + . . .
)

;

. . . . . . . . . . . . . .

ek · s! · bs = bs · s!
(
1 + k

1!
+ k2

2!
+ . . . + ks−1

(s−1)!

)
+bs · ks

(
1 + k

s+1
+ k2

(s+1)(s+2)
+ . . .

)
.


(2)

For the sake of convenience in notation the numbers b1 . . . bs may be regarded as the
coefficients of an arbitrary polynomial

φ(x) + b0 + b1x + b2x
2 + . . . + bsx

s ,

the successive derivatives of which are

φ′(x) = b1 + 2 · b2x + . . . + s · bs · xs−1,
. . . . . . . . .

φ(m)(x) = bm ·m! + bm+1 · (m+1)!
1!
· x + . . . + bs · s!

(s−m)!
· xs−m;

. . . . . . . . . . . . . .

The diagonal in (2) from b1 ·1! to bs · s! ks−1

(s−1)!
is obviously φ′(k), the next lower diagonal

is φ′′(k), etc. Therefore by adding equations (2) in this notation we obtain

ek(1! b1 + 2! b2 + . . . + s! bs) = φ′(k) + φ′′(k) + . . .

+ φ(s)(k) +
s∑

m=1

bm · km ·Rkm, (3)

in which

Rkm = 1 +
k

m + 1
+

k2

(m + 1)(m + 2)
+ . . . .

10Cf. pages 56 and 78.
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Remembering that φ(x) is perfectly arbitrary, we note that if it were so chosen that

φ′(k) = 0, φ′′(k) = 0, . . . , φ(p−1)(k) = 0,

for every k (k = 1, 2, 3, . . . , n) then equations (2) and (3) could be written in the form

ek(1! ·b1 + 2! · b2 + . . . + s! · bs) =
s∑

m=1

bm · km ·Rkm

+ bp · p!

+ bp+1 · (p + 1)! ·
(

1 +
k

1!

)
+ . . .

+ bs · s!
(

1 +
k

1!
+

k2

2!
+ . . . +

ks−p

(s− p)!

)
. (4)

A choice of φ(x) satisfying the required conditions is

φ(x) = (a0 + a1x + a2x
2 + . . . + anx

n)p · xp−1

(p− 1)!
=

(f(x))p · xp−1

(p− 1)!
, (5)

where f(x) = (x− 1)(x− 2)(x− 3) . . . (x− n).
Every k (k = 1, 2, . . . , n) is a p-tuple root of (5). Here p is still perfectly arbitrary, but

the degree s of φ(x) is np + p− 1. If φ(x) is expanded and the result compared with

φ(x) = b0 + b1x + . . . + bsx
s,

it is plain that
b0 = 0, b1 = 0, . . . , bp−2 = 0,

on account of the factor xp−1, and

bp−1 =
ap

0

(p− 1)!
, bp =

Ip

(p− 1)!
, . . . , bs =

Is

(p− 1)!
,

where Ip, Ip+1, . . . , Is, are all integers. The coefficient of ek in the left-hand member of (4)
is therefore

Np = ap
0 +

Ip

(p− 1)!
· p! +

Ip+1

(p− 1)!
· (p + 1)! + . . . +

Is

(p− 1)!
· s!

Whenever the arbitrary number p is prime and greater than a0, Np is the sum of ap
0,

which cannot contain p as a factor, plus other integers each of which does contain the
factor p. Np is therefore not zero and not divisible by p.

Further, since
(p + t)!

(p− 1)! · r!
= p

(p + 1)(p + 2) . . . (p + t)

r!
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is an integer divisible by p when r 5 t, it follows that all the coefficients of the last block
of terms in (4) contain p as a factor. Since k is also an integer, (4) evidently reduces to

Np · ek = pWkp +
s∑

m=1

bm · km ·Rkm,

where Wkp is an integer or zero, and this may be abbreviated to the form

Np · ek = pWkp + rkp. (6)

Before completing our proof we need to show that by choosing the arbitrary prime number
p sufficiently large, rkp can be made as small as we please. If α is a number greater than
n,

|Rkm| =
∣∣∣∣1 +

k

m + 1
+

k2

(m + 1)(m + 2)
+ . . .

∣∣∣∣
<

∣∣∣∣1 +
α

m + 1
+

α2

(m + 1)(m + 2)
+ . . .

∣∣∣∣
<

∣∣∣∣1 +
α

1
+

α2

2!
+ . . .

∣∣∣∣
< eα

for all integral values of m and of k <
= n.

|rkp| =

∣∣∣∣∣
s∑

m=1

bm · km ·Rkm

∣∣∣∣∣ 5
s∑

m=1

|bm| · km · |Rk,m|.

Since the number bm is the coefficient of xm in φ(x) and since each coefficient of φ(x)
is numerically less than or equal to the corresponding coefficient of

xp−1

(p− 1)!

(
|a0|+ |a1|x + |a2|x2 + . . . + |an|xn

)p
,

it follows that

|rkp| < eα · αp−1

(p− 1)!
(|a0|+ |a1|α + . . . + |an|αn)p

<
Qp

(p− 1)!
· eα,

where
Q = α(|a0|+ |a1|α + . . . + |an|αn)

is a constant not dependent on p. The expression Qp

(p−1)!
is the pth term of the series for

QeQ, and therefore by choosing p sufficiently large rkp, may be made as small as we please.
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If now p is chosen as a prime number, greater than α and α0 and so great that for every
k,

rkp <
1

n · d
,

where d is the greatest of the numbers

c, c1, c2, c3, . . . , cn,

the equations (6) evidently give

Np(c + c1e + c2e
2 + . . . + cne

n)

= Npc + p(c1W1p + c2W2p + . . . + cnWnp)

+ c1r1p + c2r2p + . . . + cnrnp,

= Npc + pW + R, (8)

where W is an integer or zero and R is numerically less than unity. Since Npc is not
divisible by p and is not zero, while pW is divisible by p, this sum is numerically greater
than or equal to zero. Hence

Np(c + c1e + c2e
2 + . . . + cne

n) 6= 0.

Hence
c + c1e + c2e

2 + . . . + cne
n 6= 0,

and e is a transcendental number.

§ 9 The Transcendence of π.

The definition of the number π is derived from Euler’s formula

ex
√
−1 = cos x +

√
−1 sin x;

by replacing x by π,
eπ
√
−1 = −1. (1)

If π is assumed to be an algebraic number, π
√
−1 is also an algebraic number and is the

root of an irreducible algebraic equation F (x) = 0 whose coefficients are integers. If the
roots of this equation are denoted by z1, z2, z3, . . . , zn, then, since π

√
−1 is one of the z’s,

it follows as a consequence of (1) that

(ez1 + 1)(ez2 + 1)(ez3 + 1) . . . (ezn + 1) = 0. (2)

By expanding (2)

1 +
∑

ezi +
∑

ezi+zj +
∑

ezi+zj+zk + . . . = 0.
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Among the exponents zero may occur a number of times e.g., (c− 1) times. If then

zi, zi + zj, zi + zj + zk, . . . ,

be designated by x1, x2, x3, . . . , xn, the equation becomes

c + ex1 + ex2 + . . . + exn = 0, (3)

where c is a positive number at least unity and the numbers xi are algebraic. These
numbers, by an argument for which the reader is referred to Weber and Wellstein’s
Encyclopädie der Elementarmathematik, p. 427 et seq., may be shown to be the roots of
an algebraic equation

f(x) = a0 + a1x + a2x
2 + . . . + anx

n = 0, (3′)

the coefficients being integers and a0 6= 0 and an 6= 0. The rest of the argument consists in
showing that equation (3) is impossible when x1, x2, . . . , xn are roots of (3′). The process
is analogous to that in § 8.

exk · 1! b1 = b1 · 1! + b1xk

(
1 +

xk

2
+

x2
k

2 · 3
+ . . .

)
,

exk · 2! b2 = b2 · 2!
(
1 +

xk

1!

)
+ b2x

2
k

(
1 +

xk

3
+

x2
k

3 · 4
+ . . .

)
,

exk · 3! b3 = b3 · 3!

(
1 +

xk

1!
+

x2
k

2!

)
+ b3x

3
k

(
1 +

xk

4
+

x2
k

4 · 5
+ . . .

)
,

. . . . . . . . . . . . . . .

exk · s! bs = bs · s!
(

1 +
xk

1!
+ . . . +

xs−1
k

(s− 1)!

)
+bsx

s
k

(
1 +

xk

s + 1
+

x2
k

(s + 1)(s + 2)
+ . . .

)
.



(4)

The numbers b1, . . . , bs may be regarded as the coefficients of an arbitrary polynomial

φ(x) = b0 + b1x + b2x
2 + . . . + bsx

s,

for which

φ(m)(x) = bm ·m! + bm+1 ·
(m + 1)!

1!
· x + . . . + bs

s!

(s−m)!
· xs−m.

The diagonal in equations (4) from b1 · 1! to bs · s! xk
s−1

(s−1) !
is obviously φ′(xk), and the

next lower diagonal φ′′(xk), etc. Therefore, by adding equations (4),

exk(1! b1 + 2! b2 + . . . + s! bs) = φ′(xk) + φ′′(xk) + . . .

+ φ(s)(xk) +
s∑

m=1

bm · xm
k Rkm, (5)
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in which

Rkm = 1 +
xk

m + 1
+

x2
k

(m + 1)(m + 2)
+ . . .

Remembering that φ(x) is perfectly arbitrary, let it be so chosen that

φ′(xk) = 0, φ′′(xk) = 0, φ′′′(xk) = 0, . . . , φ(p−1)(xk) = 0

for every xk.
Equation (5) may then be written as follows:

exk(1! b1 + 2! b2 + . . . + s! bs) =
s∑

m=1

bm · (xk)
m ·Rkm

+ bp · p!

+ bp+1 · (p + 1)!
(
1 +

xk

1!

)
+ . . .

+ bs · s!
(

1 +
xk

1!
+

x2
k

2!
+ . . . +

xs−p
k

(s− p)!

)
. (6)

A choice of φ(x) satisfying the required conditions is

φ(x) =
anp−1

n · xp−1

(p− 1)!
(a0 + a1x + a2x

2 + . . . + anx
n)p

=
anp−1

n · xp−1

(p− 1)!
(f(x))p,

of which every xk is a p-tuple root. If φ(x) is expanded and the result compared with

φ(x) = b0 + b1x + . . . + bsx
s,

it is plain that b0 = 0, b1 = 0, . . . , bp−2 = 0, on account of the factor xp−1; and

bp−1 =
ap

0a
np−1
n

(p− 1)!
, bp =

Ip · anp−1
n

(p− 1)!
. . . , bs =

Is · anp−1
n

(p− 1)!
,

where Ip, . . . , Is, are all integers. The coefficient of exk in (6) may now be written

Np = anp−1
n

(
ap

0 +
Ip

(p− 1)!
· p! +

Ip+1

(p− 1)!
(p + 1)! + . . . +

Is

(p− 1)!
· s!
)

.

If the arbitrary number p is chosen as a prime number greater than a0 and an, Np

becomes the sum of ap
0a

np−1
n , which cannot contain p as a factor, and a number of other

integers each of which is divisible by p. Np therefore is not zero and not divisible by p.
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Further, since, (p+t)!
(p−1)!·r! is an integer divisible by p when r 5 t, it follows that all of the

coefficients of the last block of terms in (6) contain p as a factor. If then (6) is added by
columns,

Npe
xk = panp−1

n

[
P0 + P1xk + P2x

2
k + . . . + Ps−px

s−p
k

]
+

s∑
m=1

bm · xm
k ·Rkm (7)

where P0, P1, . . . , Ps−p are integers.
It remains to show that

∑s
m=1 bm · xm

k · Rkm can be made small at will by a suitable
choice of the arbitrary p. As in the proof of the transcendence of e, it follows that

|rkp| =

∣∣∣∣∣
s∑

m=1

bm · xm
k ·Rkm

∣∣∣∣∣ < Qp

(p− 1)!
· eα,

where
Q = |an

n|α(|a0|+ |a1|α + . . . + |an|α),

and α is the largest of the absolute values of xk (k = 1, . . . , n). If now p is chosen as a
prime number, greater than unity, greater than a0 . . . an and greater than c, and so great
also that |rkp| < 1

n
, it follows directly from equation (7) that

Np(c + ex1 + ex2 + . . . + exn)

= Npc + pan
np−1(P0S0 + P1S1 + . . . + Ps−pSs−p) +

n∑
k=1

rkp, (8)

where

|rkp| =

∣∣∣∣∣
s∑

m=1

bm · xm
k ·Rkm

∣∣∣∣∣ < 1

n
,

S0 = n, and Si = xi
1 + xi

2 + xi
3 + . . . + xi

n, and therefore

S1 = −an−1

an

, S2 =
a2

n−1

a2
n

− 2an−2

an

, . . . , 11

and therefore it follows that an
np−1S1, an

np−1S2,. . . , are all whole numbers or zero. The
term

panp−1
n ·

s−p∑
i=0

PiSi

is therefore an integer divisible by p, while, on the contrary, Np and c are not divisible by p.

The sum of these terms is therefore a whole number = +1 or 5 −1, and since
n∑

k=1

rkp < 1,

the entire right-hand member of (8) is not zero, and hence (3) is not zero. Therefore—

Theorem 9. The number π is transcendental.

11Cf. Burnside and Panton Theory of Equations, Chapter VIII, Vol. I.
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Chapter 2

SETS OF POINTS AND OF
SEGMENTS.

§ 1 Correspondence of Numbers and Points.

The system of real numbers may be set into one-to-one correspondence with the points of
a straight line. That is, a scheme may be devised by which every number corresponds to
one and only one point of the line and vice versa. The point 0 is chosen arbitrarily, and
the points 1, 2, 3, 4, . . . are at regular intervals to the right of 0 in the order 1, 2, 3, 4, . . .
from left to right, while the points −1,−2,−3, . . . follow at regular intervals in the order
0,−1,−2,−3, . . . from right to left. The points which correspond to fractional numbers
are at intermediate positions as follows:1

To fix our ideas we obtain a point corresponding to a particular decimal of a finite
number of digits, say 1.32. Divide the segment 1 2 into ten equal parts. Then divide the

1.32
1 .1 .2 .3 .4 .5 1

Fig. 1

segment .3 .4 of this division into ten equal parts. The point marked 2 by the last division
is the point corresponding to 1.32.

If the decimal is not terminating, we simply obtain an infinite sequence of points, such
that any one is to the right of all that precede it, in case of a positive number, or to the
left in case of a negative number. The first few points of the sequence for the number π
are the points corresponding to the numbers 3, 3.1, 3.14, 3.141. This set of numbers is
bounded, 4, for instance, being an upper bound. Hence the points corresponding to these
numbers all lie to the left of the point corresponding to the number 4. To show that there
exists a definite point corresponding to the least upper bound B of the set of numbers 3,
3.1, 3.14, 3.141, etc., use is made of the following:

1It is convenient to think of numbers in this case as simply a notation for points. In view of the
correspondence of points and numbers the numbers furnish a complete notation for all points.

23
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Postulate of Geometric Continuity.—If a set [x] of points of a line has a right bound,
that is, if there exists a point B on the line such that no point of the set [x] is to the right
of B, then there exists a leftmost right bound B of the set [x]. If the set has a left bound,
it has a rightmost left bound.

The leftmost right bound of the set of points corresponding to the numbers 3., 3.1,
3.14, etc., is the point which corresponds to the number π. In the same manner it follows
from the postulate that there is a definite point on the line corresponding to any decimal
with an infinitude of digits.2

Conversely, given any point on the line, e.g., a point P , to the right of 0, there corre-
sponds to it one and only one number. This is evident since, in dividing the line according
to a decimal scale, either the point in question is one of the division-points, in which case
the number corresponding to the point is a terminating decimal, or in case it is not a
division-point we will have an infinite set of division-points to the left of it, the point
in question being the leftmost right bound of the set. If now we pick out the rightmost
point of this left set in every division and note the corresponding number, we have a set
of numbers whose least upper bound corresponds to the point P .

The ordinary analytic geometry furnishes a scheme for setting all pairs of real num-
bers into correspondence with all points of a plane, and all triples of real numbers into
correspondence with all points in space. Indeed, it is upon this correspondence that the
analytic geometry is based.

It should be noticed that the correspondence between numbers and points on the line
preserves order, that is, if we have three numbers, a, b, c, so that a < b < c, then the
corresponding points A, B, C are under the ordinary conventions so arranged that B is to
the right of A, and C to the right of B.

It will be observed that we have not put this matter of the one-to-one correspondence
between points and numbers into the form of a theorem. Rather than aiming at a rigorous
demonstration from a body of sharply stated axioms, we have attempted to place the
subject-matter before the reader in such a manner that he will understand on the one
hand the necessity, and on the other the grounds, for the hypothesis.

§ 2 Segments and Intervals. Theorem of Borel.

Definition.—A segment a b is the set of all numbers greater than a and less than b. It

does not include its end-points a and b. An interval
| |
a b is the segment a b together with

a and b. For a segment plus its end point a we use the notation
|
a b, and when a is absent

2It is not implied here, of course, that it is possible to write a decimal with an infinitude of digits, or
to mark the corresponding points. What is meant is that if an infinite sequence of digits is determined, a
definite number and a definite point are thereby determined. Thus

√
2 determines an infinite sequence of

digits, that is, it furnishes the law whereby the sequence can be extended at will.
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and b present
|

a b. All these notations imply that a < b.3 Sometimes we denote a segment
or interval by a single letter. This is done in case it is not important to designate a definite
segment or interval.

The set of all numbers greater than a is the infinite segment a ∞, and the set of all
numbers less than a is the infinite segment −∞ a. The infinite segments a ∞ and −∞ a,

together with the point a, are respectively the infinite intervals
|
a ∞ and

|
−∞ a. Unless

otherwise specified the expressions segment and interval will be understood to refer to
segments and intervals whose end-points are finite.

By means of the one-to-one correspondence of numbers and points on a line we define
the length of a segment as follows: The length of a segment a b with respect to the unit
segment 0 1 is the number |a− b|. This definition applies equally to all segments whether
they are commensurable or incommensurable with the unit segment.

Definition.—A set of segments or intervals [σ] covers a segment or interval t if every
point of t is a point of some σ.

On the interval
| |
−1 1 consider the set of points

[
1
2n

]
. The set of intervals

| |
−1 0,

| |
1
2

1,

−1 0 1/8 1/4 1/2 1

Fig. 2

| |
1
4

1
2
, . . .,

| |
1
2n

1
2n−1 , . . . covers the interval

| |
−1 1, because every point of

| |
−1 1 is a point of

one of the intervals. On the other hand a set of segments −1 0, 1
2

1, . . . , 1
2n

1
2n−1 , etc., does

not cover the interval because it does not include the points −1, 1, 1
2
, . . ., 1

2n , . . . , or 0. In
order to obtain a set of segments which does cover the interval, it is necessary to adjoin
a set of segments, no matter how small, such that one includes −1, one includes 0, one
includes 1, 1

2
, 1

4
, . . ..

The segment including 0, no matter how small it is, must include an infinitude of the
points 1

2n , and there are only a finite number of them which do not lie on that segment. It
therefore follows that in this enlarged set there is a subset of segments, finite in number,

which includes all the points of
| |
−1 1 . This turns out to be a general theorem, namely,

that if any set of segments covers an interval, there is a finite subset of it which also covers
the interval. The example we have just given shows that such a theorem is not true of the
covering of an interval by a set of intervals; furthermore, it is not true of the covering of a
segment either by a set of segments or by a set of intervals.

3The notation a b,
| |
a b ,

|
a b, etc., to denote the presence or absence of end-points is due to G. Peano,

Analisi Infinitisimali. Torino, 1893.
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Theorem 104. If an interval
| |
a b is covered by any set [σ] of segments, it is covered by a

finite number of segments σ1, . . . , σn of [σ].

Proof. It is evident that at least a part of
| |
a b is covered by a finite number of σ’s; for

example, if σ0 is the σ or one of the σ’s which include a and if b′ is any point of
|

a b which

lies in σ0, then
| |
a b′ is covered by σ0. Let [b′] be the set of all points of

|
a b, such that

| |
a b′

is covered by a finite number of σ’s. By Theorem 4 [b′] has a least upper bound B. To
complete our proof we show (a) that B is in [b′], and (b) that B = b.

(a) Let a′′ b′′ be a segment of [σ] including B. Since B is the least upper bound of [b′],
there is a point of [b′], b′, between a′′ and B. But if σ1, σ2, . . . , σe, be the finite set

of segments covering the interval
| |
a b′ , this set together with a′′ b′′ will cover

| |
a B ,

which proves that B is a point of [b′].

(b) If B 6= b, then B < b and the set σ1, σ2, . . ., σe, together with a′′ b′′, would cover

an interval
| |
a c, where c is a point between B and b′′; c would therefore be a point

of [b′], which is contrary to the hypothesis that B is an upper bound of [b′]. Hence
B = b and the theorem is proved.

An immediate consequence of this theorem is the following, which may be called the
theorem of uniformity.

Theorem 11. If an interval
| |
a b is covered by a set of segments [σ], then

| |
a b may be

divided into N equal intervals such that each interval is entirely within a σ.

Proof. By Theorem 10
| |
a b is covered by a finite set of σ’s, σ1, σ2, . . . , σn. The end points

of these σ’s, together with a and b, are a finite set of points. Let d be the smallest distance
between any two distinct points of this set. Because of the overlapping of the σ’s, any two
points not in the same segment are separated by at least two end points. Therefore any two
points whose distance apart is less than d must lie on the same segment of σ1, σ2, . . . , σn.
Now let N be such that b−a

N
< d, then each interval of length b−a

N
is contained in a σ.

By this argument we have also proved the following:

4This theorem is due to E. Borel, Annales de l’École Normale Supérieure, 3d series, Vol. 12 (1895),
p. 51. It is frequently referred to as the Heine-Borel theorem, because it is essentially involved in the
proof of the theorem of uniform continuity given by E. Heine, Die Elemente der Functionenlehre, Crelle’s
Journal, Vol. 74 (1872), page 188.
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a

σ1 σ2 σ3

d

σ4 σ5 σ6 σ7 σ8

b

Fig. 3.

Theorem 12. If an interval
| |
a b is covered by a set of segments, then there is a number

d such that for any two numbers x1 and x2 such that a 5 x1 < x2 5 b and |x1 − x2| < d,
there is a segment σ of [σ] which contains both x1 and x2. In other words, any interval of
length d lies entirely within some σ.

The sense in which these are theorems of uniformity is the following. Any point x of
| |
a b, being within a segment σ, can be regarded as the middle point of an interval ix of
length lx which is entirely within some σ. The length lx is in general different for different
points, x. Our theorem states that a value l can be found which is effective as an lx for

every x, i.e., uniformly over the interval
| |
a b. The distinction here drawn is one of the

most important in rigorous analysis. It was first observed in connection with the theorem
of uniform continuity; see page 70.

The presence of both end points of
| |
a b is essential, as is shown by the following example.

|
0 1 is covered by the segments 1

2
2, 1

4
1, 1

8
1
2
, . . . , 1

2n
1

2n−2 , . . ., but as we take points nearer
to 0, lx becomes smaller with the lower bound 0, and no l can be found which is effective

for all points of
|

0 1. When the end points are absent it is possible, however, to modify the
notion of covering, so that our theorem remains true. This is sufficiently indicated by the
following theorem, which is an immediate consequence of Theorem 10.

Theorem 13. If on a segment a b there exists any set [σ] of segments such that

(1) [σ] includes a segment of which a is an end point and a segment of which b is an end
point.

(2) Every point of the segment a b lies on one or more of the segments of the set [σ].

Then among the segments of the set [σ] there exists a finite set of segments σ1, σ2, . . ., σn

which satisfies conditions (1) and (2).

The theorems which we have just proved can be generalized to space of any number of
dimensions. A planar generalization of a segment is a parallelogram with sides parallel to
the coordinate axes, the boundary being excluded. The planar generalization of an interval
is the same with the boundary included. The theorem of Borel becomes:

Theorem 14. If every point of the interior or boundary of a parallelogram P is interior to
at least one parallelogram p of a set of parallelograms [p], then every point of P is interior
to at least one parallelogram of a finite subset p1 . . . pn of [p].
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Proof. Let x = 0, x = a > 0, y = 0, y = b > 0 determine the boundary of P . Let
0 5 y1 5 b. Upon the interval i of the line y = y1, cut off by P , those parallelograms of [p]
that include points of i as interior points determine a set of segments [π] such that every
point of i is an interior point of one of these segments π. There is by Theorem 10 a finite
subset of [π], π1 . . . πn, including every point of i, and therefore a finite subset p1 . . . pn

of [p], including as interior points every point of i. Moreover, since the number of p1 . . .
pn is finite, they include in their interior all the points of a definite strip, e.g., the points
between the lines y = y1 − e and y = y1 + e.

y = 0

y = b

x = 0 x = a

y1 + e

y1

y1 − e

Fig. 4.

Thus for every y1 (0 5 y1 5 b) we obtain a strip of the parallelogram P such that every
point of its interior is interior to one of a finite number of the parallelograms [p]. These

strips intersect the y-axis in a set of segments that include every point of the interval
| |
0 b.

There is therefore, by Theorem 10, a finite set of strips which includes every point in P .
Since each strip is included by a finite number of parallelograms p, the whole parallelogram
P is included by a finite subset of [p].

The generalization of Theorems 11 and 12 is left to the reader.

§ 3 Limit Points. Theorem of Weierstrass.

Definition.—A neighborhood or vicinity of a point a in a line (or simply a line neighbor-
hood of a) is a segment of this line such that a lies within the segment. We denote a line
neighborhood of a point a by V (a). The symbol V ∗(a) denotes the set of all points of V (a)
except a itself. The symbols V (∞) and V ∗(∞) are both used to denote infinite segments
a +∞, and V (−∞) and V ∗(−∞) to denote infinite segments −∞ a.5

5This notation is taken from Pierpont’s Theory of Functions of Real Variables. It is used here,
however, with a meaning slightly different from that of Pierpont.
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A neighborhood of a point in a plane (or a plane neighborhood of a point) is the interior
of a parallelogram within which the point lies. A neighborhood of a point (a, b) is denoted
by V (a, b) if (a, b) is included and by V ∗(a, b) if (a, b) is excluded. Instead of the three
linear vicinities V (a), V (∞), and V (−∞) we have the following nine in the case of the
plane:

It follows at once from a consideration of the scheme for setting the points on the line
into correspondence with all numbers that in every neighborhood of a point there is a point
whose corresponding number is rational.

Definition.—A point a is said to be a limit point of a set if there are points of the set,
other than a, in every neighborhood of a. In case of a line neighborhood this says that
there are points of the set in every V ∗(a). In the planar case this is equivalent to saying
that (a, b) is a limit point of the set [x, y], either if for every V ∗(a) and V (b) there is an
(x, y) of which x is in V ∗(a) and y in V (b), or if for every V (a) and V ∗(b) there is an (x, y)
of which x is in V (a) and y in V ∗(b).
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Thus 0 is a limit point of the set
[

1
2k

]
, where k takes all positive integral values. In

this case the limit point is not a point of the set. On the other hand, in the set 1, 1 − 1
2
,

1 − 1
22 ,. . . , 1 − 1

2k , 1 is a limit point of the set and also a point of the set. In this case 1
is the least upper bound of the set. In case of the set 1, 2, 3, the number 3 is the least
upper bound without being a limit point. The fundamental theorem about limit points is
the following (due to Weierstrass):

Theorem 15. Every infinite bounded set [p] of points on a line has at least one limit point.

Proof. Since the set [p] is bounded, every one of its points lies on a certain interval
| |
a b. If

the set [p] has no limit point, then about every point of the interval
| |
a b there is a segment

σ which contains not more than one point of the set [p]. By Theorem 10 there is a finite

set of the segments [σ] such that every point of
| |
a b and hence of [p] belongs to at least

one of them, but each σ contains at most one point of the set [p], whence [p] is a finite set
of points. Since this is contrary to the hypothesis, the assumption that there is no limit
point is not tenable.

It is customary to say that a set which has no finite upper bound has the upper bound
+∞, and that one which has no finite lower bound has the lower bound −∞. In these
cases, since the set has a point in every V ∗(+∞) or in every V ∗(−∞) +∞ and −∞ are
also called limit points. With these conventions the theorem may be stated as follows:

Theorem 16. Every infinite set of points has a limit point, finite or infinite.

The theorem also generalizes in space of any number of dimensions. In the planar case
we have:

Theorem 17. An infinite set of points lying entirely within a parallelogram has at least
one limit point.

Theorem 17 is a corollary of the stronger theorem that follows:

Theorem 18. If [(x, y)] is any set of number pairs and if a is a limit point of the numbers
[x], there is a value of b, finite or +∞ or −∞, such that for every V ∗(a) and V (b) there
is an (x, y) of which x is in V ∗(a) and y is in V (b).

Proof. Suppose there is no value b finite or +∞ or −∞ such as is required by the theorem.
Since neither +∞ nor −∞ possesses the property required of b, there is a V ∗(a) and a
V (∞) and a V (−∞) such that for every pair (x, y) of [(x, y)] whose x lies in V ∗(a) y fails
to lie in either V (∞) or V (−∞). This means that there exists a pair of numbers M and
m such that for every (x, y) whose x is in V ∗(a) the y satisfies the condition m < y < M .
Further, since there exists no b such as is required by the theorem, there is for every number

k on the interval
| |
m M a V (k) and a V ∗k (a), such that for no (x, y) is x in V ∗k (a) and y in
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V (k). This set of segments [V (k)] covers the interval
| |
m M , whence by Theorem 10 there

is a finite subset of [V (k)], V1(k), . . ., Vn(k) which covers
| |
m M , and hence a finite set of

corresponding V ∗k (a)’s. Let V ∗(a) be a vicinity of a contained in every one of the finite set

of V ∗k (a)’s and in V ∗(a). Hence if the x of a pair (x, y) is in V ∗(a), its y cannot lie in one of
the infinite segments M ∞ and −∞ m, or in one of the finite segments V1(k), . . ., Vn(k),
i.e., no y corresponds to this x, which is contrary to the hypothesis. This argument covers
the cases when a is +∞ and when a is −∞.

We add the definitions of a few of the technical terms that are used in point-set theory.6

Definition.—A set of points which includes all its limit points is called a closed set.
A set of points every one of which is a limit point of the set is called dense in itself.7

A set of points which is both closed and dense in itself is called perfect.
A set having no finite limit point is called discrete.

A segment not including its end points is an example of a set dense in itself but not
closed. If the end points are added, the set is closed and therefore perfect. The set of
rational numbers is another case of a set dense in itself but not closed. Any set containing
only a finite number of points is closed, according to our definition.

If every point of an interval
| |
a b is a limit point of a set [x], then [x] is everywhere dense

on
| |
a b. Such a set has a point between every two points of the interval. A set which is

everywhere dense on no interval is called nowhere dense. All rational numbers between 0
and 1 form an everywhere dense set.

§ 4 Second Proof of Theorem 15.

To make the reader familiar with a style of argument which is frequently used in proving
theorems which in this book are made to depend upon Theorems 10 and 14, we adjoin the
following lemma and base upon it another proof of Theorem 15.

Lemma.—Hypothesis: On a straight line there is an infinite set of intervals
| |
a1 b1 ,

| |
a2 b2 ,

. . .,
| |
an bn , . . . conditioned as follows:8

6For bibliography and an exposition in English see W. H. Young and G. C. Young, The Theory of
Sets of Points. Cambridge, The University Press.

7In German “in sich dicht.”
8In particular the set of segments assumed in the hypothesis may be obtained by dividing any given

segment into a given number of equal segments, then one of these segments into the same number of equal
segments and so on indefinitely. To show that the sequential division into a number of equal segments gives
a set of segments satisfying the conditions of the hypothesis we have merely to show that such division gives
a segment less than any assigned segment ae be. This is equivalent to the statement that for every number
e there is an integer n, such that 1

n < e a direct consequence of Theorem 3. This involves the notion that



32 INFINITESIMAL ANALYSIS.

(1) Interval
| |
a2 b2 lies on interval

| |
a1 b1 ,

| |
a3 b3 on

| |
a2 b2 , etc. In general

| |
an bn lies on

| |
an−1 bn−1 . (This does not exclude the case ak = ak+1.)

(2) For every length e > 0, however small, there is some n, say ne, such that |bne−ane| <
e.

Conclusion: There is one and only one point b which lies upon every interval
| |
an bn .

Proof. Since the set of points a1 . . . an . . . is bounded, we have at once, by the postulate
of continuity, that this set has a leftmost right bound Ba. Similarly, the set b1 . . . bn . . .
has a rightmost left bound Bb. It follows at once that Ba = Bb, for if not, we get either
an a point to the right of Ba, or a b point to the left of Bb when ne is so chosen that
|bne − ane| < Ba −Bb.

We now give another proof for Theorem 11. Divide the interval
| |
a b on which all points

of [p] lie into two equal intervals. Then there is an infinite number of points [p] on at least

one of these intervals which we call
| |
a1 b1 . Divide this interval into two equal parts and so

on indefinitely, always selecting for division an interval which contains an infinite number

of points of the set [p]. We thus obtain an infinite sequence of intervals
| |
a1 b1 ,

| |
a2 b2 , . . .,

| |
an bn . . . which satisfies the hypothesis of the lemma. There is therefore a point B which

belongs to every one of the intervals
| |
a1 b1 ,

| |
a2 b2 , . . .,

| |
an bn . . ., and therefore there is a

point of the set [p] in every neighborhood of B.
It should be noticed that the intervals in this sequence may be such that all intervals

after a certain one will have, say, the right extremities in common. In this case the right
extremity is the point B. Such is the sequence, obtained by decimal division, representing
the number 2 = 1.99999 . . ..

no constant infinitesimal exists. It may appear at first sight that a proof of this statement is superfluous.
The fact is, however, as was first proved by Veronese, that the non-existence of constant infinitesimals
is not provable without some axiom such as the continuity axiom or the so-called Archimedean Axiom.



Chapter 3

FUNCTIONS IN GENERAL.
SPECIAL CLASSES OF
FUNCTIONS.

§ 1 Definition of a Function.

Definition.—A variable is a symbol which represents any one of a set of numbers. A
constant is a special case of a variable where the set consists of but one number.

Definition.—A variable y is said to be a single-valued function of another variable x if to
every value of x there corresponds one and only one value of y. The letter x is called the
independent variable and y the dependent variable.1

Definition.—A variable y is said to be a many-valued function or multiple-valued function
of another variable x if to every value of x there correspond one or more values of y. The
class of multiple-valued functions thus includes the class of single-valued functions.1

1This definition of function is the culmination of a long development of the use of the word. The idea
of function arose in connection with coordinate geometry, René Descartes using the word as early as
1637. From this time to that of Leibnitz “function” was used synonymously with the word “power,” such
as x2, x3, etc.

G. W. Leibnitz regarded “function” as “any expression standing for certain lengths connected with a
curve, such as coordinates, tangents, radii of curvature, normals, etc.”

Johann Bernoulli (1718) defined “function” as “an expression made up of one variable and any
constants whatever.”

Leonard Euler (1734) called the expression described by Bernoulli an analytic function and intro-
duced the notation f(x). Euler also distinguished between algebraic and transcendental functions. He
wrote the first treatise on “The Theory of Functions.”

The problem of vibrating strings led to the consideration of trigonometric series. J. B. Fourier
set the problem of determining what kind of relations can be expressed by trigonometric series. The
possibility then under consideration that any relation might be so expressed led Lejeune Dirichlet to
state his celebrated definition, which is the one given above. See the Encyclopädie der mathematischen
Wissenschaften, II A. 1, pp. 3–5; also Ball’s History of Mathematics, p. 378.
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It is sometimes convenient to think of special values taken by these two variables as
arranged in two tables, one table containing values of the independent variable and the
other containing the corresponding values of the dependent variable.

Independent Variable Dependent Variable
x1 y1

x2 y2

· ·
· ·
· ·

xn yn

If y is a single-valued function of x, one and only one value of y will appear in the table
for each x. It is evident that functionality is a reciprocal relation; that is, if y is a function
of x, then x is a function of y. It does not follow, however, that if y is a single-valued
function of x, then x is a single-valued function of y, e.g., y = x2. It is also to be noticed
that such tables cannot exhibit the functional relation completely when the independent
variable takes all values of the continuum, since no table contains all such values.

Definition.—That y is a function of x (and hence that x is a function of y) is expressed
by the equation y = f(x) or by x = f−1(y). If y and x are connected by the equation
y = f(x), f−1(y) is called the inverse function of f(x).

Thus y = x2 has the inverse function x = ±√y. In this case, while the first function
y = x2 is defined for all real values of x, the inverse function x = ±√y is defined only for
positive values of y.

The independent variable may or may not take all values between any two of its values.
Thus n! is a function of n where n takes only integral values. Sn, the sum of the first n
terms of a series, is a function of n where n takes only integral values. Again, the amount
of food consumed in a city is a function of the number of people in the city, where the
independent variable takes on only integral values. Or the independent variable may take
on all values between any two of its values, as in the formula for the distance fallen from
rest by a body in time t, s = gt2

2
.

It follows from the correspondence between pairs of numbers and points in a plane that
the functional relation between two variables may be represented by a set of points in a
plane. The points are so taken that while one of the two numbers which correspond to a
point is a value of the independent variable, the other number is the corresponding value,
or one of the corresponding values, of the dependent variable. Such representations are
called graphs of the function. Cases in point where the function is single-valued are: the
hyperbola referred to its asymptotes as axes

(
y = 1

x

)
; a straight line not parallel to the y

axis (y = ax + b); or a broken line such that no line parallel to the y axis contains more
than one of its points. In general, the graph of a single-valued function with a single-valued
inverse is a set of points [(x, y)] such that no two points have the same x or the same y.

Following is a graph of a function where the independent variable does not take all
values between any two of its values. Consider Sn, the sum of the first n terms as a
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function of n in the series

S = 1 +
1

2
+

1

22
+ . . . +

1

2n−1
+ . . . .

The numbers on the x axis are the values taken by the independent variable, while the
functional relation is represented by the points within the small circles. Thus it is seen
that the graph of this function consists of a discrete set of points. (Fig. 6.)

The definition of a function here given is very general. It will permit, for instance,
a function such that for all rational values of the independent variable the value of the
function is unity, and for irrational values of the independent variable the value of the
function is zero.

f
f f f f

x

y

Fig. 6.

§ 2 Bounded Functions.

Since the definition of function is so general there are few theorems that apply to all
functions. If the restriction that f(x) shall be bounded is introduced, we have at once a
very important theorem.

Definition.—A function, f(x), has an upper bound for a set of values [x] of the indepen-
dent variable if there exists a finite number M such that f(x) < M for every value of x
in the set [x]. The function has a lower bound m if f(x) > m for every value of x in [x].
A function which for a given set of values of x has no finite upper bound is said to be
unbounded on that set, or to have an upper bound +∞ on that set, and if it has no lower
bound on the set the function is said to have the lower bound −∞ on the set.
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Theorem 19. If on an interval
| |
a b a function has an upper bound M , then it has a least

upper bound B, and there is at least one value of x, x1 on
| |
a b such that the least upper

bound of the function on every neighborhood of x1 contained in
| |
a b is B.

Proof. (1) The set of values of the function f(x) form a bounded set of numbers. By
Theorem 4 the set has a least upper bound B.

(2) Suppose there were no point x1 on
| |
a b such that the least upper bound on every

neighborhood of x1 contained in
| |
a b is B. Then for every x of

| |
a b there would be a

segment σx containing x such that the least upper bound of f(x) for values of x common

to σx and
| |
a b is less than B. The set [σx] is infinite, but by Theorem 10 there exists a

finite subset [σn] of the set [σx] covering
| |
a b. Therefore, since the upper bound of f(x) is

less than B on that part of every one of these segments of [σn] which lies on
| |
a b, it follows

that the least upper bound of f(x) on
| |
a b is less than B. Hence the hypothesis that no

point x1 exists is not tenable, and there is a point x1 such that the least upper bound of

the function on every one of its neighborhoods which lies in
| |
a b is B.

This argument applies to multiple-valued as well as to single-valued functions.
As an exercise the reader may repeat the above argument to prove the following:

Corollary.—If on an interval
| |
a b a function has an upper bound +∞, then there is at least

one value of x, x1 on
| |
a b such that in every neighborhood of x1 the upper bound of the

function is +∞.

§ 3 Monotonic Functions; Inverse Functions.

Definitions.—If a single-valued function f(x) on an interval
| |
a b is such that f(x1) < f(x2)

whenever x1 < x2, the function is said to be monotonic increasing on that interval. If
f(x1) > f(x2) whenever x1 < x2, the function is said to be monotonic decreasing.

If there exist three values of x on the interval
| |
a b, x1, x2, and x3 such that f(x2) > f(x1)

and f(x2) > f(x3) while x1 < x2 < x3 or f(x2) < f(x1) and f(x2) < f(x3), while
x1 < x2 < x3, the function is said to be oscillating on that interval. A function which is
not oscillating on an interval is called non-oscillating. It should be noticed that a function
is not necessarily oscillating even if it is not monotonic. That is, it may be constant on
some parts of the interval.

The terms monotonic and oscillating are not convenient of application to multiple-
valued functions. Hence we restrict their use to single-valued functions.
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Definition.—A function f(x) is said to have a finite number of oscillations on an interval
| |
a b if there exists a finite number of points a = x0, x1, . . ., xn = b, such that on each

interval
| |
xk−1 xk (k = 1, 2, 3, . . . , n) f(x) is non-oscillating. It is evident that if a function

has only a finite number of oscillations on an interval
| |
a b and if there is no subinterval

of
| |
a b on which the function is constant, then the interval

| |
a b may be subdivided into a

finite set of intervals on each of which the function is monotonic. Such a function may be
called partitively monotonic (Abteilungsweise monoton).

The function f(x) = sin 1
x
, for x 6= 0, and f(x) = 0, for x = 0, is an example of a

function with an infinite number of oscillations on every neighborhood of a point. f(x) =
x sin 1

x
, for x 6= 0, f(0) = 0, and f(x) = x2 sin 1

x
, for x 6= 0, f(0) = 0 have the above

property and also are continuous (see page 48 for meaning of the term continuous function).
There exist continuous functions which have an infinite number of oscillations on every

neighborhood of every point. The first function of this type is probably the one discovered
by Weierstrass,2 which is continuous over an interval and does not possess a derivative at

2According to F. Klein, this function was discovered by Weierstrass in 1851. See Klein, Anwendung
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any point on this interval (see page 120). Other functions of this type have been published
by Peano, Moore, and others.3 These latter investigators have obtained the function in
question in connection with space-filling curves.

Theorem 20. If y is a monotonic function of x on the interval
| |
a b, with bounds A and

B, then in turn x is a single-valued monotonic function of y on
| |
A B , whose upper and

lower bounds are b and a.

Proof. It follows from the monotonic character of y as a function of x that for no two

values of x does y have the same value. Hence for every value of y on
| |
A B there exists

der Differential- und Integralrechnung auf Geometrie, p. 83 et seq. The function was first published in
a paper entitled Abhandlungen aus der Functionenlehre, Du Bois Reymond, Crelle’s Journal, Vol. 79,
p. 29 (1874).

3G. Peano, Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen, Vol. 36, pp. 157–
160 (1890). Cesaro, Sur la représentation analytique des régions et des courbes qui les remplisent, Bulletin
des Sciences Mathématiques, 2d Ser., Vol. 21, pp. 257–267. E. H. Moore, On Certain Crinkly Curves.
Transactions of the American Mathematical Society, Vol. 1, pp. 73–90 (1899). See also Steinitz, Mathe-
matische Annalen, Vol. 52, pp. 58–69 (1899).
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one and only one value of x. That is, x is a single-valued function of y.4 Moreover, it
is clear that for any three values of y, y1, y2, y3, such that y2 is between y1 and y3, the
corresponding values of x, x1, x2, x3, are such that x2 is between x1 and x3, i.e., x is a
monotonic function of y, which completes the proof of the theorem.

Corollary.—If a function f(x) has a finite number k of oscillations and is constant on no
interval, then its inverse is at most (k + 1)-valued. For example, the inverse of y = x2 is
double-valued.

§ 4 Rational, Exponential, and Logarithmic Functions.

Definitions.—The symbol am, where m is a positive integer and a any real number
whatever, means the product of m factors a. This definition gives a meaning to the symbol

y = amxm + am−1x
m−1 + . . . + a1x + a0,

where a0 . . . am are any real numbers and m any positive integer. In this case y is called a
rational integral function of x or a polynomial in x.5

In case

y =
amxm + am−1x

m−1 + . . . + a1 · x + a0

bnxn + bn−1xn−1 + . . . + b1 · x + b0

,

m and n being positive integers and ak (k = 0, . . . m) and bl (l = 0, . . . n) being real
numbers, y is called a rational function of x.

If
yn + yn−1R1(x) + yn−2R2(x) + . . . + yRn−1(x) + Rn(x) = 0,

where R1(x) . . . Rn(x) are rational functions of x, then y is said to be an algebraic function
of x. Any function which is not algebraic is transcendental.

The symbol ax, where x = m
n
, m and n being positive integers and a any positive real

number, is defined to be the nth root of the mth power of a. By elementary algebra it is
easily shown that

ax1 · ax2 = ax1+x2 and (ax1)x2 = ax1·x2 .

If
y = ax,

then y is an exponential function of x. At present this function is defined only for rational
values of x.

4It is clear that the independent variable y of the inverse function may not take on all values of a
continuum even if x does take on all such values.

5The notion of polynomial finds its natural generalization in that of a power series

y = c0 + c · x + c2 · x2 + . . . + cnxn + . . .

For conditions under which a series defines y as a function of x see Chapter IV, § 3.
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Theorem 21. The function ax for x on the set
[

m
n

]
is a monotonic increasing function if

1 < a, and a monotonic decreasing function if 0 < a < 1.

Proof. (a) For integral values of x the theorem is obvious.

(b) If x1 = m1

n1
and x2 = m2

n1
, where m2

n1
> m1

n1
, then ax1 < ax2 if a > 1 and ax1 > ax2

if a < 1. The proof of this follows at once from case (a), since a
m1
n1 =

(
a

1
n1

)m1

(by

definition and elementary algebra) and a
m2
n1 =

(
a

1
n1

)m2

.

(c) If x1 = m1

n1
and x2 = m2

n2
, where m1

n1
< m2

n2
, we have a

m1
n1 = a

m1·n2
n1·n2 and a

m2
n2 = a

m2·n1
n2·n1 ,

where m1·n2<m2·n1, which reduces case (c) to case (b).

This theorem makes it natural to define ax, where a > 1 and x is a positive irrational
number, as the least upper bound of all numbers of the form

[
a

m
n

]
, where

[
m
n

]
is the set of

all positive rational numbers less than x, i.e., ax = B
[
a

m
n

]
. It is, however, equally natural

to define ax as B
[
a

p
q

]
, where

[
p
q

]
is the set of all rational numbers greater than x. We

shall prove that the two definitions are equivalent.

Lemma.—If [x] is the set of all positive rational numbers, then

B[ax] = 1 if a > 1
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and

B[ax] = 1 if a < 1.

Proof. We prove the lemma only for the case a > 1, the argument in the other case being
similar. If x is any positive rational number, m

n
, then the number 1

n
is less than or equal

to x, and since ax is a monotonic function, a
1
n <

= a
m
n . But

[
1
n

]
is a subset of

[
1
n

]
. Hence

B[ax] = B
[
a

1
n

]
,

where [n] is the set of all positive integers.

If B
[
a

1
n

]
were less than 1, then there would be a value, n1, of n such that a

1
n1 < 1. This

implies that a < 1, which is contrary to the hypothesis. On the other hand, if B
[
a

1
n

]
> 1,

there is a number of the form 1 + e, where e > 0, such that 1 + e < a
1
n for every n. Hence

(1 + e)n < a for every n, but by the binomial theorem for integral exponents

(1 + e)n > 1 + ne,

and the latter expression is clearly greater than a if

n >
a

e
.

Since B
[
a

1
n

]
cannot be either greater or less than 1,

B
[
a

1
n

]
= 1.

Theorem 22. If x is any real number, and
[

m
n

]
the set of all rational numbers less than

x, and
[

p
q

]
the set of all rational numbers greater than x, then

B
[
a

m
n

]
= B

[
a

p
q

]
if a > 1,

B
[
a

m
n

]
= B

[
a

p
q

]
if 0 < a < 1.

Proof. We give the detailed proof only in the case a > 1, the other case being similar. By

the lemma, since B
[

p
q
− m

n

]
is zero,

B
[
a

p
q − a

m
n

]
= B

[
a

p
q

(
1− a

m
n
− p

q

)]
is also zero. Now if

B
[
a

m
n

]
6= B

[
a

p
q

]
,
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since a
p
q is always greater than a

m
n ,

B
[
a

p
q

]
−B

[
a

m
n

]
= ε > 0.

But from this it would follow that

a
p
q − a

m
n

is at least as great as ε, whereas we have proved that

B
[
a

p
q − a

m
n

]
= 0.

Hence
B
[
a

m
n

]
= B

[
a

p
q

]
if a > 1.

Definition.—In case x is a positive irrational number, and
[

p
q

]
is the set of all rational

numbers greater than x, and
[

m
n

]
is the set of all rational numbers less than x, then

ax = B
[
a

p
q

]
= B

[
a

m
n

]
if a > 1

and

ax = B
[
a

p
q

]
= B

[
a

m
n

]
if 0 < a < 1.

Further, if x is any negative real number, then

ax =
1

a−x
and a0 = 1.

Theorem 23. The function ax is a monotonic increasing function of x if a > 1, and a
monotonic decreasing function if 0 < a < 1. In both cases its upper bound is +∞ and its
lower bound is zero, the function taking all values between these bounds; further,

ax1 · ax2 = ax1+x2 and (ax1)x2 = ax1·x2 .

The proof of this theorem is left as an exercise for the reader. The proof is partly
contained in the preceding theorems and involves the same kind of argument about upper
and lower bounds that is used in proving them.

Definition.—The logarithm of x (x > 0) to the base a (a > 0) is a number y such that
ay = x, or aloga x = x. That is, the function loga x is the inverse of ax. The identity

ax1 · ax2 = ax1+x2

gives at once

loga x1 + loga x2 = loga(x1 · x2),

and
(ax1)x2 = ax1·x2 gives x1 · loga x2 = loga xx1

2 .
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By means of Theorem 20, the logarithm loga x, being the inverse of a monotonic func-
tion, is also a monotonic function, increasing if 1 < a and decreasing if 0 < a < 1. Further,
the function has the upper bound +∞ and the lower bound −∞, and takes on all real
values as x varies from 0 to +∞. Thus it follows that for x < a, 1 < b,

B(logb x) = logb a = logb(Bx).

By means of this relation it is easy to show that the function

xa, (x > 0)

is monotonic increasing for all values of a, a > 0, that its lower bound is zero and its upper
bound is +∞, and that it takes on all values between these bounds.

The proof of these statements is left to the reader. The general type of the argument
required is exemplified in the following, by means of which we infer some of the properties
of the function xx.

If x1 < x2, then

log2 x1 < log2 x2,

and

x1 · log2 x1 < x2 · log2 x2,

and

log2 xx1
1 < log2 xx2

2 .

∴ xx1
1 < xx2

2 .

Hence xx, (x > 0) is a monotonic increasing function of x. Since the upper bound of
x · log2 x = log2 xx is +∞, the upper bound of xx is +∞. The lower bound of xx is not
negative, since x > 0, and must not be greater than the lower bound of 2x, since if x < 2,
xx < 2x; since the lower bound of 2x is zero6 the lower bound of xx must also be zero.

Further theorems about these functions are to be found on pages 51, 63, 76, 97, and
129.

6The lower bound of ax is zero by Theorem 23.
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Chapter 4

THEORY OF LIMITS.

§ 1 Definitions. Limits of Monotonic Functions.

Definition.—If a point a is a limit point of a set of values taken by a variable x, the
variable is said to approach a upon the set; we denote this by the symbol x

.
= a. a may be

finite or +∞ or −∞.

In particular the variable may approach a from the left or from the right, or in the case
where a is finite, the variable may take values on each side of the limit point. Even when
the variable takes all values in some neighborhood on each side of the limit point it may
be important to consider it first as taking the values on one side and then those on the
other.

Definition.—A value b (b may be +∞ or −∞ or a finite number) is a value approached
by f(x) as x approaches a if for every V ∗(a) and V (b) there is at least one value of x such
that x is in V ∗(a) and f(x) in V (b). Under these conditions f(x) is also said to approach
b as x approaches a.

Definition.—If b is the only value approached as x approaches a, then b is called the limit
of f(x) as x approaches a. This is also indicated by the phrase “f(x) converges to a unique
limit b as x approaches a,” or “f(x) approaches b as a limit,” or by the notation

L
x

.
= a

f(x) = b.

The function f(x) is sometimes referred to as the limitand. The set of values taken by
x is sometimes indicated by the symbol for a limit, as, for example,

L
x>a
x
.
=a

f(x) = b or L
x<a
x
.
=a

f(x) = b or L
x|[x]
x
.
=a

f(x) = b.

The first means that x approaches a from the right, the second that x approaches a from
the left, and the third indicates that the approach is over some set [x] otherwise defined.

47
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Definition.—If f(x) is single-valued and converges to a finite limit as x approaches a and

L
x
.
=a

f(x) = f(a),

then f(x) is said to be continuous at x = a.

By reference to § 3, Chapter II, the reader will see that if b is a value approached by
f(x) as x approaches a, then (a, b) is a limit point of the set of points (x, f(x)). Theorem 18
therefore translates into the following important statement:

Theorem 24. If f(x) is any function defined for any set [x] of which a is a (finite or +∞
or −∞) limit point, then there is at least one value (finite or +∞ or −∞) approached by
f(x) as x approaches a.

Corollary.—If f(x) is a bounded function, the values approached by f(x) are all finite.

In the light of this theorem we see that the existence of

L
x
.
=a

f(x)

simply means that f(x) approaches only one value, while the non-existence of

L
x
.
=a

f(x)

means that f(x) approaches at least two values as x approaches a.
In case f(x) is monotonic (and hence single-valued), or more generally if f(x) is a

non-oscillating function, these ideas are particularly simple. We have in fact the theorem:

Theorem 25. If f(x) is a non-oscillating function for a set of values [x] < a, a being a
limit point of [x], then as x approaches a from the left on the set [x], f(x) approaches one
and only one value b, and if f(x) is an increasing function,

b = Bf(x)

for x on [x], whereas if f(x) is a decreasing function,

b = Bf(x)

for x on [x].

Proof. Consider an increasing non-oscillating function and let

b = Bf(x)

for x on [x].



THEORY OF LIMITS. 49

In view of the preceding theorem we need to prove only that no value b′ 6= b can be a
value approached. Suppose b′ > b; then since Bf(x) = b, there would be no value of f(x)
between b and b′, that is, there would be a V (b′) which could contain no value of f(x),
whence b′ > b is not a value approached. Suppose b′ < b. Then take b′ < b′′ < b, and since
Bf(x) = b, there would be a value x1 of [x] such that f(x1) > b′′. If x1 < x < a, then
b′′ < f(x1) 5 f(x), because f(x) cannot decrease as x increases. This defines a V ∗(a) and
a V (b′) such that if x is in V ∗(a), f(x) cannot be in V (b′). Hence b′ < b is not a value
approached. A like argument applies if f(x) is a decreasing function, and of course the
same theorem holds if x approaches a from the right.

It does not follow that

L
x<a
x
.
=a

f(x) = L
x>a
x
.
=a

f(x),

nor that either of these limits is equal to f(a). A case in point is the following: Let the
temperature of a cooling body of water be the independent variable, and the amount of heat
given out in cooling from a certain fixed temperature be the dependent variable. When the
water reaches the freezing-point a great amount of heat is given off without any change in
temperature. If the zero temperature is approached from below, the function approaches
a definite limit point k, and if the temperature approaches zero from above, the function
approaches an entirely different point k′. This function, however, is multiple-valued at the

�
�

�
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�
�

�

����������

Fig. 12

Heat

Temp.

zero point. A case where the limit fails to exist is the following: The function y = sin 1/x;
(see Fig. 8, page 38) approaches an infinite number of values as x approaches zero. The
value of the function will be alternately 1 and −1, as x = 2

π
, 2

3π
, 2

5π
etc., and for all values

of x between any two of these the function will take all values between 1 and −1. Clearly
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every value between 1 and −1 is a value approached as x approaches zero. In like manner
y = 1

x
sin 1

x
approaches all values between and including +∞ and −∞, cf. Fig. 13.

The functions ax, loga x, xa defined in § 4 of the last chapter are all monotonic and all
satisfy the condition that

L
x>a
x
.
=a

f(x) = f(a) = L
x<a
x
.
=a

f(x)

at all points where the functions are defined. These functions are therefore all continuous.

§ 2 The Existence of Limits.

Theorem 26. A necessary and sufficient condition1 that f(x) shall converge to a unique
limit b as x approaches a, i.e., that

L
x
.
=a

f(x) = b,

is that for every V (b) there shall exist a V ∗(a) such that for every x in V ∗(a), f(x) is in
V (b).

Proof. (1) The condition is necessary. It is to be proved that if L
x
.
=a

f(x) = b, then for

every V (b) there exists a V ∗(a) such that for every x in V ∗(a) the corresponding f(x) is
in V (b). If this conclusion did not follow, then for some V (b) every V ∗(a) would contain
at least one x′ such that f(x′) is not in V (b). There is thus defined a set of points [x′] of
which a is a limit point. By Theorem 20 f(x) would approach at least one value b′ as x
approaches a on the set [x′]. But by the definition of [x′], b′ is distinct from b. Hence the
hypothesis would be contradicted.

(2) The condition is sufficient. We need only to show that if for every V (b) there exists
a V ∗(a) such that for every x in V ∗(a) the corresponding f(x) is in V (b), then f(x) can
approach no other value than b. If b′ 6= b, then there exists a V (b′) and a V (b) which have
no point in common. Now if V

∗
(a) is such that for every x of V

∗
(a), f(x) is in V (b), then

for no such x is f(x) in V (b′) and hence b′ is not a value approached.

The reader should observe that this proof applies also to multiple-valued functions,
although worded to fit the single-valued case. It is worthy of note that in case b is a finite
number, our theorem becomes:

1This means:

(a) If L
x
.
=a

f(x) = b, then for every V (b) there exists a V ∗(a), as specified by the theorem.

(b) If for every V (b) there exists a V ∗(a) as specified, then L
x
.
=a

f(x) = b.

A condition is necessary for a certain conclusion if it can be deduced from that conclusion; a condition
sufficient for a conclusion is one from which the conclusion can be deduced. A man sufficient for a task
is a man who can perform the task, while a man necessary for the task is such that the task cannot be
performed without him.
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A necessary and sufficient condition that

L
x
.
=a

f(x) = b

is that for every ε > 0 there exists a Vε
∗(a) such that for every x in Vε

∗(a), |f(x)− b| < ε.
In case a also is finite, the condition may be stated in a form which is frequently used

as the definition of a limit, namely:

L
x
.
=a

f(x) = b means that for every ε > 0 there exists a δε > 0 such that if |x − a| < δε

and x 6= a, then |f(x)− b| < ε.2

Theorem 27. A necessary and sufficient condition that f(x) shall converge to a finite
limit as x approaches a is that for every ε > 0 there shall exist a Vε

∗(a) such that if x1 and
x2 are any two values of x in Vε

∗(a), then

|f(x1)− f(x2)| < ε.

Proof. (1) The condition is necessary. If L
x
.
=a

f(x) = b and b is finite, then by the preceding

theorem for every ε
2

> 0 there exists a V ∗(a) such that if x1 and x2 are in V ∗(a), then

|f(x1)− b| < ε

2

and

|f(x2)− b| < ε

2
,

from which it follows that

|f(x1)− f(x2)| < ε.

(2) The condition is sufficient. If the condition is satisfied, there exists a V ∗(a) upon
which the function f(x) is bounded. For let ε be some fixed number. By hypothesis there
exists a V ∗(a) such that if x and x0 are on V ∗(a), then

|f(x)− f(x0)| < ε.

Taking x0 as a fixed number, we have that

f(x0)− ε < f(x) < f(x0) + ε

for every x on V ∗(a). Hence there is at least one finite value, b, approached by f(x). Now
for every ε > 0 there exists a V ∗ε (a) such that if x1 and x2 are any two values of x in V ∗ε (a),

2The ε subscript to δε or to Vε
∗(a) denotes that δε or Vε

∗(a) is a function of ε. It is to be noted that
inasmuch as any number less than δε is effective as δε, δε is a multiple-valued function of ε.
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|f(x1) − f(x2)| < ε. Hence by the definition of value approached there is an xε of V ∗ε (a)
for which

|f(xε)− b| < ε (a)

and

|f(xε)− f(x)| < ε (b)

for every x of V ∗ε (a). Hence, combining (a) and (b), for every x of V ∗ε (a) we have

|f(x)− b| < 2ε,

and hence by the preceding theorem we have

L
x
.
=a

f(x) = b.

In case a as well as b is finite, Theorem 27 becomes:
A necessary and sufficient condition that

L
x
.
=a

f(x)

shall exist and be finite is that for every ε > 0 there exists a δε > 0 such that

|f(x1)− f(x2)| < ε

for every x1 and x2 such that

x1 6= a, x2 6= a, |x1 − a| < δε, |x2 − a| < δε.

In case a is +∞ the condition becomes:
For every ε > 0 there exists a Nε > 0 such that

|f(x1)− f(x2)| < ε

for every x1 and x2 such that x1 > Nε, x2 > Nε.
The necessary and sufficient conditions just derived have the following evident corol-

laries:

Corollary 1. The expression

L
x
.
=a

f(x) = b,

where b is finite, is equivalent to the expression

L
x
.
=a

(f(x)− b) = 0,

and whether b is finite or infinite

L
x
.
=a

f(x) = b is equivalent to L
x
.
=a

(−f(x)) = −b.
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Corollary 2. The expressions

L
x
.
=a

f(x) = 0 and L
x
.
=a
|f(x)| = 0

are equivalent.

Corollary 3. The expression

L
x
.
=a

f(x) = b

is equivalent to

L
y
.
=0

f(y + a) = b,

where y + a = x.

Corollary 4. The expression

L
x<a

x
.
=a

f(x) = b

is equivalent to

L
z
.
=+∞

f

(
a +

1

z

)
= b,

where z = 1
x−a

.

The reader should verify these corollaries by writing down the necessary and sufficient
condition for the existence of each limit. The following less obvious statement is proved in
detail for the case when b is finite, the case when b is +∞ or −∞ being left to the reader.

Corollary 5. If

L
x
.
=a

f(x) = b,

then

L
x
.
=a
|f(x)| = |b|.

Proof. By the necessary condition of Theorem 26 for every ε there exists a V ∗ε (a) such
that for every x1 of V ∗ε (a)

|f(x1)− b| < ε.

If f(x1) and b are of the same sign, then∣∣|f(x1)| − |b|
∣∣ = |f(x1)− b| < ε,

and if f(x1) and b are of opposite sign, then∣∣|f(x1)| − |b|
∣∣ < |f(x1)− b| < ε.

Hence, by the sufficient condition of Theorem 26,

L
x
.
=a
|f(x)|

exists and is equal to |b|.
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Corollary 6. If a function f(x) is continuous at x = a, then |f(x)| is continuous at x = a.

It should be noticed that

L
x
.
=a
|f(x)| = |b|

is not equivalent to

L
x
.
=a

f(x) = b.

Suppose f(x) = +1 for all rational values of x and f(x) = −1 for all irrational values of
x. Then L

x
.
=a
|f(x)| = +1, but L

x
.
=a

f(x) does not exist, since both +1 and −1 are values

approached by f(x) as x approaches any value whatever.

Definition.—Any set of numbers which may be written [xn], where

n = 0, 1, 2, . . . , κ,

or n = 0, 1, 2, . . . , κ, . . . ,

is called a sequence.

To the corollaries of this section may be added a corollary related to the definition of
a limit.

Corollary 7. If for every sequence of numbers [xn] having a as a limit point,

L
x|[xn]
x
.
=a

f(x) = b, then L
x
.
=a

f(x) = b.

Proof. In case two values b and b1 were approached by f(x) as x approaches a, then, as
in the first part of the proof of Theorem 26, two sequences could be chosen upon one of
which f(x) approached b and upon the other of which f(x) approached b1.

§ 3 Application to Infinite Series.

The theory of limits has important applications to infinite series. An infinite series is
defined as an expression of the form

∞∑
k=1

ak = a1 + a2 + a3 + . . . + an + . . . .

If Sn is defined as

a1 + . . . + an =
n∑

k=1

ak,
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n being any positive integer, then the sum of the series is defined as

L
n=∞

Sn = S

if this limit exists.
If the limit exists and is finite, the series is said to be convergent. If S is infinite or if

Sn approaches more than one value as n approaches infinity, then the series is divergent.
For example, S is infinite if

∞∑
k=1

ak = 1 + 1 + 1 + 1 . . . ,

and Sn has more than one value approached if

∞∑
k=1

ak = 1− 1 + 1− 1 + 1 . . . .

It is customary to write
Rn = S − Sn.

A necessary and sufficient condition for the convergence of an infinite series is obtained
from Theorem 27.

(1) For every ε > 0 there exists an integer Nε, such that if n > Nε and n′ > Nε then

|Sn − Sn′| < ε.

This condition immediately translates into the following form:
(2) For every ε > 0 there exists an integer Nε, such that if n > Nε, then for every k

|an + an+1 + . . . + an+k| < ε.

Corollary.—If
∞∑

k=1

ak is a convergent series, then L
k
.
=∞

ak = 0.

Definition.—A series
∞∑

k=0

ak = a0 + a1 + . . . + an + . . .

is said to be absolutely convergent if

|a0|+ |a1|+ . . . + |an|+ . . .

is convergent.

Since
|an + an+1 + . . . + an+k| < |an|+ |an+1|+ . . . |an+k|,

the above criteria give
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Theorem 28. A series is convergent if it is absolutely convergent.

Theorem 29. If
∞∑

k=0

bk is a convergent series all of whose terms are positive and
∞∑

k=0

ak is

a series such that for every k, |ak| 5 bk, then

∞∑
k=0

ak

is absolutely convergent.

Proof. By hypothesis
n∑

k=0

|ak| 5
n∑

k=0

bk.

Hence
n∑

k=0

|ak|

is bounded, and being an increasing function of n, the series is convergent according to
Theorem 25.

This theorem gives a useful method of determining the convergence or divergence of a
series, namely, by comparison with a known series. Such a known series is the geometric
series

a + ar + ar2 + . . . + arn + . . . ,

where 0 < r < 1 and a > 0. In this series

n∑
k=0

ark = a
1− rn+1

1− r
<

a

1− r
,

which shows that the series is convergent. Moreover, it can easily be seen to have the sum
a

1−r
.
If r >

= 1, the geometric series is evidently divergent. This result can be used to prove
the “ratio-test” for convergence.

Theorem 30. If there exists a number, r, 0 < r < 1, such that∣∣∣∣ an

an−1

∣∣∣∣ < r

for every integral value of n, then the series

a1 + a2 + . . . + an + . . . (1)

is absolutely convergent. If
∣∣∣ an

an−1

∣∣∣>= 1 for every n, the series is divergent.



58 INFINITESIMAL ANALYSIS.

Proof. The series (1) may be written

a1 + a1
a2

a1

+ a1
a2

a1

· a3

a2

+ . . . + a1
a2

a1

. . .
an

an−1

(2)

∣∣∣ an

an−1

∣∣∣ < r, this is numerically less term by term than

a1 + a1r + a1r
2 + . . . + a1r

n + . . . (3)

and therefore converges absolutely. If
∣∣∣ an

an−1

∣∣∣ = 1, an = a1 for every n; hence, by the

corollary, page 56, (1) is divergent.

Nothing is said about the case when∣∣∣∣ an

an−1

∣∣∣∣ < 1, but L
n
.
=∞

∣∣∣∣ an

an−1

∣∣∣∣ = 1.

It is evident that the ratio test need be applied only to terms beyond some fixed term an,
since the sum of the first n terms

a1 + a2 + . . . + an

may be regarded as a finite number Sn and the whole series as

Sn + an+1 + an+2 + . . . ,

i.e., a finite number plus the infinite series

an+1 + an+2 + . . . .

§ 4 Infinitesimals. Computation of Limits.

Theorem 31. A necessary and sufficient condition that

L
x
.
=a

f(x) = b

is that for the function ε(x) defined by the equation f(x) = b + ε(x)

L
x
.
=a

ε(x) = 0.

Proof. Take ε(x) = f(x)− b and apply Theorem 26. A special case of this theorem is: A
necessary and sufficient condition for the convergence of a series to a finite value b is that
for every ε > 0 there exists an integer Nε, such that if n > Nε then |Rn| < ε.
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Definition.—A function f(x) such that

L
x
.
=a

f(x) = 0

is called an infinitesimal as x approaches a.3

Theorem 32. The sum, difference, or product of two infinitesimals is an infinitesimal.

Proof. Let the two infinitesimals be f1(x) and f2(x). For every ε, 1 > ε > 0, there exists
a V ∗1 (a) for every x of which

|f1(x)| < ε

2
,

and a V ∗2 (a) for every x of which

|f2(x)| < ε

2
.

Hence in any V ∗(a) common to V ∗1 (a) and V ∗2 (a)

|f1(x) + f2(x)| 5 |f1(x)|+ |f2(x)| < ε,

|f1(x)− f2(x)| 5 |f1(x)|+ |f2(x)| < ε,

|f1(x) · f2(x)| = |f1(x)| · |f2(x)| < ε.

From these inequalities and Theorem 26 the conclusion follows.

Theorem 33. If f(x) is bounded on a certain V ∗(a) and ε(x) is an infinitesimal as x
approaches a, then ε(x) · f(x) is also an infinitesimal as x approaches a.

Proof. By hypothesis there are two numbers m and M , such that M > f(x) > m for
every x on V ∗(a). Let k be the larger of |m| and |M |. Also by hypothesis there exists for
every ε a Vε

∗(a) within V ∗(a) such that if x is in Vε
∗(a), then

|ε(x)| < ε

k

or

k|ε(x)| < ε.

But for such values of x
|f(x) · ε(x)| < k · |ε(x)| < ε,

and hence for every ε there is a Vε
∗(a) such that for x an Vε

∗(a)

|f(x) · ε(x)| < ε.

3No constant, however small if not zero, is an infinitesimal, the essence of the latter being that it varies
so as to approach zero as a limit. Cf. Goursat, Cours d’Analyse, tome I, p. 21, etc.
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Corollary.—If f(x) is an infinitesimal and c any constant, then c · f(x) is an infinitesimal.

Theorem 34. If L
x
.
=a

f1(x) = b1 and L
x
.
=a

f2(x) = b2, b1 and b2 being finite, then

L
x
.
=a
{f1(x)± f2(x)} = b1 ± b2, (α)

L
x
.
=a
{f1(x) · f2(x)} = b1 · b2; (β)

and if b2 6= 0,

L
x
.
=a

f1(x)

f2(x)
=

b1

b2

(γ)

Proof. According to Theorem 31, we write

f1(x) = b1 + ε1(x),

f2(x) = b2 + ε2(x),

where ε1(x) and ε2(x) are infinitesimals. Hence

f1(x) + f2(x) = b1 + b2 + ε1(x) + ε2(x), (α′)

f1(x) · f2(x) = b1 · b2 + b1 · ε2(x) + b2 · ε1(x) + ε1(x) · ε2(x). (β′)

But by the preceding theorem the terms of (α′) and (β′) which involve ε1(x) and ε2(x) are
infinitesimals, and hence the conclusions (α) and (β) are established.

To establish (γ), observe that by Theorem 26 there exists a V ∗(a) for every x of which
|f2(x)− b2| < |b2| and hence upon which f2(x) 6= 0. Hence

f1(x)

f2(x)
=

b1 + ε1(x)

b2 + ε2(x)
=

b1

b2

+
b2ε1(x)− b1ε2(x)

b2{b2 + ε2(x)}
,

the second term of which is infinitesimal according to Theorems 32 and 33.

Some of the cases in which b1 and b2 are ±∞ are covered by the following theorems.
The other cases (∞−∞, ∞∞ , 0

0
, etc.), are treated in Chapter VI.

Theorem 35. If f2(x) has a lower bound on some V ∗(a), and if

L
x
.
=0

f1(x) = +∞,

then

L
x
.
=0
{f2(x) + f1(x)} = +∞.
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Proof. Let M be the lower bound of f2(x). By hypothesis, for every number E there
exists a V ∗E(a) such that for x on V ∗E(a)

f1(x) > E −M.

Since
f2(x) > M,

this gives
f1(x) + f2(x) > E,

which means that f1(x) + f2(x) approaches the limit +∞.

Theorem 36. If L
x
.
=a

f1(x) = +∞ or −∞, and if f2(x) is such that for a V ∗(a), f2(x) has

a lower bound greater than zero or an upper bound less than zero, then L
x
.
=a
{f1(x) ·f2(x)} is

definitely infinite; i.e., if f2(x) has a lower bound greater than zero and L
x
.
=a

f1(x) = +∞,

then L
x
.
=a
{f1(x) · f2(x)} = +∞, etc.

Proof. Suppose f2(x) has a lower bound greater than zero, say M , and that L
x
.
=a

f1(x) =

+∞. Then for every E there exists a V ∗E(a) within V ∗(a) such that for every x1 of V ∗E(a),
f1(x1) > E

M
, and therefore f1(x1) · f2(x1) >

= f1(x1) ·M > E. Hence by the definition of
limit of a function L

x
.
=a
{f1(x) · f2(x)} = +∞. If we consider the case where f2(x) has an

upper bound less than zero, we have in the same manner L{f1(x) · f2(x)} = −∞. Similar
statements hold for the cases in which L

x
.
=a

f1(x) = −∞.

Corollary.—If f2(x) is positive and has a finite upper bound and L
x
.
=a

f1(x) = +∞, then

L
x
.
=a

f1(x)

f2(x)
= +∞.

Theorem 37. If L
x
.
=a

f(x) = +∞, then L
x
.
=a

1

f(x)
= 0, and there is a vicinity V ∗(a) upon

which f(x) > 0. Conversely, if L
x
.
=a

f(x) = 0 and there is a V ∗(a) upon which f(x) > 0,

then L
x
.
=a

1

f(x)
= +∞.

Proof. If L
x
.
=a

f(x) = +∞, then for every ε there exists a Vε
∗(a) such that if x is in Vε

∗(a),

then

f(x) >
1

ε

and
1

f(x)
< ε.
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∴ L
x
.
=a

1

f(x)
= 0,

since both f(x) and 1
f(x)

are positive.

Again, if L
x
.
=a

f(x) = 0, then for every ε there is a V ∗ε (a) such that for x in V ∗ε (a),

|f(x)| < ε or 1
f(x)

> 1
ε

(f(x) being positive). Hence

L
x
.
=a

1

f(x)
= +∞.

Corollary 1. If f1(x) has finite upper and lower bounds on some V ∗(a) and L
x
.
=a

f2(x) = +∞
or −∞, then

L
x
.
=a

f1(x)

f2(x)
= 0.

Corollary 2. If f2(x) is positive and f1(x) has a positive lower bound on some V ∗(a) and

L
x
.
=a

f2(x) = 0, then

L
x
.
=a

f1(x)

f2(x)
= +∞.

Theorem 38. (change of variable). If

(1) L
x
.
=a

f1(x) = b1 and L
x
.
=b1

f2(y) = b2 when y takes all valves of f1(x) corresponding to

values of x on some V ∗(a), and if

(2) f1(x) 6= b1 for x on V ∗(a),

then

L
x
.
=a

f2(f1(x)) = b2.

Proof. (α) Since L
y
.
=b1

f2(y) = b2, for every V (b2) there exists a V ∗(b1) such that if y is

in V ∗(b1), f2(y) is in V (b2). Since L
x
.
=a

f1(x) = b1, for every V (b1) there exists a V ∗(a) in

V ∗(a) such that if x is in V ∗(a), f1(x) is in V (b1). But by (2) if x is in V ∗(a), f1(x) 6= b.
Hence (β) for every V ∗(b1) there exists a V ∗(a) such that for every x in V ∗(a), f1(x) is in
V ∗(b1).

Combining statements (α) and (β): for every V (b2) there exists a V ∗(a) such that for
every x in V ∗(a) f1(x) is in V ∗(b1), and hence f2(f(x)) is in V (b2). This means, according
to Theorem 26, that

L
x
.
=a

f2(f1(x)) = b2.
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Theorem 39. If L
x
.
=a

f1(x) = b and L
y
.
=b

f2(y) = f2(b), where y takes all values taken by

f1(x) for x on some V ∗(a), then

L
x
.
=a

f2(f1(x)) = f2(b).

Proof. The proof of the theorem is similar to that of Theorem 38. In this case the notation
f2(b) implies that b is a finite number. Thus for every ε1 there exists a Vε1

∗(a) entirely
within V ∗(a) such that if x is in Vε1

∗(a),

|f1(x)− b| < ε1.

Furthermore, for every ε2 there exists a δε2 such that for every y, y 6= b, |y − b| < δε2 ,

|f2(y)− f2(b)| < ε2.

But since |f2(y) − f2(b)| = 0 when y = b, this means that for all values of y (equal or
unequal to b) such that |y − b| < δε2 , |f2(y)− f2(b)| < ε2. Now let ε1 = δε2 ; then, if x is in
Vε1

∗(a), it follows that |f1(x)− b| < δε2 and therefore that

|f2(f1(x))− f2(b)| < ε2.

Hence

L
x
.
=a

f2(f1(x)) = f2(b).

Corollary 1. If f1(x) is continuous at x = a, and f2(y) is continuous at y = f1(a), then
f2(f1(x)) is continuous at x = a.

Corollary 2. If k 6= 0, f(x) = 0, and L
x
.
=a

f(x) = b, then

L
x
.
=a

(f(x))k = bk,

under the convention that ∞k =∞ if k > 0 and ∞k = 0 if k < 0.

Corollary 3. If c > 0 and f(x) > 0 and b > 0 and L
x
.
=a

f(x) = b, then

L
x
.
=a

logc f(x) = logc b,

under the convention that logc(+∞) = +∞ and logc 0 = −∞.

The conclusions of the last two corollaries may also be expressed by the equations

L
x
.
=a

(f(x))k = ( L
x
.
=a

f(x))k

and
logc L

x
.
=a

f(x) = L
x
.
=a

logc f(x).

Corollary 4. If L
x
.
=a

(f(x))k or L
x
.
=a

log f(x) fails to exist, then L
x
.
=a

f(x) does not exist.
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§ 5 Further Theorems on Limits.

Theorem 40. If f(x) 5 b for all values of a set [x] on a certain V ∗(a), then every value
approached by f(x) as x approaches a is less than or equal to b. Similarly if f(x) = b
for all values of a set [x] on a certain V ∗(a), then every value approached by f(x) as x
approaches a is greater than or equal to b.

Proof. If f(x) 5 b on V ∗(a), then if b′ is any value greater than b, and V (b′) any vicinity of
b′ which does not include b, there is no value of x on V ∗(a) for which f(x) is in V (b′). Hence
b′ is not a value approached. A similar argument holds for the case where f(x) = b.

Corollary 1. If f(x) = 0 in the neighborhood of x = a, then if

L
x
.
=a

f(x) exist, L
x
.
=a

f(x) = 0.

Corollary 2. If f1(x) = f2(x) in the neighborhood of x = a, then

L
x
.
=a

f1(x) = L
x
.
=a

f2(x)

if both these limits exist.

Proof. Apply Corollary 1 to f1(x)− f2(x).

Corollary 3. If f1(x) = f2(x) in the neighborhood of x = a, then the largest value ap-
proached by f1(x) is greater than or equal to the largest value approached by f2(x).

Corollary 4. If f1(x) and f2(x) are both positive in the neighborhood of x = a, and if
f1(x) = f2(x), then if L

x
.
=a

f1(x) = 0, it follows that

L
x
.
=a

f2(x) = 0.

Theorem 41. If [x′] is a subset of [x], a being a limit point of [x′], and if L
x
.
=a

f(x) exists,

then L
x′

.
=a

f(x′) exists and

L
x
.
=a

f(x) = L
x′

.
=a

f(x′).4

Proof. By hypothesis there exists for every V (b) a V ∗(a) such that for every x of the
set [x] which is in V ∗(a), f(x) is in V (b). Since [x′] is a subset of [x], the same V ∗(a) is
evidently efficient for x on [x′].

In the statement of necessary and sufficient conditions for the existence of a limit we
have made use of a certain positive multiple-valued function of ε denoted by δε. If a given
value is effective as a δε, then every positive value smaller than this is also effective.

4The notation f(x′) is used to indicate that x takes the values of the set [x′].
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Theorem 42. For every ε for which the set of values of δε has an upper bound there is a
greatest δε.

Proof. Let B[δε] be the least upper bound of the set of values of δε, for a particular ε. If
x is such that |x− a| < B[δε], then there is a δε such that |x− a| < δε. But if |x− a| < δε,
|f(x)− b| < ε. Hence, if |x− a| < B[δε], |f(x)− b| < ε.

Theorem 43. The limit of the least upper bound of a function f(x) on a variable segment
a x, a < x, as the end point approaches a, is the least upper bound of the values approached
by the function as x approaches a from the right.

Proof. Let l be the least upper bound of the values approached by the function as x
approaches a from the right, and let b(x) represent the upper bound of f(x) for all values
of x on a x. Since Bf(x) on the segment a x1 is not greater than Bf(x) on a segment a x2

if x1 lies on a x2, b(x) is a non-oscillating function decreasing as x decreases. Hence L
x
.
=a

b(x)

exists by Theorem 21; and by Corollary 3, Theorem 40, L
x
.
=a

b(x) = l. If L
x
.
=a

b(x) = k > l,

then there are two vicinities of k, V1(k) contained in V2(k) and V2(k) not containing l. By
Theorem 26 a V ∗1 (a) exists such that if x is in V ∗1 (a), b(x) is in V1(k). Furthermore, by the
definition of b(x), if x1 is an arbitrary value of x on V ∗1 (a), then there is a value of x in
a x1 such that f(x) is in V (k). Hence k would be a value approached by f(x) contrary to
the hypothesis k > l.

§ 6 Bounds of Indetermination. Oscillation.

It is a corollary of Theorem 43 that in the approach to any point a from the right or from
the left the least upper bounds and the greatest lower bounds of the values approached by
f(x) are themselves values approached by f(x). The four numbers thus indicated may be
denoted by

f(a + 0) = L
x
.
=a+0

f(x) =
←
L

x
.
=a

f(x),

the least upper bound of the values approached from the right:

f(a− 0) = L
x
.
=a−0

f(x) =
→
L

x
.
=a

f(x),

the least upper bound of the values approached from the left:

f(a + 0) = L
x
.
=a+0

f(x) = L
←

x
.
=a

f(x),

the greatest lower bound of the values approached from the right:

f(a− 0) = L
x
.
=a−0

f(x) = L
→

x
.
=a

f(x),
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the greatest lower bound of the values approached from the left.
If all four of these values coincide, there is only one value approached and L

x
.
=a

f(x)

exists. If f(a + 0) and f(a + 0) coincide, this value is denoted by f(a + 0) and is the same

as L
x>a

x
.
=a

f(x). Similarly if f(a− 0) and f(a− 0) coincide, their common value, L
x<a

x
.
=a

f(x), is

denoted by f(a − 0). The larger of f(a + 0) and f(a− 0) is denoted by L
x
.
=a

f(x), and is

called the upper limit of f(x) as x approaches a. Similarly L
x
.
=a

f(x), the lower limit of

f(x), is the smaller of f(a + 0) and f(a− 0). L
x
.
=a

f(x) and L
x
.
=a

f(x) are called the bounds

of indetermination of f(x) at x = a (Unbestimmtheitsgrenzen). See the Encyclopädie der
mathematischen Wissenschaften, II 41.

In order that a function shall be continuous at a point a it is necessary and sufficient
that

f(a) = f(a + 0) = f(a + 0) = f(a− 0) = f(a−0). (a)

The difference between the greatest and the least of these values is called the oscillation
of the function at the point a. It is denoted by Oaf(x), and according to the theorem above
is equivalent to the lower bound of all values of Of(x), where

Of(x) = Bf(x)−Bf(x) for a segment V (a).

Ob
af(x) is used for the oscillation of f(x) on the segment a b. It is sometimes also used

for the oscillation of f(x) on the interval
| |
a b. The word oscillation may also be applied

to the difference between the upper and lower bounds of the function on a V ∗(a). Denote
this by OV ∗(a)f(x). The lower bound of these values may be denoted by O∗af(x) and is the

difference between the greatest and the least of the four values f(a + 0), f(a− 0), f(a + 0),
f(a− 0).

The reader will find it a useful exercise to construct examples and to enumerate the
different ways in which a function may be discontinuous, according as f(a + 0) or f(a− 0)
exist or do not exist, and according as f(a) does or does not coincide with any of the
values approached by f(x). (Compare the reference to the E. d. m. W. given above.) The
principal classification used is into discontinuities of the first kind, where f(a + 0) and
f(a − 0) both exist, and discontinuities of the second kind, where not both f(a + 0) and
f(a− 0) exist.

Theorem 44. If a is a limit point of [x], then a necessary and sufficient condition that b2

and b1 shall be the upper and lower bounds of indetermination of f(x), as x
.
= a, is that

for every set of four numbers a1, a2, c1, c2, such that5

a1 < b1 < c1 < c2 < b2 < a2,

5If b1 = −∞, a1 = b1 replaces a1 < b1. If b2 = +∞, a2 = b2 replaces b2 < a2.
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there exists a V ∗(a) such that for every x on V ∗(a)

a1 < f(x) < a2,

and for some x′, x′′ on V ∗(a)

f(x′) > c2 and f(x′′) < c1.

Proof. I. The condition is necessary. It is to be proved that if b2 and b1 are the upper
and lower bounds of indetermination of f(x), as x

.
= a on [x], then for every four numbers

a1 < b1 < c1 < c2 < b2 < a2 there exists a V ∗(a) such that:—
(1) For all values of x on V ∗(a), a1 < f(x) < a2. If this conclusion does not follow, then

for a particular pair of numbers a1, a2, there are values of f(x) greater than a2 or less than
a1 for x on any V ∗(a), and by Theorems 24 and 40 there is at least one value approached
greater than b2 or less than b1. This would contradict the hypothesis, and there is therefore
a V ∗(a) such that for all values of x on V ∗(a), a1 < f(x) < a2.

(2) For some x′, x′′ on V ∗(a), f(x′) > c2 and f(x′′) < c1. If this conclusion should not
follow, then for some V ∗(a) there would be no x′ such that f(x′) > c2, or no x′′ such that
f(x′′) < c1, and therefore b1 and b2 could not both be values approached.

II. The condition is sufficient. It is to be proved that b2 and b1 are the upper and lower
bounds of the values approached. If the condition is satisfied, then for every four numbers
a1, a2, c1, c2, such that a1 < b1 < c1 < c2 < b2 < a2 there is a V ∗(a) such that for all x’s
on V ∗(a) a1 < f(x) < a2, and for some x′, x′′, f(x′) > c2 and f(x′′) < c1. By Theorem 24
there are values approached, and hence we need only to show that b2 is the least upper
and b1 the greatest lower bound of the values approached. Suppose some B > b2 is the
least upper bound of the values approached; a2 may then be so chosen that b2 < a2 < B,
so that by hypothesis for x on V ∗(a) B cannot be a value approached. Again, suppose
B < b2 to be the least upper bound; c may then be chosen so that B < c2, and hence for
some value x′ on each V ∗(a), f(x′) < c2. By the set of values f(x′) there is at least one
value approached. This value is greater than c2 > B. Therefore B cannot be the least
upper bound. Since the least upper bound may not be either less than b2 or greater than
b2, it must be equal to b2. A similar argument will prove b1 to be the greatest lower bound
of the values approached.
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Chapter 5

CONTINUOUS FUNCTIONS.

§ 1 Continuity at a Point.

The notion of continuous functions will in this chapter, as in the definition on page 48, be
confined to single-valued functions. It has been shown in Theorem 34 that if f1(x) and
f2(x) are continuous at a point x = a, then

f1(x)± f2(x), f1(x) · f2(x), f1(x)/f2(x), (f2(x) 6= 0)

are also continuous at this point. Corollary 1 of Theorem 39 states that a continuous
function of a continuous function is continuous.

The definition of continuity at x = a, namely,

L
x
.
=a

f(x) = f(a),

is by Theorem 26 equivalent to the following proposition:
For every ε > 0 there exists a δε > 0 such that if |x− a| < δε, then |f(x)− f(a)| < ε.
It should be noted that the restriction x 6= a which appears in the general form of

Theorem 26 is of no significance here, since for x = a, |f(x) − f(a)| = 0 < ε. In other
words, we may deal with vicinities of the type V (a) instead of V ∗(a).

The difference of the least upper and the greatest lower bound of a function on an

interval
| |
a b has been called in Chapter IV, page 66, the oscillation of f(x) on that interval,

and denoted by Ob
a(x). The definition of continuity and Theorem 27, Chapter III, give

the following necessary and sufficient condition for the continuity of a function f(x) at
the For every ε > 0 there exists a δε > 0 such that if |x1 − a| < δε, and |x2 − a| < δε

then |f(x1) − f(x2)| < ε
2
. This means that for all values of x1 and x2 on the segment

(a− δε) (a + δε)

B|f(x1)− f(x2)| 5
ε

2
< ε,

and this means
Bf(x)−Bf(x) < ε,

69
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or
Oa+δε

a−δε
f(x) < ε.

Then we have

Theorem 45. If f(x) is continuous for x = a, then for every ε > 0 there exists a Vε(a)
such that on Vε(a) the oscillation of f(x) is less than ε.

Theorem 46. If f(x) is continuous at a point x = a and if f(a) is positive, then there is
a neighborhood of x = a upon which the function is positive.

Proof. If there were values of x, [x′] within every neighborhood of x = a for which the
function is equal to or less than zero, then by Theorem 24 there would be a value approached
by f(x′) as x′ approaches a on the set [x′]. That is, by Theorem 40, there would be a
negative or zero value approached by f(x), which would contradict the hypothesis.

§ 2 Continuity of a Function on an Interval.

Definition.—A function is said to be continuous on an interval
| |
a b if it is continuous at

every point on the interval.

Theorem 47. If f(x) is continuous on a finite interval
| |
a b, then for every ε > 0,

| |
a b can

be divided into a finite number of equal intervals upon each of which the oscillation of f(x)
is less than ε.1

Proof. By Theorem 45 there is about every point of
| |
a b a segment σ upon which the

oscillation is less than ε. This set of segments [σ] covers
| |
a b, and by Theorem 11

| |
a b can

be divided into a finite number of equal intervals each of which is interior to a σ; this gives
the conclusion of our theorem.

Theorem 48. (Uniform continuity.) If a function is continuous on a finite interval
| |
a b,

then for every ε > 0 there exists a δε > 0 such that for any two values of x, x1, and x2, on
| |
a b where |x1 − x2| < δε, |f(x1)− f(x2)| < ε.

Proof. This theorem may be inferred in an obvious way from the preceding theorem, or
it may be proved directly as follows:

By Theorem 27, for every ε there exists a neighborhood Vε(x
′) of every x′ of

| |
a b such

that if x1 and x2 are on Vε(x
′), then |f(x1) − f(x2)| < ε. The Vε(x)’s constitute a set of

segments which cover
| |
a b. Hence, by Theorem 12, there is a δε such that if |x1 − x2|<δε,

x1 and x2 are on the same Vε(x
′) and consequently |f(x1)− f(x2)| < ε.

1The importance of this theorem in proving the properties of continuous functions seems first to have
been recognized by Goursat. See his Cours d’Analyse, Vol. 1, page 161.
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The uniform continuity theorem is due to E. Heine.2 The proof given by him is
essentially that given above.

In 1873 Lüroth3 gave another proof of the theorem which is based on the following
definition of continuity:

A single-valued function is continuous at a point x = a′ if for every positive ε there

exists a δε, such that for every x1 and x2 on the interval
| |
a− δε a + δε , |f(x1)− f(x2)| < ε

(Theorem 45).
By Theorem 42 there exists a greatest δ for a given point and for a given ε. Denote

this by ∆ε(x). If the function is continuous at every point of
| |
a b, then for every ε there

will be a value of ∆ε(x) for every point of the interval, i.e., ∆ε(x), for any particular ε, will
be a single-valued function of x.

The essential part of Lüroth’s proof consists in establishing the following fact: If f(x)
is continuous at every point of its interval, then for any particular value of ε the function
∆ε(x) is also a continuous function of x. From this it follows by Theorem 50 that the
function ∆ε(x) will actually reach its greatest lower bound, that is, will have a minimum
value; and this minimum value, like all other values of δε, will be positive.4 This minimum
value of ∆ε(x) on the interval under consideration will be effective as a δε, independent of
x.

The property of a continuous function exhibited above is called uniform continuity, and
Theorem 48 may be briefly stated in the form: Every function continuous on an interval
is uniformly continuous on that interval.5

This theorem is used, for example, in proving the integrability of continuous functions.
See page 125.

Theorem 49. If a function is continuous on an interval
| |
a b, it is bounded on that interval.

Proof. By Theorem 46 the interval
| |
a b can be divided into a finite number of intervals,

such that the oscillation on each interval is less than a given positive number ε. If the

number of intervals is n, then the oscillation on the interval
| |
a b is less than nε. Since the

function is defined at all points of the interval, its value being f(x1) at some point x1, it

follows that every value of f(x) on
| |
a b is less than f(x1)+nε and greater than f(x1)−nε;

which proves the theorem.

2E. Heine: Die Elemente der Functionenlehre, Crelle, Vol. 74 (1872), p. 188.
3Lüroth: Bemerkung über Gleichmässige Stetigkeit, Mathematische Annalen, Vol. 6, p. 319.
4It is interesting to note that this proof will not hold if the condition of Theorem 26 is used as a

definition of continuity. On this point see N. J. Lennes: The Annals of Mathematics, second series,
Vol. 6, p. 86.

5It should be noticed that this theorem does not hold if “segment” is substituted for “interval,” as
is shown by the function 1

x on the segment 0 1, which is continuous but not uniformly continuous. The
function is defined and continuous for every value of x on this segment, but not for every value of x on the

interval
| |
0 1.
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Theorem 50. If a function f(x) is continuous on an interval
| |
a b, then the function as-

sumes as values its least upper and its greatest lower bound.

Proof. By the preceding theorem the function is bounded and hence the least upper and

greatest lower bounds are finite. By Theorem 19 there is a point k on the interval
| |
a b such

that the least upper bound of the function on every neighborhood of x = k is the same as

the least upper bound on the interval
| |
a b. Denote the least upper bound of f(x) on

| |
a b by

B. It follows from Theorem 43 that B is a value approached by f(x) as x approaches k.
But since L

x
.
=k

f(x) = f(k), the function being continuous at x = k, we have that f(k) = B.

In the same manner we can prove that the function reaches its greatest lower bound.

Corollary.—If k is a value not assumed by a continuous function on an interval
| |
a b, then

f(x)− k or k− f(x) is a continuous function of x and assumes its least upper and greatest
lower bounds. That is, there is a definite number ∆ which is the least difference between

k and the set of values of f(x) on the interval
| |
a b.

Theorem 51. If a function is continuous on an interval
| |
a b, then the function takes on

all values between its least upper and its greatest lower bound.

Proof. If there is a value k between these bounds which is not assumed by a continuous
function f(x), then by the corollary of the preceding theorem there is a value ∆ such that
no values of f(x) are between k − ∆ and k + ∆. With ε less than ∆ divide the interval
| |
a b into subintervals according to Theorem 47, such that the oscillation on every interval
is less than ε. No interval of this set can contain values of f(x) both greater and less than
k, and no two consecutive intervals can contain such values. Suppose the values of f(x)
on the first interval of this set are all greater than k, then the same is true of the second

interval of the set, and so on. Hence it follows that all values of f(x) on
| |
a b are either

greater than or less than k, which is contrary to the hypothesis that k lies between the

least upper and the greatest lower bounds of the function on
| |
a b. Hence the hypothesis

that f(x) does not assume the value k is untenable.

By the aid of Theorem 51 we are enabled to prove the following:

Theorem 51a. If f1(x) is continuous at every point of an interval
| |
a′ b′ except at a certain

point a, and if

L
x
.
=a

f1(x) = +∞ and L
x
.
=a

f2(x) = −∞,

then for every b, finite or +∞ or −∞, there exist two sequences of points, [xi] and [x′i]
(i = 0, 1, 2, . . .), each sequence having a as a limit point, such that

L
i
.
=∞
{f1(xi) + f2(x

′
i)} = b.
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Proof. Let [x′i] be any sequence whatever on
| |
a′ b′ having a as a limit point, and let x0 be

an arbitrary point of
| |
a′ b′ . Since f1(x) assumes all values between f1(x0) and +∞, and

since L
x
.
=a

f2(x) = −∞, it follows, in case b is finite, that for every i greater than some fixed

value there exists an xi such that

f1(xi) + f2(x
′
i) = b.

In case b = +∞, xi is chosen so that

f1(xi) + f2(x
′
i) > i.

Corollary.—Whether f1(x) and f2(x) are continuous or not, if L
x
.
=a

f1(x) = +∞ and

L
x
.
=a

f2(x) = −∞, there exists a pair of sequences [xi] and [x′i] such that

L
i
.
=∞
{f1(xi) + f2(xi)}

is +∞ or −∞.

Theorem 52. If y is a function, f(x), of x, monotonic and continuous on an interval
| |
a b, then x = f−1(y) is a function of y which is monotonic and continuous on the interval
| |
f(a) f(b).

Proof. By Theorem 20 the function f−1(y) is monotonic and has as upper and lower
bounds a and b. By Theorems 50 and 51 the function is defined for every value of y
between and including f(a) and f(b) and for no other values. We prove the function

continuous on the interval
| |
f(a) f(b) by showing that it is continuous at any point y = y1

on this interval. As y approaches y1 on the interval
| |
f(a) y1 , f−1(y) approaches a definite

limit g by Theorem 25, and by Theorem 40 a < g 5 f−1(y1) 5 b. If g < f−1(y1), then for

values of x on the interval
| |
g f(y1) there is no corresponding value of y, contrary to the

hypothesis that f(x) is defined at every point of the interval
| |
a b. Hence g = f−1(y1), and

by similar reasoning we show that f−1(y) approaches f−1(y1) as y approaches y1 on the

interval,
| |
y1 f−1(b).

Theorem 53. If f(x) is single-valued and continuous with A, B as lower and upper bounds,

on an interval
| |
a b and has a single-valued inverse on the interval,

| |
A B then f(x) is

monotonic on
| |
a b.
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Proof. If f(x) is not monotonic, then there must be three values of x,

x1 < x2 < x3,

such that either
f(x1) 5 f(x2) = f(x3)

or
f(x1) = f(x2) 5 f(x3).

In either case, if one of the equality signs holds, the hypothesis that f(x) has a single-valued
inverse is contradicted. If there are no equality signs, it follows by Theorem 51 that there
are two values of x, x4 and x5, such that

x1 < x4 < x2 < x5 < x3,

and f(x4) = f(x5), in contradiction with the hypothesis that f(x) has a single-valued
inverse.

Corollary.—If f(x) is single-valued, continuous, and has a single-valued inverse on an

interval
| |
a b, then the inverse function is monotonic on

| |
A B .

§ 3 Functions Continuous on an Everywhere Dense

Set.

Theorem 54. If the functions f1(x) and f2(x) are continuous on the interval
| |
a b, and if

f1(x) = f2(x) on a set everywhere dense, then f1(x) = f2(x) on the whole interval.6

Proof. Let [x′] be the set everywhere dense on
| |
a b for which, by hypothesis, f1(x) = f2(x).

Let x′′ be any point of the interval not of the set [x′]. By hypothesis x′′ is a limit point of
the set [x′], and further f1(x) and f2(x) are continuous at x = x′′. Hence

L
x
.
=x′′

f1(x) = f1(x
′′)

and

L
x
.
=x′′

f2(x) = f2(x
′′).

But by Theorem 41

L
x′

.
=x′′

f1(x
′) = L

x
.
=x′′

f1(x),

6I.e., if a function f(x), continuous on an interval
| |
a b , is known on an everywhere dense set on that

interval, it is known for every point on that interval.
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and by Theorem 41

L
x′

.
=x′′

f2(x
′) = L

x
.
=x′′

f2(x).

Therefore

f1(x
′′) = f2(x

′′).

Definition.—On an interval
| |
a b a function f(x′) is uniformly continuous over a set [x′] if

for every ε > 0 there exists a δε > 0 such that for any two values of x′, x′1, and x′2 an
| |
a b,

for which |x′1 − x′2| < δε, |f(x′1)− f(x′2)| < ε.

Theorem 55. If a function f(x′) is defined on a set everywhere dense on the interval
| |
a b

and is uniformly continuous over that set, then there exists one and only one function f(x)

defined on the full interval
| |
a b such that:

(1) f(x) is identical with f(x′) where f(x′) is defined.

(2) f(x) is continuous on the interval
| |
a b.

Proof. Let x′′ be any point on the interval
| |
a b, but not of the set [x′]. We first prove that

L
x′

.
=x′′

f(x′)

exists and is finite. By the definition of uniform continuity, for every ε there exists a δε

such that for any two values of x′, x′1, and x′2, where |x′1 − x′2| < δε, |f(x′1) − f(x2)| < ε.
Hence we have for every pair of values x′1 and x′2 where |x′1 − x′′| < δε

2
and |x′2 − x′′| < δε

2

that |f(x′1)− f(x′2)| < ε. By Theorem 23 this is a sufficient condition that

L
x′

.
=x′′

f(x′)

shall exist and be finite.
Let f(x) denote a function identical with f(x′) on the set [x′] and equal to

L
x′

.
=x′′

f(x′)

at all points x′′. This function is defined upon the continuum, since all points x′′ on
| |
a b

are limit points of the set [x′]. Hence the function has the property that L
x1

.
=x

f(x′) = f(x)

for every x of
| |
a b.



76 INFINITESIMAL ANALYSIS.

We next prove that f(x) is continuous at every point on the interval
| |
a b, in other words

that f(x) cannot approach a value b different from f(x1) as x approaches x1. We already
know that f(x) approaches f(x1) on the set [x′]. If b is another value approached, then for
every positive ε and δ there is an xεδ such that

|xεδ − x1| < δ, |f(xεδ)− b| < ε. (1)

Since f(xεδ) = L
x′

.
=xεδ

f(x′) we have that for every ε > 0 there exists a δε > 0 such that for

every x′ for which |x′ − xεδ| < δε,

|f(x′)− f(xεδ)| < ε. (2)

From (1) and (2) we have
|f(x′)− b| < 2ε. (3)

Since the δ of (1) is any positive number, there is an xεδ on every neighborhood of x1

and hence by (2) and (3) an x′ on every neighborhood of x1 such that |f(x′) − b| < 2ε,
ε being arbitrary and b a constant different from f(x′′1). But this is contrary to the fact
proved above, that L

x′
.
=x1

f(x′) exists and is equal to f(x1). Hence the function is continuous

at every point of the interval
| |
a b. The uniqueness of the function follows directly from

Theorem 54.

This theorem can be applied, for example, to give an elegant definition of the exponen-
tial function (see Chap. III). We first show that the function a

m
n is uniformly continuous

on the set of all rational values between x1 and x2, and then define ax on the continuum as
that continuous function which coincides with a

m
n for the rational values m

n
. The properties

of the function then follow very easily. It will be an excellent exercise for the reader to
carry out this development in detail.

§ 4 The Exponential Function.

Consider the function defined by the infinite series

1 + x +
x2

2!
+

x3

3!
+ . . . +

xn

n!
+ . . . . (1)

Applying the ratio test for the convergence of infinite series we have

xn

n!
÷ xn−1

(n− 1)!
=

x

n
.

If n′ is a fixed integer larger than x, this ratio is always less than x
n′

< 1. The series (1)
therefore converges absolutely for every value of x, and we may denote its sum by

e(x).
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From Chap. I, page 12, we have that

e(1) = L
n
.
=∞

(
1 +

1

n

)n

= e.

Theorem 56.

L
n
.
=∞

(
1 +

x

n

)n

,

where [n] is the set of all positive integers, exists and is equal to e(x) for all values of x.

Proof. Let

En(x) =
n∑

k=0

xk

k!

(where 0! = 1). Then, since(
1 +

x

n

)n

= 1 +
n!

(n− 1)!
· x
n

+
n!

(n− 2)! · 2!

(x

n

)2

+ . . . +
n!

n!

(x

n

)n

,

it follows that∣∣∣En(x)−
(
1 +

x

n

)n∣∣∣ =

∣∣∣∣∣
n∑

k=2

(
1

k!
− n!

(n− k)! · k! nk

)
xk

∣∣∣∣∣
5

n∑
k=2

(
1

k!
− n(n− 1) . . . (n− k + 1)

k! nk

)
· |xk|

<
n∑

k=2

nk − (n− k + 1)k

k! nk
· |xk|.

Now, since

nk − (n− k + 1)k = (k − 1){nk−1 + nk−2 · (n− k + 1) + . . .

+ (n− k + 1)k−1} < (k − 1)k · nk−1,

it follows that ∣∣∣En(x)−
(
1 +

x

n

)n∣∣∣ < n∑
k=2

|x|k

(k − 2)! · n
<

x2 · e(|x|)
n

.

For a fixed value of x, therefore, we have(
1 +

x

n

)n

= En(x) + ε1(n),

where ε1(n) is an infinitesimal as n
.
=∞.

At the same time
e(x) = En(x) + ε2(n),

where ε2(n) is an infinitesimal as n
.
=∞. Hence

L
n
.
=∞

(
1 +

x

n

)n

= e(x).
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Theorem 57.

L
z
.
=∞

(
1 +

x

z

)
,

where [z] is the set of all real numbers, exists and is equal to e(x).

Proof. If z is any number greater than 1, let nz be the integer such that

nz 5 z < nz + 1.

Hence, if x > 0,

1 +
x

nz

= 1 +
x

z
> 1 +

x

nz + 1
. (1)

Hence (
1 +

x

nz

)nz+1

=
(
1 +

x

z

)z

>

(
1 +

x

nz + 1

)nz

, (2)

or (
1 +

x

nz

)(
1 +

x

nz

)nz

=
(
1 +

x

z

)z

>

(
1 +

x

nz + 1

)nz+1

· 1

1 + x
nz+1

. (3)

Since

L
z
.
=∞

(
1 +

x

nz

)
= 1, and L

z
.
=∞

(
1 +

x

nz + 1

)
= 1,

and

L
z
.
=∞

(
1 +

x

nz

)nz

= e(x),and L
z
.
=∞

(
1 +

x

nz + 1

)nz+1

= e(x),

the inequality (3), together with Corollary 3, Theorem 40, leads to the result:

L
z
.
=∞

(
1 +

x

z

)z

= e(x).

The argument is similar if x < 0.

Corollary.—

L
z
.
=∞

(
1 +

x

z

)z

= e(x),

where [z] is any set of numbers with limit point +∞.

Theorem 58. The function e(x) is the same as ex where

e = 1 + 1 +
1

2!
+

1

3!
+ . . .
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Proof. By the continuity of zx as a function of z (see Corollary 2 of Theorem 39), it
follows that, since

L
n
.
=∞

(
1 +

1

n

)n

= e,

L
n
.
=∞

(
1 +

1

n

)nx

= ex.

But (
1 +

1

n

)nx

=
(
1 +

x

nx

)nx

=
(
1 +

x

z

)z

,

where z = nx. Hence by Theorem 39

ex = L
z
.
=∞

(
1 +

x

z

)z

,

and by the corollary of Theorem 57 the latter expression is equal to e(x). Hence we have

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . . (1)

(1) is frequently used as the definition of ex, ax being defined as ex · loge a.
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Chapter 6

INFINITESIMALS AND
INFINITES.

§ 1 The Order of a Function at a Point.

An infinitesimal has been defined (page 59) as a function f(x) such that

L
x
.
=a

f(x) = 0.

A function which is unbounded in every vicinity of x = a is said to have an infinity
at a, to be or become infinite at x = a, or to have an infinite singularity at x = a.1 The
reciprocal of an infinitesimal at x = a is infinite at this point.

A function may be infinite at a point in a variety of ways:

(a) It may be monotonic and approach +∞ or −∞ as x
.
= a; for example, 1

x
as x

approaches zero from the positive side.

(b) It may oscillate on every neighborhood of x = a and still approach +∞ or −∞ as a
unique limit; for example,

sin 1
x

+ 2

x
as x approaches zero.

(c) It may approach any set of real numbers or the set of all real numbers; an example
of the latter is

sin 1
x

x
as x approaches zero. See Fig. 13, page 50.

1It is perfectly compatible with these statements to say that while f(x) has an infinite singularity at
x = a, f(a) = 0 or any other finite number. For example, a function which is 1

x for all values of x except
x = 0 is left undefined for x = 0 and hence at this point the function may be defined as zero or any other
number. This function illustrates very well how a function which has a finite value at every point may
nevertheless have infinite singularities.

81
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(d) +∞ and −∞ may both be approached while no other number is approached; for
example, 1

x
as x approaches zero from both sides.

Definition of Order.—If f(x) and φ(x) are two functions such that in some neighborhood
V ∗(a) neither of them changes sign or is zero, and if

L
x
.
=a

f(x)

φ(x)
= k,

where k is finite and not zero, then f(x) and φ(x) are said to be of the same order at
x = a. If

L
x
.
=a

f(x)

φ(x)
= 0,

then f(x) is said to be infinitesimal with respect to φ(x), and φ(x) is said to be infinite
with respect to f(x). If

L
x
.
=a

f(x)

φ(x)
= +∞ or −∞,

then, by Theorem 37, φ(x) is infinitesimal with respect to f(x), and f(x) infinite with
respect to φ(x). If f(x) and φ(x) are both infinitesimal at x = a, and f(x) is infinitesimal
with respect to φ(x), then f(x) is infinitesimal of a higher order than φ(x), and φ(x) of
lower order than f(x). If φ(x) and f(x) are both infinite at x = a, and f(x) is infinite
with respect to φ(x), then f(x) is infinite of higher order than φ(x), and φ(x) is infinite of
lower order than f(x).2

The independent variable x is usually said to be an infinitesimal of the first order as
x approaches zero, x2 of the second order, etc. Any constant 6= 0 is said to be infinite
of zero order, 1

x
is of the first order, 1

x2 of the second order, etc. This usage, however, is
best confined to analytic functions. In the general case there are no two infinitesimals of
consecutive order. Evidently there are as many different orders of infinitesimals between x
and x2 as there are numbers between 1 and 2; i.e., x1+k is of higher order than x for every
positive value of k.

Since L
x
.
=a

f1(x)

f2(x)
=

1

k
whenever L

x
.
=a

f2(x)

f1(x)
= k, we have

Theorem 59. If f1(x) is of the same order as f2(x), then f2(x) is of the same order as
f1(x).

2This definition of order is by no means as general as it might possibly be made. The restriction to
functions which are not zero and do not change sign may be partly removed. The existence of

L
x
.
=a

f(x)
φ(x)

is dispensed with for some cases in § 4 on Rank of Infinitesimals and Infinites. For an account of still
further generalizations (due mainly to Cauchy) see E. Borel, Séries à Termes Positifs, Chapters III
and IV, Paris, 1902. An excellent treatment of the material of this section together with extensions of the
concept of order of infinity is due to E. Borlotti, Calcolo degli Infinitesimi, Modena, 1905 (62 pages).
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Theorem 60. The function cf(x) is of the same order as f(x), c being any constant not
zero.

Proof. By Theorem 34, L
x
.
=a

cf(x)

f(x)
= c.

Theorem 61. If f1(x) is of the same order as f2(x), and f2(x) is of the same order as
f3(x), then f1(x) and f3(x) are of the same order.

Proof. By hypothesis L
x
.
=a

f1(x)

f2(x)
= k1 and L

x
.
=a

f2(x)

f3(x)
= k2. By Theorem 34,

L
x
.
=a

f1(x)

f2(x)
· L

x
.
=a

f2(x)

f3(x)
= L

x
.
=a

f1(x)

f3(x)
.

(By definition, f2(x) 6= 0 and f3(x) 6= 0 for some neighborhood of x = a.) Hence

L
x
.
=a

f1(x)

f3(x)
= k1 · k2.

Theorem 62. If f1(x) and f2(x) are infinitesimal (infinite) and neither is zero or changes
sign on some V ∗(a), then f1(x) · f2(x) is infinitesimal (infinite) of a higher order than
either.

Proof.

L
x
.
=a

f1(x) · f2(x)

f2(x)
= L

x
.
=a

f1(x) = 0. (±∞.)

Theorem 63. If f1(x), . . ., fn(x) have the same sign on some V ∗(a) and if f2(x), . . .,
fn(x) are infinitesimal (infinite) of the same or higher (lower) order than f1(x), then

f1(x) + f2(x) + f3(x) + . . . + fn(x)

is of the same order as f1(x), and if f2(x), f3(x), . . ., fn(x) are of higher (lower) order
than f1(x), then f1(x)± f2(x)± f3(x)± . . .± fn(x) is of the same order as f1(x).

Proof. We are to show that

L
x
.
=a

f1(x) + f2(x) + . . . + fn(x)

f1(x)
= k 6= 0.

By hypothesis,

L
x
.
=a

f2(x)

f1(x)
= k2, L

x
.
=a

f3(x)

f1(x)
= k3, . . . , L

x
.
=a

fn(x)

f1(x)
= kn,

and

L
x
.
=a

f1(x)

f1(x)
= 1.
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Hence, by Theorem 30,

L
x
.
=a

{
f1(x)

f1(x)
+

f2(x)

f1(x)
+

f3(x)

f1(x)
+ . . . +

fn(x)

f1(x)

}
= 1 + k2+ . . . +kn = k 6= 0,

since all the k’s are positive or zero.
Similarly, under the second hypothesis,

L
x
.
=a

f1(x)± f2(x)± . . .± fn(x)

f1(x)
= L

x
.
=a

{
f1(x)

f1(x)
± f2(x)

f1(x)
± . . .± fn(x)

f1(x)

}
= 1 + 0 + . . . + 0 = 1.

Theorem 64. If f3(x) and f4(x) are infinitesimals with respect to f1(x) and f2(x), then

L
x
.
=a

{f1(x) + f3(x)} · {f2(x) + f4(x)}
f1(x) · f2(x)

= 1.

Proof.

L
x
.
=a

{f1(x) + f3(x)} · {f2(x) + f4(x)}
f1(x) · f2(x)

= L
x
.
=a

f1(x) · f2(x) + f1(x) · f4(x) + f3(x) · f2(x) + f3(x) · f4(x)

f1(x) · f2(x)

= L
x
.
=a

f1(x) · f2(x)

f1(x) · f2(x)
+ L

x
.
=a

f1(x) · f4(x)

f1(x) · f2(x)
+ L

x
.
=a

f3(x) · f2(x)

f1(x) · f2(x)
+ L

x
.
=a

f3(x) · f4(x)

f1(x) · f2(x)
= 1.

§ 2 The Limit of a Quotient.

Theorem 65. If as x
.
= a, ε1(x) is an infinitesimal with respect to f1(x) and ε2(x) with

respect to f2(x), then the values approached by

f1(x) + ε1(x)

f2(x) + ε2(x)
and

f1(x)

f2(x)

as x approaches a are identical.

Proof. This follows from the identity

f1(x) + ε1(x)

f2(x) + ε2(x)
=

f1(x)

f2(x)
·

(
1 + ε1(x)

f1(x)

)
(
1 + ε2(x)

f2(x)

) ,

since ε1(x)
f1(x)

and ε2(x)
f2(x)

are infinitesimal.
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Corollary.—If f1(x) and f2(x) are infinite at x = a, then

f1(x) + c

f2(x) + d
and

f1(x)

f2(x)

approach the same values.

Theorem 66. If L
x
.
=a

f1(x)

φ1(x)
= L

x
.
=a

f2(x)

φ2(x)
= k, and if L

x
.
=a

φ1(x)

φ2(x)
= l

is finite, then

k = L
x
.
=a

f1(x) + f2(x)

φ1(x) + φ2(x)
= L

x
.
=a1

f1(x)

φ1(x)
,

provided l 6= −1 if k is finite, and provided l > 0 if k is infinite.

Proof.

f1(x) + f2(x)

φ1(x) + φ2(x)
− f2(x)

φ2(x)
=

f1(x)φ2(x)− f2(x)φ1(x)

φ2(x)(φ1(x) + φ2(x))
,

f1(x) + f2(x)

φ1(x) + φ2(x)
=

f2(x)

φ2(x)
+

(
f1(x)

φ1(x)
− f2(x)

φ2(x)

)
·

(
1

1 + φ2(x)
φ1(x)

)
.

In case k is finite, the second term of the right-hand member is evidently infinitesimal if
l 6= −1 and the theorem is proved. In the case where k is infinite we write the above
identity in the following form:

f1(x) + f2(x)

φ1(x) + φ2(x)
=

f1(x)

φ1(x)
· 1

1 + φ2(x)
φ1(x)

+
f2(x)

φ2(x)
· 1

1 + φ1(x)
φ2(x)

.

Both terms of the second member approach +∞ or both −∞ if l > 0.

Corollary.—If φ1(x) and φ2(x) are both positive for some V ∗(a), and if k = L
x
.
=a

f1(x)

φ1(x)
=

L
x
.
=a

f2(x)

φ2(x)
, then L

x
.
= a

f1(x) + f2(x)

φ1(x) + φ2(x)
= k whenever k is finite. If k is infinite, the condition

must be added that φ1(x)
φ2(x)

has a finite upper and a non-zero lower bound.

Theorem 67. If f1(x) and f2(x) are both infinitesimals as x
.
= a, then a necessary and

sufficient condition that

L
x
.
=a

f1(x)

f2(x)
= k (k finite and not zero)

is that in the equation f1(x) = k · f2(x)+ ε(x), ε(x) is an infinitesimal of higher order than
f1(x) or f2(x).
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Proof. (1) The condition is necessary.—Since L
x
.
=a

f1(x)

f2(x)
= k,

f1(x)

f2(x)
= k + ε′(x),

or f1(x) = f2(x) · k + f2(x) · ε′(x), where L
x
.
=a

ε′(x) = 0 (Theorem 31). By Theorems 60 and

61, f1(x) and f2(x) · k are of the same order, since k 6= 0, while by Theorem 62 ε′(x) · f2(x)
is of higher order than either f1(x) or f2(x). Hence the function ε(x) = ε′(x) · f2(x) is
infinitesimal.

(2) The condition is sufficient.—By hypothesis f1(x) = f2(x) · k + ε(x), where f1(x)
and f2(x) are of the same order as x

.
= a, while ε(x) is of higher order than these. Let

ε′(x) = ε(x)
f2(x)

, which by hypothesis is an infinitesimal. We then have f1(x)
f2(x)

= k + ε′(x).

Hence, by Theorem 31, L
x
.
=a

f1(x)

f2(x)
= k.

§ 3 Indeterminate Forms.3

Lemma.—If a
b

and c
d

are any two fractions such, that b and d are both positive or both
negative, then the value of

a + c

b + d

lies on the interval
| |
a
b

c
d
.

Proof. Suppose b and d both positive and

a

b
=

a + c

b + d
,

then

ab + ad = ab + bc.

∴ ad = bc;

∴ cd + ad = cd + bc;

∴
a + c

b + d
=

c

d
.

The other cases follow similarly.

Theorem 68. If f(x) and φ(x), defined on some V (+∞), are both infinitesimal as x
approaches +∞, and if for some positive number h, φ(x + h) is always less than φ(x) and

L
x
.
=∞

f(x + h)− f(x)

φ(x + h)− φ(x)
= k,

3The theorems of this section are to be used in § 6 of Chap. VII.
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then

L
x
.
=∞

f(x)

φ(x)

exists and is equal to k.4

Proof. Let V1(k) and V2(k) be a pair of vicinities of k such that V2(k) is entirely within
V1(k). By hypothesis there exists an h and an X2 such that if x > X2,

f(x + h)− f(x)

φ(x + h)− φ(x)
(1)

is in V2(k). Since this is true for every x > X2,

f(x + 2h)− f(x + h)

φ(x + 2h)− φ(x + h)
(2)

is also in V2(k). From this it follows by means of the lemma that

f(x + 2h)− f(x)

φ(x + 2h)− φ(x)
, (3)

whose value is between the values of (1) and (2), is also in V2(k). By repeating this
argument we have that for every integral value of n, and for every x > X2,

f(x + nh)− f(x)

φ(x + nh)− φ(x)

is in V2(k).
By Theorem 65, for any x

L
n
.
=∞

f(x + nh)− f(x)

φ(x + nh)− φ(x)
=

f(x)

φ(x)
.

Hence for every x and for every ε there exists a value of n, Nxε, such that if n > Nxε,∣∣∣∣f(x + nh)− f(x)

φ(x + nh)− φ(x)
− f(x)

φ(x)

∣∣∣∣ < ε.

Taking ε less than the distance between the nearest end-points of V1(k) and V2(k) it is

plain that for every x > X2,
f(x)
φ(x)

is on V1(k), which, according to Theorem 26, proves that

L
x
.
=∞

f(x)

φ(x)
= k.

4This and the following theorem are due to O. Stolz, who generalized them from the special cases
(stated in our corollaries) due to Cauchy. See Stolz und Gmeiner, Functionentheorie, Vol. 1, p. 31.
See also the reference to Bortolotti given on page 82.
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Corollary.—If [n] is the set of all positive integers and φ(n + 1) < φ(n) and f(n) and φ(n)
are both infinitesimal as n

.
=∞, then if

L
n
.
=∞

f(n + 1)− f(n)

φ(n + 1)− φ(n)
= k,

it follows that L
n
.
=∞

f(n)

φ(n)
exists and is equal to k.

Theorem 69. If f(x) is bounded on every finite interval of a certain V (+∞), and if φ(x)
is monotonic on the same V (+∞) and L

x
.
=∞

φ(x) = +∞, and if for some positive number

h

L
x
.
=∞

f(x + h)− f(x)

φ(x + h)− φ(x)
= k,

then

L
x
.
=∞

f(x)

φ(x)

exists and is equal to k.

Proof. By hypothesis, for every pair of vicinities V1(k) and V2(k), V2(k) entirely within
V1(k), there exists an X2 such that if x > X2, then

f(x + h)− f(x)

φ(x + h)− φ(x)

is in V2(k). From this it follows as in the last theorem that

f(x + nh)− f(x)

φ(x + nh)− φ(x)

is in V2(k). Now make use of the identity

f(x + nh)

φ(x + nh)
=

f(x + nh)− f(x)

φ(x + nh)
+

f(x)

φ(x + nh)

=
f(x + nh)− f(x)

φ(x + nh)− φ(x)

(
1− φ(x)

φ(x + nh)

)
+

f(x)

φ(x + nh)
. (1)

Let [x′] be the set of all points on the interval
| |
X2 X2 + h , and for this interval let A2 be

an upper bound of |f(x′)| and B2 an upper bound of φ(x′). Then

φ(x′)

φ(x′ + nh)
= ε1(x

′, n) <
B2

φ(X2 + nh)

and

|f(x′)|
φ(x′ + nh)

= ε2(x
′, n) <

A2

φ(X2 + nh)
.
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Hence for every ε there exists a value of n, NεV
, such that if n > NεV

ε1(x
′, n) < ε and ε2(x

′, n) < ε (2)

independently of x′ so long as x′ is on
| |
X2 X2 + h .

There are then three cases to discuss:

(1) k finite. (2) k = +∞. (3) k = −∞.

(1) k finite. By the preceding argument, for x > X2,

f(x + nh)− f(x)

φ(x + nh)− φ(x)

is in V2(k), and hence
|f(x′ + nh)− f(x′)|
φ(x′ + nh)− φ(x′)

< K + εV2 ,

where εV2 , is the length of the interval V2(k) and K the absolute value of k.
Then, in view of (1),∣∣∣∣f(x′ + nh)

φ(x′ + nh)
− f(x′ + nh)− f(x′)

φ(x′ + nh)− φ(x′)

∣∣∣∣ < (K + εV2)ε1(x
′, n) + ε2(x

′, n).

Now take εV smaller in absolute value than the length of the interval between the closer
end-points of V1(k) and V2(k). By (2) there exists a value of n, NεV

, such that if n > NεV
,

ε1(x
′, n) <

εV

2(K + εV2)

and

ε2(x
′, n) <

εV

2

for all values of x′ on
| |
X2 X2 + h .

Hence for n > NεV∣∣∣∣f(x′ + nh)

φ(x′ + nh)
− f(x′ + nh)− f(x′)

φ(x′ + nh)− φ(x′)

∣∣∣∣ < (K + εV2)
εV

2(K + εV2)
+

εV

2
= εV ,

and since for x > X2 + NεV
h there is an n > NεV

and an x′ between X2 and X2 + h such
that

x′ + nh = x,

it follows that if x > X2 + NεV
,∣∣∣∣f(x)

φ(x)
− f(x′ + nh)− f(x′)

φ(x′ + nh)− φ(x)

∣∣∣∣ < εV ,
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and therefore, f(x)
φ(x)

is on V1(k).
This means, according to Theorem 26, that

L
x
.
=∞

f(x)

φ(x)
= k.

(2) k = +∞.
If the numbers m1 and m2 are the lower end points of V1(k) and V2(k), then

f(x′ + nh)− f(x′)

φ(x′ + nh)− φ(x′)
> m2 for x′ > X2.

If εV is then chosen less than m2 −m1, there will exist a value of NεV
such that

ε1(x
′, n) <

εV

2m2

and ε2(x
′, n) <

εV

2m1

for all values of n > NεV
independently of x′ so long as x′ is in

|
X2 X2 + h . Then, in view

of (1),
f(x′ + nh)

φ(x′ + nh)
> m2

(
1− εV

2m2

)
− εV

2m2

> m2 −
εV

2

(
1 +

1

m2

)
.

Since there is no loss of generality if m2 > +1, this proves that for x > X2 + NεV
n,

f(x)

φ(x)
> m2 − εV > m1,

and hence f(x)
φ(x)

is on V1(k).

(3) k = −∞ is treated in an analogous manner.

Corollary 1. If [n] is the set of all positive integers and if

φ(n + 1) > φ(n) and L
n=∞

φ(n) =∞,

then if

L
n=∞

L
f(n + 1)− f(n)

φ(n + 1)− φ(n)
= k,

it follows that L
n=∞

f(n)

φ(n)
exists and is equal to k .

Corollary 2. If f(x) is bounded on every interval,
| |
x (x + 1) , and if

L
x=∞

f(x + 1)− f(x) = k,

then

L
x=∞

f(x)

x

exists and is equal to k.
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§ 4 Rank of Infinitesimals and Infinites.

Definition.—If on some V ∗(a) neither f1(x) nor f2(x) vanishes, and

∣∣∣∣f1(x)

f2(x)

∣∣∣∣ and

∣∣∣∣f2(x)

f1(x)

∣∣∣∣
are both bounded as x approaches a, then f1(x) and f2(x) are of the same rank whether

L
x
.
=a

f1(x)

f2(x)
exists or not.5

The following theorem is obvious.

Theorem 70. If f1(x) and f2(x) are of the same order, they are of the same rank, and if
f1(x) and f2(x) are of different orders, they are not of the same rank. If f1(x) and f2(x)
are of the same rank, they may or may not be of the same order.

Theorem 71. If f1(x) and f2(x) are of the same rank as x approaches a, then c · f1(x)
and f2(x) are of the same rank, c being any constant not zero.

Proof. By hypothesis for some positive number M ,∣∣∣∣f1(x)

f2(x)

∣∣∣∣ < M and

∣∣∣∣f2(x)

f1(x)

∣∣∣∣ < M,

hence ∣∣∣∣c · f1(x)

f2(x)

∣∣∣∣ < M · |c| and

∣∣∣∣ f2(x)

c · f1(x)

∣∣∣∣ < M

|c|
.

Theorem 72. If f1(x) and f2(x) are of the same rank and f2(x) and f3(x) are of the same
rank as x approaches a, then f1(x) and f3(x) are of the same rank as x approaches a.

Proof. By hypothesis, ∣∣∣∣f1(x)

f2(x)

∣∣∣∣ < M1 and

∣∣∣∣f2(x)

f3(x)

∣∣∣∣ < M2

in some neighborhood of x = a. Therefore∣∣∣∣f1(x)

f2(x)

∣∣∣∣ · ∣∣∣∣f2(x)

f3(x)

∣∣∣∣ < M1 ·M2 or

∣∣∣∣f1(x)

f3(x)

∣∣∣∣ < M1 ·M2.

In the same manner∣∣∣∣f2(x)

f1(x)

∣∣∣∣ < M1 and

∣∣∣∣f3(x)

f2(x)

∣∣∣∣ < M2, whence

∣∣∣∣f3(x)

f1(x)

∣∣∣∣ < M1 ·M2.

5x and x · (sin 1
x + 2) are of the same rank but not of the same order as x approaches zero.
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Theorem 73. If f1(x) is infinitesimal (infinite) and does not vanish on some V ∗(a), and
if f2(x) and f3(x) are infinitesimal (infinite) of the same rank as x approaches a, then
f1(x) · f2(x) is of higher order than f3(x), and f1(x) · f3(x) is of higher order than f2(x).
Conversely, if for every function, f1(x), infinitesimal (infinite) at a, f1(x) · f2(x) is of
higher order than f3(x), and f1(x) · f3(x) is of higher order than f2(x), then f2(x) and
f3(x) are of the same rank.

Proof. Since

∣∣∣∣f1(x)

f3(x)

∣∣∣∣ is bounded as x approaches a, it follows by Theorem 33 that

L
x
.
=a

f1(x) · f2(x)

f3(x)
= 0,

which proves the first part of the theorem.

Since likewise

∣∣∣∣f3(x)

f2(x)

∣∣∣∣ is bounded, we have that

L
x
.
=a

f1(x) · f3(x)

f2(x)
= 0.

Suppose that for every f1(x)

L
x
.
=a

f1(x) · f2(x)

f3(x)
= 0 and L

x
.
=a

f1(x) · f3(x)

f2(x)
= 0,

and that f2(x) and f3(x) are not of the same rank. Then, on a certain subset [x′],

L
x
.
=a

f2(x
′)

f3(x′)
= 0, or on some other subset [x′′], L

x
.
=a

f3(x
′′)

f2(x′′)
= 0. Let f1(x) = f2(x)

f3(x)
on the

set [x′] for which L
x
.
=a

f2(x)

f3(x)
= 0, and x−a on the other points of the continuum; then f1(x)

is an infinitesimal as x approaches a, while for the set [x′]

L
x
.
=a

f1(x
′) · f3(x

′)

f3(x′)
= L

x
.
=a

f2(x
′)

f3(x′)
· f3(x

′)

f2(x′)
= 1,

which contradicts the hypothesis that

L
x
.
=a

f1(x) · f3(x)

f2(x)
= 0.

Similarly if on a certain subset L
x
.
=a

f3(x)

f2(x)
= 0, we obtain a contradiction by putting f1(x) =

f3(x)
f2(x)

.



Chapter 7

DERIVATIVES AND
DIFFERENTIALS.

§ 1 Definition and Illustration of Derivatives.

Definition.—If the ratio f(x)−f(x1)
x−x1

approaches a definite limit, finite or infinite, as x
approaches x1, the derivative of f(x) at the point x1 is the limit

L
x
.
=x1

f(x)− f(x1)

x− x1

.

It is implied that the function f(x) is a single-valued function of x. x−x1 is sometimes
denoted by ∆x1, and f(x)− f(x1) by ∆f(x1), or, if y = f(x), by ∆y1.

An obvious illustration of a derivative occurs in Cartesian geometry when the function
is represented by a graph (Fig. 14). f(x)−f(x1)

x−x1
is the slope of the line AB. If we suppose

that the line AB approaches a fixed direction (which in this figure would obviously be the

case) as x approaches x1, then L
x
.
=x1

f(x)− f(x1)

x− x1

will exist and will be equal to the slope

of the limiting position of AB.
If the point x were taken only on one side of x1, we should have two similar limiting

processes. It is quite conceivable, however, that limits should exist on each side, but that
they should differ. That case occurs if the graph has a cusp as in Fig. 15.

These two cases are distinguished by the terms progressive and regressive derivatives.
When the independent variable approaches its limit from below we speak of the progressive
derivative, and when from above we speak of the regressive derivative. It follows from the
definition of derivative that, except in one singular case, it exists only when both these
limits exist and are equal. The exception is the case of a derivative of a function at an
end-point of an interval upon which the function is defined. Obviously both the progressive
and the regressive derivative cannot exist at such a point. In this case we say the derivative
exists if either the progressive or the regressive derivative exists.

Whether the progressive and regressive derivatives exist or not, there exist always four
so-called derived numbers (which may be ±∞), namely, the upper and lower bounds of

93
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indetermination of
f(x)− f(x1)

x− x1

,

as x
.
= x1 from the right or from the left. (Compare page 65, Chapter IV.) The derived

numbers are denoted by the symbols.

−→
D, D−→,

←−
D, D←−,

analogous to the symbols on page 65. Of course, in every case,

−→
D = D−→ and

←−
D = D←−.

If we consider the curve representing the function

y = x · sin 1

x

at the point x = 0, it is apparent that the limiting position of AB does not exist, although
the function is continuous at the point x = 0 if defined as zero for x = 0. For at every
maximum and minimum of the curve sin 1

x
, x · sin 1

x
= ±x, and the curve touches the lines

x = y and x = −y. That is, f(x)−f(x1)
x−x1

approaches every value between 1 and −1 inclusive,
as x approaches zero.

The notion derivative is fundamental in physics as well as in geometry. If, for instance,
we consider the motion of a body, we may represent its distance from a fixed point as a
function of time, f(t). At a certain instant of time t1 its distance from the fixed point is
f(t1), and at another instant t2 it is f(t2); then

f(t1)− f(t2)

t1 − t2

is the average velocity of the body during the interval of time t1− t2 in a direction from or
toward the assumed fixed point. Whether the motion be from or toward the fixed point is
of course indicated by the sign of the expression f(t1)−f(t2)

t1−t2
. If we consider this ratio as the

time interval is taken shorter and shorter, that is, as t2 approaches t1, it will in ordinary
physical motion approach a perfectly definite limit. This limit is spoken of as the velocity
of the body at the instant t1.

Definition.—The derivative of a function y = f(x) is denoted by f ′(x) or by Dxf(x) or
df(x)
dx

or dy
dx

. f ′(x) is also referred to as the derived function of f(x).

§ 2 Formulas of Differentiation.

Theorem 74. The derivative of a constant is zero. More precisely: If there exists a
neighborhood of x1 such that for every value of x on this neighborhood f(x) = f(x1), then
f ′(x1) = 0.
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Proof. In the neighborhood specified f(x)−f(x1)
x−x1

= 0 for every value of x.

Corollary.—If f ′(x1) exists and if in every V ∗(x1) there is a value of x such that f(x) =
f(x1), then f ′(x1) = 0.

Theorem 75. When for two functions f1(x) and f2(x) the derived functions f ′1(x) and
f ′2(x) exist at x1 it follows that, except in the indeterminate case ∞−∞,

(a) If f3(x) = f1(x) + f2(x), then f3(x) has a derivative at x1 and

f ′3(x1) = f ′1(x1) + f ′2(x1).

(b) If f3(x) = f1(x) · f2(x), then f3(x) has a derivative at x1 and

f ′3(x1) = f ′1(x1) · f2(x1) + f1(x1) · f ′2(x1).

(c) If f3(x) = f1(x)
f2(x)

, then, provided there is a V (x1) upon which f2(x) 6= 0, f3(x) has a
derivative and

f ′3(x1) =
f ′1(x1) · f2(x1)− f1(x1) · f ′2(x1)

{f2(x1)}2
.

Proof. By definition and the theorems of Chapter IV (which exclude the case ∞−∞),

(a)

f ′1(x1) + f ′2(x1) = L
x
.
=x1

f1(x)− f1(x1)

x− x1

+ L
x
.
=x1

f2(x)− f2(x1)

x− x1

(1)

= L
x
.
=x1

{
f1(x)− f1(x1)

x− x1

+
f2(x)− f2(x1)

x− x1

}
(2)

= L
x
.
=x1

f1(x) + f2(x)− f1(x1)− f2(x1)

x− x1

(3)

= L
x
.
=x1

f3(x)− f3(x1)

x− x1

.

But by definition,

f ′3(x1) = L
x
.
=x1

f3(x)− f3(x1)

x− x1

. (4)

Hence f ′3(x1) exists, and f ′3(x1) = f ′1(x1) + f ′2(x1).

(b) f3(x) = f1(x) · f2(x).
Whenever x 6= x1 we have the identity

f3(x)− f3(x1)

x− x1

=
f1(x) · f2(x)− f1(x1) · f2(x1)

x− x1

=
f1(x) · f2(x)− f1(x1) · f2(x) + f1(x1) · f2(x)− f1(x1) · f2(x1)

x− x1

= f2(x)

{
f1(x)− f1(x1)

x− x1

}
+ f1(x)

{
f2(x)− f2(x1)

x− x1

}
.
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But the limit of the last expression exists as x
.
= x1 (except perhaps in the case

∞−∞) and is equal to

f2(x1) · f ′1(x1) + f1(x1) · f ′2(x1).

Hence

L
x
.
=x1

f3(x)− f3(x1)

x− x1

exists and
f ′3(x1) = f2(x1) · f ′1(x1) + f ′2(x1) · f1(x1).

(c)

f3(x) =
f1(x)

f2(x)
.

The argument is based on the identity

f1(x)
f2(x)
− f1(x1)

f2(x1)

x− x1

=
f1(x) · f2(x1)− f2(x) · f1(x1)

f2(x) · f2(x1) · (x− x1)
,

which holds when x 6= x1 and when f2(x) 6= 0. But

f1(x) · f2(x1)− f2(x) · f1(x1)

f2(x) · f2(x1)(x− x1)

=
f1(x) · f2(x1)− f1(x1) · f2(x1) + f1(x1) · f2(x1)− f2(x) · f1(x1)

f2(x) · f2(x1)(x− x1)

=
f2(x1) {f1(x)− f1(x1)} − f1(x1) {f2(x)− f2(x1)}

f2(x) · f2(x1)(x− x1)
.

As before (excluding the case ∞−∞) we have

f ′3(x1) =
f2(x1) · f ′1(x1)− f ′2(x1) · f1(x1)

{f2(x1)}2
.

Corollary.—It follows from Theorems 74 and 75 of this chapter that if f2(x) = a · f1(x)
where f ′1(x) exists, then

f ′2(x) = a · f ′1(x).

Theorem 76. If x > 0, then d
dx

xk = k · xk−1.

(a) If k is a positive integer, we have

L
x
.
=x1

xk − xk
1

x− x1

= L
x
.
=x1

{
xk−1 + xk−2 · x1 + . . . + xk · xk−2

1 + xk−1
1

}
= k · xk−1

1 .
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(b) If k is a positive rational fraction m
n
, we have

L
x
.
=x1

x
m
n − x1

m
n

x− x1

= L
x
.
=x1

(
x

1
n

)m − (x1
1
n

)m(
x

1
n

)n − (x1
1
n

)n
= L

x
.
=x1

1(
x

1
n

)n−1
+
(
x

1
n

)n−2 ·
(
x1

1
n

)
+ . . . +

(
x1

1
n

)n−1 ·
(
x

1
n

)m − (x1
1
n

)m
x

1
n − x1

1
n

=
1

n ·
(
x1

1
n

)n−1 ·m
(
x1

1
n

)m−1
,

by the preceding case.
But

1

n ·
(
x1

1
n

)n−1 ·m
(
x1

1
n

)m−1
=

m

n
x1

m
n
−1 = k · x1

k−1.

(c) If k is a negative rational number and equal to −m, then, by the two preceding cases,

L
x
.
=x1

x−m − x1
−m

x− x1

= − L
x
.
=x1

· 1

xm · xm
1

· x
m − xm

1

x− x1

= − 1

x2m
1

·mxm−1
1

= −mx1
−m−1 .

But

−mx1
−m−1 = k · xk−1.

(d) If k is a positive irrational number, we proceed as follows:

Consider values of x greater than or equal to unity. Let x approach x1 so that x > x1.
Since, by Theorem 23, xk is a monotonic increasing function of k for x > 1, it follows
that

xk − xk
1

x− x1

= xk
1 ·

(
x
x1

)k

− 1

x− x1

> xk′

1 ·

(
x
x1

)k′

− 1

x− x1

for all values of k′ less than k, and all values of x greater than x1. If k′ is a rational
number, we have by the preceding cases that

L
x
.
=x1

xk′

1 ·

(
x
x1

)k′

− 1

x− x1

= k′xk′−1
1 .

Since xk−1
1 is a continuous function of k, it follows that for every number N less than

kxk−1
1 there exists a rational number k′1 less than k such that

N < k′1 · xk′−1
1 < k · xk−1

1 .
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Hence, by Theorem 40,

xk
1 ·

(
x
x1

)k

− 1

x− x1

cannot approach a value N less than kxk−1
1 as x approaches x1.

By a precisely similar argument we show that a number greater than kxk−1
1 cannot

be a value approached. Since there is always at least one value approached, we have
that

L
x
.
=x1

xk − xk
1

x− x1

= k · xk−1
1 .

If x < x1 as x approaches x1, we write

xk − xk
1

x− x1

= xk ·
(

x1

x

)k − 1

x1 − x

and proceed as before. If k is a negative number we proceed as under (c). The case
in which x1 < 1 is treated similarly. For another proof see page 102.

Theorem 77. d
dx

loga x = 1
x
· loga e.

Proof.

loga(x + ∆x)− loga x

∆x
=

1

∆x
loga

x + ∆x

x

=
1

x
· loga

(
1 +

∆x

x

) x
∆x

.

But, by Theorem 57,

L
∆x

.
=0

(
1 +

∆x

x

) x
∆x

= e.

Therefore

L
∆x

.
= 0

loga(x + ∆x)− loga x

∆x
=

1

x
· loga e.

Corollary.—
d

dx
loga x =

1

x
.

Theorem 78. If f ′1(x) exists and if there is a V (x1) upon which f1(x) is continuous and
possesses a single-valued inverse x = f2(y), then f2(y) is differentiable and

f ′1(x1) =
1

f ′2(y1)
, where y1 = f1(x1).

1

1Theorem 78 gives a sufficient condition for the equality

dy

dx
=

1
dx
dy

.
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If f ′(x) is 0 or +∞ or −∞ the convention 1
+∞ = 1

−∞ = 0 is understood. Cf. Theo-
rem 37.

Proof. To prove this theorem we observe that

f ′1(x1) = L
x
.
=x1

f1(x)− f1(x1)

x− x1

= L
x
.
=x1

1
x−x1

f1(x)−f1(x1)

.

By the definition of single-valued inverse (p. 34),

x− x1

f1(x)− f(x1)
=

f2(y)− f2(y1)

y − y1

.

Hence, by Theorems 38 and 34 and 37,

L
x
.
=x1

1
x−x1

f(x)−f(x1)

= L
y
.
=y1

1
f2(y)−f2(y1)

y−y1

=
1

f ′2(y)
.

Theorem 79. If

(1) f ′1(x) exists and is finite for x = x1, and f1(x) is continuous at x = x1,

(2) f ′2(y) exists and is finite for y1 = f1(x1),

then
d

dx1

f2{f1(x1)} = f ′2(y1) · f ′1(x1).
2

Proof. We prove this theorem first for the case when there is a V ∗(x1) upon which f1(x) 6=
f1(x1). In this case the following is an identity in x:

f2{f1(x)} − f2{f1(x1)}
x− x1

=
f2{f1(x)} − f2{f1(x1)}

f1(x)− f1(x1)
· f1(x)− f1(x1)

x− x1

. (1)

By hypothesis (2) and Theorem 38,

f ′2(y1) = L
y
.
=y1

f2(y)− f2(y1)

y − y1

= L
x
.
=x1

f2{f1(x)} − f2{f1(x1)}
f1(x)− f1(x1)

.

By hypothesis (1),

f ′1(x) = L
x
.
=x1

f1(x)− f1(x1)

x− x1

.

2Theorem 79 gives a sufficient condition for the equality

dz

dx
=

dz

dy

dy

dz
.
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Hence, by equation (1) and Theorem 34, we have the existence of

d

dx
f2{f1(x)} = L

x
.
=x1

f2{f1(x)} − f2{f1(x1)}
x− x1

= f ′2(y1) · f ′1(x1).

If f1(x) = f1(x1) for values of x on every neighborhood of x = x1, then, by hypothesis (1)
and the corollary of Theorem 74,

f ′(x1) = 0.

Let [x′] be the set of points upon which f1(x) 6= f1(x1). (There is such a set unless f(x) is
constant in the neighborhood of x = x1.) Then, by the same argument as in the first case,
we have

d

dx′
f2{f1(x1)} = f ′2(y1) · f ′1(x1) = 0 for x on the set [x′].

Let [x′′] be the set of values of x not included in [x′]. Then

d

dx′′
f2{f1(x1)} = L

x′′
.
=x′

f2{f1(x
′′)} − f2{f1(x1)}
x′′ − x1

= 0,

since the limitand function is zero. Hence both for the set [x′] and for the set [x′′] the
conclusion of our theorem is that the derivative required is zero.

Theorem 80.
d

dx
ax = ax log a.

Proof. Let

y = ax,

therefore

log y = x · log a

and, by Theorem 77,

dy
dx

y
= log a,

whence

dy

dx
= y · log a = ax log a.
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This method also affords an elegant proof of Theorem 76, viz.,

d

dx
xn = nxn−1.

Let

y = xn,

log y = n log x,
dy
dx

y
=

n

x
,

dy

dx
= n · y

x
= n · xn−1.

§ 3 Differential Notations.

If

y = f(x) and L
x
.
=a

f(x)− f(x1)

x− x1

= K,

we denote f(x)− f(x1) by ∆y, and x− x1 by ∆x. Then, by Theorem 31,

∆y = ∆x ·K + ∆x · ε(x),

where ∆x · ε(x) is an infinitesimal with respect to ∆y and ∆x for x
.
= a. This fact is

expressed by the equation

dy = K · dx, where K = f ′(x).

Here dy and dx are any numbers that satisfy this equation. There is no condition as to their
being small, either expressed or implied, and dx and dy may be regarded as variable or
constant, large or small, as may be found convenient. When either dx or dy is once chosen,
the other is, of course, determined. The numbers dx and dy are called the differentials of
x and y respectively.

In Fig. 16, f ′(x1) is the tangent of the angle CAB, dx is the length of any segment AB
with one extremity at A and parallel to the x-axis, and dy is the length of the segment
BC. If x is regarded as approaching x1, then AB′ is the infinitesimal ∆x, B′D′ is ∆y,
while D′C ′ is ε(x) · ∆x. Hence, by Theorem 73, D′C ′ is an infinitesimal of higher order
than ∆x or ∆y.

We thus obtain a complete correspondence between derivatives and the ratios of dif-
ferentials. Accordingly, for any formula in derivatives there is a corresponding formula in
differentials. Thus corresponding to Theorem 75 we have:

Theorem 81. When for two functions f1(x) and f2(x)

df1(x) = f ′1(x) · dx and df2(x) = f2(x) · dx at x1,

it follows that
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Fig. 16

(a) If f3(x) = f1(x) + f2(x), then

df3(x1) = {f ′1(x1) + f ′2(x1)}dx

= df1(x1) + df2(x1).

(b) If f3(x) = f1(x)− f2(x), then

df3(x1) = {f ′1(x1)− f ′2(x1)}dx

= df1(x1)− df2(x1).

(c) If f3(x) = f1(x) · f2(x), then

df3(x1) = {f1(x1) · f ′2(x1) + f2(x1) + f ′1(x1)} · dx

= f1(x1) · df2(x1) + f2(x1) · df1(x1).

(d) If f3(x) = f1(x)
f2(x)

, then

df3(x1) =
{f2(x1) · f ′1(x1)− f1(x1) · f ′2(x1)} · dx

{f2(x1)}2

=
f2(x1) · df1(x1)− f1(x1)df2(x1)

{f2(x1)}2
.
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The rule obtained on page 97 et seq. that the derivative of xk is k · xk−1 corresponds
to the equation dxk = k · xk−1 · dx. If, in the equation dy = f ′(x)dx, dx is regarded
as a constant while x varies, then dy is a function of x. We then obtain a differential
d2(dy) = {f ′′(x) · dx}d2x in precisely the same manner that we obtain dy = f ′(x) · dx.
Since d2x may be chosen arbitrarily, we choose it equal to dx. Hence d(dy) = f ′′(x)dx2.
We write this

d2y = f ′′(x) · dx2.

The differential coefficient f ′′(x) is clearly identical with the derivative of f ′(x). In this
manner we obtain successively

d3y = f (3)(x) · dx3, etc.

We may write these results,

dy

dx
= f ′(x),

d2y

dx2
= f ′′(x), . . . ,

dny

dxn
f (n)(x).

Evidently the existence of the differential coefficient is coextensive with the existence of
the derivative.

§ 4 Mean-value Theorems.

Theorem 82. If f(x) has a unique and finite derivative at x = x1, then f(x) is continuous
at x1.

Proof. The proof depends upon the evident fact that if f(x) − f(x1) approach anything
but zero as x approaches x1, then one of the values approached by

f(x)− f(x1)

x− x1

is +∞ or −∞.

Definition.—The function f(x) is said to have a maximum at x = x1 if there exists a
neighborhood V (x1) such that

(1) No value of f(x) in V (x1) is greater than f(x1).

(2) There is a value of x, x2, in V (x1) such that x2 < x1 and f(x2) < f(x1).

(3) There is a value of x, x3, in V (x1) such that x3 > x1 and f(x3) < f(x1).

Similarly we define a minimum of a function.

This definition allows any point of a constant stretch like a, Fig. 17, to be a maximum,
but does not allow any point of b to be either a maximum or a minimum.
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Fig. 17.

Theorem 83. If f ′(x1) exists and if f(x) has a maximum or a minimum at x = x1, then
f ′(x1) = 0.

Proof. In case of a maximum at x1, it follows directly from the hypothesis that

L
x
.
=x1

x>x1

f(x)− f(x1)

x− x1
<
= 0, and also L

x
.
=x1

x<x1

f(x)− f(x1)

x− x1
>
= 0,

Since f ′(x1) exists these limits are equal, that is, the derivative is equal to zero. Similarly
in case of a minimum.

Theorem 84. If f(x1) = f(x2), f(x) being continuous on the interval
| |
x1 x2 , and if the

derivative exists3 at every point between x1 and x2, then there is a value ξ between x1 and
x2 such that f ′(ξ) = 0. The derivative need not exist at x1 and x2.

Proof. (a) The function may be a constant between x1 and x2, in which case f ′(x) = 0
for all values of x between x1 and x2 by Theorem 74.

(b) There may be values of the function between x1 and x2 which are greater than

f(x1) and f(x2). Since the function is continuous on the interval
| |
x1 x2 , it reaches a

least upper bound on this interval at some point x3 (different from x1 and x2). By
Theorem 83,

f ′(x3) = 0.

3Not necessarily finite.
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(c) In case there are values of the function on the interval
| |
x1 x2 less than f(x1), the

derivative is zero at the minimum point in precisely the same manner as under case
(b).

`````````````̀

````````̀

x1

A

ξ x2

B

Fig. 18.

This theorem is called Rolle’s Theorem. The restriction that f(x) shall be continuous
is unnecessary if the derivative exists, but simplifies the argument. The proof without this
restriction is suggested as an exercise for the reader.

The geometric interpretation is that any curve representing a continuous function, f(x),
such that f(x1) = f(x2), and having a tangent at every point between x1 and x2 has a
horizontal tangent at some point between them. An immediate generalization of this is
that between any two points A and B on a curve which satisfies the hypothesis of this
theorem there is a tangent to the curve which is parallel to the line AB. The following
theorem is a corresponding analytical generalization:

Theorem 85. If f(x) is continuous on the interval
| |
x1 x2 , and if the derivative exists at

every point between x1 and x2, then there is a value of x, x = ξ, between x1 and x2 such
that

f ′(ξ) =
f(x1)− f(x2)

x1 − x2

.

Proof. Consider a function f1(x) such that

f1(x) = f(x)− (x− x2) ·
f(x1)− f(x2)

x1 − x2

;

then f1(x1) = f(x2) and f1(x2) = f(x2). Therefore f1(x1) = f1(x2). Hence, by Theorem 84,
there is an x, x = ξ on the segment x1 x2 such that f ′1(ξ) = 0. That is,

f ′1(ξ) = f ′(ξ)− f(x1)− f(x2)

x1 − x2

= 0.



DERIVATIVES AND DIFFERENTIALS. 107

Therefore

f ′(ξ) =
f(x1)− f(x2)

x1 − x2

.

This is the “mean-value theorem.” Its content may also be expressed by the equation

f(x2) = f(x1) + (x2 − x1)f
′(ξ).

Denoting x1 − x by dx and ξ by x + θdx, where 0 < θ < 1, it takes the form

f(x1 + dx) = f(x1) + f ′(x1 + θdx)dx.

Theorem 86. If f1(x) and f2(x) are continuous on an interval
| |
a b, and if f ′1(x) and f ′2(x)

exist between a and b, f ′2(x) 6= ±∞, and f ′2(x) 6= 0, f2(a) 6= f2(b), then there is a value of
x, x = ξ between a and b such that

f1(a)− f1(b)

f2(a)− f2(b)
=

f ′1(ξ)

f ′2(ξ)
.

Proof. Consider a function

f3(x) =
f1(a)− f1(b)

f2(a)− f2(b)
{f2(x)− f2(b)} − {f1(x)− f1(b)}.

Since f3(a) = 0 and f3(b) = 0, we have as before f ′3(ξ) = 0.
But

f ′3(ξ) =
f1(a)− f1(b)

f2(a)− f2(b)
· f ′2(ξ)− f ′1(ξ).

Therefore
f1(a)− f1(b)

f2(a)− f2(b)
=

f ′1(ξ)

f ′2(ξ)
.

This is called the second mean-value theorem. The first mean-value theorem has a very
important extension to “Taylor’s series with a remainder,” which follows as Theorem 87.

§ 5 Taylor’s Series.

The derivative of f ′(x) is denoted by f ′′(x) and is called the second derivative of f(x).
In general the nth derivative is the derivative of the n − 1st derivative and is denoted by
f (n)(x).
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Theorem 87. If the first n derivatives of the function f(x) exist and are finite upon the

interval
| |
a b, there is a value of x, xn on the interval

| |
a b such that

f(b) = f(a) +
(b− a)

1!
f ′(a) +

(b− a)2

2!
f ′′(a) + . . .

+
(b− a)n−1

(n− 1)!
· f (n−1)(a) +

(b− a)n

n!
f (n)(xn).

Proof. Let Rn be a constant such that

F (x) = f(x)− f(a)− (x− a)f ′(a)− (x− a)2

2!
f ′′(a)− . . .

− (x− a)n−1

(n− 1)!
f (n−1)(a)− (x− a)n

n!
Rn

is equal to zero for x = b. Since F (x) = 0 for x = a, there is, by Theorem 84, some value
of x, x1, a < x1 < b such that F ′(x1) = 0. That is,

F ′(x) = f ′(x)− f ′(a)− (x− a)f ′′(a)− . . .

− (x− a)n−2

(n− 2)!
f (n−1)(a)− (x− a)n−1

(n− 1)!
Rn

is equal to zero for x = x1. Since also F ′(a) = 0, there is a value of x, x2, a < x2 < x1 such
that F ′′(x2) = 0. Proceeding in this manner we obtain a value of x, xn, a < xn < xn−1

such that
F (n)(xn) = 0.

But
F (n)(xn) = f (n)(xn)−Rn = 0.

Therefore
Rn = f (n)(xn),

whence the theorem.

Corollary.—In Theorem 87, f (n)(x) need be supposed to exist only on a b .

Definition.—The expression

(b− a)n

n!
Rn =

(b− a)n

n!
fn(xn) = f(b)−

n−1∑
k=0

(b− a)

k!
f (k)(a)

is called the remainder, and the infinite series

∞∑
k=0

(b− a)n

n!
f (n)(a)

is called Taylor’s Series.
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If

L
n=∞

f (n)(xn)(b− a)n

n!
= c,

a constant different from zero,
then

∞∑
n=0

f (n)(a)(b− a)n

n!

is convergent but not equal to f(b), i.e.,

∞∑
n=0

f (n)(a)

n!
· (b− a)n = f(b)− c.

If

L
n=∞

f (n)(xn)

n!
· (b− a)n

fails to exist and be finite, then

∞∑
n=0

f (n)(a)

n!
· (b− a)n

is a divergent series.
Hence an obvious necessary and sufficient condition that for a function f(x) all of whose

derivatives exist for the values of x, a <
= x <

= b,

f(b) =
∞∑

n=0

f (n)(a)

n!
· (b− a)n,

is that

L
n
.
=∞

f (n)(xn)

n!
(b− a)n = 0.4

This leads at once, by Theorem 33, to the following sufficient condition:

Theorem 88. If f (n)(x) exists and
∣∣f (n)(x)

∣∣ is less than a fixed quantity M for every x on

the interval
| |
a b and for every n (n = 1, 2, . . .), then

f(b) = f(a) +
(b− 1)

1!
f ′(a) + . . . +

(b− a)n

n!
f (n)(a) + . . . .

4

L
n

.
=∞

f (n)(xn)
n!

(b− a)n = 0.

for every value of x on
| |
a b is not sufficient, since xn depends upon n.
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Functions are well known all of whose derivatives exist at every point on an interval
| |
a b, but such that for some point on this interval

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(x) + R(x),

where R is a function of x not identically zero. Other functions are known for which the

series is divergent. The classical example of the former is that given by Cauchy,5 e−
1

x2 at
the point x = 0. If this function is defined to be zero for x = 0, all its derivatives are zero
for x = 0, whence Taylor’s development gives a function which is zero for all values of x.

Pringsheim6 has given a set of necessary and sufficient conditions that a function shall
be representable for the values of h, 0 < h < R, by means of the series

∞∑
n=0

1

n!
· f (n)(0) · hn.

It was remarked above, p. 105, that a necessary condition for f(x) to be a maximum
at x = a is f ′(a) = 0 if the derivative exists. Taylor’s series permits us to extend this as
follows:

Theorem 89. If on some V (a) the first n derivatives of f(x) exist and are finite and on
V ∗(a)f (n+1)(x) exists and is bounded,7 and if

0 = f ′(a) = f ′′(a) = . . . = f (n−1)(a),

f (n)(a) 6= 0,

then:

(1) If n is odd, f(x) has neither a maximum nor a minimum at a;

(2) If n is even, f(x) has a maximum or a minimum according as f (n)(a) < 0 or f (n)(a) >
0.

Proof. By Taylor’s theorem, for every x in the vicinity of a

f(x) = f(a) + (x− a)nf (n)(a) + (x− a)n+1 · f (n+1)(ξx),

where ξx is between x and a. Hence

f(x)− f(a) = (x− a)n{f (n)(a) + (x− a)f (n+1)(ξx)}.
5Cauchy, Collected Works, 2d series, Vol. 4, p. 250.
6A. Pringsheim, Mathematische Annalen, Vol. 44 (1893), p. 52, 53. See also König, Mathematische

Annalen, Vol. 23, p. 450.
7Instead of assuming the existence of f (n+1)(x) we might have assumed f (n)(x) continuous without

essentially changing the proof.
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But since f (n+1)(ξx) is bounded and x− a is infinitesimal, there exists a V ∗(a) such that if
x is in V ∗(a),

f(x)− f(a)

is positive or negative according as

(x− a)n · f (n)(a)

is positive or negative.

(1) If n is odd, (x− a)n is of the same sign as x− a, and hence for f (n)(a) > 0

f(x)− f(a) > 0 if x > a,

f(x)− f(a) < 0 if x < a;

while for f (n)(a) < 0

f(x)− f(a) > 0 if x < a,

f(x)− f(a) < 0 if x > a.

(2) If n is even, (x− a)n is always positive, and hence if f (n)(a) > 0,

f(x)− f(a) > 0 if x > a,

f(x)− f(a) > 0 if x < a;

}
then f(a) is a maximum.

If f (n)(a) < 0,

f(x)− f(a) < 0 if x > a,

f(x)− f(a) < 0 if x < a;

}
then f(a) is a minimum.

§ 6 Indeterminate Forms.

The mean-value theorems have an important application in the derivation of l’Hospital’s
rule for calculating “indeterminate forms.” There are seven cases.

(1) 0
0
, i.e., to compute L

x
.
=a

f(x)

φ(x)
if L

x
.
=a

f(x) = 0 and L
x
.
=a

φ(x) = 0.

(2) ∞
∞ , i.e., to compute L

x
.
=a

f(x)

φ(x)
if L

x
.
=a

f(x) = ±∞ and L
x
.
=a

φ(x) = ±∞.

(3) ∞−∞, i.e., to compute L
x
.
=a
{f(x)− φ(x)} if L

x
.
=a

f(x) = ±∞ and L
x
.
=a

φ(x) = ±∞.
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(4) 0 · ∞, i.e., to compute L
x
.
=a

f(x) · φ(x) if L
x
.
=a

f(x) = 0 and L
x
.
=a

φ(x) = ±∞.

(5) 1∞, i.e., to compute L
x
.
=a

f(x)φ(x) if L
x
.
=a

f(x) = 1 and L
x
.
=a

φ(x) = ±∞.

(6) 00, i.e., to compute L
x
.
=a

f(x)φ(x) if L
x
.
=a

f(x) = 0 and L
x
.
=a

φ(x) = 0.

(7) ∞0, i.e., to compute L
x
.
=a

f(x)φ(x) if L
x
.
=a

f(x) = ±∞ and L
x
.
=a

φ(x) = 0.

These problems may all be reduced to one or the other of the first two. The third may
be written (since f(x) 6= 0 on some V ∗(a))

f(x)− φ(x) =
1
1

f(x)

− φ(x) =
1− φ(x)

f(x)

1
f(x)

,

which is either determinate or of type (1).
To the cases (5), (6), and (7) we may apply the corollaries of Theorem 39 of Chapter IV,

from which it follows (provided f(x) 6= 0 on some V ∗(a)), that

L
x
.
=a

f(x)φ(x)

exists if and only if

log L
x
.
=a

f(x)φ(x) = L
x
.
=a

log f(x)φ(x) = L
x
.
=a

φ(x) log f(x) exists.

The evaluation of

L
x
.
=a

log f(x)
1

φ(x)

comes under case (1) or case (2).
The evaluation of cases (1) and (2) is effected by the following theorems:

Theorem 90. If f(x) and φ(x) are continuous and differentiable and φ(x) is monotonic
and φ′(x) 6= 0 and φ′(x) 6=∞ and

(1) if L
x
.
=∞

f(x) = 0 and L
x
.
=∞

φ(x) = 0 or

(2) if L
x
.
=∞

φ(x) = ±∞,8

then if

L
x
.
=∞

f ′(x)

φ′(x)
= K,

L
x
.
=∞

f(x)

φ(x)

exists and is equal to K.

8It is not necessary that Lf(x) =∞; cf. Theorem 69.
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Proof. For every positive h we have, by the second mean-value theorem,

f(x + h)− f(x)

φ(x + h)− φ(x)
=

f ′(ξx)

φ′(ξx)
,

where ξx lies between x and x + h. But since ξx takes on values which are a subset of the
values of x, and since L

x
.
=∞

ξx =∞,

L
x
.
=∞

f ′(x)

φ′(x)
= K implies L

x
.
=∞

f ′(ξx)

φ′(ξx)
= K,

which in turn implies

L
x
.
=∞

f(x + h)− f(x)

φ(x + h)− φ(x)
= K,

and this, according to Theorems 68 and 69, gives

L
x
.
=∞

f(x)

φ(x)
= K.

Corollary.—If f(x) is continuous and differentiable, then

L
x
.
=∞

f(x)

x
= L

x
.
=∞

f ′(x).

The theorem above can be extended by the substitution

z =
1

x− a

to the case where x approaches a finite value a. The approach must of course be one-sided.

Theorem 91. If f(x) and φ(x) are continuous and differentiable on some V ∗(a) and f(x)
is bounded on every finite interval, while φ(x) is monotonic and

(1) L
x
.
=a

f(x) = 0, L
x

.
= a

φ(x) = 0 or

(2) L
x

.
= a

φ(x) = +∞ or −∞:

then if

L
x
.
=a

f ′(x)

φ′(x)
= K,

it follows that

L
x
.
=a

f(x)

φ(x)

exists and is equal to K.
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Proof. If L
x
.
=a

f ′(x)

φ′(x)
exists, the limit exists when the approach is only on values of x > a.

Consider only such values of x. Then if

z =
1

x− a
, f(x) = f(a +

1

z
) = F (z)

and

φ(x) = φ(a +
1

z
) = Φ(z),

by hypothesis and Theorem 79, F ′(z) and Φ′(z) exist and

F ′(z) = f ′(x)
dx

dz
,

Φ′(z) = φ′(x)
dx

dz
.

Hence if

L
x
.
=a

f ′(x)

φ′(x)
= K,

then, according to Theorem 38,

L
x
.
=∞

F ′(z)

Φ′(z)

exists and is equal to K. Hence, by Theorem 90,

L
x
.
=∞

F (z)

Φ(z)

exists and is equal to K. Hence, by Theorem 38,

L
x
.
=a

f(x)

φ(x)

exists and is equal to K.

We have now derived conditions under which we can state a general rule for computing
an indeterminate form.

Provided f(x) is not zero on every V ∗(a), any of the forms (3) to (7) can be reduced to

F (x)

Φ(x)
(a)

where this is of type (1) or (2). Provided F (x) and Φ(x) satisfy the conditions of Theo-
rem 91, the existence of the limit of (a) depends on the existence of the limit of

F ′(x)

Φ′(x)
. (b)
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If (b) is indeterminate, and F ′(x) and Φ′(x) satisfy the conditions of Theorem 91, the limit
of (b) depends on the limit of

F ′′(x)

Φ′′(x)
, (c)

and so on in general. If at each step the conditions of Theorem 91 are satisfied and the
form is still indeterminate, the limit of

F (n)(x)

Φ(n)(x)
(n)

depends on the limit of
F (n+1)(x)

Φ(n+1)(x)
. (n + 1)

If (n) is indeterminate for all values of n, this rule leads to no result. If for some value of n

L
x
.
=a

F (n)(x)

Φ(n)(x)
= K,

then all the preceding limits exist and are equal to K, and so

L
x
.
=a

F (x)

Φ(x)
= K.

The original expression is equal to K or eK according to the case under consideration.

§ 7 General Theorems on Derivatives.

Theorem 92. If f(x) is continuous and f ′(x) exists for every x on an interval
| |
a b, then

f ′(x) takes on every value between any two of its values.

Proof. Consider any two values of f ′(x), f ′(x1), and f ′(x2) on the interval
| |
a b. Consider,

further, the function f(x)−f(x1)
x−x1

on the interval between x1 and x2. Since f(x)−f(x1)
x−x1

is a

continuous function of x on this interval, it takes on every value between f(x2)−f(x1)
x2−x1

and
f ′(x1), which is its limiting value as x approaches x1. Hence, by Theorem 85, f ′(x) takes

on all values between and including f ′(x1), and f(x2)−f(x1)
x2−x1

for values of x on the interval
| |
x1 x2 . By considering in a similar manner the function f(x2)−f(x)

x2−x
on the interval

| |
x1 x2 , we

show that f ′(x) takes on all values between f(x2)−f(x1)
x2−x1

and f ′(x2). Hence f ′(x) takes on all
values between f ′(x1) and f ′(x2).

Theorem 93. If the derivative exists at every point on an interval, including its end-
points, it does not follow that the derivative is continuous or that it takes on its upper and
lower bounds.
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Proof. This is shown by the following example.
The curve shall lie between the x-axis and the parabola y = 1

2
x2. The straight lines

of slopes 1, 11
2
, 13

4
, . . . , 1 + 2n−1

2n . . . through the points (1
2
, 0), (1

4
, 0), . . . ,

(
1

2n+1 , 0
)
, . . ., re-

spectively, meet the parabola in points A1, A2, A3, . . . , An, . . . The broken line A1 (1
2
, 0)

A2 (1
4
, 0) A3 . . .An

(
1
2n , 0

)
. . .∞, has an infinitude of vertices. In each angle of the broken

line consider an arc of circle tangent to and terminated by the sides of the angle, the points
of tangency being one fourth of the distance to the nearest vertex. The function whose
graph consists of these circular arcs and the portions of the broken line between them is

continuous and differentiable on the interval
| |
0 1. Its derivative is discontinuous at x = 0

and has the least upper bound 2, which is never reached.

Theorem 94. If f ′(x) exists and is equal to zero for every value of x on the interval
| |
a b,

then f(x) is a constant on that interval.

Proof. By Theorem 82, f(x) is continuous. Suppose f(x) not a constant, so that for two
values of x, x1, and x2, f(x1) 6= f(x2), then, by Theorem 85, there is a value of x, x = ξ
between x1 and x2 such that

f ′(ξ) =
f(x2)− f(x1)

x2 − x1

,

which is different from zero, whence f ′(x) is not zero for every value of x on the interval
| |
a b. Hence f(x) is a constant on

| |
a b.
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Corollary.—If f ′1(x) = f ′2(x) and is finite for every value of x on an interval
| |
a b, then

f1(x)− f2(x) is a constant on this interval.

Theorem 95. If f ′(x) exists and is positive for every value of x on the interval
| |
a b, then

f(x) is monotonic increasing on this interval. If f ′(x) is negative for every value of x on
this interval, then f(x) is monotonic decreasing.

Proof. If f ′(x) is positive for every value of x, then it follows from Theorem 85, provided
that f(x) is continuous, that the function is monotonic increasing, for if there were two
values of x, x1 and x2, such that f(x1) = f(x2) while x1 < x2, then there would be a value
of x, x = ξ, between x1 and x2 such that

f ′(ξ) =
f(x2)− f(x1)

x2 − x1

5 0.

In case f(x) is not supposed continuous, the argument can be made as follows: If

f ′(x1) > 0, then, by Theorem 23, there exists about the point x1 a segment (x1 − δ) (x1 + δ),
upon which

f(x)− f(x1)

x− x1

> 0,

and hence, if x > x1, f(x) > f(x1) and if x < x1, f(x) < f(x1). Now about every point

of the segment a b there is such a segment. Let x′ and x′′ be any two points of
| |
a b such

that x′ < x′′. By Theorem 10, there is a finite set of these segments of lengths δ1 . . . δn

which include within them every point of the interval
| |
x′ x′′ . We thus have a finite set

of points, namely, the mid-point and points on the overlapping parts of the segments,
x′ < x1 < x2 < . . . < xk < x′′, such that

f(x′) < f(x1) < f(x2) < . . . f(xk) < f(x′′).

Hence f(x′) < f(x′′). In a similar manner we prove that the function is monotonic de-
creasing in case f ′(x) is negative.

Theorem 96. If a function f(x) is monotonic increasing on an interval
| |
a b, and if f ′(x)

exists for every value of x on this interval, then there is no point on the interval for which

f ′(x) is negative. That is, f ′(x) is either positive or zero for every point of
| |
a b.

Proof. If f ′(x) is negative for some value of x, say x1, then

L
x
.
=x1

f(x)− f(x1)

x− x1

= C, a negative number,

whence there is a neighborhood of x1 on which f(x) > f(x1), while x < x1, or f(x1) > f(x),
while x > x1, which is contrary to the hypothesis that the function is monotonic increasing
in the neighborhood of x = x1. In the same manner we prove that if the function is
monotonic decreasing, and if the derivative exists, then f ′(x) cannot be positive.
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The following theorem states necessary and sufficient conditions for the existence of the
progressive and regressive derivatives. Conditions for the existence of a derivative proper
are obtained by adding the condition that the progressive and regressive derivatives are
equal.

Theorem 97. If f(x), x < x1, is continuous in some neighborhood of x = x1, then a
necessary and sufficient condition that f ′(x1) shall exist and be finite is that there exists
not more than one linear function of x, ax + c, such that f(x) + ax + c vanishes on every
neighborhood of x = x1.

Proof. (1) The condition is necessary. We prove that if f ′(x) exists and is finite, then
not more than one function of the form ax + c exists such that f(x) + ax + c vanishes on
every neighborhood of x = x1. If no such function exists, the theorem is verified. If there
is one such function, the following argument will show that there is only one. Since, by
hypothesis,

L
x
.
=x1

f(x)− f(x1)

x− x1

exists, we have, by Theorem 75, that

L
x
.
=x1

f(x) + ax + c− f(x1)− ax1 − c

x− x1

exists. Let [x′] be the subset of the set of values of x on any neighborhood of x = x1 such
that f(x′) + ax′ + c vanishes on the set [x′]. By Theorem 41,

L
x′

.
=x1

f(x′) + ax′ + c− f(x1)− ax1 − c

x′ − x1

= L
x
.
=x1

f(x) + ax + c− f(x1)− ax1 − c

x− x1

= f ′(x1) + a.

Since f ′(x1) and a are both finite,

L
x′

.
=x1

f(x′) + ax′ + c′ − f(x1)− ax1 − c

x′ − x1

is finite. But the numerator of this fraction is a constant, f(x) + ax + c being zero on the
set [x′]. Hence

L
x
.
=x1

f(x) + ax + c− f(x1)− ax1 − c

x− x1

= 0, or f ′(x1) + a = 0,

and, being continuous, f(x1)+ ax1 + c = 0. The numbers a and c are uniquely determined
by the equations {

f ′(x1) + a = 0,

f(x1) + ax1 + c = 0.



DERIVATIVES AND DIFFERENTIALS. 119

(2) The condition is sufficient. We are to show that

L
x
.
=x1

f(x)− f(x1)

x− x1

can fail to exist only when there are at least two functions of the form ax + c such that
f(x) + ax + c vanishes on every neighborhood of x = x1. If

L
x
.
=x1

f(x)− f(x1)

x− x1

does not exist, then
f(x)− f(x1)

x− x1

approaches at least two distinct values K1 and K2. Let K2 < K1. Let A and B be two
finite values such that K2 < A < B < K1. On every neighborhood of x = x1 there are
values of x for which

f(x)− f(x1)

x− x1

is greater than B, and also values of x for which

f(x)− f(x1)

x− x1

is less than A. Hence, since
f(x)− f(x1)

x− x1

is continuous at every point except possibly x1, in a certain neighborhood of x1 there are
values of x in every neighborhood of x1 for which

f(x)− f(x1)

x− x1

= A,

or

f(x)− f(x1) = A(x− x1),

which gives

−f(x1)− A(x− x1)

as one function of the form ax + c.

In the same manner we show that −f(x1)−B(x−x1) is another function ax+ c, which
makes f(x) + ax + c vanish on every neighborhood of x = x1.
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The geometric meaning of this theorem is obvious. If P is a point on the curve repre-
senting f(x), then a necessary and sufficient condition that this curve shall have a tangent
at P is that there exists not more than one line through P which intersects the curve an
infinite number of times on any neighborhood of P . Compare the functions x sin 1

x
and

x2 sin 1
x

on page 38.
The earlier mathematicians supposed that every continuous function must have a

derivative except at particular points. The first example of a function which has no deriva-
tive at any point is due to Weierstrass .9 The function is

f(x) =
∞∑

n=0

bn cos(anπx),

where a is an odd integer, 0 < b < 1 and ab > 1 + 3
2
π.

9For references and remarks see page 38.



Chapter 8

DEFINITE INTEGRALS.

§ 1 Definition of the Definite Integral.

The area of a rectangle the lengths of whose sides are exact multiples of the length of the
side of a unit square, is the number of squares equal to the unit square contained within
the rectangle, and is easily seen to be equal to the product of the lengths of its base and
altitude.1

In case the sides of the rectangle and the side of the unit square are commensurable, the
sides of the rectangle not being exact multiples of the side of the square, the rectangle and
the square are divided into a set of equal squares. The area of the rectangle is then defined
as the ratio of the number of squares in the rectangle to be measured to the number of
squares in the unit square. Again, the area is equal to the product of the base and altitude.

Any figure so related to the unit square that both figures can be divided into a finite
set of equal squares is said to be commensurable with the unit.

The area of a rectangle incommensurable with the unit is defined as the least upper
bound of the areas of all commensurable rectangles contained within it.

It follows directly from the definition of the product of irrational numbers that this
process gives the area as the product of the base and altitude.2

Turning to the figure bounded by the segment a b (which we take on the x axis in a
system of rectangular coordinates) the graph of a function y = f(x) and the ordinates
x = a and x = b, we obtain as follows an approximation to the common notion of the area
of such figures.

Let x0 = a, x1, x2, . . ., xn = b be a set of points lying in order from a to b. Such a set

of points is called a partition of
| |
a b, and is denoted by π. The intervals

| |
x0 x1 ,

| |
x1 x2 , . . .,

| |
xn−1 xn are intervals of π.

1Of course the units are not necessarily squares; they may be triangles, parallelograms, etc.
2For the meaning of the length of a segment incommensurable with the unit segment, compare Chap-

ter II, page 25.

121
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a ξ1
x1 ξ2

x2 xn−1 ξn b

Fig. 20

Let x1 − x0 = ∆1x, x2 − x1 = ∆2x, . . ., xn − xn−1 = ∆nx, and let

ξ1, ξ2, . . . , ξn

be a set of points such that ξ1 is on the interval
| |
x0 x1 , ξ2 is on

| |
x1 x2 . . ., and ξn is on

| |
xn−1 xn . Then

f(ξ1), f(ξ2), . . . , f(ξn)

are the altitudes of a set of rectangles whose combined area is a more or less close approx-
imation of the area of our figure. Denote this approximate area by S. Then

S = f(ξ1)∆1x + f(ξ2)∆2x + . . . + f(ξn)∆nx =
n∑

k=1

f(ξk)∆kx.

As the greatest ∆kx is taken smaller and smaller, the figure composed of the rectangles
comes nearer to the figure bounded by the curve.

In consequence of these geometrical notions we define the area of the figure as the limit
of S as the ∆kx’s decrease indefinitely. The area S is the definite integral of f(x) from a
to b. It has been tacitly assumed that the graph of y = f(x) is continuous, since we do
not usually speak of an area being enclosed by a discontinuous curve. The definition of the
definite integral when stated in its general form admits, however, of functions which are
discontinuous in a great variety of ways. A more general definition of the definite integral
is as follows:

Let
| |
a b (or

| |
b a) be an interval upon which a function f(x) is defined, single-valued and

bounded. Let πδ stand for any partition of
| |
a b or

| |
b a by the points a = x0, x1, x2, . . . , xn = b

such that the numbers ∆1x = x1−a, ∆2x = x2−x1, . . . , ∆nx = b−xn−1 are each numerically
less than or equal to δ. Let

ξ1, ξ2, . . . , ξn
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be a set of points on the intervals
| |
x0 x1 ,

| |
x1 x2 ,. . . ,

| |
xn−1 xn (or if b < a,

| |
x1 x0 ,

| |
x2 x1 ,

| |
x3 x2 , . . . ,

| |
xn xn−1 ) respectively, and let

Sδ = f(ξ1)∆1x + f(ξ2)∆2x + . . . + f(ξn)∆nx =
n∑

k=1

f(ξk)∆kx.

If the many-valued function of δ, Sδ, approaches a single limiting value as δ approaches
zero, then

L
δ
.
=0

Sδ =

∫ b

a

f(x)dx.

When we desire to indicate the interval of integration we write b
aSδ and b

aπδ instead of
Sδ and πδ. a and b are called the limits of integration.

The details of this definition should be carefully noted. For every δ there is an infinite
number of different partitions πδ, and for every partition there is an infinite set of different
sets of ξk, so that for every δ the function Sδ has an infinite set of values. The graph of
the function Sδ is of the type shown in Fig. 21. Every value of Sδ for one δ is assumed by
S for every larger δ. For any particular value of δ the values of Sδ lie on a definite interval
| |

BSδ BSδ , whose length never increases as δ decreases. If this interval approaches 0 as δ
approaches 0, the required limit exists.

It is to be noticed that the set of π’s, [πδ] includes every possible π whose largest ∆kx
is less than δ. Thus we cannot obtain the set of all π’s by sequential repartitioning of any
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given π, since there are partitions of the set [πδ] which have no partition points in common
with any given partition. Inattention to this point is perhaps the greatest source of error
in the development of the notion of a definite integral.

§ 2 Integrability of Functions.

The class of integrable functions is very large, including nearly all the bounded functions
studied in mathematics and physics. Even such an arbitrary function as{

y = 0 if x irrational,

y = 1/n3 if x = m/n,

is integrable. (See page 147, Theorem 127.)

Examples of non-integrable functions are y = 1/x on the interval
| |
0 1 (where it is not

bounded, see page 153), and the function,{
y = 0 if x is irrational and

y = 1 if x is rational.

To determine the conditions of integrability we introduce the concept of integral oscil-

lation. On any interval
| |
a b, f(x) has a least upper bound A and a greatest lower bound B,

between which the function varies. If A−B = ∆y = b
aOf(x) is multiplied by the length of

the interval, ∆x = |b− a|, it gives the area of a rectangle, including the graph of f(x). If
the interval is subdivided by a partition π, the sum of the products ∆x ·∆y on the intervals
of the partition is called the integral oscillation of f(x) for the partition π and is denoted
by Oπ. If we call ∆ky the difference between the upper and lower bounds of f(x) on the

intervals
| |
xk−1 xk , we have

Oπ = |∆1x| ·∆1y + |∆2x| ·∆2y + . . . + |∆nx|∆ny =
n∑

k=1

|∆kx| ·∆ky.

Geometrically Oπ represents the areas of the rectangles F1, . . . , Fn (Fig. 22), and so we
expect to find that if the lower bound of Oπ is zero, f(x) is integrable. This proposition,
which requires some rather delicate argument for its proof, will be taken up in § 7. At
present we shall show in a simple manner that every continuous and every monotonic
function is integrable.

Lemma 1.—If Sπ and S ′π are two sums (formed by using different ξk’s) on the same
partition, then

|Sπ − S ′π| 5 Oπ.
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Proof.

Sπ =
n∑

k=1

f(ξk)∆kx,

S ′π =
n∑

k=1

f(ξ′k)∆kx,

|Sπ − S ′π| =

∣∣∣∣∣
n∑

k=1

{f(ξk)− f(ξ′k)}∆kx

∣∣∣∣∣ 5
n∑

k=1

|f(ξk)− f(ξ′k)| · |∆kx|.

But |f(ξk)− f(ξ′k)| 5 ∆ky by the definition of ∆ky. Therefore

|Sπ − S ′π| 5
n∑

k=1

|∆kx| ·∆ky (4)

A repartition of a partition π is formed by introducing new points in π.

Lemma 2.—If π1 is a repartition of π,

|Sπ − Sπ1| 5 Oπ.

Proof. Any interval ∆kx of π is composed of one or more intervals ∆′kx, ∆′′kx, etc., of π1,
and these contribute to Sπ the terms

f(ξ′k)∆
′
kx + f(ξ′′k)∆′′kx + . . . (1)

The corresponding term of Sπ is

f(ξk)∆kx = f(ξk)∆
′
kx + f(ξk)∆

′′
kx + . . . (2)

But since |f(ξk)−f(ξk′)| 5 ∆ky, the difference between (1) and (2) is less than or equal to

∆ky · |∆′kx + ∆′′kx + . . . | = ∆ky · |∆kx|

and hence

|Sπ − Sπ1 | 5
n∑

k=1

∆ky · |∆kx| = Oπ.

Theorem 98. Every function continuous on
| |
a b is integrable on

| |
a b.

Proof. We have to investigate the existence of the limit L
δ
.
=0

Sδ of the many-valued function

Sδ as δ
.
= 0. Since Sδ approaches at least one value as δ approaches zero (see Theorem 24),

we need only to prove that it cannot have more than one value approached. Suppose
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there were two such values, B and C, B > C. Let ε = B−C
4

. By the definition of value
approached, for every δ there must exist an S (which we call SB) such that

|SB −B| < ε (1)

and such that the corresponding πB has its largest ∆kx < δ. Similarly there must be an
SC such that

|SC − C| < ε, (2)

and such that the corresponding πC has its largest ∆kx < δ. Let π be a partition made
up of the points both of πB and πC , and let S be one of the corresponding sums. π is a
repartition both of πB and πC . Therefore

|S − SC | 5 OπC
(3)

and

|S − SB| 5 OπB
. (4)

But since f(x) is continuous, by the theorem of uniform continuity, δ can be so chosen
that if any two values of x differ by less than δ, the corresponding values of f(x) differ by
less than ε

|b−a| and hence on the partitions πB and πC , whose ∆kx’s are all less than δ, the

corresponding ∆ky’s are all less than ε
|b−a| . So we have (since

n∑
k=1

∆kx = b− a)

OπB
=

n∑
k=1

|∆kx| ·∆ky <
n∑

k=1

|∆kx| ·
ε

|b− a|
= ε.

Hence

OπB
< ε and OπC

< ε.

So we have, since ε = B−C
4

and δ is so chosen that whenever |x′−x′′| < δ, |f(x′)−f(x′′)| <
ε
|b−a| :

|SB −B| < ε,

|SC − C| < ε,

|SB − S| < ε,

|SC − S| < ε.

From these inequalities it follows that |B −C| < 4ε, which contradicts the statement that
ε = B−C

4
. Hence the hypothesis that f(x) is not integrable is untenable.

Theorem 99. Every non-oscillating bounded function is integrable.
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Proof. The proof runs, as in the preceding theorem, to the paragraph following (4). Let
D and d be the upper and lower bounds of f(x). δ, being arbitrary, can be so chosen that
δ = ε

D−d
. Then

OπB
=

n∑
k=1

∆ky · |∆kx| <
n∑

k=1

∆ky · δ,

and since f(x) is non-oscillating,

n∑
k=1

∆ky = D − d.

Therefore
OπB

< (D − d)δ = ε.

Similarly OπC
< ε. Hence again we have

|SB −B| < ε,

|SC − C| < ε,

|SB − S| < ε,

|SC − S| < ε,

and therefore |B −C| < 4ε, whereas ε was assumed equal to B−C
4

. Thus the hypothesis of
a non-integrable non-oscillating function is untenable.

§ 3 Computation of Definite Integrals.

In computing definite integrals it is important to observe that when the integral is known
to exist the limit can be calculated on any properly chosen subset of the Sδ’s. (See The-
orem 41.) So we have that if Sδ1 , Sδ2 , . . . is any sequence of sums such that L

n
.
=∞

δn = 0,

then

L
n
.
=∞

Sδn =

∫ b

a

f(x)dx.

One case of this kind occurs when ξk is taken as an end-point of the interval
| |
xk−1 xk

and all the ∆kx’s are equal. Then we have∫ b

a

f(x)dx = L
n
.
=∞

n∑
k=1

f(a + k∆x)∆x, where ∆x =
b− a

n
.

A simple example of this principle is the proof of the following theorem.

Theorem 100. If f(x) is a constant, C, then∫ b

a

Cdx = C(b− a).
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Proof. The function f(x) = C is integrable either according to Theorem 98 or Theorem 99.
Hence ∫ b

a

Cdx = L
n
.
=∞

n∑
k=1

C
b− a

n
= L

n
.
=∞

n · C · b− a

n
= C(b− a).

A few other examples follow. In each case the function is known to be integrable by
the theorems of § 2.

Theorem 101. ∫ b

a

exdx = eb − ea.

Proof. Let

S∆x = ea∆x + ea+∆x ·∆x + ea+2∆x ·∆x + . . . + ea+(n−1)∆x ·∆x

= ea ·∆x[1 + e∆x + e2∆x + . . . + e(n−1)∆x]

= ea ·∆x · e
n∆x − 1

e∆x − 1
=

eb−a − 1

e∆x − 1
ea ·∆x

= (eb − ea) · ∆x

e∆x − 1
.

Whence the result follows since L
∆x

.
=0

∆x

e∆x − 1
= 1. (Differentiate numerator and denomi-

nator with respect to ∆x according to Theorem 90.)

Instead of arranging the partition-points in an arithmetical progression as in the cases
above, we may put them in a geometrical progression, that is, we let(

b

a

) 1
n

= q,
b

a
= qn,

∆1x = aq − a, ∆2x = aq2 − aq, . . . , ∆nx = aqn − aqn−1,

ξ1 = a, ξ2 = aq, . . . , ξn = aqn−1,

and obtain the formula∫ b

a

f(x)dx = L
q
.
=1

a(q − 1)[f(a) + qf(aq) + . . . + qn−1f(aqn−1)]

= L
q
.
=1

a(q − 1)
n−1∑
k=0

qkf(aqk).

We apply this scheme to the following.
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Theorem 102. In all cases where m is a whole number 6= −1, and if a > 0, b > 0 for
every value of m 6= −1, ∫ b

a

xmdx =
bm+1 − am+1

m + 1
.

Proof. ∫ b

a

xmdx = L
q
.
=1

a(q − 1)
n−1∑
k=0

qk(aqk)m

= am+1
L

q
.
=1

(q − 1)[1 + (qm+1) + (qm+1)2 + . . . + (qm+1)n−1] (1)

= am+1
L

q
.
=1

(q − 1)
(qm+1)n − 1

qm+1 − 1

= L
q
.
=1

am+1{(qn)m+1 − 1} q − 1

qm+1 − 1

= (bm+1 − am+1) L
q
.
=1

q − 1

qm+1 − 1
.

Hence ∫ b

a

xmdx =
bm+1 − am+1

m + 1
,

since

L
q
.
=1

q − 1

qm+1 − 1
=

1

m + 1
.

Theorem 103. ∫ b

a

1

x
dx = log b− log a, (0 < a < b).

Proof. By equation (1) in the last theorem, since qm+1 = q0 = 1,∫ b

a

1

x
dx = L

n
.
=∞

n(q − 1);

but n =
log( b

a)
log q

, hence∫ b

a

1

x
dx = L

q
.
=1

q − 1

log q
· log

(
b

a

)
= log

(
b

a

)
= log b− log a,

since (§ 6, Chapter VII) l’Hospital’s rule gives

L
q
.
=1

q − 1

log q
= 1.
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The following theorem is of frequent use in computing both derivatives and integrals.

Theorem 104. If on an interval
| |
a b two functions f(x) and F (x) have the property that

for every two values of x, x1 and x2, where a < x1 < x2 < b,

f(x1)(x2 − x1) 5 F (x2)− F (x1) 5 f(x2)(x2 − x1);

or if
f(x1)(x2 − x1) = F (x2)− F (x1) = f(x2)(x2 − x1),

then

(1) if f(x) is continuous,
dF (x)

dx
= f(x);

and

(2) whether f(x) is continuous or not,∫ b

a

f(x)dx exists and is equal to F (b)− F (a).

Proof. We consider first the case

f(x1)(x2 − x1) 5 F (x2)− F (x1) 5 f(x2)(x2 − x1).

This gives

f(x1) 5
F (x2)− F (x1)

x2 − x1

5 f(x2).

Since f(x) is continuous at x = x1, L
x2

.
=x1

f(x2) = f(x1). Hence, by Theorem 40 (Corol-

lary 2),

L
x2

.
=x1

F (x2)− F (x1)

x2 − x1

= f(x1),

which proves (1).
To prove (2) we observe that f(x) is non-oscillating and therefore integrable according

to Theorem 99. On any partition π whose dividing points are x1, x2, . . . , xn−1 we have

f(a)(x1 − a) 5 F (x1)− F (a) 5 f(x1)(x1 − a),
f(x1)(x2 − x1) 5 F (x2)− F (x1) 5 f(x2)(x2 − x1),
· · · ·
· · · ·
· · · ·

f(xn−1)(b− xn−1) 5 F (b)− F (xn−1) 5 f(b)(b− xn−1),
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Adding, we get

f(a)(x1 − a) + f(x1)(x2 − x1) + . . . + f(xn−1)(b− xn−1) 5 F (b)− F (a)

5 f(x1)(x1 − a) + f(x2)(x2 − x1) + . . . + f(b)(b− xn−1).

But

f(a)(x1 − a) + . . . + f(xn−1)(b− xn−1) = BSπ

and

f(x1)(x1 − a) + . . . + f(b)(b− xn−1) = BSπ.

Since this holds for every π, we have by Theorem 40 that as (Theorem 99)∫ b

a

f(x)dx exists,∫ b

a

f(x)dx = F (b)− F (a).

The proof in case f(x1)(x2 − x1) = F (x2) − F (x1) = f(x2)(x2 − x1) is identical with
the above when we write = instead of 5.

§ 4 Elementary Properties of Definite Integrals.

Theorem 105. If a < b < c, and if a bounded function f(x) is integrable from a to c, then
it is integrable from a to b and from b to c.

Proof. Suppose f(x) not integrable from a to b, then by the definition of a limit (see
Chap. II.) there must be a set of values of b

aSδ, [baS
′
δ], such that L

δ
.
=0

b
aS
′
δ = A, and another

set [baS
′′
δ ] such that L

δ
.
=0

b
aS
′′
δ = B, while A and B are distinct. Whether

∫ c

b

f(x)dx exists or

not, there must be a set of values of c
bSδ, [cbS

′
δ], such that the limit L

δ
.
=0

c
bS
′
δ = C. Now for

every b
aS
′
δ and c

bS
′
δ there exists a c

aS
′
δ such that c

aS
′
δ = b

aS
′
δ + c

bS
′
δ. Therefore A + C is a value

approached by c
aSδ. By similar reasoning, B + C is a value approached by c

aSδ. Hence c
aSδ

has two values approached, which is contrary to the hypothesis. Hence

∫ b

a

f (x)dx must

exist. By similar reasoning

∫ c

b

f(x)dx must exist.

Theorem 106. If a < b < c and if a bounded function f(x) is integrable from a to b and

from b to c, then f(x) is integrable from a to c and

∫ c

a

f(x)dx =

∫ b

a

f(x)dx +

∫ c

b

f(x)dx.
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Proof. Since

∫ b

a

f(x)dx and

∫ c

b

f(x)dx exist, we know by Theorem 26 that for every ε

there exists a δ′c such that for b
aSδ where δ 5 δε,∣∣∣∣baSδ −

∫ b

a

f(x)dx

∣∣∣∣ < ε

3
, (1)

and also a δ′′ε such that for every value of c
bSδ where δ 5 δ′′ε ,∣∣∣∣cbSδ −

∫ c

b

f(x)dx

∣∣∣∣ < ε

3
. (2)

Now if the upper bound of f(x) on
| |
a c is M and its lower bound is m, let δ′′′ε = ε

3(M−m)
,

and let δε, be smaller than the smallest of δ′δ, δ′′δ , δ′′′δ .
Consider any value of c

aSδ. If the point b is one of the points of the partition upon
which c

aSδ is computed, then c
aSδ is the sum of one value of b

aSδ and one value of c
bSδ. If b

is not a point of this partition, let ∆bx be the length of the interval of c
aπδ that contains b.

Then for properly chosen b
aSδ and c

bSδ

|baSδ + c
bSδ − c

aSδ| < ∆bx(M −m) <
ε

3
. (3)

So in every case (whether or not b is a partition-point of c
aπδ) by combining (1), (2), and

(3) we obtain the result that for every ε there exists a δε such that for every c
aSδε∣∣∣∣caSδε −

∫ b

a

f(x)dx−
∫ c

b

f(x)dx

∣∣∣∣ < ε.

Therefore

L
δ
.
=0

c
aSδ =

∫ b

a

f(x)dx +

∫ c

b

f(x)dx,

which proves the theorem.

Theorem 107. Provided both integrals exist,3 and a < b,∫ b

a

|f(x)|dx =

∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ .
Proof. ∑

|f(ξk)|∆kx =
∣∣∣∑ f(ξk)∆kx

∣∣∣ .
Hence for every Sδ|f(x)| there is a smaller or equal Sδf(x), the δ’s being the same. Hence
by Corollary 2, Theorem 40,

L
δ
.
=0

Sδ|f(x)| = | L
δ
.
=0

Sδf(x)|.

3That the first integral exists if the second exists is shown in Theorem 135.
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Theorem 108. If

∫ b

a

f(x)dx exists, then

∫ a

b

f(x)dx exists and

∫ b

a

f(x)dx = −
∫ a

b

f(x)dx.

Proof. This is a consequence of the theorem (Corollary 1 Theorem 27) that

L
x
.
=a

(−f(x)) = − L
x
.
=a

f(x),

for to every S used in defining

∫ b

a

f(x)dx corresponds a sum equal to −S which is used in

defining

∫ a

b

f(x)dx.

Similarly to every S ′ used in defining

∫ a

b

f(x)dx there corresponds a sum −S ′ used in

defining

∫ b

a

f(x)dx. Hence the function Sδ in the definition of

∫ b

a

f(x)dx is the negative

of the function Sδ used in the definition of

∫ a

b

f(x)dx. Hence the theorem follows from

the theorem quoted.

We adjoin the following two theorems, the first of which is an immediate consequence
of the definition of an integral, and the second a corollary of Theorems 105, 106, and 108.

Theorem 109.

∫ b+h

a+h

f(x − h)dx exists and is equal to

∫ b

a

f(x)dx, provided the latter

integral exists.4

Theorem 110. If any two of the following integrals exist, so does the third, and∫ b

a

f(x)dx +

∫ c

b

f(x)dx =

∫ c

a

f(x)dx.

Theorem 111. If C is any constant and if f(x) is integrable on
| |
a b, then Cf(x) is inte-

grable on
| |
a b and ∫ b

a

Cf(x)dx = C

∫ b

a

f(x)dx.

Proof.

Sδ =
n∑

k=1

f(ξk)∆kx

4First stated formally by H. Lebesgue, Leçons sur l’Intégration, Chapter VII, page 98.
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is an Sδ of the set which defines

∫ b

a

f(x)dx and

S ′δ =
n∑

k=1

Cf(ξk)∆kx

is the corresponding Sδ of the set which defines

∫ b

a

Cf(x)dx. Hence our theorem follows

immediately from Theorem 34, a special case of which is L
x
.
=a

Cf(x) = C L
x
.
=a

f(x).

Theorem 112. If f1(x) and f2(x) are any two functions each integrable on the interval
| |
a b, then f(x) = f1(x)± f2(x) is integrable on

| |
a b and∫ b

a

f(x)dx =

∫ b

a

f1(x)dx±
∫ b

a

f2(x)dx.

Proof. The proof depends directly upon the theorem that if L
x
.
=a

φ1(x) = b1, and L
x
.
=a

φ2(x) =

b2, then L
x
.
=a

(
φ1(x)± φ2(x)

)
= b1 ± b2 (Theorem 34).

Theorem 113. If f1(x) and f2(x) are integrable on
| |
a b and such that for every value of

x on
| |
a b f1(x) = f2(x), then ∫ b

a

f1(x)dx =
∫ b

a

f2(x)dx.

Proof. Since S1 is always greater than or equal to S2, then, by Theorem 34, L
δ
.
=0

S1 = L
δ
.
=0

S2,

which proves the theorem.

Theorem 114. (Maximum-Minimum Theorem.) If

(1) the product f1(x) · f2(x) and the factor f1(x) are integrable on
| |
a b,

(2) f1(x) is always positive or always negative on
| |
a b,

(3) M and m are the least upper and the greatest lower bounds respectively of f2(x) on
| |
a b,

then

m ·
∫ b

a

f1(x)dx 5
∫ b

a

f1(x)·f2(x)dx 5 M ·
∫ b

a

f1(x)dx,

or

m ·
∫ b

a

f1(x)dx =
∫ b

a

f1(x) · f2(x)dx = M ·
∫ b

a

f1(x)dx.
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Proof. By Theorem 111,

M ·
∫ b

a

f1(x)dx =

∫ b

a

M · f1(x)dx

and

m ·
∫ b

a

f1(x)dx =

∫ b

a

m · f1(x)dx.

But in case f1(x) is always positive,

m · f1(x) 5 f1(x) · f2(x) 5 M · f1(x).

Hence, by the preceding theorem,∫ b

a

m · f1(x)dx 5
∫ b

a

f1(x) · f2(x)dx 5
∫ b

a

M · f1 (x)dx,

and therefore

m ·
∫ b

a

f1(x)dx 5
∫ b

a

f1(x) · f2(x)dx 5 M ·
∫ b

a

f1(x)dx.

If f1(x) is always negative, it follows in the same manner that

m ·
∫ b

a

f1(x)dx =
∫ b

a

f1(x) · f2(x)dx = M ·
∫ b

a

f1(x)dx.

As an obvious corollary of this theorem we have the Mean-value Theorem:

Theorem 115. Under the hypothesis of Theorem 114 there exists a number K, m 5 K 5
M , such that ∫ b

a

f1(x) · f2(x)dx = K

∫ b

a

f1(x)dx.

Corollary 1. In case f2(x) is continuous we have a value ξ of x on
| |
a b such that∫ b

a

f1(x) · f2(x)dx = f2(ξ)

∫ b

a

f1(x)dx.

In case f1(x) = 1, ∫ b

a

f1(x)dx = b− a,

and the theorem reduces to this:
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Theorem 116. If f(x) is any integrable function on the interval
| |
a b, there exists a number

M lying between the upper and lower bounds of f(x) on
| |
a b such that∫ b

a

f(x)dx = M(b− a),

and if f(x) is continuous, there is a value ξ of x on
| |
a b such that∫ b

a

f(x)dx = f(ξ)(b− a).

In many applications of the integral calculus the expression∫ b

a
f(x)dx

b− a

represents the notion of an average value of the dependent variable y = f(x) as x varies
from a to b. An average of an infinite set of values of f(x) is of course to be described only
by means of a limiting process. Consider a set of points x1, x2, . . . , xn−1, xn = b on the

interval
| |
a b such that

x1 − a = x2 − x1 = x3 − x2 = . . . = xn−1 − xn−2 = b− xn−1.

Then

Mn =
1

n

n∑
k=1

f(xk),

and we define the mean value of f(x), b
aMf(x) = L

n
.
=∞

Mn if this limit exists. But xk+1−xk =

b−a
n

= ∆x.

If the definite integral

∫ b

a

f(x)dx exists, we may write

∫ b

a

f(x)dx = L
δ
.
=0

Sδ,

where

Sδ =
n∑

k=1

f(xk)∆x =
n∑

k=1

f(xk)
b− a

n
=

b− a

n

n∑
k=1

f(xk) = (b− a)Mn.

Therefore

L
δ
.
=0

Sδ = (b− a) L
n
.
=∞

Mn.

We therefore have the theorem:
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Theorem 117. In case the integral of f(x) exists on the interval
| |
a b,

b
aMf(x) =

∫ b

a

f(x)dx

b− a
.

We note that b
aM is the same as the K which occurs in the mean-value theorem, and

that the last theorem suggests a simple method of approximating the value of a definite
integral by multiplying the average of a finite number of ordinates by b− a.

§ 5 The Definite Integral as a Function of the Limits

of Integration.

Theorem 118. If f(x) is integrable on an interval
| |
a b, and if x is any point of

| |
a b,∫ x

a

f(x)dx is a continuous function of x.

Proof.

∫ x

a

f(x)dx exists, by Theorem 105, and by the definition of a continuous function

we need only to show that

L
x′

.
=x

(∫ x′

a

f(x)dx−
∫ x

a

f(x)dx

)
= 0.

By the theorems of the preceding section,∫ x′

a

f(x)dx−
∫ x

a

f(x)dx =

∫ x′

x

f(x)dx 5 |x′x B · (x′ − x)| 5 |B · (x′ − x)|,

where x′
x B stands for the least upper bound of f(x) on the interval

| |
x x′ , and B for the

least upper bound of f(x) on
| |
a b. Since B is a constant, B(x′ − x) approaches zero as x′

approaches x, and therefore by Theorem 40, Corollary 4, the conclusion of our theorem
follows.

Theorem 119. If f(x) is continuous on an interval
| |
a b,

∫ x

a

f(x)dx (a < x < b) possesses

a derivative with respect to x such that

d

dx

∫ x

a

f(x)dx = f (x).
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Proof. By the preceding theorem

∫ x

a

f(x)dx is continuous. To form the derivative we

investigate the expression∫ x′

a

f(x)dx−
∫ x

a

f(x)dx

x′ − x
=

∫ x′

x

f(x)dx

x′ − x
(1)

as x′ approaches x.

By Theorem 115 (the mean-value theorem),∫ x′

x

f(x)dx = f (ξ(x′)) (x′ − x),

where ξ(x′ ) is a value of x between x and x′ and is a function of x′. Hence (1) is equal to

f(ξ). (2)

But as x′ approaches x, ξ also approaches x and so, by Theorem 39, as x′ approaches x,
(2) approaches f(x). Therefore

L
x′

.
=x

∫ x′

a

f(x)dx−
∫ x

a

f(x)dx

x′ − x
= f(x) =

d

dx

∫ x

a

f(x)dx.

Following is a more general statement of Theorem 119.

Corollary.—If f(x) is continuous at a point x1 of
| |
a b and integrable on

| |
a b, then at x = x1

d

dx

∫ x

a

f(x)dx = f(x).

The proof is like that of Theorem 112 except that∫ x

x1

f(x)dx = (x− x1)M(x),

and M(x) is a value between the upper and lower bounds of f(x) on
| |
x1 x. But by the

continuity of f(x) at x1

L
x
.
=x1

M(x) = f(x1),

and hence the conclusion follows as in the theorem.
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Theorem 120. If f(x) is any continuous function on the interval
| |
a b, and F (x) any

function on this interval such that

d

dx
F (x) = f(x),

then F (x) differs from

∫ x

a

f(x)dx at most by an additive constant.

Proof. Let F (x) =

∫ x

a

f(x)dx + φ(x).

Since F (x) and

∫ x

a

f(x)dx are both differentiable,

d

dx
F (x) =

d

dx

(∫ x

a

f(x)dx + φ(x)

)
=

d

dx

(∫ x

a

f(x)dx

)
+

d

dx
φ(x).

By the preceding theorem
d

dx

∫ x

a

f(x)dx = f(x).

Hence d
dx

φ(x) = 0, whence, by Theorem 94, φ(x) is a constant.

Theorem 121. If f(x) is a continuous function on an interval
| |
a b and F (x) is such that

d

dx
F (x) = f(x),

then ∫ b

a

f(x)dx = F (b)− F (a).

Proof. By the last theorem, ∫ x

a

f(x)dx = F (x) + c.

But

0 =

∫ a

a

f(x)dx = F (a) + c.

Therefore
−F (a) = c.

Whence ∫ b

a

f(x)dx = F (b) + c = F (b)− F (a).

The symbol [F (x)]ba or |baF (x) is frequently used for F (b)−F (a). In these terms the above
theorem is expressed by the equation∫ b

a

f(x)dx = |baF (x).
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By this last theorem the theory of definite and indefinite integrals is united as far as
continuous functions are concerned, and a table of derivatives gives a table of integrals.
For discontinuous functions the correspondence does not in general hold. That is, there

are on the one hand integrable functions f(x) such that

∫ x

a

f(x)dx is not differentiable

with respect to x, and on the other hand differentiable functions φ(x) such that φ′(x) is
not integrable.5

§ 6 Integration by Parts and by Substitution.

The formulas for integration by parts and by substitution are ordinarily written as follows:∫
udv = uv −

∫
vdu,∫

f(y)dy =

∫
f(y) · dy

dx
· dx.

The following theorems state sufficient conditions for their validity.

Theorem 122. (Integration by parts.)∫ b

a

f1(x) · f ′2(x)dx = [f1(x) · f2(x)]ba −
∫ b

a

f2(x) · f ′1(x)dx,

provided f ′1(x) and f ′2(x) exist and are continuous on the interval
| |
a b.

Proof. By Theorem 75,

d

dx
(f1(x) · f2(x)) = f1(x) · f ′2(x) + f2(x) · f ′1(x).

Therefore ∫ b

a

d

dx
(f1(x) · f2(x)) dx =

∫ b

a

f1(x) · f ′2(x)dx +

∫ b

a

f2(x) · f ′1(x)dx.

(The integral exists since it follows from the existence and continuity of f ′1(x) and f ′2(x)
that f1(x) and f2(x) are continuous). By Theorem 121,∫ b

a

d

dx
{f1(x) · f2(x)} dx = f1(b) · f2(b)− f1(a) · f2(a).

Therefore ∫ b

a

f1(x) · f ′2(x)dx = [f1(x) · f2(x)]ba −
∫ b

a

f2(x) · f ′1(x)dx.

5For a good discussion of this subject the reader is referred to H. Lebesgue, Leçons sur l’Int égration.
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Theorem 123. (Integration by substitution.) If y = φ(x) has a continuous derivative at

every point of
| |
a b and f(y) is continuous for all values taken by y = φ(x) as x varies from

a to b, ∫ B

A

f(y)dy =

∫ b

a

f(y)
dy

dx
dx,

where A = φ(a), B = φ(b).

Proof. By Theorem 120 and by Theorem 79,∫ φ(x)

A

f(y)dy =

∫ x

a

d

dx

(∫ φ(x)

A

f(y)dy

)
dx + C =

∫ x

a

f(y)
dy

dx
· dx + C,

C being an arbitrary constant. C is determined by letting x = a. Then if x = b we have∫ B

A

f(y)dy =

∫ b

a

f(y)
dy

dx
· dx.

Theorem 124. ∫ b

a

f(x)dx =

∫ B

A

f (φ(y))
dx

dy
dy,

where x = φ(y) and a = φ(A), b = φ(B); provided that both integrals exist, and that φ(y)
is non-oscillating and has a finite derivative.

Proof. ∫ b

a

f(x)dx = L
n
.
=∞

n∑
k=1

f(ξk)∆kx (1)

whenever the least upper bound of ∆kx for each n approaches zero as n approaches +∞.
Now let ∆y = B−A

n
,

yk = A + k ·∆y,

φ(yk)− φ(yk−1) = ∆kx.

Hence, by Theorem 85,
∆kx = φ′(ηk)∆y,

where ηk lies between yk and yk−1. Now if ξk = φ(ηk), it will lie between φ(yk) and φ(yk−1);
moreover the ∆kx’s are all of the same sign or zero; and since the hypothesis makes
φ(y) uniformly continuous, their least upper bound approaches zero as n approaches +∞.
Therefore ∫ b

a

f(x)dx = L
n
.
=∞

n∑
k=1

f(ξk)∆kx

= L
n
.
=∞

n∑
k=1

f
(
φ(ηk)

)
· φ′(ηk) ·∆y

=

∫ B

A

f
(
φ(y)

)
φ′(y)dy,
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provided the latter integral exists. Hence∫ b

a

f(x)dx =

∫ B

A

f (φ(y)) · dx

dy
dy.

Corollary.—The validity of this theorem remains if φ(y) has a finite number of oscillations.

Proof. Suppose the maximum and minimum values of φ(y) are

a1, a2, a3, . . . , an,

corresponding to the values of y,

A1, A2, A3, . . . , An.

Then we have∫ b

a

f(x)dx =

∫ a1

a

f(x)dx +

∫ a2

a1

f(x)dx + . . . +

∫ b

an

f(x)dx

=

∫ A1

A

f
(
φ(x)

) dx

dy
dy +

∫ A2

A1

f
(
φ(x)

) dx

dy
dy . . . +

∫ B

An

f
(
φ(x)

) dx

dy
dy

=

∫ B

A

f
(
φ(x)

) dx

dy
dy.

The form of this proposition given in Theorem 123 would permit an infinitude of oscillations
of φ(y).

§ 7 General Conditions for Integrability.

The following lemmas are to be associated with those on pages 124 and 125.

Lemma 3.—If π1 is a repartition of π, then for any function bounded on
| |
a b

Oπ1 5 Oπ.

Proof. Any interval ∆kx of π is composed of one or more intervals ∆′kx, ∆′′kx, etc., of π1,
and these contribute to Oπ1 the terms

|∆′kx|∆′ky + |∆′′kx|∆′′ky + . . . . (1)

The corresponding term of Oπ is

|∆kx|∆ky = |∆′kx|∆ky + |∆′′kx|∆ky + . . . . (2)

Since each of ∆′ky, ∆′′ky, etc., is less than or equal to ∆ky, (1) is less than or equal to
(2), and hence Oπ1 5 Oπ.
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Lemma 4.—If π0 is any partition of the interval
| |
a b, and ε0 any positive number, then

for any bounded function there exists a number δ0 such that for every partition π whose
greatest ∆ is less than δ0

Oπ0 + ε0 = Oπ.

Proof. We prove the lemma by showing that if π0 has N +1 partition points x0, x1, x2, . . .,
xN , an effective choice of δ0 is

δ0 =
ε0

R ·N
,

where R is the oscillation of the function on
| |
a b.

Of the intervals of π there are at most N − 1 which contain as interior points, points of
x0, x1, x2, . . ., xN . Denote the lengths of these intervals of π by ∆px, and denote by ∆qx
the lengths of the intervals of π which contain as interior points no points of x0, x1, x2, . . .,
xN . Then

Oπ =
∑
p

|∆px| ·∆py +
∑
q

|∆qx| ·∆qy.

If π′ is a repartition of π0 obtained by introducing the points of π, then∑
q

|∆qx| ·∆qy

is a subset of the terms whose sum constitutes Oπ′ . Hence, by Lemma 3,∑
q

|∆qx| ·∆qy 5 Oπ′ 5 Oπ0 .

Since
|∆px| 5 δ0 =

ε0

R ·N
,

it follows that ∑
p

|∆px| ·∆py 5 ε0.

Therefore
Oπ0 + ε0 = Oπ.

Lemma 5.—If π is any partition, Oπ is the least upper bound of the expression

S ′π − S ′′π,

where S ′π and S ′′π may be any two values of Sπ corresponding to different choices of the ξ’s.

Proof. Without loss of generality we may assume every ∆kx positive.
Then

BSπ −BSπ = B |Sπ
′ − Sπ

′′| .
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But

BSπ = B

{
n∑

k=1

f(ξk) ·∆kx

}
=

n∑
k=1

{
Bf(ξk)

}
∆kx

and

BSπ = B

{
n∑

k=1

f(ξk) ·∆kx

}
=

n∑
k=1

{Bf(ξk)}∆kx.

Therefore

BSπ −BSπ =
n∑

k=1

[
Bf(ξk)−Bf(ξk)

]
∆kx

=
n∑

k=1

∆ky ·∆kx = Oπ.

Therefore
B(Sπ

′ − Sπ
′′) = Oπ.

Theorem 125. A necessary and sufficient condition that a function f(x), defined, single-

valued, and bounded on an interval
| |
a b shall be integrable on

| |
a b, is that the greatest lower

bound of Oπ for this function shall be zero.

Proof. We first show that if f(x) is integrable the lower bound of Oπ is zero. By hypoth-
esis, ∫ b

a

f(x)dx = L
δ
.
=0

Sδ

exists. By Theorem 27, Chapter IV, this implies that for every ε there exists a δε such
that for every δ1 < δε and δ2 < δε

|Sδ1 − Sδ2 | < ε.

Hence, if π be a partition whose intervals ∆kx are all less than δε, we must have

|S ′π − S ′′π| < ε

for every S ′π and S ′′π. By Lemma 5 this implies that Oπ 5 ε. But if for every ε there exists
a π such that Oπ 5 ε, then

BOπ = 0.

Secondly, we show that if the lower bound of Oπ is zero, Sδ converges to a single value,∫ b

a

f(x)dx,
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as δ approaches zero. Given any positive quantity ε there exists a partition πε, such that
Oπε < ε

4
. By Lemma 4 there exists a δε such that for every π whose intervals are numerically

less than δε

Oπ 5 Oπε +
ε

4
<

ε

2
.

Now let Sπ′ε and Sπ′′ε be any two values of Sδε , and let π′′′ε be the partition composed of
the points of both π′ε and π′′ε . Then for any value of Sπ′′′ε

we have, by Lemma 2,∣∣Sπ′ε − Sπ′′′ε

∣∣ 5 Oπ′ε <
ε

2
,∣∣Sπ′′ε − Sπ′′′ε

∣∣ 5 Oπ′′ε <
ε

2
.

Therefore ∣∣Sπ′ε − Sπ′′ε

∣∣ < ε.

Hence for every ε we have a δε such that for every two values of Sδ, δ < δε,

|Sπ′ε − Sπ′′ε | < ε.

By Theorem 27, this implies the existence of L
δ
.
=0

Sδ.

In case the definite integral does not exist it is sometimes desirable to use the upper
and lower bounds of indeterminateness of Sδ as δ approaches zero. These are denoted

respectively by the symbols

∫ b

a

f(x)dx and

∫ b

a

f(x)dx6 and are called the upper and lower

definite integrals of f(x). They are both equal to∫ b

a

f(x)dx

if and only if the latter integral exists. They are usually defined by the equations∫ b

a

f(x)dx = BSπ,

where Sπ =
n∑

k=1

{Bf(ξk)}∆kx for all partitions of π, and

∫ b

a

f(x)dx = BSπ,

6For a more extended theory of these integrals, cf. Pierpont, page 337.
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where Sπ =
n∑

k=1

{Bf(ξk)}∆kx for all partitions of π.

That

∫ b

a

f(x)dx exists when the upper and lower integrals are equal is evident under

this definition, because
Oπ = Sπ − Sπ,

and thus BOπ = 0 if and only if ∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

For every value of δ > 0 there is an infinite set of partitions π, for which the largest
∆kx is less than δ, and for each of these there is a value of Oπ. If Oδ stands for any such
Oπ, then Oδ is a many-valued function of δ.

Theorem 126. A necessary and sufficient condition that a function f(x), defined, single-

valued, and bounded on an interval
| |
a b, is integrable is that

L
δ
.
=0

Oδ = 0.

Proof. The condition is necessary.
By Theorem 125 the integrability of f(x) implies BOπ = 0. Hence for every ε there

exists a partition π such that
Oπ < ε.

By Lemma 4 there exists a δε such that for every π′ whose greatest ∆x is less than δε

Oπ′ < Oπ + ε < 2ε.

Hence

L
δ
.
=0

Oδ = 0.

The condition is sufficient.
Since

L
δ
.
=0

Oδ = 0,

and Oδ > 0,
BOπ = 0.

Hence the function is integrable by Theorem 125.

Theorem 127. A necessary and sufficient condition that a function, defined, single-valued,

and bounded on an interval
| |
a b, shall be integrable on that interval is that for every pair

of positive numbers σ and λ there exists a partition π such that the sum of the lengths of
those intervals on which the oscillation of the function is greater than σ is less than λ.
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Proof. The condition is necessary.
If for a given pair of positive numbers σ and λ there exists no π such as is required by the

theorem, then Oπ > σ · λ for every π, which is contrary to the conclusion of Theorem 125
that

BOπ = 0.

The condition is sufficient.
For a given positive ε choose σ and λ so that

σ(b− a) <
ε

2
and λ ·R <

ε

2
,

where R is the oscillation of the function on
| |
a b. Let π be a partition such that the sum

of the lengths of those intervals on which the oscillation of the function is greater than σ
is less than λ. Then the sum of the terms of Oπ which occur on these intervals is less than

λ ·R,

and the sum of the terms of Oπ on the remaining intervals is less than

σ(b− a).

Therefore
Oπ < λ ·R + σ(b− a) < ε.

Hence
BOπ = 0,

whence by Theorem 125 the integral exists.

Definition.—The content of a set of points [x] on an interval
| |
a b is a number C[x] defined

as follows: Let π be any partition of
| |
a b, none of the partition points of which are points

of [x], and Dπ the sum of the lengths of those intervals of π which contain points of [x] as
interior points. Then

BDπ = C[x].

An important special case is where

C[x] = 0.

It is evident that if a set [x] has content zero, for every ε there exists a finite set of
segments of lengths

ε1, ε2, ε3, . . . , εn

which contain every point [x] and such that

n∑
i=1

εi < ε.
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It is also evident that if the sets [x1] and [x2] are of content zero, then the set of all x1 and
x2 is of content zero.7

Theorem 128. A necessary and sufficient condition for the integrability of a function f(x)

on an interval
| |
a b is that for every σ > 0 the set of points [xσ] at which the oscillation of

f(x) is greater than or equal to σ shall be of content zero.8

Proof. If at every point of an interval
| |
c d the oscillation of f(x) is less than σ, then about

each point of
| |
c d there is a segment upon which the oscillation is less than σ, and hence

by Theorem 11, Chapter II, there is a partition of
| |
c d upon each interval of which the

oscillation of f(x) is less than σ.
Now to prove the condition sufficient we observe that if the content of [xσ] is zero, there

exists for every λ a partition πλ, such that the sum of the lengths of the intervals containing
points of [xσ] is less than λ. Moreover we have just seen that the intervals which do not
contain points on [xσ] can be repartitioned into intervals on which the oscillation is less
than σ. Hence, by Theorem 127, the function is integrable.

To prove the condition necessary we note that on every interval containing a point, xσ,
the oscillation of f(x) is greater than or equal to σ. Hence, if

C[xσ] > 0,

the sum of the intervals upon which the oscillation is greater than or equal to σ is greater
than C[xσ].

Definition.—A set of points is said to be numerable if it is capable of being set into
one-to-one correspondence with the positive integral numbers. If a set [x] is numerable,
it can always be indicated by the notation x1, x2, x3, . . ., xn, . . ., or {xn}, but if it is not
numerable, the notation {xn} cannot be applied with the understanding that n is integral.

Theorem 129. A perfect set of points is not numerably infinite.9

Proof. Suppose the theorem not true. Then there exists a sequence of points {xn} con-
taining every point of a perfect set [x]. Let P1 be any point of [x], and a1 b1 a segment
containing P1. Let xn1 be the first of {xn} within a1 b1. Since xn is a limit point of points
of [x], there are points of the set other than P1 and xn1 on the segment a1 b1. Let P2 be
such a point, and let a2 b2 be a segment within a1 b1 and containing P2 but neither P1 nor
xn1 . Let xn2 be the first point of {xn} within a2 b2. Proceeding in this manner we obtain
a sequence of segments {ai bi} such that every segment lies within the preceding and such
that every segment ai bi contains no point xni−k

of the sequence {xn}. By the lemma on

7For further discussion of the notion content see Pierpont, Real Functions, Vol. I, p. 352, and
Lebesgue , Leçons sur l’Intégration.

8Compare the example on page 124.
9For definition of perfect set see page 31.
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page 31, Chapter II, there is a point P on every segment of this set. Since there are points
of [x] on every segment ai bi, P is a limit point of the set [x]. Since [x] is a perfect set, P
is a point of [x]. But if P were in the sequence {xn}, there would be only a finite number
of points of [x] preceding P , whereas by the construction there is an infinitude of such
points.

Theorem 130. A numerably infinite set of sets of points each of content zero cannot
contain every point of any interval.

Proof. Let the set of sets be ordered into a sequence {[x]n}. We show that on every
segment a b there is at least one point not of {[x]n}. Since [x]1 is of content zero, there
is a segment a1 b1 contained in a b which contains no point of [x]1. Let [x]n1 be the first
set of the sequence which contains a point of a1 b1. Since [x]n1 is of content zero, there
is a segment a2 b2 contained in a1 b1 which contains no point of [x]n1 . Continuing in this
manner we obtain a sequence of segments a b, a1 b1, . . ., an bn . . . such that every segment
lies within the preceding, and such that an bn contains no point of [x]1, . . ., [x]n. By the
lemma on page 31 there is at least one point P on all these segments. Hence P is a point
of a b and is not a point of any set of {[x]n}.
Theorem 131. The points of discontinuity of an integrable function form at most a set
consisting of a numerable set of sets, each of content zero.

Proof. Let σ1, σ2, σ3, . . . be any set of numbers such that

σn > σn+1,

and

L
n
.
=∞

σn = 0.

By Theorem 128 the set of points [xσn ] at which the oscillation of f(x) is greater than or
equal to σn+1 and less than σn is of content zero. Since the set of sets {[xσn ]} includes all
the points of discontinuity of f(x), this proves the theorem.

Theorem 132. If a function f(x) is integrable on an interval
| |
a b, then it is continuous

at a set of points which is everywhere dense on
| |
a b.

Proof. If the theorem fails to hold, then there exists an interval
| |
a b on which the function

is discontinuous at every point. By Theorem 131 an integrable function is discontinuous
at most on a numerably infinite set of sets each of content zero, and by Theorem 130 such
sets of sets fail to contain every point of any interval.

Theorem 133. If ∫ X

a

f(x)dx = 0

for every X of
| |
a b, then f(x) = 0 on a set of points everywhere dense on

| |
a b, and for

every σ > 0 the points where |f(x)| > σ form a set of content zero.
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Proof. At every point X where f(x) is continuous, according to the corollary of Theo-
rem 119,

d

dX

∫ X

a

f(x)dx = f(X) = 0,

since

∫ X

a

f(x)dx is a constant. The points of continuity of f(x) are everywhere dense,

according to Theorem 132. Hence the zero points of f(x) are everywhere dense. At a point
of discontinuity the oscillation of f(x) is greater than or equal to |f(x)|. Hence the points
where |f(x)| > σ form a set of content zero.

Theorem 134. If ∫ X

a

f(x)dx =

∫ X

a

φ(x)dx

for every X of
| |
a b, then f(x) = φ(x) on a set of points everywhere dense on

| |
a b, and for

every σ > 0 the points where |f(x)− φ(x)| > σ forms a set of content zero.

Proof. Apply the theorem above to f(x)− φ(x).

Theorem 135. If f(x) is integrable from a to b, then |f(x)| is integrable from a to b.10

Proof. Since
0 5 Oπ |f(x)| 5 Oπf(x),

it follows that B Oπf(x) = 0 implies B Oπ|f(x)| = 0, and hence the integrability of f(x)
implies the integrability of |f(x)|.

Theorem 136. If f(x) and φ(x) are both integrable on an interval
| |
a b, then

f(x) · φ(x) (1)

is integrable on
| |
a b; and, provided there is a constant m > 0 such that |φ(x)| −m > 0 for

x on
| |
a b, then

f(x)÷ φ(x) (2)

is integrable on
| |
a b.

Proof. Since f(x) and φ(x) are both integrable on
| |
a b, it follows that for every pair of

positive numbers σ and λ there is a partition π1 for f(x) and a partition π2 for φ(x) such
that the sums of the lengths of the intervals on which the oscillations of f(x) and φ(x)
respectively are greater than σ are less than λ. Let π be the partition consisting of the
points of both π1 and π2. Then the sum of the intervals of π on which the oscillation of

10The converse theorem is not true; cf. example given on page 154.
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either f(x) or φ(x) is greater than σ is less than 2λ. Let M be the greater of B|f(x)|

and B|φ(x)| on
| |
a b. Then on any interval of π on which the oscillations of f(x) and φ(x)

are both less than σ the oscillation of f(x) · φ(x) is less than σM . Hence the sum of the
intervals on which the oscillation of f(x) · φ(x) is greater than σM is less than 2λ. Since
σ and λ may be chosen so that 2λ and σM shall be any pair of preassigned numbers, it

follows by Theorem 127 that f(x) · φ(x) is integrable on
| |
a b.

In view of the argument above it is sufficient for the second theorem to prove that 1
φ(x)

is integrable on
| |
a b if φ(x) is integrable and |φ(x)| > m. Consider a partition π such that

the sum of the intervals on which the oscillation of φ(x) is greater than σ is less than λ.
Since ∣∣∣∣ 1

φ(x1)
− 1

φ(x2)

∣∣∣∣ =
|φ(x1)− φ(x2)|
|φ(x1)| · |φ(x2)|

,

it follows that π is such that the sum of the intervals on which the oscillation of 1
φ(x)

is

greater than σ
m2 is less than λ, and 1

φ(x)
is integrable according to Theorem 127.

A second proof may be made by comparing the integral oscillations of f(x) and φ(x)
with those of the functions (1) and (2) and applying Theorem 125.11

Theorem 137. If f(x) is an integrable function on an interval
| |
a b, and if φ(y) is a

continuous function on an interval
| |

Bf Bf , where Bf and Bf are the lower and upper

bounds respectively of f(x) on
| |
a b, then φ{f(x)} is an integrable function of x on the

interval
| |
a b.12

Proof. By Theorem 48 there exists for every σ > 0 a δσ such that for |y1 − y2| < δσ,

|φ(y1)− φ(y2)| < σ. (1)

Since f(x) is integrable on
| |
a b it follows by Theorem 127 that for every positive number

λ there is a partition π such that the sum of the intervals on which the oscillation of f(x)
is greater than δσ is less than λ. But by (1) this means that the sum of the intervals on
which the oscillation of φ{f(x)} is greater than σ is less than λ. This, by Theorem 127,
proves that φ {f(x)} is integrable.

11Cf. Pierpont, Vol. I, pp. 346, 347, 348.
12This theorem is due to Du Bois Reymond. It cannot be modified so as to read “an integrable

function of an integrable function is integrable.” Cf. E. H. Moore, Annals of Mathematics, new series,
Vol. 2, 1901, p. 153.



Chapter 9

IMPROPER DEFINITE
INTEGRALS.

§ 1 The Improper Definite Integral on a Finite Inter-

val.

If f(x) is infinite at one or more points of the interval
| |
a b, then, whatever may be the other

properties of the function, the definite integral of f(x) defined in Chapter VIII cannot exist

on the interval
| |
a b.

Definition.—If

∫ b

x

f(x)dx exists for every x, a < x < b, and if1

L
x
.
=a

∫ b

x

f(x)dx

exists and is finite, f(x) being unbounded on every neighborhood of x = a, then this

limit is the improper definite integral on the interval
| |
a b. If f(x) is unbounded in every

neighborhood of x = a, and also in every neighborhood of x = b, but bounded on some

neighborhood of every other point of the interval
| |
a b, we consider two intervals

| |
a c and

| |
c b where c is any point a < c < b. If the improper definite integral exists on

| |
a c and also

on
| |
c b, then the sum of these integrals is the improper definite integral on

| |
a b.

1We will understand throughout this chapter that in the expression

L
x
.
=a

∫ b

x

f(x)dx

x approaches a on the interval
| |
a b .

153



154 INFINITESIMAL ANALYSIS.

This definition can obviously be extended to the case where the function is unbounded in
the neighborhood of a finite number of points. Such points are then considered as partition

points, dividing the interval
| |
a b into a set of subintervals. If the improper definite integral

exists on each of these intervals, their sum is the improper definite integral on
| |
a b.

Theorem 138. If

∫ b

x

f(x)dx exists for every x, a < x < b, then a necessary and sufficient

condition that

L
x
.
=a

∫ b

x

f(x)dx

shall exist and be finite is that for every ε there exists a Vε
∗(a) such that for every two

values of x, x1 and x2, on the interval
| |
a b and on Vε

∗(a)∣∣∣∣∫ x2

x1

f(x)dx

∣∣∣∣ < ε.

Proof. This theorem is a special case of Theorem 27, since, by Theorem 110,∫ x2

x1

f(x)dx =

∫ b

x1

f(x)dx−
∫ b

x2

f(x)dx.

Theorem 139. If

∫ b

x

f(x)dx exists for every x, a < x < b, and if

L
x
.
=a

∫ b

x

|f(x)| dx

is finite, then

L
x
.
=a

∫ b

x

f(x)dx

exists and is finite.2

Proof. By the necessary condition of Theorem 138 there is a Vε
∗(a) corresponding to any

preassigned ε such that for any two values of x, x1 and x2, which lie on the segment
| |
a b

and on Vε
∗(a) ∣∣∣∣∫ x2

x1

|f(x)| dx

∣∣∣∣ < ε.

2The first part of the hypothesis in this theorem is not redundant, as is shown by the following example.
Let f(x) = x−

1
2 for positive rational values of x and f(x) = −x−

1
2 for positive irrational values of x. In

this case L
x
.
=0

∫ b

x

|f(x)|dx exists and is finite, while
∫ b

x

f(x)dx does not exist for any value of x on the

interval a b, and consequently L
x
.
=a

∫ b

x

f(x)dx has no meaning since the limitand does not exist.
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But, by Theorem 107, ∣∣∣∣∫ x2

x1

|f(x)| dx

∣∣∣∣ = ∣∣∣∣∫ x2

x1

f(x)dx

∣∣∣∣ ,
since, by the hypothesis and Theorem 105,

∫ x2

x1

f(x)dx exists. Hence, by the sufficient

condition of Theorem 138,

L
x
.
=a

∫ b

x

f(x)dx

exists and is finite.

Theorem 140. If

∫ b

x

f(x)dx exists for every x on the segment a b, and if (x− a)kf(x) is

bounded on V ∗(a) for some value of k, 0 < k < 1, then

L
x
.
=a

∫ b

x

f(x)dx

exists and is finite.

Proof. By hypothesis (x− a)k|f(x)| 5 M , i.e.,

|f(x)| 5 M

(x− a)k
,

where M may be taken greater than one. The proof of the theorem consists in showing
that for every ε there exists a δε such that if 0 < x1 − a < δε, 0 < x2 − a < δε, x1 < x2,
then ∣∣∣∣∫ x2

x1

f(x)dx

∣∣∣∣ < ε.

By Theorems 105 and 113,∣∣∣∣∫ x2

x1

f(x)dx

∣∣∣∣<= ∫ x2

x1

|f(x)| dx <
=
∫ x2

x1

M

(x− a)k
dx

=
M

1− k

{
(x2 − a)1−k − (x1 − a)1−k

}
.

That the last term of this series of inequalities is infinitesimal, the reader may verify by
choosing

δε =

(
ε(1− k)

M

) 1
1−k

.

This theorem may also be proved as a corollary of Theorem 143.
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Corollary.—If f(x) is integrable on
| |
x b for every x of

| |
a b, and is of the same or lower order

than 1
(x−a)k for some value of k, 0 < k < 1, then

L
x

.
= a

∫ b

x

f(x)dx

exists and is finite.

Theorem 141. If for any positive number m and for any k = 1 there exists a V ∗(a) on
which f(x) does not change sign, and on which (x− a)kf(x) > m for every x, then

L
x
.
=a

∫ b

x

f(x)dx

cannot exist and be finite.

Proof. (1) In case ∫ b

x

f(x)dx

fails to exist for some value of x between a and b,

L
x
.
=a

∫ b

x

f(x)dx

fails to exist because the limitand function does not exist.
(2) If ∫ b

x

f(x)dx

exists for every value of x between a and b, we proceed as follows: Let δ < 1 be the length of
a V ∗(a) on which f(x) does not change sign, and on which (x−a)kf(x) > m, and let x2 be
the extremity of this neighborhood, which is greater than a. Then |f(x)| > m

(x−a)k > m
(x2−a)k

for every x on this neighborhood. Take x1 so that (x2 − a)k = 2(x2 − x1). Then∣∣∣∣∫ x2

x1

f(x)dx

∣∣∣∣ > m

(x2 − a)k
(x2 − x1) = 1

2
m.

Hence, by the necessary condition of Theorem 138,

L
x
.
=a

∫ b

x

f(x)dx

cannot exist and be finite.
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Theorem 142. If

L
x
.
=a

∫ b

x

f(x)dx

exists and is finite and if f(x) approaches infinity monotonically as x
.
= a on some V ∗(a),

then

L
x
.
=a

(x− a) · f(x) = 0,

or in other words f(x) has an infinity of order lower than 1
x−a

.3

Proof. By means of Theorem 138 it follows from the hypothesis that for every ε there

exists a Vε
∗(a) within V ∗(a) such that for every x1 and x2 on

| |
a b, and also on Vε

∗(a),∣∣∣∣∫ x2

x1

f(x)dx

∣∣∣∣ < ε.

Let x2 be any point of such a neighborhood and let x1 be so chosen that

x1 − a = x2 − x1.

Since x1 and x2 are on V ∗(a),
f(x1) > f(x2).

It follows from Theorem 116 that∣∣∣∣∫ x2

x1

f(x)dx

∣∣∣∣ > |f(x2)| · (x2 − x1).

But
f(x2) · (x2 − x1) = 1

2
f(x2) · (x2 − a).

Hence for x = x2,
|f(x)| · (x− a) < 2ε.

3 L
x
.
=a

(x− a) · f(x) = 0 is not a sufficient condition for the existence of

L
x
.
=a

∫ b

x

f(x)dx,

as is shown by the following example. Consider a set of points x1, x2, x3, . . ., xn, . . . such that xn − a =
2(xn+1 − a), x1 − a being unity. Define f(x1) = 1, f(x2) = 4

3 , f(x3) = 2, . . ., f(xn) = 2n

n+1 , . . .. Let the
function be linear from f(x1) to f(x2), from f(x2) to f(x3), etc. Then∣∣∣∣∫ x2

x1

f(x)dx

∣∣∣∣ > 1
2 ,

∣∣∣∣∫ x3

x2

f(x)dx

∣∣∣∣ > 1
3 , etc.

Since these integrals are all of the same sign, their sum for any given number of terms is greater than the
sum of the corresponding number of terms in the harmonic series. Also (xn − a) · f(xn) = 2

n+1 , whence
L

x
.
=a

(x− a) · f(x) = 0.
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Since ε is arbitrary, and since x2 is any point in V ∗(a), it follows that

L
x
.
=a

f(x) · (x− a) = 0.

Corollary.—If ∫ b

x

f(x)dx

exists for every x between a and b, and

L
x
.
=a

∫ b

x

f(x)dx

exists and is finite, and if f(x) is entirely positive or entirely negative, then zero is a value
approached by (x− a) · f(x) as x approaches a.

Proof. Consider the case when the function is entirely positive. Suppose zero is not a
value approached. Then there exists a pair of positive numbers ε and δ such that for every
x, x− a < δ,

(x− a) · f(x) > ε.

On the interval,
| |
a a + δ , consider the function

ε

x− a
.

Since ∫ b

x

ε

x− a
dx

is a non-oscillating function of x, it follows from Theorem 25 that

L
x
.
=a

∫ b

x

ε

x− a
dx

exists, and by Theorem 142 this limit must be infinite. Since

|f(x)| > ε

x− a

on the neighborhood under consideration, it follows from Theorem 107 and Corollary 2;
Theorem 40, that

L
x
.
=a

∫ b

x

f(x)dx

exists and is infinite, which is contrary to the hypothesis.
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Theorem 1434. If

(1) f1(x) and f2(x) are of the same rank of infinity at x = a, or if f1(x) is of lower order
than f2(x),

(2)

∫ b

x

f1(x)dx and

∫ b

x

f2(x)dx both exist for every x on the segment a b,

(3) There is a neighborhood of x = a on which f2(x) does not change sign,

(4) L
x
.
=a

∫ b

a

f2(x)dx is finite,5

then it follows that L
x
.
=a

∫ b

x

f1(x)dx exists and is finite.

Proof. Since from the hypothesis

L
x
.
=a

∫ b

x

f2(x)dx

exists and is finite, we have by Theorem 138 that for every ε there exists a V ∗ε (a) such that
for every x1 and x2 on segment a b and on V ∗ε (a)∣∣∣∣∫ x2

x1

f2(x)dx

∣∣∣∣ < ε.

Consider x1 and x2 on a neighborhood of x = a for which
∣∣∣f1(x)
f2(x)

∣∣∣ < M and for which f2(x)

does not change sign. Then, by Theorem 113,∣∣∣∣∫ x2

x1

f1(x)dx

∣∣∣∣ < M ·
∣∣∣∣∫ x2

x1

f2(x)dx

∣∣∣∣ < M · ε.

Since M · ε can be made small at will by making ε small, it follows by Theorem 138 that

L
x
.
=a

∫ b

x

f1(x)dx

exists and is finite.
4This is what Professor Moore in his lectures calls the relative convergence theorem. Theorems 143,

144, 151, 152 in this form are due to him.
5We notice that since under the hypothesis f2(x) does not change sign,

L

∫ b

x

f2(x)dx

cannot fail to exist either finite or infinite, for it follows from this hypothesis that
∫ b

x

f2(x)dx is a non-

oscillating function of x and therefore, by Theorem 25 that the limit exists.
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An important special case of this theorem is when f1(x) is of the same or lower order

of infinity than f2(x), i.e., L
x
.
=a

f1(x)

f2(x)
= K, a constant not zero.

The reader should verify for himself that Theorem 140 is a corollary of Theorem 143.
The other previous tests for the existence of the improper definite integral can all be
reduced to special cases of Theorem 143. Cf., for example, the logarithmic test on page 410
of Pierpont.

Theorem 144. If

(1) f1(x) and f2(x) are of the same rank of infinity at x = a, or if f1(x) is of higher
order than f2(x),

(2)

∫ b

x

f1(x)dx and

∫ b

x

f2(x)dx both exist for every x on the segment
| |
a b,

(3) There is a neighborhood of x = a on which f1(x) does not change sign,

(4) L
x
.
=a

∫ b

x

f2(x)dx is infinite (see note under Theorem 143),

then L
x
.
=a

∫ b

x

f1(x)dx exists and is infinite or fails to exist.6

Proof. This is a direct consequence of Theorem 143, since if

L
x
.
=a

∫ b

x

f1(x)dx,

which exists by the foot-note of Theorem 143, were finite, then

L
x
.
=a

∫ b

x

f2(x)dx

would exist and be finite.

Theorem 145. If for a function f1(x) which does not change sign in the neighborhood
of x = a there exists a monotonic function f2(x) infinite of the same rank as f1(x) as x

approaches a,

∫ b

x

f1(x)dx and

∫ b

x

f2(x)dx both existing for every x on the segment a b,

then a necessary condition that L
x
.
=a

∫ b

x

f1(x)dx shall exist and be finite is that

L
x
.
=a

(x− a) · f1(x) = 0.

6This is what Professor Moore calls the relative divergence theorem.
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Proof. By hypothesis

L
x
.
=a

∫ b

x

f1(x)dx

exists and is finite. Hence, by Theorem 143,

L
x
.
=a

∫ b

x

f2(x)dx

exists and is finite. Therefore, by Theorem 142,

L
x
.
=a

(x− a) · f2(x) = 0.

Since
∣∣∣f1(x)
f2(x)

∣∣∣ is bounded as x approaches a, i.e., |f1(x)| < M · |f2(x)|, we have

(x− a) · |f1(x)| < M · (x− a) · |f2(x)|.

But

L
x
.
=a

M · (x− a) · |f2(x)| = 0.

Therefore, by Corollary 4, Theorem 40,

L
x
.
=a

(x− a) · |f1(x)| = 0,

or by Corollary 2, Theorem 27,

L
x
.
=a

(x− a) · f1(x) = 0.

§ 2 The Definite Integral on an Infinite Interval.

The integral over an infinite interval, viz.,

L
x
.
=∞

∫ x

a

f(x)dx,

has properties analogous to those of the improper definite integral on a finite interval
discussed in the preceding section, and is likewise called an improper definite integral.

The following theorems correspond to Theorems 138 to 145.

Theorem 146. If ∫ x

a

f(x)dx
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exists for every x, a < x, then a necessary and sufficient condition that

L
x
.
=∞

∫ x

a

f(x)dx

exists and is finite, is that for every ε there exists a Dε, such that for every two values of
x, x1 and x2, each greater than Dε, ∣∣∣∣∫ x2

x1

f(x)dx

∣∣∣∣ < ε.

Proof. The theorem is a direct consequence of Theorems 105 and 27.

Theorem 147. If ∫ x

a

f(x)dx

exists for every x greater than a, and if

L
x
.
=∞

∫ x

a

|f(x)|dx

is finite,7 then

L
x
.
=∞

∫ x

a

f(x)dx

exists and is finite.

Proof. The proof is like that of Theorem 139.

Theorem 148. If ∫ x

a

f(x)dx

exists for every x greater than a, and if (x− a)k · f(x) is bounded as x approaches infinity
for some k, k > 1, then

L
x
.
=∞

∫ x

a

f(x)dx

exists and is finite.

Proof. If in the proof of Theorem 140 we write D1−k
ε = ε(1−k)

M
instead of δ1−k

ε = ε(1−k)
M

, and
use Theorem 146 instead of 138, the proof of Theorem 140 will apply to Theorem 148.

Theorem 149. If f(x) does not change sign for x greater than some fixed number D, and
if for some positive number m and some number k 5 1,

∣∣(x− a)k · f(x)
∣∣ > m for every x

greater than D, then

L
x
.
=∞

∫ x

a

f(x)dx

cannot exist and be finite.

7Note on page 154 shows that this hypothesis is not redundant.
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Proof. By making suitable changes in the proof of Theorem 141 so as to make x1 and x2

approach infinity instead of a, that proof applies to this theorem.

Theorem 150. If

L
x
.
=∞

∫ x

a

f(x)dx

exists and is finite, and if f(x) is monotonic for all values of x greater than some fixed
number, then

L
x
.
=∞

(x− a) · f(x) = 0.

Proof. By making slight modifications of the proof of Theorem 142, that proof applies to
this theorem.

Corollary.—If ∫ x

a

f(x)dx

exists for every x greater than a, and

L
x
.
=∞

∫ x

a

f(x)dx

exists and is finite, and if f(x) does not change sign for x greater than some fixed number,
then zero is a value approached by (x− a)f(x) as x approaches ∞.

The proof is similar to that of the corollary of Theorem 142.

Theorem 151. If

(1) f1(x) and f2(x) are infinitesimals of the same rank as x approaches ∞, or if f1(x) is
of higher order than f2(x),

(2)

∫ x

a

f1(x)dx and

∫ x

a

f2(x)dx both exist for every x, a < x,

(3) f2(x) does not change sign for x greater than some fixed number,

(4) L
x
.
=∞

∫ x

a

f2(x)dx is finite,

then it follows that

L
x
.
=∞

∫ x

a

f1(x)dx

exists and is finite.8

Proof. The proof is analogous to that of Theorem 143.

8See note under Theorem 143.
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Theorem 152. If

(1) f1(x) and f2(x) are infinitesimals of the same rank as x approaches infinity, or if
f1(x) is of lower order than f2(x),

(2)

∫ x

a

f1(x)dx and

∫ x

a

f2(x)dx both exist for every x, a < x,

(3) f1(x) does not change sign for x greater than some fixed number,

(4) L
x
.
=∞

∫ x

a

f2(x)dx is infinite,

then

L
x
.
=∞

∫ x

a

f1(x)dx

exists and is infinite or fails to exist.

Proof like that of Theorem 144.

Theorem 153. If for a function f1(x) which does not change sign in the neighborhood of
x =∞ there exists a monotonic function f2(x) such that f1(x) and f2(x) are infinitesimals

of the same rank as x approaches infinity,

∫ x

a

f1(x)dx and

∫ x

a

f2(x)dx both existing for

every x > a, then a necessary condition that

L
x
.
=∞

∫ x

a

f1(x)dx

shall exist and be finite is that

L
x
.
=∞

(x− a) · f1(x) = 0.

The proof is like that of Theorem 145.

§ 3 Properties of the Simple Improper Definite Inte-

gral.

The following definition of the simple improper definite integral is equivalent in substance
to that given on page 153, and in form is partly the definition of the general improper
definite integral given on page 168.

The definite integral of a function is said to exist properly at a point x1 or in the

neighborhood of this point, on the interval
| |
a b if there exists an interval on

| |
a1 b1 containing

x1 as an interior point (or as an end point in case x1 = a or x1 = b) such that the proper
definite integral of f(x) exists on this interval. The integral is said to exist improperly at
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a point x1 on the interval
| |
a b if f(x) has an infinite singularity at x1 and there exists an

interval
| |
a1 b1 on

| |
a b containing x1 as an interior point (or end point in case x1 = a or

x1 = b) such that the improper definite integral exists on each of the intervals
| |
a1 x1 and

| |
x1 b1 .

If on an interval
| |
a b the definite integral exists properly at every point except a finite

number of points, and exists improperly at each of these points, then the improper definite

integral is said to exist simply on the interval
| |
a b, or the simple improper definite integral

is said to exist on the interval
| |
a b. Let x1, x2, . . ., xn be the points of

| |
a b at which the

integral exists improperly. The simple improper definite integral on
| |
a b is the sum of the

improper definite integrals on the intervals
| |
a x1 ,

| |
x1 x2 , . . .,

| |
xn−1 xn ,

| |
xn b.

We denote the simple improper definite integral of f(x) on the interval
| |
a b by

S

∫ b

a

f(x)dx.

This symbol is used generically to include the proper as well as the improper definite
integral.

Theorem 154. If a < b < c, and if two of the three simple improper definite integrals

S

∫ b

a

f(x)dx,
S

∫ c

b

f(x)dx, and
S

∫ c

a

f(x)dx

exist, then the third exists and

S

∫ b

a

f(x)dx +
S

∫ c

b

f(x)dx =
S

∫ c

a

f(x)dx.

Proof. If b is a point at which the integral exists improperly, and if

S

∫ b

a

f(x)dx and
S

∫ c

b

f(x)dx

both exist, then by the definition of

S

∫ c

a

f(x)dx

the latter exists and is equal to the sum of the two former.
If one of the two integrals, say

S

∫ b

a

f(x)dx,
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exists, and if

S

∫ c

a

f(x)dx

exists, then

S

∫ c

b

f(x)dx

exists since only in that case does

S

∫ c

a

f(x)dx

exist. The equation

S

∫ b

a

f(x)dx +
S

∫ c

b

f(x)dx =
S

∫ c

a

f(x)dx

likewise holds.

If b is a point at which the integral exists properly, then the theorem follows from the
above argument and the definition on page 164.

Theorem 155. If

S

∫ b

a

f(x)dx

exists, then

S

∫ a

b

f(x)dx

exists and

S

∫ b

a

f(x)dx = −
S

∫ a

b

f(x)dx.

Proof. In case the integral exists improperly only at one point of the interval, then the
theorem is an immediate consequence of Theorem 108 and Corollary 1, Theorem 27. (If

L
x
.
=a

f(x) = K, then L
x
.
=a
{−f(x)} = −K.) The theorem in the general case follows directly

from this case and the definition of the simple improper definite integral.

Theorem 156. If c is a constant and if the simple improper definite integral of f(x) exists

on
| |
a b, then the simple improper definite integral of c · f(x) exists on

| |
a b and

c
S

∫ b

a

f(x)dx =
S

∫ b

a

cf(x)dx.

Proof. The theorem is a direct consequence of Theorems 111 and 34.
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Theorem 157. If the simple improper definite integrals of f1(x) and f2(x) both exist on
| |
a b, then the simple improper definite integral of f1(x) + f2(x) and of f1(x) − f2(x) both
exist and

S

∫ b

a

{f1(x)± f2(x)}dx =
S

∫ b

a

f1(x)dx±
S

∫ b

a

f2(x)dx.

Proof. The theorem is a direct consequence of Theorems 112 and 34.

Theorem 158. If the simple improper definite integrals of f1(x) and f2(x) both exist, and
if f1(x) = f2(x), then

S

∫ b

a

f1(x)dx =
S

∫ b

a

f2(x)dx.

Proof. The theorem is a direct consequence of Theorem 113 and Corollary 2, Theorem 40.

Theorem 159. If

S

∫ b

a

f(x)dx

exists, then

S

∫ x

a

f(x)dx

is a continuous function of the limit of integration on the interval
| |
a b.

Proof. If x is a point at which the integral exists properly, the theorem is the same as
118. If x is a point at which the integral exists improperly, then the theorem follows from
Theorems 138 and 27.

Theorem 160. If

S

∫ b

a

f(x)dx

exists, it does not follow that

S

∫ b

a

|f(x)|dx

exists.

Proof. Let
x1, x2, x3, . . . , xn, . . .

be an infinite sequence of points on
| |
0 1 in the order indicated from 1 towards 0 such that∫ xn−1

xn

dx

x
=

1

n
.
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Consider a function f(x) defined as follows:

f(x) =
1

x
on x1 1, x3 x2, etc.

f(x) = −1

x
on

| |
x2 x1 ,

| |
x4 x3 , etc.

Obviously

L
x
.
=0

∫ 1

x

f(x)dx9

exists and is finite since the series 1
2
− 1

3
+ 1

4
. . . is convergent, while

L
x
.
=0

∫ 1

x

|f(x)|dx

is divergent since the harmonic series is divergent.

§ 4 A More General Improper Integral.

The problem of defining and studying the properties of the improper integral when the set
of points of singularity is infinite has been treated by many writers.10 In this section we
give a few properties of improper integrals as defined by Harnack and Moore.

Denote by P0 any set of points of content zero on
| |
a b, and by P the set of all points of

| |
a b not points of P0. P and P0 are complementary subsets of

| |
a b. Denote by I any finite

set of non-overlapping intervals of
| |
a b which contain no point of the set P0. The symbol

m(I) stands for the sum of the lengths of the intervals of I. For the sake of brevity D will
be used for |a− b|.

The following conditions are assumed to be satisfied:

9That 0 is a limit point of the sequence of points is obvious since in case this sequence has a limit point

greater than zero the proper definite integral of the function 1
x would fail to exist on some interval

| |
a b

where 0 < a < b, which is impossible.
10A. Cauchy and B. Riemann studied the case of a finite number of singularities in papers which are

to be found in these writers’ collected works. The infinite case has been treated by
A. Harnack, Mathematische Annalen, Vols. 21 and 24 (1883–84).
O. Hölder, Mathematische Annalen, Vol. 24 (1884).
C. Jordan, Cours d’Analyse, Vol. 2 (1894, 2d ed.).
O. Stolz, Grundzüge der Differential- und Integralrechnung, Vol. 3.
A. Schoenflies, Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. 8 (1900).
Vallée-Poussin, Liouville’s Journal, Ser. 4, Vol. 8 (1892).
E. H. Moore, Transactions of the American Mathematical Society, Vol. 2 (1901).
J. Pierpont, Theory of Functions of Real Variables (1906).
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(a) The definite integral of f(x) exists properly at every point of P . The sum of the
integrals of f(x) on the intervals of I is denoted by∫ b

a I

f(x)dx.

(b) For every positive ε there exists a positive δε such that for any two sets, I ′ and I ′′,
of intervals none of which contain any point of P0 and for which

|D −m(I ′)| < δε and |D −m(I ′′)| < δε,∣∣∣∣∫ b

a I′
f(x)dx−

∫ b

a I′′
f(x)dx

∣∣∣∣ < ε.

It follows by Theorem 27 that

L
m(I)

.
=D

∫ b

a I

f(x)dx

exists and is finite. This limit is denoted by

b

∫ b

a P0

f(x)dx

and is called the broad improper definite integral with respect to P0 of the function f(x)

on the interval
| |
a b.

It is to be noticed that all the points of P0 need not be on
| |
a b; those which are not on

| |
a b do not affect the existence of

b

∫ b

a P0

f(x)dx.

Therefore if f(x) is improperly integrable on some sub-interval
| |
a′ b′ of

| |
a b, its integral

may be denoted by

b

∫ b′

a′ P0

f(x)dx.

Theorem 161. If a < b < c and if of the integrals

b

∫ b

a P0

f(x)dx,
b

∫ c

b P0

f(x)dx,
b

∫ c

a P0

f(x)dx,

either

(a)
b

∫ b

a P0

f(x)dx and
b

∫ c

b P0

f(x)dx exist, or
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(b)
b

∫ c

a P0

f(x)dx exists,

then all three integrals exist and

b

∫ b

a P0

f(x)dx +
b

∫ c

b P0

f(x)dx =
b

∫ c

a P0

f(x)dx. (1)

Proof. Every set I of intervals on
| |
a c may be regarded as composed of a set I on

| |
a b and

a set I on
| |
b c, while, conversely, every pair of sets I and I constitute a set I. Hence∫ c

a I

f(x)dx =

∫ b

a I

f(x)dx +

∫ c

b I

f(x)dx.

(Note that both members of this equation are multiple-valued functions of m(I) and of

m(I) and m(I)). The conclusion of our theorem follows in case (a) from Theorem 34.

It remains to show that if
b

∫ c

a P0

f(x)dx exists, then
b

∫ b

a P0

f(x)dx and
b

∫ c

b P0

f(x)dx

exist, and in that case also equation (1) holds. Suppose that on some sequence of sets

[I] one of the two expressions

∫ b

a I

f(x)dx and

∫ c

b I

f(x)dx, say

∫ b

a I

f(x)dx, approaches two

distinct values as m(I) approaches D. Since there is some sequence of sets of intervals{
I ′
}

on which

∫ c

b I

f(x) approaches only one value, it follows that on the sequence of sets

of intervals obtained by associating with each I an I ′ and with each I ′ an I ′,

∫ c

a I

f(x)dx

approaches two distinct values as m(I)
.
= D, which is contrary to hypothesis.

If

∫ b

a I

f(x)dx approaches infinity, then clearly

∫ c

b I

f(x)dx must approach infinity of the

opposite sign. Hence, by the corollary of Theorem 51a,

∫ c

a I

f(x)dx will approach both +∞

and −∞ as m(I)
.
= D, which again contradicts the hypothesis that

b

∫ c

a P0

f(x)dx exists.

The equality

b

∫ c

a P0

f(x)dx =
b

∫ b

a P0

f(x)dx +
b

∫ c

b P0

f(x)dx

now follows from the identity of the limitands∫ c

a I

f(x)dx and

∫ b

a I

f(x)dx +

∫ c

b I

f(x)dx.
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Theorem 162. If
b

∫ b

a P0

f(x)dx exists, then
b

∫ a

b P0

f(x)dx exists and

b

∫ b

a P0

f(x)dx = −
b

∫ a

b P0

f(x)dx.

Proof. By Theorem 108, for every I∫ b

a I

f(x)dx = −
∫ a

b I

f(x)dx,

whence

b

∫ b

a P0

f(x)dx = −
b

∫ a

b P0

f(x)dx.

Theorem 163. If
b

∫ b

a P0

f(x)dx exists, then
b

∫ b

a P0

c · f(x)dx exists and

b

∫ b

a P0

c · f(x)dx = c ·
b

∫ b

a P0

f(x)dx.

Proof. This is a direct consequence of Theorems 111 and 34.

Theorem 164. If
b

∫ b

a P0

f1(x)dx and
b

∫ b

a P0

f2(x)dx both exist,

then
b

∫ b

a P0

(f1(x)± f2(x))dx exists and

b

∫ b

a P0

f1(x)dx±
b

∫ b

a P0

f2(x)dx =
b

∫ b

a P0

(f1(x)dx± f2(x))dx.

Proof. This is a direct consequence of Theorems 112 and 34.

Theorem 165. If f1(x) = f2(x), then

b

∫ b

a P0

f1(x)dx =
b

∫ b

a P0

f2(x)dx,

provided these integrals exist.

Proof. By Theorems 113 and 40.

Theorem 166. If
b

∫ b

a P0

f1(x)dx and
b

∫ b

a P0

f2(x)dx both exist,

b

∫ b

a P0

f1(x) · f2(x)dx

does not in general exist.
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Proof. Let f1(x) = f2(x) = 1√
x
. In this case the hypothesis of the theorem is verified but

the product, 1
x
, fails to be integrable on the interval

| |
0 1.

Theorem 167.
b

∫ x

a P0

f(x)dx is a continuous function of x.

Proof. If x is a point at which the integral exists properly, the continuity follows by
Theorem 118. If x is a point of the set P0, then, by Theorem 26, we need to show that

for every ε there is a δε, such that for every interval
| |
a′ b′ containing x1 and of length less

than δε,

∣∣∣∣∣ b

∫ b′

a′ P0

f(x)dx

∣∣∣∣∣ < ε. By definition there exists a δε such that for every I ′ and I ′′

for which |m(I ′)−D| < δε and |m(I ′′)−D| < δε,∣∣∣∣∫ b

a I′
f(x)dx−

∫ b

a I′′
f(x)dx

∣∣∣∣ < ε.

Let
| |
a′ b′ be an interval containing x1 such that

|a′ − b′| < δε

2
.

Let I ′ be any set of intervals not containing any point of P0 and containing no point of
| |
a′ b′ , and such that |m(I ′)−D| < δε. Denote by I(a′b′) any set of non-overlapping intervals

on
| |
a′ b′ containing no point of P0, and let I ′′ be the set of all intervals in I ′ and I(a′b′).

Then
|m(I ′′)−D| < δε

and ∫ b

aI′′
f(x)dx =

∫ b

aI′
f(x)dx +

∫ b′

a′ I (a′b′)

f(x)dx

and ∣∣∣∣∣
∫ b′

a′ I (a′b′)

f(x)dx

∣∣∣∣∣ =

∣∣∣∣∫ b

aI′′
f(x)dx

∣∣∣∣− ∣∣∣∣∫ b

aI′
f(x)dx

∣∣∣∣ .
Hence ∣∣∣∣∣ b

∫ b′

a′ P0

f(x)dx

∣∣∣∣∣ 5 ε.

Corollary.—For x1 any point on
| |
a b

L
x
.
=x1 b

∫ x

x1

f(x)dx = 0.
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Theorem 168. If f(x) is integrable with respect to P0, and if P1 is a set of points of
content zero, then f(x) is integrable with respect to the set P2 consisting of all points in P0

and in P1 and

b

∫ b

a P0

f(x)dx =
b

∫ b

a P2

f(x)dx.

Proof. Obviously the set P2 is of content zero. Any set of intervals I not containing a
point of P2 is also a set I not containing a point of P0. Hence any value approached by∫ b

a I

f(x)dx as m(I) approaches D is a value approached by

∫ b

a I

f(x)dx as m(I) approaches

D. Hence
b

∫ b

a P2

f(x)dx exists and

b

∫ b

a P0

f(x)dx =
b

∫ b

a P2

f(x)dx.

Theorem 169. If f1(x) is integrable with respect to P1 and f2(x) is integrable with respect
to P2, then f1(x)± f2(x) is integrable with respect to the set, P3, of all points in P1 and P2

and

b

∫ b

a P1

f1 (x)dx±
b

∫ b

a P2

f2 (x)dx =
b

∫ b

a P3

(f1(x)± f2(x))dx.

Proof. By Theorem 168 each of the functions f1(x) and f2(x) is integrable with respect
to P3, and

b

∫ b

a P1

f1(x)dx =
b

∫ b

a P3

f1(x)dx,

and

b

∫ b

a P2

f2(x)dx =
b

∫ b

a P3

f2(x)dx,

and hence, by Theorem 164, f1(x)± f2(x) is integrable with respect to P3 and

b

∫ b

a P1

f1(x)dx±
b

∫ b

a P2

f2 (x)dx =
b

∫ b

a P3

(f1 (x)± f2 (x))dx.

The broad improper definite integral as here defined contains as a special case the
proper definite integral, the integral in that case existing properly at every point of the

interval
| |
a b. It does not, however, contain as a special case the simple improper definite

integral considered in § 3. This may readily be shown by means of the function used on
page 167 to show that the simple improper definite integral is not absolutely convergent. In

the case of this function a sequence of sets of intervals Ia may be so chosen that

∫ b

a Ia

f(x)dx

shall approach any value whatever as m(Ia) approaches D.
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An improper integral which includes both the simple and the broad improper integrals
is obtained as follows: Every set I is to be such that if I ′ is its complementary set of
segments on a b, then every segment of I ′ contains at least one point of P0. The limit

of

∫ b

a I

f(x)dx as m(I) approaches D, if existent, is called the narrow improper definite

integral and is denoted by
n

∫ b

a P0

f(x)dx.

It is evident that if the broad integral exists, then the narrow integral also exists. The
narrow integral includes the simple improper definite integral of the preceding chapter.
Hence it follows that the broad and the narrow integrals are not equivalent.11 Theorems
161 to 167 hold of the narrow integral as well as of the broad integral. The proofs are
identical with the above except that the sets I are limited as in the definition of the
narrow integral. It may be shown by examples that Theorems 168 and 169 do not hold
in the case of the narrow integral. To show that 168 does not hold consider the function
defined in the proof of Theorem 160, where P0 consists of the point 0. Let P1 be the [xi]

of that example. Then obviously the narrow integral
n

∫ 1

0 P2

f(x)dx, where P2 contains all

the points of P1 and P2, fails to exist. The same example shows that Theorem 169 does
not hold of the narrow integral.

§ 5 Special Theorems on the Criteria of Existence of

the Improper Definite Integral on a Finite Inter-

val.

The examples of this section are intended to give an idea of the possible singularities of
improperly integrable functions, and to indicate the difficulty of obtaining more general
criteria of the divergence or convergence of the simple improper integral than those given
in §§ 1 and 2 of this chapter.

Lemma.—For every function f1(x) which is unbounded in every neighborhood of x = a
there is a function f2(x) which is infinitesimal as x approaches a, such that f1(x) · f2(x) is
unbounded in every neighborhood of x = a, and such that

f2(x)

x− a

is monotonic increasing as x approaches a.

Proof. Since f1(x) is unbounded in every neighborhood of x = a, it follows that for every
point x1 of the segment a b there is a point x2 on the segment a x1 such that

|f1(x2)| > 2|f1(x1)| > 2M,

11The narrow integral is so called because it has fewer properties than the broad integral. It exists for
a wider class of functions.
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and such that

(x2 − a) 5 1
2
(x1 − a).

Let x1, x2, x3, . . ., xn, . . . be a sequence of points dense only at a such that

|f1(xn)| > 2|f1(xn−1)| > 2n−1 ·M,

and such that

|xn − a| 5 1
2
|xn−1 − a|.

We define f2(x) as follows:

f2(x) =
1

n
on the points x1, x2, . . ., xn, . . .

and f2(x) is linear between the points of the sequence x1, x2, . . . , xn, . . . . Then there are

values of x on
| |
xn xn−1 such that

|f1(x)| · f2(x) >
2

n

n−1

·M,

whence f1(x) ·f2(x) is unbounded in the neighborhood of a.12 Obviously f2(x)
x−a

is monotonic
increasing as x approaches a.

Theorem 170. For every function f1(x) which is unbounded in every neighborhood of
x = a there exists a non-oscillating function f2(x) such that

L
x
.
=a

f1(x)

∫ b

x

f2(x)dx

exists and is finite, while

(x− a) · f1(x) · f2(x)

is unbounded in the neighborhood of x = a.

Proof. According to the lemma there exists a function f3(x) such that

L
x
.
=a

f3(x) = 0,

while f3(x) · f1(x) is unbounded and the function

f4(x) =
f3(x)

x− a

12In case L
x=0

f1(x) =∞, f2(x) = 1√
f1(x)

or f2(x) = 1
log f1(x) would satisfy the requirements of the lemma

except that they need not make f2(x)
x−a monotonic.
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is monotonic increasing as x approaches a. Since

(x− a)f4(x) · f1(x) = f3(x) · f1(x),

(x− a) · f4(x) · f1(x) is unbounded in the neighborhood of x = a. Let x1, . . . , xn, . . . be a

sequence of points on
| |
a b whose only limit point is a, such that f3(x) · f1(x) is unbounded

on this set. In the sequence

(x1 − a)f4(x1), (x2 − a)f4(x2), . . . , (xn − a)f4 (xn), (1)

L
n
.
=∞

(xn − a)f4(xn) = 0, since L
x
.
=a

(x − a)f4(x) = 0. Hence there is a value of n, n1, such

that
|(x1 − a)f4(x1)| = 2|(xn1 − a)f4(xn1)|,

and another value of n, n2 such that

|(xn1 − a)f4(xn1)| = 2|(xn2 − a)f4(xn2)|, etc.,

nm+1 being so chosen that

|(xnm − a)f4(xnm)| = 2|(xnm+1 − a)f4(xnm+1)|.

In this manner we select from the sequence (1) a set of terms forming the convergent series

(x1 − a)f4(x1) + (xn1 − a)f4(xn1) + . . . + (xnm − a)f4(xnm) + . . . . (2)

We then obtain a function f2(x) as follows: For the set of values of x

xnm+1 < x 5 xnm , f2(x) = f4(xnm).

Then

(1) f2(x) is non-oscillating since

f4(xnm) < f4(xnm+1).

(2) (x − a)f2(x) · f1(x) is unbounded on the set x1, xn1 , xn2 , . . . , xnm , . . ., since on this
set

f2(x) = f4(x).

(3) L
x
.
=a

∫ b

x

f2(x)dx =
∞∑

m=1

(xnm − xnm+1)f4(xnm).

But the terms of this series are numerically smaller than the corresponding terms of the
convergent series (2). Hence

L
x
.
=a

∫ b

x

f2(x)dx

exists and is finite.
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Theorem 170 may be regarded as showing that

L
x
.
=a

(x− a)f2(x) = 0

is a strong necessary condition that, under the hypothesis of Theorem 142,

L
x
.
=a

∫ b

x

f2(x)dx

shall exist and be finite. For, according to Theorem 170, it is impossible to modify the
function (x− a) by any factor f1(x) which shall approach infinity so slowly that for every
function f2(x) where

L
x
.
=a

∫ b

x

f2(x)dx

exists and is finite

L
x
.
=a

(x− a)f1(x) · f2(x) = 0.13

Theorem 171. For every function f1(x) defined on the interval
| |
a b there exists a function

f2(x) such that

(1) f2(x) is continuous and does not change sign on a certain neighborhood of x
.
= a.

(2) L
x
.
=a

∫ b

x

f2(x)dx exists and is finite.

(3) For x on a certain set [x′]

L
x
.
=a

f1(x
′)

f2(x′)
= 0.

Proof. Let x′1, x′2, . . . , x
′
n, . . . be a set of points of the interval

| |
a b dense only at a. Let

B1, B2, B3, . . . , Bn, . . . be a set of numbers such that

Bn · n|f1(x
′
n)| = 2 ·Bn+1(n + 1)|f1(x

′
n+1)|. (n = 1, 2, 3, . . .)

On the x axis lay off a set of segments [σn] such that σn is of length Bn and xn is its middle
point. On the segments σn as bases construct isosceles triangles on the positive side of
the x axis whose altitudes are n · |f1(x)|. The measures of areas of these triangles form a
convergent series. Let f3(x) be any continuous, monotonic, unbounded function such that

L
x
.
=a

∫ b

x

f3(x)dx

exists and is finite. We then define f2(x) as the function represented by the following curve:

13See Pringsheim, Mathematische Annalen, Vol. 37, pp. 591–604 (1890).
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(1) Those parts of the boundaries of the isosceles triangles just described which lie above
the curve defined by f3(x).

(2) Those parts of the curve defined by f3(x) which lie outside the triangles or on their
boundary.

Obviously the function so defined has the properties specified in the theorem, the points
x′1, x′2, . . . , x

′
n, . . . being the set [x′] specified by (3) of the theorem.

Theorem 171 means that from the hypothesis that the improper definite integral of

f(x) exists on
| |
a b it is impossible to obtain any conclusion whatever as to the order of

infinity or the rank of infinity of f(x) at x = a. This is what one would expect a priori,
since the definite integral is a function of two parameters, while the necessary condition in
terms of boundedness would be in terms of only one of these.

§ 6 Special Theorems on the Criteria of the Existence

of the Improper Definite Integral on the Infinite

Interval.

Theorem 172. For every function f1(x) which is unbounded as x approaches ∞ there
exists a non-oscillating function f2(x) such that

L
x
.
=∞

∫ x

a

f2(x)dx

exists and is finite, while (x− a)f1(x) · f2(x) is unbounded as x approaches ∞.

Proof. Obviously the lemma of Theorem 170 can be stated so as to apply to the case
where x approaches ∞ instead of a. If then in the proof of Theorem 161 the set of points
x1 . . . xn . . . is so taken that

L
n
.
=∞

xn =∞

instead of a, the proof of Theorem 161 applies with the exception that f2(x) is non-
oscillating decreasing instead of non-oscillating increasing.

Theorem 173. For every function f1(x) defined on the interval
| |
a ∞ there exists a function

f2(x) such that

(1) f2(x) is continuous and does not change sign for x greater than a certain fixed number.

(2)

L
x
.
=∞

∫ a

x

f2(x)dx

exists and is finite.
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(3) For x on a certain set [x′]

L
x
.
=∞

f1(x
′)

f2(x′)
= 0.

Proof. Such a function f2(x) may be defined in a manner analogous to that of the proof
of Theorem 171.

The remarks as to the meaning of Theorems 170 and 171 apply with obvious modifica-
tions to Theorems 172 and 173.
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Van Deventer’s Physical Chemistry for Beginners. (Boltwood.) . . . . . . . . . . . . . . . . . . . 12mo, 1 50
* Walke’s Lectures on Explosives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Ware’s Beet-sugar Manufacture and Refining. . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, cloth, 4 00
Washington’s Manual of the Chemical Analysis of Rocks. . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Weaver’s Military Explosives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Wehrenfennig’s Analysis and Softening of Boiler Feed-Water. . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Wells’s Laboratory Guide in Qualitative Chemical Analysis. . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50

Short Course in Inorganic Qualitative Chemical Analysis for
Engineering Students. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50

Text-book of Chemical Arithmetic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
Whipple’s Microscopy of Drinking-water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Wilson’s Cyanide Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50

Chlorination Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Winton’s Microscopy of Vegetable Foods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Wulling’s Elementary Course in Inorganic, Pharmaceutical, and Medical

Chemistry.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00

CIVIL ENGINEERING.

BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING.
RAILWAY ENGINEERING.

Baker’s Engineers’ Surveying Instruments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 3 00
Bixby’s Graphical Computing Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 19 1

2 × 24 1
4 inches 25

Breed and Hosmer’s Principles and Practice of Surveying. . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
* Burr’s Ancient and Modern Engineering and

the Isthmian Canal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Comstock’s Field Astronomy for Engineers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Crandall’s Text-book on Geodesy and Least Squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Davis’s Elevation and Stadia Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 00
Elliott’s Engineering for Land Drainage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50

Practical Farm Drainage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
* Fiebeger’s Treatise on Civil Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
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Flemer’s Phototopographic Methods and Instruments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Folwell’s Sewerage. (Designing and Maintenance.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Freitag’s Architectural Engineering. 2d Edition, Rewritten. . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
French and Ives’s Stereotomy.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Goodhue’s Municipal Improvements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 75
Gore’s Elements of Geodesy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Hayford’s Text-book of Geodetic Astronomy.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Hering’s Ready Reference Tables (Conversion Factors) . . . . . . . . . . . . . . . . . 16mo, morocco, 2 50
Howe’s Retaining Walls for Earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
* Ives’s Adjustments of the Engineer’s Transit and Level. . . . . . . . . . . . . . . . . . . . 16mo, Bds, 25
Ives and Hilts’s Problems in Surveying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 1 50
Johnson’s (J. B.) Theory and Practice of Surveying. . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 4 00
Johnson’s (L. J.) Statics by Algebraic and Graphic Methods. . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Laplace’s Philosophical Essay on Probabilities (Truscott

and Emory.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Mahan’s Treatise on Civil Engineering. (1873.) (Wood.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
* Descriptive Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Merriman’s Elements of Precise Surveying and Geodesy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Merriman and Brooks’s Handbook for Surveyors. . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 2 00
Nugent’s Plane Surveying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Ogden’s Sewer Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Parsons’s Disposal of Municipal Refuse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Patton’s Treatise on Civil Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo half leather, 7 50
Reed’s Topographical Drawing and Sketching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 5 00
Rideal’s Sewage and the Bacterial Purification of Sewage. . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Siebert and Biggin’s Modern Stone-cutting and Masonry. . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Smith’s Manual of Topographical Drawing. (McMillan.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Sondericker’s Graphic Statics, with Applications to Trusses, Beams,

and Arches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Taylor and Thompson’s Treatise on Concrete, Plain and Reinforced. . . . . . . . . . . . . . . . 8vo, 5 00
* Trautwine’s Civil Engineer’s Pocket-book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 5 00
Venable’s Garbage Crematories in America. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Wait’s Engineering and Architectural Jurisprudence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00

Sheep, 6 50
Law of Operations Preliminary to Construction in Engineering

and Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Sheep, 5 50

Law of Contracts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Warren’s Stereotomy—Problems in Stone-cutting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Webb’s Problems in the Use and Adjustment

of Engineering Instruments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 1 25
Wilson’s Topographic Surveying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50

BRIDGES AND ROOFS.

Boller’s Practical Treatise on the Construction of Iron
Highway Bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00

* Thames River Bridge.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, paper, 5 00
Burr’s Course on the Stresses in Bridges and Roof Trusses, Arched Ribs,

and Suspension Bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
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Burr and Falk’s Influence Lines for Bridge and Roof Computations. . . . . . . . . . . . . . . . . 8vo, 3 00
Design and Construction of Metallic Bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00

Du Bois’s Mechanics of Engineering. Vol. II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 4to, 10 00
Foster’s Treatise on Wooden Trestle Bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 5 00
Fowler’s Ordinary Foundations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Greene’s Roof Trusses.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 25

Bridge Trusses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Arches in Wood, Iron, and Stone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50

Howe’s Treatise on Arches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Design of Simple Roof-trusses in Wood and Steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Symmetrical Masonry Arches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50

Johnson, Bryan, and Turneaure’s Theory and Practice in the Designing
of Modern Framed Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 4to, 10 00

Merriman and Jacoby’s Text-book on Roofs and Bridges:
Part I. Stresses in Simple Trusses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Part II. Graphic Statics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Part III. Bridge Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Part IV. Higher Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50

Morison’s Memphis Bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 10 00
Waddell’s De Pontibus, a Pocket-book for Bridge

Engineers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 2 00
* Specifications for Steel Bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 50

Wright’s Designing of Draw-spans. Two parts in one volume. . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50

HYDRAULICS.

Barnes’s Ice Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Bazin’s Experiments upon the Contraction of the Liquid Vein Issuing

from an Orifice. (Trautwine.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Bovey’s Treatise on Hydraulics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Church’s Mechanics of Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00

Diagrams of Mean Velocity of Water in Open Channels. . . . . . . . . . . . . . . . . . . . . . paper, 1 50
Hydraulic Motors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00

Coffin’s Graphical Solution of Hydraulic Problems. . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 2 50
Flather’s Dynamometers, and the Measurement of Power. . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 3 00
Folwell’s Water-supply Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Frizell’s Water-power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Fuertes’s Water and Public Health. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50

Water-filtration Works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50
Ganguillet and Kutter’s General Formula for the Uniform Flow of Water

in Rivers and Other Channels. (Hering and Trautwine.) . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Hazen’s Filtration of Public Water-supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Hazlehurst’s Towers and Tanks for Water-works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Herschel’s 115 Experiments on the Carrying Capacity of Large,

Riveted, Metal Conduits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Mason’s Water-supply. (Considered Principally from

a Sanitary Standpoint.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Merriman’s Treatise on Hydraulics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
* Michie’s Elements of Analytical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Schuyler’s Reservoirs for Irrigation, Water-power, and Domestic

Water-supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 8vo, 5 00
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* Thomas and Watt’s Improvement of Rivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 6 00
Turneaure and Russell’s Public Water-supplies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Wegmann’s Design and Construction of Dams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 5 00

Water-supply of the City of New York from 1658 to 1895. . . . . . . . . . . . . . . . . . . . . . . 4to, 10 00
Whipple’s Value of Pure Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 12mo, 1 00
Williams and Hazen’s Hydraulic Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Wilson’s Irrigation Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 4 00
Wolff’s Windmill as a Prime Mover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Wood’s Turbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50

Elements of Analytical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

MATERIALS OF ENGINEERING.

Baker’s Treatise on Masonry Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Roads and Pavements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00

Black’s United States Public Works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oblong 4to, 5 00
* Bovey’s Strength of Materials and Theory of Structures. . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Burr’s Elasticity and Resistance of the Materials of Engineering. . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Byrne’s Highway Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00

Inspection of the Materials and Workmanship Employed
in Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, 3 00

Church’s Mechanics of Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00
Du Bois’s Mechanics of Engineering. Vol. I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 4to, 7 50
* Eckel’s Cements, Limes, and Plasters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00
Johnson’s Materials of Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 8vo, 6 00
Fowler’s Ordinary Foundations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Graves’s Forest Mensuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
* Greene’s Structural Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Keep’s Cast Iron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Lanza’s Applied Mechanics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Marten’s Handbook on Testing Materials. (Henning.) 2 vols.. . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Maurer’s Technical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Merrill’s Stones for Building and Decoration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Merriman’s Mechanics of Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
* Strength of Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Metcalf’s Steel. A Manual for Steel-users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Patton’s Practical Treatise on Foundations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Richardson’s Modern Asphalt Pavements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Richey’s Handbook for Superintendents of Construction. . . . . . . . . . . . . . . . . . . . 16mo, mor., 4 00
* Ries’s Clays: Their Occurrence, Properties, and Uses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Rockwell’s Roads and Pavements in France. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 11 25
Sabin’s Industrial and Artistic Technology of Paints and Varnish. . . . . . . . . . . . . . . . . . . 8vo, 3 00
Smith’s Materials of Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Snow’s Principal Species of Wood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Spalding’s Hydraulic Cement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00

Text-book on Roads and Pavements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Taylor and Thompson’s Treatise on Concrete, Plain and Reinforced. . . . . . . . . . . . . . . . 8vo, 5 00
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Thurston’s Materials of Engineering. 3 Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 8 00
Part I. Non-metallic Materials of Engineering and Metallurgy. . . . . . . . . . . . . . . . . 8vo, 2 00
Part II. Iron and Steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and

their Constituents.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Tillson’s Street Pavements and Paving Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Waddell’s De Pontibus (A Pocket-book for

Bridge Engineers.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, mor., 2 00
Specifications for Steel Bridges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25

Wood’s (De V.) Treatise on the Resistance of Materials, and an Appendix
on the Preservation of Timber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00

Wood’s (De V.) Elements of Analytical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Wood’s (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron

and Steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00

RAILWAY ENGINEERING.

Andrew’s Handbook for Street Railway Engineers. . . . . . . . . . . . . . . . 3× 5 inches, morocco, 1 25
Berg’s Buildings and Structures of American Railroads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 5 00
Brook’s Handbook of Street Railroad Location. . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 1 50
Butt’s Civil Engineer’s Field-book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 2 50
Crandall’s Transition Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 1 50

Railway and Other Earthwork Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Dawson’s “Engineering” and Electric Traction

Pocket-book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 5 00
Dredge’s History ol the Pennsylvania Railroad: (1879) . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper, 5 00
Fisher’s Table of Cubic Yards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cardboard, 25
Godwin’s Railroad Engineers’ Field-book

and Explorers’ Guide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 16mo, mor., 2 50
Hudson’s Tables for Calculating the Cubic Contents of Excavations

and Embankments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 00
Molitor and Beard’s Manual for Resident Engineers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, 1 00
Nagle’s Field Manual for Railroad Engineers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 3 00
Philbrick’s Field Manual for Engineers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 3 00
Searles’s Field Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 3 00

Railroad Spiral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 1 50
Taylor’s Prismoidal Formulæ and Earthwork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
* Trautwine’s Method of Calculating the Cube Contents of Excavations

and Embankments by the Aid of Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
The Field Practice of Laying Out Circular Curves

for Railroads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, morocco, 2 50
Cross-section Sheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper, 25

Webb’s Railroad Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 5 00
Economics of Railroad Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 12mo, 2 50

Wellington’s Economic Theory of the Location of Railways. . . . . . . . . . . . . . . . . . . Small 8vo, 5 00

DRAWING.

Barr’s Kinematics of Machinery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
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* Bartlett’s Mechanical Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
* “ “ “ Abridged Ed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Coolidge’s Manual of Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, paper, 1 00
Coolidge and Freeman’s Elements of General Drafting

for Mechanical Engineers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oblong 4to, 2 50
Durley’s Kinematics of Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Emch’s Introduction to Projective Geometry and its Applications. . . . . . . . . . . . . . . . . . 8vo, 2 50
Hill’s Text-book on Shades and Shadows, and Perspective. . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Jamison’s Elements of Mechanical Drawing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 8vo, 2 50

Advanced Mechanical Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Jones’s Machine Design:

Part I. Kinematics of Machinery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Part II. Form, Strength, and Proportions of Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

MacCord’s Elements of Descriptive Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Kinematics; or, Practical Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Mechanical Drawing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 4 00
Velocity Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50

MacLeod’s Descriptive Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 1 50
* Mahan’s Descriptive Geometry and Stone-cutting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50

Industrial Drawing. (Thompson.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Moyer’s Descriptive Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Reed’s Topographical Drawing and Sketching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 5 00
Reid’s Course in Mechanical Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00

Text-book of Mechanical Drawing and Elementary
Machine Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

Robinson’s Principles of Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Schwamb and Merrill’s Elements of Mechanism.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Smith’s (R. S.) Manual of Topographical Drawing. (McMillan.) . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Smith (A. W.) and Marx’s Machine Design.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
* Titsworth’s Elements of Mechanical Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oblong 8vo, 1 25
Warren’s Elements of Plane and Solid Free-hand Geometrical

Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Drafting Instruments and Operations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
Manual of Elementary Projection Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Manual of Elementary Problems in the Linear Perspective of Form

and Shadow.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Plane Problems in Elementary Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
Primary Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 75
Elements of Descriptive Geometry, Shadows, and Perspective. . . . . . . . . . . . . . . . . . . 8vo, 3 50
General Problems of Shades and Shadows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Elements of Machine Construction and Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Problems, Theorems, and Examples in Descriptive Geometry. . . . . . . . . . . . . . . . . . . 8vo, 2 50

Weisbach’s Kinematics and Power of Transmission. (Hermann
and Klein.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00

Whelpley’s Practical Instruction in the Art of Letter Engraving. . . . . . . . . . . . . . . . . . 12mo, 2 00
Wilson’s (H. M.) Topographic Surveying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Wilson’s (V. T.) Free-hand Perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Wilson’s (V. T.) Free-hand Lettering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 00
Woolf’s Elementary Course in Descriptive Geometry. . . . . . . . . . . . . . . . . . . . . . . . . Large 8vo, 3 00
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ELECTRICITY AND PHYSICS.

* Abegg’s Theory of Electrolytic Dissociation. (Von Ende.) . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
Anthony and Brackett’s Text-book of Physics. (Magie.) . . . . . . . . . . . . . . . . . . . . . Small 8vo, 3 00
Anthony’s Lecture-notes on the Theory of Electrical

Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Benjamin’s History of Electricity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

Voltaic Cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Classen’s Quantitative Chemical Analysis

by Electrolysis. (Boltwood.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
* Collins’s Manual of Wireless Telegraphy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50

Morocco, 2 00
Crehore and Squier’s Polarizing Photo-chronograph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
* Danneel’s Electrochemistry. (Merriam.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
Dawson’s “Engineering” and Electric Traction

Pocket-book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 5 00
Dolezalek’s Theory of the Lead Accumulator (Storage Battery).

(Von Ende.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50
Duhem’s Thermodynamics and Chemistry. (Burgess.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Flather’s Dynamometers, and the Measurement of Power. . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 3 00
Gilbert’s De Magnete. (Mottelay.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Hanchett’s Alternating Currents Explained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Hering’s Ready Reference Tables (Conversion Factors) . . . . . . . . . . . . . . . . . 16mo, morocco, 2 50
Holman’s Precision of Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00

Telescopic Mirror-scale Method, Adjustments, and Tests. . . . . . . . . . . . . . . . . Large 8vo, 75
Kinzbrunner’s Testing of Continuous-current Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Landauer’s Spectrum Analysis. (Tingle.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Le Chatelier’s High-temperature Measurements.

(Boudouard—Burgess.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 3 00
Löb’s Electrochemistry of Organic Compounds. (Lorenz.) . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
* Lyons’s Treatise on Electromagnetic Phenomena. Vols. I.

and II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, each, 6 00
* Michie’s Elements of Wave Motion Relating to Sound and Light. . . . . . . . . . . . . . . . . . 8vo, 4 00
Niaudet’s Elementary Treatise on Electric Batteries. (Fishback.) . . . . . . . . . . . . . . . . . 12mo, 50
* Parshall and Hobart’s Electric Machine Design. . . . . . . . . . . . . . . . . . . . . 4to, half morocco, 12 50
Reagan’s Locomotives: Simple, Compound, and Electric.

New Edition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 12mo, 2 50
* Rosenberg’s Electrical Engineering. (Haldane Gee—Kinzbrunner.) . . . . . . . . . . . . . . . 8vo, 1 50
Ryan, Norris, and Hoxie’s Electrical Machinery. Vol. I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Thurston’s Stationary Steam-engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
* Tillman’s Elementary Lessons in Heat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Tory and Pitcher’s Manual of Laboratory Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 2 00
Ulke’s Modern Electrolytic Copper Refining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

LAW.

* Davis’s Elements of Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
* Treatise on the Military Law of United States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 00
* Sheep, 7 50
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* Dudley’s Military Law and the Procedure
of Courts-martial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 12mo, 2 50

Manual for Courts-martial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 1 50
Wait’s Engineering and Architectural Jurisprudence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00

Sheep, 6 50
Law of Operations Preliminary to Construction in Engineering

and Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Sheep, 5 50

Law of Contracts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Winthrop’s Abridgment of Military Law.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50

MANUFACTURES.

Bernadou’s Smokeless Powder—Nitro-cellulose and Theory of
the Cellulose Molecule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50

Bolland’s Iron Founder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50
“The Iron Founder,” Supplement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50
Encyclopedia of Founding and Dictionary of Foundry Terms Used

in the Practice of Moulding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 3 00
* Claassen’s Beet-sugar Manufacture. (Hall and Rolfe.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
* Eckel’s Cements, Limes, and Plasters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00
Eissler’s Modern High Explosives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Effront’s Enzymes and their Applications. (Prescott.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Fitzgerald’s Boston Machinist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Ford’s Boiler Making for Boiler Makers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18mo, 1 00
Hopkin’s Oil-chemists’ Handbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Keep’s Cast Iron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Leach’s The Inspection and Analysis of Food with Special Reference

to State Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 8vo, 7 50
* McKay and Larsen’s Principles and Practice of Butter-making. . . . . . . . . . . . . . . . . . . 8vo, 1 50
Matthews’s The Textile Fibres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Metcalf’s Steel. A Manual for Steel-users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Metcalfe’s Cost of Manufactures—And the Administration

of Workshops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Meyer’s Modern Locomotive Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 10 00
Morse’s Calculations used in Cane-sugar Factories. . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 1 50
* Reisig’s Guide to Piece-dyeing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 25 00
Rice’s Concrete-block Manufacture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Sabin’s Industrial and Artistic Technology of Paints and Varnish. . . . . . . . . . . . . . . . . . . 8vo, 3 00
Smith’s Press-working of Metals.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Spalding’s Hydraulic Cement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Spencer’s Handbook for Chemists of Beet-sugar Houses. . . . . . . . . . . . . . . . . 16mo, morocco, 3 00

Handbook for Cane Sugar Manufacturers. . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 3 00
Taylor and Thompson’s Treatise on Concrete, Plain and Reinforced. . . . . . . . . . . . . . . . 8vo, 5 00
Thurston’s Manual of Steam-boilers, their Designs, Construction

and Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
* Walke’s Lectures on Explosives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Ware’s Beet-sugar Manufacture and Refining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 4 00
Weaver’s Military Explosives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

14



West’s American Foundry Practice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50
Moulder’s Text-book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50

Wolff’s Windmill as a Prime Mover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Wood’s Rustless Coatings: Corrosion and Electrolysis of Iron

and Steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00

MATHEMATICS.

Baker’s Elliptic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
* Bass’s Elements of Differential Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 4 00
Briggs’s Elements of Plane Analytic Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Compton’s Manual of Logarithmic Computations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Davis’s Introduction to the Logic of Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
* Dickson’s College Algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 12mo, 1 50
* Introduction to the Theory of Algebraic Equations. . . . . . . . . . . . . . . . . . . . . Large 12mo, 1 25
Emch’s Introduction to Projective Geometry and its Applications. . . . . . . . . . . . . . . . . . 8vo, 2 50
Halsted’s Elements of Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 75

Elementary Synthetic Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Rational Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 75

* Johnson’s (J. B.) Three-place Logarithmic Tables:
Vest-pocket size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . paper, 15

100 copies for 5 00
* Mounted on heavy cardboard, 8× 10 inches, 25

10 copies for 2 00
Johnson’s (W. W.) Elementary Treatise on Differential

Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 3 00
Elementary Treatise on the Integral Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 1 50

Johnson’s (W. W.) Curve Tracing in Cartesian Co-ordinates.. . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Johnson’s (W. W.) Treatise on Ordinary and Partial Differential

Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 3 50
Johnson’s (W. W.) Theory of Errors and the Method of

Least Squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
* Johnson’s (W. W.) Theoretical Mechanics,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 3 00
Laplace’s Philosophical Essay on Probabilities. (Truscott

and Emory.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
* Ludlow and Bass. Elements of Trigonometry and Logarithmic

and Other Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Trigonometry and Tables published separately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Each, 2 00

* Ludlow’s Logarithmic and Trigonometric Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 00
Manning’s Irrational Numbers and their Representation by Sequences

and Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo 1 25
Mathematical Monographs. Edited by Mansfield Merriman and Robert

S. Woodward.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Octavo, each 1 00
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No. 1. History of Modern Mathematics, by David Eugene Smith.
No. 2. Synthetic Projective Geometry, by George Bruce Halsted.
No. 3. Determinants, by Laenas Gifford Weld. No. 4. Hyperbolic
Functions, by James McMahon. No. 5. Harmonic Functions,
by William E. Byerly. No. 6. Grassmann’s Space Analysis,
by Edward W. Hyde. No. 7. Probability and Theory of Errors,
by Robert S. Woodward. No. 8. Vector Analysis and Quaternions,
by Alexander Macfarlane. No. 9. Differential Equations, by
William Woolsey Johnson. No. 10. The Solution of Equations,
by Mansfield Merriman. No. 11. Functions of a Complex Variable,
by Thomas S. Fiske.

Maurer’s Technical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Merriman’s Method of Least Squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Rice and Johnson’s Elementary Treatise on the Differential

Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sm. 8vo, 3 00
Differential and Integral Calculus. 2 vols. in one. . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 2 50

* Veblen and Lennes’s Introduction to the Real Infinitesimal Analysis
of One Variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00

Wood’s Elements of Co-ordinate Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Trigonometry: Analytical, Plane, and Spherical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Bacon’s Forge Practice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Baldwin’s Steam Heating for Buildings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50
Barr’s Kinematics of Machinery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
* Bartlett’s Mechanical Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
* “ “ “ Abridged Ed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Benjamin’s Wrinkles and Recipes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Carpenter’s Experimental Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00

Heating and Ventilating Buildings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Clerk’s Gas and Oil Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 4 00
Coolidge’s Manual of Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, paper, 1 00
Coolidge and Freeman’s Elements of General Drafting

for Mechanical Engineers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oblong 4to, 2 50
Cromwell’s Treatise on Toothed Gearing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50

Treatise on Belts and Pulleys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Durley’s Kinematics of Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Flather’s Dynamometers and the Measurement of Power. . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 3 00

Rope Driving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Gill’s Gas and Fuel Analysis for Engineers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
Hall’s Car Lubrication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Hering’s Ready Reference Tables (Conversion Factors) . . . . . . . . . . . . . . . . . 16mo, morocco, 2 50
Hutton’s The Gas Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Jamison’s Mechanical Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Jones’s Machine Design:

Part I. Kinematics of Machinery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Part II. Form, Strength, and Proportions of Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

Kent’s Mechanical Engineers’ Pocket-book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, morocco, 5 00
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Kerr’s Power and Power Transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Leonard’s Machine Shop, Tools, and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
* Lorenz’s Modern Refrigerating Machinery. (Pope, Haven,

and Dean.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
MacCord’s Kinematics; or Practical Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00

Mechanical Drawing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 4 00
Velocity Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50

MacFarland’s Standard Reduction Factors for Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Mahan’s Industrial Drawing. (Thompson.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Poole’s Calorific Power of Fuels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Reid’s Course in Mechanical Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00

Text-book of Mechanical Drawing and Elementary
Machine Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

Richard’s Compressed Air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Robinson’s Principles of Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Schwamb and Merrill’s Elements of Mechanism.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Smith’s (O.) Press-working of Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Smith (A. W.) and Marx’s Machine Design.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Thurston’s Treatise on Friction and Lost Work in Machinery

and Mill Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Animal as a Machine and Prime Motor, and the Laws

of Energetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Tillson’s Complete Automobile Instructor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, 1 50

Morocco, 2 00
Warren’s Elements of Machine Construction and Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Weisbach’s Kinematics and the Power of Transmission.

(Herrmann—Klein.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Machinery of Transmission and Governors. (Herrmann—Klein.). . . . . . . . . . . . . . . . 8vo, 5 00

Wolff’s Windmill as a Prime Mover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Wood’s Turbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50

MATERIALS OF ENGINEERING.

* Bovey’s Strength of Materials and Theory of Structures. . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Burr’s Elasticity and Resistance of the Materials of Engineering.

6th Edition. Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Church’s Mechanics of Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00
* Greene’s Structural Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Johnson’s Materials of Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00
Keep’s Cast Iron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Lanza’s Applied Mechanics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Martens’s Handbook on Testing Materials. (Henning.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Maurer’s Technical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Merriman’s Mechanics of Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
* Strength of Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Metcalf’s Steel. A Manual for Steel-users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Sabin’s Industrial and Artistic Technology of Paints and Varnish. . . . . . . . . . . . . . . . . . . 8vo, 3 00
Smith’s Materials of Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Thurston’s Materials of Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 vols., 8vo, 8 00

Part II. Iron and Steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
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Part III. A Treatise on Brasses, Bronzes, and Other Alloys and
their Constituents.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50

Wood’s (De V.) Treatise on the Resistance of Materials and an Appendix
on the Preservation of Timber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00

Elements of Analytical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Wood’s (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron

and Steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00

STEAM-ENGINES AND BOILERS.

Berry’s Temperature-entropy Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
Carnot’s Reflections on the Motive Power of Heat (Thurston.) . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Dawson’s “Engineering” and Electric Traction Pocket-book. . . . . . . . . . . . . . . . . 16mo mor., 5 00
Ford’s Boiler Making for Boiler Makers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18mo, 1 00
Goss’s Locomotive Sparks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00

Locomotive Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Hemenway’s Indicator Practice and Steam-engine Economy. . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Hutton’s Mechanical Engineering of Power Plants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00

Heat and Heat-engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Kent’s Steam boiler Economy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Kneass’s Practice and Theory of the Injector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
MacCord’s Slide-valves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Meyer’s Modern Locomotive Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 10 00
Peabody’s Manual of the Steam-engine Indicator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50

Tables of the Properties of Saturated Steam and Other Vapors. . . . . . . . . . . . . . . . . 8vo, 1 00
Thermodynamics of the Steam-engine and Other Heat-engines. . . . . . . . . . . . . . . . . 8vo, 5 00
Valve-gears for Steam-engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50

Peabody and Miller’s Steam-boilers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Pray’s Twenty Years with the Indicator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 8vo, 2 50
Pupin’s Thermodynamics of Reversible Cycles in Gases and

Saturated Vapors. (Osterberg.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
Reagan’s Locomotives: Simple, Compound,

and Electric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 12mo, 2 50
Rontgen’s Principles of Thermodynamics. (Du Bois.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Sinclair’s Locomotive Engine Running and Management. . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Smart’s Handbook of Engineering Laboratory Practice. . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50
Snow’s Steam-boiler Practice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Spangler’s Valve-gears. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50

Notes on Thermodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Spangler, Greene, and Marshall’s Elements of Steam-engineering. . . . . . . . . . . . . . . . . . . 8vo, 3 00
Thomas’s Steam-turbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 50
Thurston’s Handy Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50

Manual of the Steam-engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 vols., 8vo, 10 00
Part I. History, Structure, and Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00
Part II. Design, Construction, and Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00
Handbook of Engine and Boiler Trials, and the Use of the Indicator

and the Prony Brake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Stationary Steam-engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Steam-boiler Explosions in Theory and in Practice. . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Manual of Steam-boilers, their Designs, Construction,

and Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
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Wehrenfennigs’s Analysis and Softening of Boiler
Feed-water (Patterson) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00

Weisbach’s Heat, Steam, and Steam-engines. (Du Bois.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Whitham’s Steam-engine Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Wood’s Thermodynamics, Heat Motors,

and Refrigerating Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00

MECHANICS AND MACHINERY.

Barr’s Kinematics of Machinery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
* Bovey’s Strength of Materials and Theory of Structures. . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Chase’s The Art of Pattern-making. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 50
Church’s Mechanics of Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00

Notes and Examples in Mechanics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Compton’s First Lessons in Metal-working. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Compton and De Groodt’s The Speed Lathe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Cromwell’s Treatise on Toothed Gearing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50

Treatise on Belts and Pulleys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Dana’s Text-book of Elementary Mechanics for Colleges

and Schools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Dingey’s Machinery Pattern Making. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Dredge’s Record of the Transportation Exhibits Building of

the World’s Columbian Exposition of 1893. . . . . . . . . . . . . . . . . . . . 4to half morocco, 5 00
Du Bois’s Elementary Principles of Mechanics:

Vol. I. Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo. 3 50
Vol. II. Statics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Mechanics of Engineering. Vol. I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 4to, 7 50

Vol. II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 4to, 10 00
Durley’s Kinematics of Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo. 4 00
Fitzgerald’s Boston Machinist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, 1 00
Flather’s Dynamometers, and the Measurement of Power. . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 3 00

Rope Driving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Goss’s Locomotive Sparks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Locomotive Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
* Greene’s Structural Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Hall’s Car Lubrication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Holly’s Art of Saw Filing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18mo, 75
James’s Kinematics of a Point and the Rational Mechanics

of a Particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Small 8vo, 2 00
* Johnson’s (W. W.) Theoretical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 3 00
Johnson’s (L. J.) Statics by Graphic and Algebraic Methods. . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Jones’s Machine Design:

Part I. Kinematics of Machinery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
Part II. Form, Strength, and Proportions of Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

Kerr’s Power and Power Transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00
Lanza’s Applied Mechanics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Leonard’s Machine Shop, Tools, and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
* Lorenz’s Modern Refrigerating Machinery. (Pope, Haven,

and Dean.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
MacCord’s Kinematics; or, Practical Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
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Velocity Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 1 50
* Martin’s Text Book on Mechanics, Vol. I, Statics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
Maurer’s Technical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
Merriman’s Mechanics of Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
* Elements of Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
* Michie’s Elements of Analytical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 4 00
* Parshall and Hobart’s Electric Machine Design. . . . . . . . . . . . . . . . . . . . . 4to, half morocco, 12 50
Reagan’s Locomotives: Simple, Compound,

and Electric. New Edition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 12mo, 3 00
Reid’s Course in Mechanical Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 00

Text-book of Mechanical Drawing and Elementary
Machine Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

Richards’s Compressed Air. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 50
Robinson’s Principles of Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Ryan, Norris, and Hoxie’s Electrical Machinery. Vol. I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50
Sanborn’s Mechanics: Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large 12mo, 1 50
Schwamb and Merrill’s Elements of Mechanism.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Sinclair’s Locomotive-engine Running and Management. . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 2 00
Smith’s (O.) Press-working of Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Smith’s (A. W.) Materials of Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Smith (A. W.) and Marx’s Machine Design.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Spangler, Greene, and Marshall’s Elements of Steam-engineering. . . . . . . . . . . . . . . . . . . 8vo, 3 00
Thurston’s Treatise on Friction and Lost Work in Machinery

and Mill Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00
Animal as a Machine and Prime Motor, and the Laws

of Energetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 00
Tillson’s Complete Automobile Instructor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16mo, 1 50

Morocco, 2 00
Warren’s Elements of Machine Construction and Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 7 50
Weisbach’s Kinematics and Power of Transmission.

(Herrmann—Klein.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Machinery of Transmission and Governors.

(Herrmann—Klein.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 5 00
Wood’s Elements of Analytical Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 3 00

Principles of Elementary Mechanics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12mo, 1 25
Turbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 2 50

The World’s Columbian Exposition of 1893. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4to, 1 00

MEDICAL.

De Fursac’s Manual of Psychiatry. (Rosanoff and Collins.) . . . . . . . . . . . . . . . . . Large 12mo, 2 50
Ehrlich’s Collected Studies on Immunity. (Bolduan.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8vo, 6 00
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