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PREFACE

Non-Euclidean Geometry is now recognized as an important branch of Mathe-
matics. Those who teach Geometry should have some knowledge of this subject,
and all who are interested in Mathematics will find much to stimulate them and
much for them to enjoy in the novel results and views that it presents.

This book is an attempt to give a simple and direct account of the Non-
Euclidean Geometry, and one which presupposes but little knowledge of Math-
ematics. The first three chapters assume a knowledge of only Plane and Solid
Geometry and Trigonometry, and the entire book can be read by one who has
taken the mathematical courses commonly given in our colleges.

No special claim to originality can be made for what is published here. The
propositions have long been established, and in various ways. Some of the proofs
may be new, but others, as already given by writers on this subject, could not be
improved. These have come to me chiefly through the translations of Professor
George Bruce Halsted of the University of Texas.

I am particularly indebted to my friend, Arnold B. Chace, Sc.D., of Valley
Falls, R. I., with whom I have studied and discussed the subject.

HENRY P. MANNING.
Providence, January, 1901.
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Chapter 1

INTRODUCTION

The axioms of Geometry were formerly regarded as laws of thought which an
intelligent mind could neither deny nor investigate. Not only were the axioms
to which we have been accustomed found to agree with our experience, but it
was believed that we could not reason on the supposition that any of them are
not true, it has been shown, however, that it is possible to take a set of axioms,
wholly or in part contradicting those of Euclid, and build up a Geometry as
consistent as his.

We shall give the two most important Non-Euclidean Geometries.1 In these
the axioms and definitions are taken as in Euclid, with the exception of those
relating to parallel lines. Omitting the axiom on parallels,2 we are led to three
hypotheses; one of these establishes the Geometry of Euclid, while each of the
other two gives us a series of propositions both interesting and useful. Indeed, as
long as we can examine but a limited portion of the universe, it is not possible
to prove that the system of Euclid is true, rather than one of the two Non-
Euclidean Geometries which we are about to describe.

We shall adopt an arrangement which enables us to prove first the proposi-
tions common to the three Geometries, then to produce a series of propositions
and the trigonometrical formulæ for each of the two Geometries which differ
from that of Euclid, and by analytical methods to derive some of their most
striking properties.

We do not propose to investigate directly the foundations of Geometry, nor
even to point out all of the assumptions which have been made, consciously or
unconsciously, in this study. Leaving undisturbed that which these Geometries
have in common, we are free to fix our attention upon their differences. By a
concrete exposition it may be possible to learn more of the nature of Geometry
than from abstract theory alone.

1See Historical Note, p. 80.
2See p. 79.
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CHAPTER 1. INTRODUCTION 2

Thus we shall employ most of the terms of Geometry without repeating the
definitions given in our text-books, and assume that the figures defined by these
terms exist. In particular we assume:

I. The existence of straight lines determined by any two points, and that the
shortest path between two points is a straight line.

II. The existence of planes determined by any three points not in a straight
line, and that a straight line joining any two points of a plane lies wholly
in the plane.

III. That geometrical figures can be moved about without changing their shape
or size.

IV. That a point moving along a line from one position to another passes
through every point of the line between, and that a geometrical magnitude,
for example, an angle, or the length of a portion of a line, varying from
one value to another, passes through all intermediate values.

In some of the propositions the proof will be omitted or only the method of
proof suggested, where the details can be supplied from our common text-books.
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PANGEOMETRY

2.1 Propositions Depending Only on the Prin-
ciple of Superposition

1. Theorem. If one straight line meets another, the sum of the adjacent angles
formed is equal to two right angles.

2. Theorem. If two straight lines intersect, the vertical angles are equal.

3. Theorem. Two triangles are equal if they have a side and two adjacent
angles, or two sides and the included angle, of one equal, respectively, to
the corresponding parts of the other.

4. Theorem. In an isosceles triangle the angles opposite the equal sides are
equal.

Bisect the angle at the vertex and use (3).

5. Theorem. The perpendiculars erected at the middle points of the sides of a
triangle meet in a point if two of them meet, and this point is the centre
of a circle that can be drawn through the three vertices of the triangle.

Proof. Suppose EO and FO meet at O. The triangles AFO and BFO
are equal by (3). Also, AEO and CEO are equal. Hence, CO and BO are
equal, being each equal to AO. The triangle BCO is, therefore, isosceles,
and OD if drawn bisecting the angle BOC will be perpendicular to BC
at its middle point.

3



CHAPTER 2. PANGEOMETRY 4

6. Theorem. In a circle the radius bisecting an angle at the centre is perpen-
dicular to the chord which subtends the angle and bisects this chord.

7. Theorem. Angles at the centre of a circle are proportional to the intercepted
arcs and may be measured by them.

8. Theorem. From any point without a line a perpendicular to the line can be
drawn.

Proof. Let P ′ be the position which P would take if the plane were
revolved about AB into coincidence with itself. The straight line PP ′ is
then perpendicular to AB.

9. Theorem. If oblique lines drawn from a point in a perpendicular to a line
cut off equal distances from the foot of the perpendicular, they are equal
and make equal angles with the line and with the perpendicular.

10. Theorem. If two lines cut a third at the same angle, that is, so that cor-
responding angles are equal, a line can be drawn that is perpendicular to
both.

Proof. Let the angles FMB and MND be equal, and through H, the
middle point of MN , draw LK perpendicular to CD; then LK will also
be perpendicular to AB. For the two triangles LMH and KNH are equal
by (3).

11. Theorem. If two equal lines in a plane are erected perpendicular to a given
line, the line joining their extremities makes equal angles with them and
is bisected at right angles by a third perpendicular erected midway between
them.
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Let AC and BD be perpendicular to AB, and suppose AC and BD
equal. The angles at C and D made with a line joining these two points
are equal, and the perpendicular HK erected at the middle point of AB
is perpendicular to CD at its middle point.

Proved by superposition.

12. Theorem. Given as in the last proposition two perpendiculars and a third
perpendicular erected midway between them; any line cutting this third
perpendicular at right angles, if it cuts the first two at all, will cut off
equal lengths on them and make equal angles with them.

Proved by superposition.

Corollary. The last two propositions hold true if the angles at A and B
are equal acute or equal obtuse angles, HK being perpendicular to AB at
its middle point. If AC = BD, the angles at C and D are equal, and HK
is perpendicular to CD at its middle point: or, if CD is perpendicular to
HK at any point, K, and intersects AC and BD, it it will cut off equal
distances on these two lines and make equal angles with them.
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2.2 Propositions Which Are True for Restricted
Figures

The following propositions are true at least for figures whose lines do not exceed
a certain length. That is, if there is any exception, it is in a case where we cannot
apply the theorem or some step of the proof on account of the length of some
of the lines. For convenience we shall use the word restricted in this sense and
say that a theorem is true for restricted figures or in any restricted portion of
the plane.

1. Theorem. The exterior angle of a triangle is greater than either opposite
interior angle (Euclid, I, 16).

Proof. Draw AD from A to the middle point of the opposite side and
produce it to E, making DE = AD. The two triangles ADC and EBD
are equal, and the angle FBD, being greater than the angle EBD, is
greater than C.

Corollary. At least two angles of a triangle are acute.

2. Theorem. If two angles of a triangle are equal, the opposite sides are equal
and the triangle is isosceles.

Proof. The perpendicular erected at the middle point of the base divides
the triangle into two figures which may be made to coincide and are equal.
This perpendicular, therefore, passes through the vertex, and the two sides
opposite the equal angles of the triangle are equal.
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3. Theorem. In a triangle with unequal angles the side opposite the greater of
the angles is greater than the side opposite the smaller; and conversely, if
the sides of a triangle are unequal the opposite angles are unequal, and the
greater angle lies opposite the greater side.

4. Theorem. If two triangles have two sides of one equal, respectively, to two
sides of the other, but the included angle of the first greater than the in-
cluded angle of the second, the third side of the first is greater than the
third side of the second; and conversely, if two triangles have two sides
of one equal, respectively, to two sides of the other, but the third side of
the first greater than the third side of the second, the angle opposite the
third side of the first is greater than the angle opposite the third side of
the second.

5. Theorem. The sum of two lines drawn from any point to the extremities
of a straight line is greater than the sum of two lines similarly drawn but
included by them.

6. Theorem. Through any point one perpendicular only can be drawn to a
straight line.

Proof. Let P ′ be the position which P would take if the plane were
revolved about AB into coincidence with itself. If we could have two
perpendiculars, PC and PD, from P to AB, then CP ′ and DP ′ would
be continuations of these lines and we should have two different straight
lines joining P and P ′, which is impossible.

Corollary. Two right triangles are equal when the hypothenuse and an
acute angle of one are equal, respectively, to the hypothenuse and an acute
angle of the other.

7. Theorem. The perpendicular is the shortest line that can be drawn from a
point to a straight line.

Corollary. In a right triangle the hypothenuse is greater than either of
the two sides about the right angle.

8. Theorem. If oblique lines drawn from a point in a perpendicular to a line cut
off unequal distances from the foot of the perpendicular, they are unequal,
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and the more remote is the greater; and conversely, if two oblique lines
drawn from a point in a perpendicular are unequal, the greater cuts off a
greater distance from the foot of the perpendicular.

9. Theorem. If a perpendicular is erected at the middle point of a straight line,
any point not in the perpendicular is nearer that extremity of the line which
is on the same side of the perpendicular.

Corollary. Two points equidistant from the extremities of a straight line
determine a perpendicular to the line at its middle point.

10. Theorem. Two triangles are equal when they have three sides of one equal,
respectively, to three sides of the other.

11. Theorem. If two lines in a plane erected perpendicular to a third are un-
equal, the line joining their extremities makes unequal angles with them,
the greater angle with the shorter perpendicular.

Proof. Suppose AC > BD. Produce BD, making BE = AC. Then
BEC = ACE. But BDC > BEC, by (1), and ACD is a part of ACE.
Therefore, all the more BDC > ACD.

12. Theorem. If the two angles at C and D are equal, the perpendiculars are
equal, and if the angles are unequal, the perpendiculars are unequal, and
the longer perpendicular makes the smaller angle.
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13. Theorem. If two lines are perpendicular to a third, points on either equidis-
tant from the third are equidistant from the other.

Proof. Let AB and CD be perpendicular to HK, and on CD take any
two points, C and D, equidistant from K; then C and D will be equidistant
from AB. For by superposition we can make D fall on C, and then DB
will coincide with CA by (6).

The following propositions of Solid Geometry depend directly on the pre-
ceding and hold true at least for any restricted portion of space.

14. Theorem. If a line is perpendicular to two intersecting lines at their inter-
section, it is perpendicular to all lines of their plane passing through this
point.

15. Theorem. If two planes are perpendicular, a line drawn in one perpendic-
ular to their intersection is perpendicular to the other, and a line drawn
through any point of one perpendicular to the other lies entirely in the
first.

16. Theorem. If a line is perpendicular to a plane, any plane through that line
is perpendicular to the plane.

17. Theorem. If a plane is perpendicular to each of two intersecting planes, it
is perpendicular to their intersection.

2.3 The Three Hypotheses

The angles at the extremities of two equal perpendiculars are either right an-
gles, acute angles, or obtuse angles, at least for restricted figures. We shall
distinguish the three cases by speaking of them as the hypothesis of the right
angle, the hypothesis of the acute angle, and the hypothesis of the obtuse angle,
respectively.

1. Theorem. The line joining the extremities of two equal perpendiculars is,
at least for any restricted portion of the plane, equal to, greater than, or
less than the line joining their feet in the three hypotheses, respectively.
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Proof. Let AC and BD be the two equal perpendiculars and HK a third
perpendicular erected at the middle point of AB. Then HA and KC are
perpendicular to HK, and KC is equal to, greater than, or less than HA,
according as the angle at C is equal to, less than, or greater than the angle
at A (II, 12). Hence, CD, the double of KC, is equal to, greater than, or
less than AB in the three hypotheses, respectively.

Conversely, if CD is given equal to, greater than, or less than AB,
there is established for this figure the first, second, or third hypothesis,
respectively.

Corollary. If a quadrilateral has three right angles, the sides adjacent to
the fourth angle are equal to, greater than, or less than the sides opposite
them, according as the fourth angle is right, acute, or obtuse.

2. Theorem. If the hypothesis of a right angle is true in a single case in any
restricted portion of the plane, it holds true in every case and throughout
the entire plane.

Proof. We have now a rectangle; that is, a quadrilateral with four right
angles. By the corollary to the last proposition, its opposite sides are
equal. Equal rectangles can be placed together so as to form a rectangle
whose sides shall be any given multiples of the corresponding sides of the
given rectangle.

Now let A′B′ be any given line and A′C ′ and B′D′ two equal lines per-
pendicular to A′B′ at its extremities. Divide A′C ′, if necessary, into a
number of equal parts so that one of these parts shall be less than AC,
and on AC and BD lay off AM and BN equal to one of these parts, and
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draw MN . ABNM is a rectangle; for otherwise MN would be greater
than or less than AB and CD, and the angles at M and N would all
be acute angles or all obtuse angles, which is impossible, since their sum
is exactly four right angles. Again, divide A′B′ into a sufficient number
of equal parts, lay off one of these parts on AB and on MN , and form
the rectangle APQM . Rectangles equal to this can be placed together so
as exactly to cover the figure A′B′D′C ′, which must therefore itself be a
rectangle.

3. Theorem. If the hypothesis of the acute angle or the hypothesis of the obtuse
angle holds true in a single case within a restricted portion of the plane,
the same hypothesis holds true for every case within any such portion of
the plane.

Proof. Let CD move along AC and BD, always cutting off equal dis-
tances on these two lines; or, again, let AC and BD move along on the
line AB towards HK or away from HK, always remaining perpendicular
to AB and their feet always at equal distances from H. The angles at C
and D vary continuously and must therefore remain acute or obtuse, as
the case may be, or at some point become right angles. There would then
be established the hypothesis of the right angle, and the hypothesis of the
acute angle or of the obtuse angle could not exist even in the single case
supposed.

The angles at C and D could not become zero nor 180◦ in a restricted
portion of the plane; for then the three lines AC, CD, and BD would be
one and the same straight line.

4. Theorem. The sum of the angles of a triangle, at least in any restricted
portion of the plane, is equal to, less than, or greater than two right angles,
in the three hypotheses, respectively.
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Proof. Given any triangle, ABD (Fig. 1), with right angle at B, draw AC
perpendicular to AB and equal to BD. In the triangles ADC and DAB,
AC = BD and AD is common, but DC is equal to, greater than, or less
than AB in the three hypotheses, respectively. Therefore, DAC is equal
to, greater than, or less than ADB in the three hypotheses, respectively
(II, 4). Adding BAD to both of these angles, we have ADB +BAD equal
to, or greater than the right angle BAC.
Now at least two angles of any restricted triangle are acute. The perpen-
dicular, therefore, from the vertex of the third angle upon its opposite
side will meet this side within the triangle and divide the triangle into
two right triangles. Therefore, in any restricted triangle the sum of the
angles is equal to, less than, or greater than two right angles in the three
hypotheses, respectively.
We will call the amount by which the angle-sum of a triangle exceeds two
right angles its excess. The excess of a polygon of n sides is the amount
by which the sum of its angles exceeds n− 2 times two right angles.
It will not change the excess if we count as additional vertices any number
of points on the sides, adding to the sum of the angles two right angles
for each of these points.

5. Theorem. The excess of a polygon is equal to the sum of the excesses of any
system of triangles into which it may be divided.

Proof. If we divide a polygon into two polygons by a straight or broken
line, we may assume that the two points where it meets the boundary
are vertices. If the dividing line is a broken line, broken at p points, an
the sides of the two polygons will be the sides of the original polygon,
together with the p + 1 parts into which the dividing line is separated by
the p points, each part counted twice.
Let S be the sum of the angles of the original polygon, and n the number
of its sides. Let S′ and n′, S′′ and n′′ have the same meanings for the two
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polygons into which it is divided. Then we have, writing R for the right
angle,

S′ + S′′ = S + 4pR,

and

n′ + n′′ = n + 2(p + 1).

Therefore,

S′ − 2(n′ − 2)R + S′′ − 2(n′′ − 2)R = S + 4pR− 2(n + 2p− 2)R
= S − 2(n− 2)R.

Any system of triangles into which a polygon may be divided is produced
by a sufficient number of repetitions of the above process. Always the
excess of the polygon is equal to the sum of the excesses of the parts into
which it is divided.

We may extend the notion of excess and apply it to any combination of
different portions of the plane hounded completely by straight lines.

Instead of considering the sum of the angles of a polygon, we may take
the sum of the exterior angles. The amount by which this sum falls short
of four right angles equals the excess of the polygon. We may speak of it
as the deficiency of the exterior angles.

The sum of the exterior angles is the amount by which we turn in going
completely around the figure, turning at each vertex from one side to
the next. If we are considering a combination of two or more polygons,
we must traverse the entire boundary and so as always to have the area
considered on one side, say on the left.

6. Theorem. The excess of polygons is always zero, always negative, or always
positive.

Proof. We know that this theorem is true of restricted triangles, but any
finite polygon may be divided into a finite number of such triangles, and
by the last theorem the excess of the polygon is equal to the sum of the
excesses of the triangles.

When the excess is negative, we may call it deficiency, or speak of the
excess of the exterior angles.
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Corollary. The excess of a polygon is numerically greater than the excess
of any part which may be cut off from it by straight lines, except in the
first hypothesis, when it is zero.

The following theorems apply to the second and third hypotheses.

7. Theorem. By diminishing the sides of a triangle, or even one side while
the other two remain less than some fixed length, we can diminish its area
indefinitely, and the sum of its angles will approach two right angles as
limit.

Proof. Let ABDC be a quadrilateral with three right angles, A, B, and
C. A perpendicular moving along AB will constantly increase or decrease;
for if it could increase a part of the way and decrease a part of the way
there would be different positions where the perpendiculars have the same
length; a perpendicular midway between them would be perpendicular to
CD also, and we should have a rectangle.

Divide AB into n equal parts, and draw perpendiculars through the points
of division. The quadrilateral is divided into n smaller quadrilaterals,
which can be applied one to another, having a side and two adjacent right
angles the same in all. Beginning at the end where the perpendicular is
the shortest, each quadrilateral can be placed entirely within the next.
Therefore, the first has its area less than 1/nth of the area of the original
quadrilateral, and its deficiency or excess less than 1/nth of the deficiency
or excess of the whole. Now any triangle whose sides are all less than AC
or BD, and one of whose sides is less than one of the subdivisions of AB,
can be placed entirely within this smallest quadrilateral. Such a triangle
has its area and its deficiency or excess less than 1/nth of the area and of
the deficiency or excess of the original quadrilateral.

Thus, a triangle has its area and deficiency or excess less than any assigned
area and deficiency or excess, however small, if at least one side is taken
sufficiently small, the other two sides not being indefinitely large.
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8. Theorem. Two triangles having the same deficiency or excess have the same
area.

Proof. Let AOB and A′OB′ have the same deficiency or excess and an
angle of one equal to an angle of the other. If we place them together so
that the equal angles coincide, the triangles will coincide and be entirely
equal, or there will be a quadrilateral common to the two, and, besides
this, two smaller triangles having an angle the same in both and the same
deficiency or excess. Putting these together, we find again a quadrilateral
common to both and a third pair of triangles having an angle the same
in both and the same deficiency or excess. We may continue this process
indefinitely, unless we come to a pair of triangles which coincide; for at
no time can one triangle of a pair be contained entirely within the other,
since they have the same deficiency or excess.

Let so denote the sum of the sides opposite the equal angles of the first
two triangles, sa the sum of the adjacent sides, and s′a that portion of
the adjacent sides counted twice, which is common to the two triangles
when they are placed together. Writing o′ and a′ for the second pair of
triangles, o′′ and a′ for the third pair, etc., we have

sa = s′a + so′, so = sa′,

sa′ = s′a′ + so′′, so′ = sa′′,

sa′′ = s′a′′ + so′′′, etc. so′′ = sa′′′, etc.

∴ sa = s′a + s′a′′ + s′aIV + . . . ,

sa′ = s′a′ + s′a′′′ + s′aV + . . . .

Therefore, the expressions s′a, s′a′, s′a′′, · · · diminish indefinitely. Each
of these is made up of a side counted twice from one and a side counted
twice from the other of a pair of triangles. Thus, if we carry the process
sufficiently far, the remaining triangles can be made to have at least one
side as small as we please, while all the sides diminish and are less, for
example, than the longest of the sides of the original triangles. There-
fore, the areas of the remaining triangles diminish indefinitely, and as the
difference of the areas remains the same for each pair of triangles, this
difference must be zero. The triangles of each pair and, in particular, the
first two triangles have the same area.
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Let ABC and DEF have the same deficiency or excess, and suppose
AC < DF . Produce AC to C ′, making AC ′ = DF . Then there is
some point, B′, on AB between A and B such that AB′C ′ has the same
deficiency or excess and the same area as ABC. Place AB′C ′ upon DEF
so that AC’ will coincide with DF , and let DE′F be the position which
it takes. If the triangles do not coincide, the vertex of each opposite the
common side DF lies outside of the other. The two triangles have in
common a triangle, say DOF , and besides this there remain of the two
triangles two smaller triangles which have one angle the same in both
and the same deficiency or excess. These two triangles, and therefore the
original triangles, have the same area.

9. Theorem. The areas of any two triangles are proportional to their deficien-
cies or excesses.

Proof. A triangle may be divided into n smaller triangles having equal
deficiencies or excesses and equal areas by lines drawn from one vertex to
points of the opposite side. Each of these triangles has for its deficiency
or excess 1/nth of the deficiency or excess of the original triangle, and for
its area 1/nth of the area of the original triangle.

When the deficiencies or excesses of two triangles are commensurable, say
in the ratio m : n, we can divide them into m and n smaller triangles,
respectively, all having the same deficiency or excess and the same area.
The areas of the given triangles will therefore be in the same ratio, m : n.
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When the deficiencies or excesses of two triangles, A and B, are not com-
mensurable, we may divide one triangle, A, as above, into any number of
equivalent parts, and take parts equivalent to one of these as many times
as possible from the other, leaving a remainder which has a deficiency or
excess less than the deficiency or excess of one of these parts. The portion
taken from the second triangle forms a triangle, B′. A and B′ have their
areas proportional to their deficiencies or excesses, these being commen-
surable. Now increase indefinitely the number of parts into which A is
divided. These parts will diminish indefinitely, and the remainder when
we take B′ from B will diminish indefinitely. The deficiency or excess and
the area of B′ will approach those of B, and the triangles A and B have
their areas and their deficiencies or excesses proportional.

Corollary. The areas of two polygons are to each other as their deficien-
cies or excesses.

10. Theorem. Given a right triangle with a fixed angle; if the sides of the trian-
gle diminish indefinitely, the ratio of the opposite side to the hypothenuse
and the ratio of the adjacent side to the hypothenuse approach as limits
the sine and cosine of this angle.

Proof. Lay off on the hypothenuse any number of equal lengths. Through
the points of division A1, A2, · · · draw perpendiculars A1C1, A2C2, · · · to
the base, and to these lines produced draw perpendiculars A2D1, A3D2,
· · · each from the next point of division of the hypothenuse.

¶ The triangles OA1C1 and A2A1D1 are equal (II, 6, Cor.).

C2A2 ≷ C1D1 and C1C2 ≶ D1A2;

therefore,

C2A2

OA2
≷

C1A1

OA1
and

OC2

OA2
≶

OC1

OA1
,

the upper sign being for the second hypothesis and the lower sign for the
third hypothesis.
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¶ Assume
Cr−1Ar−1

OAr−1
≷

Cr−2Ar−2

OAr−2
≷ · · · ≷ C1A1

OA1
,

and
OCr−1

OAr−1
≶

OCr−2

OAr−2
≶ · · · ≶ OC1

OA1
.

¶ Since

OAr−1 = (r − 1)OA1,

and also

= (r − 1)Ar−1Ar,

the inequalities

OC1

OA1
≷

OCr−1

OAr−1
and

C1A1

OA1
≶

Cr−1Ar−1

OAr−1

applied to the angle at Ar−1 become

Ar−1Dr−1

Ar−1Ar
≷

Cr−1Ar−1

OAr−1
and

Dr−1Ar

Ar−1Ar
≶

OCr−1

OAr−1
.

¶ The first of these two inequalities may be written

Ar−1Dr−1

Cr−1Ar−1
≷

Ar−1Ar

OAr−1
.

¶ Add 1 to both members,

Cr−1Dr−1

Cr−1Ar−1
≷

OAr

OAr−1
,

or

Cr−1Dr−1

OAr
≷

Cr−1Ar − 1
OAr−1

,
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But

CrAr ≷ Cr−1Dr−1,

therefore

CrAr

OAr
≷

Cr−1Ar−1

OAr−1
,

¶ Again,

Cr−1Cr ≶ Dr−1Ar.

Hence, from the second inequality above, we have

Cr−1Cr

Ar−1Ar
≶

OCr−1

OAr−1
,

or

Cr−1Cr

OCr−1
≶

Ar−1Ar

OAr−1
.

¶ Add 1 to both members,

OCr

OCr−1
≶

OAr

OAr−1
,

or

OCr

OAr
≶

OCr−1

OAr−1

The ratios
CA

OA
and

OC

OA
being less than 1, and always increasing or al-

ways decreasing when the hypothenuse decreases, approach definite limits.
These limits are continuous functions of A; if we vary the angle of any
right triangle continuously, keeping the hypothenuse some fixed length,
the other two sides will vary continuously, and the limits of their ratios to
the hypothenuse must, therefore, vary continuously.

Calling the limits for the moment sA and cA, we may extend their defi-
nition, as in Trigonometry, to any angles, and prove that all the formulæ
of the sine and cosine hold for these functions. Then for certain angles,
30◦, 45◦, 60◦, we can prove that they have the same values as the sine
and cosine, and their values for all other angles as determined from their
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values for these angles will be the same as the corresponding values of the
sine and cosine.

Draw a perpendicular, CF , from the right angle C to the hypothenuse AB.
The angle FCB is not equal to A, but the difference, being proportional
to the difference of areas of the two triangles ABC and FBC, diminishes
indefinitely when the sides of the triangles diminish. From the relation

AF

AC
· AC

AB
+

FB

BC
· BC

AB
= 1,

we have, by passing to the limit,

(cA)2 + (sA)2 = 1.

Let x and y be any two acute angles, and draw the figures used to prove
the formulas for the sine and cosine of the sum of two angles.

The angles x and y remaining fixed, we can imagine all of the lines to
decrease indefinitely, and the functions sx, ex, sy, etc., are the limits of
certain ratios of these lines.

CA

OA
=

CE

OB
· OB

OA
+

EA

BA
· BA

OA
,

±CA

OA
=

OD

OB
· OB

OA
− CD

BA
· BA

OA
,(

−OC

OA
in the second figure

)
.

The angles at M are equal in the two triangles EMB and CMO, and we
may write

CM

OM
=

ME + δ

MB
=

ME ± CM + δ

MB ±OM
,

where δ has the limit zero.

∴ lim
CE

OB
= lim

CM

OM
= sx.
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The angle EAB, or x′, is not the same as x, but differs from x only by an
amount which is proportional to the difference of the areas of the triangles
OMC and MAB, and which, therefore, diminishes indefinitely. Thus, the
limits of sx′ and cx′ are sx and cx.

Finally, as the two triangles ACN and BDN have the angle N in common,
we may write

DN

BN
=

CN + δ′

AN
=

CN −DN + δ′

AN −BN
,

where the limit of δ′ is zero.

∴ lim
CD

AB
= lim

CN

AN
= sx.

Now at the limits our identities become

s(x + y) = sx · cy + cx · sy,

c(x + y) = cx · cy − sx · sy.

By induction, these formulæ are proved true for any angles. Other formulæ
sufficient for calculating the values of these functions from their values for
30◦, 45◦, and 60◦ are obtained from these two by algebraic processes.

If the sides of an isosceles right triangle diminish indefinitely, the angle
does not remain fixed but approaches 45◦, and the ratios of the two sides
to the hypothenuse approach as limits s 45◦ and c 45◦. Therefore, these
latter are equal, and since the sum of their squares is 1, the value of each
is 1/

√
2, the same as the value of the sine and cosine of 45◦.

Again, bisect an equilateral triangle and form a triangle in which the
hypothenuse is twice one of the sides. When the sides diminish, preserving
this relation, the angles approach 30◦ and 60◦. Therefore, the functions, s
and c, of these angles have values which are the same as the corresponding
values of the sine and cosine of the same angles.

Corollary. When any plane triangle diminishes indefinitely, the relations
of the sides and angles approach those of the sides and angles of plane
triangles in the ordinary geometry and trigonometry with which we are
familiar.
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11. Theorem. Spherical geometry is the same in the three hypotheses, and
the formula of spherical trigonometry are exactly those of the ordinary
spherical trigonometry.

Proof. On a sphere, arcs of great circles are proportional to the angles
which they subtend at the centre, and angles on a sphere are the same
as the diedral angles formed by the planes of the great circles which are
the sides of the angles. Their relations are established by drawing certain
plane triangles which may be made as small as we please, and therefore
may be assumed to be like the plane triangles in the hypothesis of a
right angle. These relations are, therefore, those of the ordinary Spherical
Trigonometry.

The three hypotheses give rise to three systems of Geometry, which are
called the Parabolic, the Hyperbolic, and the Elliptic Geometries. They are
also called the Geometries of Euclid, of Lobachevsky, and of Riemann. The
following considerations exhibit some of their chief characteristics.

Given PC perpendicular to a line, CF ; on the latter we take

CD = PC,

DD′ = PD,

D′D′′ = PD′, etc.

Now if PC is sufficiently short (restricted), it is shorter than any other
line from P to the line CF ; for any line as short as PC or shorter would be
included in a restricted portion of the plane about the point P , for which the
perpendicular is the shortest distance from the point to the line.

Therefore,

PD > PC, ∴ CD′ > 2CD,

PD′ > PC, etc.; CD′′ > 3CD, etc.

Again, in the three hypotheses, respectively,

CPD
=
≶

π

4
, and CDP

=
≶

π

4
,

DPD′ =
≶ 1

2CPD, CD′P
=
≶ 1

2CDP,

D′PD′′ =
≶ 1

2DPD′, etc., CD′′P
=
≶ 1

2CD′P, etc.
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At P we have a series of angles. In the first hypothesis there is an infinite
number of these angles, and the series forms a geometrical progression of ratio
1/2, whose value is exactly π/2. In the second hypothesis there is also an infinite
number of these angles, and the terms of the series are less than the terms of
the geometrical progression. The value of the series is, therefore, less than π/2.
In the third hypothesis we have a series whose terms are greater than those
of the geometrical progression, and, therefore, whether the series is convergent
or divergent, we can get more than π/2 by taking a sufficient number of terms.
In other words, we can get a right angle or more than a right angle at P by
repeating this process a certain finite number of times.

The angles at D, D′, D′′, · · · are exactly equal to the terms of the series of
angles at P . In the first two hypotheses they approach zero as a limit.

The distances CD, CD′, CD′′, · · · increase each time by more than a definite
quantity, CD; therefore, if we repeat the process an unlimited number of times,
these distances will increase beyond all limit. Thus, in the first and second
hypotheses we prove that a straight line must be of infinite length.

In the hypothesis of the obtuse angle the line perpendicular to PC at the
point P will intersect CF in a point at a certain finite distance from C, one of the
D’s, or some point between. On the other side of PC this same perpendicular
will intersect FC produced at the same distance. But we have assumed that two
different straight lines cannot intersect in two points; therefore, for us the third
hypothesis cannot be true unless the straight line is of finite length returning
into itself, and these two points are one and the same point, its distance from
C in either direction being one-half the entire length of the line. In this way,
however, we can build up a consistent Geometry on the third hypothesis, and
this Geometry it is which is called the Elliptic Geometry.

The constructions would have been the same, and very nearly all the state-
ments would have been the same, if we had taken CD any arbitrary length on
CF .

The restriction which we have placed upon some of the propositions of this
chapter is necessary in the third hypothesis.
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Thus, in the proof that the exterior angle of a triangle is greater than the
opposite interior angle, the line AD drawn through the vertex A to the middle
point D of the opposite side was produced so as to make AE = 2AD. If AD
were greater than half the entire length of the straight line determined by A and
D, this would bring the point E past the point A, and the angle CBE, which
is equal to the angle C, instead of being a part of the exterior angle CBF ,
becomes greater than this exterior angle.

Again, if two angles of a triangle are equal and the side between them is just
an entire straight line, it does not follow necessarily that the opposite sides are
equal. It may be said, however, that the opposite sides form one continuous
line, and, therefore, this figure is not strictly a triangle, but a figure somewhat
like a lune. The points A and B are the same point, and the angles A and B
are vertical angles.

Finally, though we assume that the shortest path between two points is a
straight line, it is not always true that a straight line drawn between two points
is the shortest path between them. We can pass from one point to another in
two ways on a straight line; namely, over each of the two parts into which the
two points divide the line determined by them. One of these parts will usually
be shorter than the other, and the longer part will be longer than some paths
along broken lines or curved lines.

When, however, the straight line is of infinite length, that is, in the hypothe-
sis of the right angle and in the hypothesis of the acute angle, all the propositions
of this chapter hold without restriction.

The Euclidean Geometry is familiar to all. We will now make a detailed
study of the Geometry of Lobachevsky, and then take up in the same way the
Elliptic Geometry.



Chapter 3

THE HYPERBOLIC
GEOMETRY

We have now the hypothesis of the acute angle. Two lines in a plane perpendic-
ular to a third diverge on either side of their common perpendicular. The sum
of the angles of a triangle is less than two right angles, and the propositions of
the last chapter hold without restriction.

3.1 Parallel Lines

From any point, P , draw a perpendicular, PC, to a given line, AB, and let PD
be any other line from P meeting CB in D. If D move off indefinitely on CB,
the line PD will approach a limiting position PE.

PE is said to be parallel to CB at P . PE makes with PC an angle, CPE,
which is called the angle of parallelism for the perpendicular distance PC. It is
less than a right angle by an amount which is the limit of the deficiency of the
triangle PCD. On the other side of PC we can find another line parallel to CA
and making with PC the same angle of parallelism. We say that PE is parallel
to AB towards that part which is on the same side of PC with PE. Thus, at
any point there are two parallels to a line, but only one towards one part of the
line. Lines through P which make with PC an angle greater than the angle of
parallelism and less than its supplement do not meet AB at all. We write Π(p)

25
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to denote the angle of parallelism for a perpendicular distance, p.

1. Theorem. A straight line maintains its parallelism at all points.

Let AB be parallel to CD at E and let F be any other point of AB on
either side of E, to prove that AB is parallel to CD at F .

Proof. To H, on CD, draw EH and FH. If H move off indefinitely
on CD, these two lines will approach positions of parallelism with CD.
But the limiting position of EH is the line AB passing through F , and
if the limiting position of FH were some other line, FK, F would be the
limiting position of H, the intersection of EH and FH.

2. Theorem. If one line is parallel to another, the second is parallel to the
first.

Given AB parallel to CD, to prove that CD is parallel to AB.

Proof. Draw AC perpendicular to CD. The angle CAB will be acute;
therefore, the perpendicular CE from C to AB must fall on that side of
A towards which the line AB is parallel to CD (Chap. I, II, 1). The angle
ECD is then acute and less than CEB, which is a right angle. That is,
we have

CAB < ACD, and CEB > ECD.

If the line CE revolve about the point C to the position of CA, the angle
at E will decrease to the angle A, and the angle at C will increase to a
right angle. There will be some position, say CF , where these two angles
become equal; that is,

CFB = FCD.
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Draw MN perpendicular to CF at its middle point and revolve the figure
about MN as an axis. CD will fall upon the original position of AB, and
AB will fall upon the original position of CD. Therefore, CD is parallel
to AB.

Corollary. FB and CD are both parallel to MN .

Proof. FB and CD are symmetrically situated with respect to MN , and
cannot intersect MN since they do not intersect each other. Draw FH
to H, on CD, intersecting MN in K. If H move off indefinitely on CD,
FH will approach the position of FB as a limit. Now K cannot move off
indefinitely before H does, for FK < FH. But again, when H moves off
indefinitely, K cannot approach some limiting position at a finite distance
on MN ; for FB, and therefore CD, would then intersect MN and each
other at this point. Therefore, H and K must move off together, and the
limiting position of FH must be at the same time parallel to CD and
MN .

In the same way we can prove that any line lying in a plane between two
parallels must intersect one of them or be parallel to both.

3. Theorem. Two lines parallel to a third towards the same part of the third
are parallel to each other.

First, when they are all in the same plane.

Let AB and EF be parallel to CD, to prove that they are parallel to each
other.
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Proof. Suppose AB lies between the other two. To H, any point on
CD, draw AH and EH, and let K be the point where EH intersects AB.
As H moves off indefinitely on CD, AH and EH approach as limiting
positions AB and EF . Now K cannot move off indefinitely before H
does, for EK < EH. But again, when H moves off indefinitely, K cannot
approach some limiting position at a finite distance on AB; for this point
would be the intersection of AB and EF , and the limiting position of H,
whereas H moves off indefinitely on CD. Therefore, H and K must move
off together, and the limiting position of EH must be at the same time
parallel to CD and AB.

If AB, lying between the other two, is given parallel to CD and EF , EF
must be parallel to CD; for a line through E parallel to CD would be
parallel to AB, and only one line can be drawn through E parallel to AB
towards the same part.

Second, when the lines are not all in the same plane.

Let AB and CD be two parallel lines and let E be any point not in their
plane.

Proof. To H on CD draw, AH and EH. As H moves off indefinitely,
AH approaches the position of AB, and the plane EAH the position of
the plane EAB. Therefore, the limiting position of EH is the intersection
of the planes ECD and EAB. The intersection of these planes is, then,
parallel to CD, and in the same way we prove that it is parallel to AB.

Now, if EF is given as parallel to one of these two lines towards the part
towards which they are parallel, it must be the intersection of the two
planes determined by them and the point E, and therefore parallel to the
other line also.
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4. Theorem. Parallel lines continually approach each other.

Let AB and CD be parallel, and from A and B, any points on AB, drop
perpendiculars AC and BD to CD. Supposing that B lies beyond A in
the direction of parallelism, we are to prove that BD < AC.

Proof. At H, the middle point of CD, erect a perpendicular meeting AB
in K. The angle BKH is an acute angle, and the angle AKH is an obtuse
angle. Therefore, a perpendicular to HK at K must meet CA in some
point, E, between C and A and DB produced in some point, F , beyond
B. But DF = CE (Chap. I, I, 12); therefore, DB < CA.

Corollary. If AB and CD are parallel and AC makes equal angles with
them (like FC in 2 above), then EF , cutting off equal distances on these
two lines, AE = CF , on the side towards which, they are parallel, will be
shorter than AC.

Proof. MN , perpendicular to AC at its middle point, is parallel to AB
and bisects EF , the figure being symmetrical with respect to MN . EH,
the half of EF , is less than AM , and therefore EF is less than AC.

5. Theorem. As the perpendicular distance varies, starting from zero and in-
creasing indefinitely, the angle of parallelism decreases from a right angle
to zero.

Proof. In the first place the angle of parallelism, which is acute as long as
the perpendicular distance is positive, will be made to differ from a right
angle by less than any assigned value if we take a perpendicular distance
sufficiently small.
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For, ADE being any given angle as near a right angle as we please, we
can take a point, L, on DE and draw LR perpendicular to DA at R.
The angle RDL must increase to become the angle of parallelism for the
perpendicular distance RD.

Now let p be the length of a given perpendicular PM , and let α be the
amount by which its angle of parallelism differs from π/2; that is, say

Π(p) =
π

2
− α.

PM , being perpendicular to MN , and H any point on MN , the angle
MPH approaches as a limit the angle of parallelism, Π(p), when H moves
off indefinitely on MN . The line PH meets the line MN as long as
MPH < Π(p), and by taking MPH sufficiently near Π(p), but less, we
can make the angle MHP as small as we please (see p. 22).

In figure on page 31, let AC be perpendicular to AB, D being any point
on AC and DE parallel to AB. Draw DK beyond DE, making with DE
an angle, EDK = Π(p), and make DK = p. TF , perpendicular to DK
at K, will be parallel to DE and AB.

By placing PM of the last figure upon DKT , we see that DC will meet
KT in a point, G if

KDC < Π(p),

that is, if

ADE > 2α.

¶ Then in the right triangle DKG,

DGK + KDG <
π

2
.
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But

ADE + KDG =
π

2
+ α;

therefore,

DGK < ADG− α.

Starting from the point G, we can repeat this construction, and each time
we subtract from the angle of parallelism an amount greater than α. We
can continue this process until the angle of parallelism becomes equal to
or less than 2α.

If the point D move along AC, DE remaining constantly parallel to AB,
the angle at D will constantly diminish, and by letting D move sufficiently
far on AC we can reach a point where this angle becomes equal to or less
than 2α.

Suppose D is at the point where the angle of parallelism is just 2α. Then,
if we draw DK and TF as before, KT will be parallel to DC. All the
parallels to AB lying between AB and this position of TF meet AC, and
as the parallel moves towards this position of TF , the angle of parallelism
at D approaches zero, and the point D moves off indefinitely.

For an obtuse angle we may take p negative, and we have

Π(−p) = π −Π(p).
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6. Theorem. The perpendiculars erected at the middle points of the sides of a
triangle are all parallel if two of them are parallel.

Let A, B, and C be the vertices of the triangle, and D, E, and F , respec-
tively, the middle points of the opposite sides. Suppose the perpendiculars
at D and E are given parallel, to prove that the perpendicular at F is par-
allel to them.

Proof. Draw CM through C parallel to the two given parallel perpen-
diculars. CM forms with the two sides at C angles of parallelism Π

(a

2

)
and Π

(
b

2

)
, of which the angle at C is the sum or difference according

as C lies between the given perpendiculars or on the same side of both.
By properly diminishing these angles at C, keeping the lengths of CA and
CB unchanged, we can make the perpendiculars at their middle points D
and E intersect CM , and therefore each other, at any distance from C
greater than a/2 and greater than b/2.

Let A′B′C ′ be the triangle so formed, O the point where the two given per-
pendiculars meet, and C ′M ′ the line through O. In the triangle A′B′C ′,
the three perpendiculars meet at the point O (Chap. I, I, 5), Now we can
let O move off on C ′M ′, the construction remaining the same. That is,
we let the lines C ′A′ and C ′B′ rotate about C ′ without changing their
lengths, in such a manner that the three perpendiculars D′O, E′O, and
F ′O shall always pass through O. As O moves off indefinitely, the angles

at C ′ approach Π
(a

2

)
and Π

(
b

2

)
as limits, and the three perpendiculars

approach positions of parallelism with C ′M ′ and with each other. But the
triangle A′B′C ′ approaches as a limit a triangle which is equal to ABC,
having two sides and the included angle equal, respectively, to the corre-
sponding parts of the latter. Therefore, in ABC the three perpendiculars
are all parallel.

7. Theorem. Lines which do not intersect and are not parallel have one and
only one common perpendicular.

Proof. Let AB and CD be the two lines, and from A, any point of
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AB, drop AC perpendicular to CD. If AC is not itself the common
perpendicular, one of the angles which it makes with AB will be acute.
Let this angle be on the side towards AB, so that BAC < π/2. Draw
AE parallel to CD on this same side of AC. The angle EAC is less than
BAC, since AB is not parallel to CD and does not intersect it. Let AH
be any line drawn in the angle EAC, intersecting CD at H. If H, starting
from the position of C, move off indefinitely on the line CD, the angle
BAH will decrease from the magnitude of the angle BAC to the angle
BAE. The angle AHC will decrease indefinitely from the magnitude of
the angle at C, which is a right angle and greater than BAC. There will
be some position for which BAH = AHC. In this position the line NM
through the middle point of AH perpendicular to one of the two given
lines will be perpendicular to the other, as proved in Chap. I, I, 10.

If there were two common perpendiculars we should have a rectangle,
which is impossible in the Hyperbolic Geometry.

8. Theorem. If the perpendiculars erected at the middle points of the sides of
a triangle do not meet and are not. parallel, they are all perpendicular to
a certain line.

Proof. We can draw a line, AB, that will be perpendicular to two of
these lines, and the perpendiculars from the three vertices of the triangle
upon this line will be equal, by Chap. I, II, 13. A perpendicular to AB
erected midway between any two of these three is perpendicular to the
corresponding side of the triangle at its middle point (Chap. I, I, 11).
Thus, all three of the perpendiculars erected at the middle points of the
sides of the triangle are perpendicular to AB.

A line is parallel to a plane if it is parallel to its projection on the plane.
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9. Theorem. A line may be drawn perpendicular to a plane and parallel to any
line not in the plane.

Proof. Let AB be the given line and MN the plane, if AB meets the
plane MN at a point, A, we take on its projection a length, AC, such
that the angle at A equals Π(AC). Then CD, perpendicular to the plane
at C, will be parallel to AB. In the same way, on the other side of the
plane a perpendicular can be drawn parallel to BA produced.

If AB does not meet MN , then at least in one direction it diverges from
MN . Through H, any point of the projection of AB on the plane, we can
draw a line, HK, parallel to AB towards that part of AB which diverges
from MN , and then draw CD parallel to this line and perpendicular to
the plane.

Unless AB is parallel to MN it will meet the plane at some point, or
the plane and line will have a common perpendicular, and the line will
diverge from the plane in both directions. In the latter case there are two
perpendiculars that are parallel to the line, one parallel towards each part
of the line.

Two perpendiculars cannot be parallel towards the same part of a line;
for then they would be parallel to each other, and two lines cannot be
perpendicular to a plane and parallel to each other.
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3.2 Boundary-curves and Surfaces, and Equi-
distant-curves and Surfaces

Having given the line AB, at its extremity, A, we take any arbitrary angle and
produce the side AC so that the perpendicular erected at its middle point shall
be parallel to AB. The locus of the point C is a curve which is called oricycle,
or boundary-curve. AB is its axis.

From their definition it follows that all boundary-curves are equal, and the
boundary-curve is symmetrical with respect to its axis; if revolved through two
right angles about its axis, it will coincide with itself.

1. Theorem. Any line parallel to the axis of a boundary-curve may be taken
for axis.

Let AB be the axis and CD any line parallel to AB, to prove that CD
may be taken as axis.

Proof. Draw AC; also to E, any other point on the curve, draw AE and
CE. The perpendiculars erected at the middle points of AC and of AE are
parallel to AB and CD and to each other. Therefore, the perpendicular
erected at the middle point of CE, the third side of the triangle ACE, is
parallel to them and to CD. CD then may be taken as axis.
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Corollary. The boundary-curve may be slid along on itself without alter-
ing its shape; that is, it has a constant curvature.

2. Theorem. Two boundary-curves having a common set of axes cut off the
same distance on each of the axes, and the ratio of corresponding arcs
depends only on this distance.

Proof. Take any two axes and a third axis bisecting the arc which the
first two intercept on one of the two boundary-curves. By revolving the
figure about this axis we show that the curves cut off equal distances on
the two axes.

Let AA′, BB′, and CC ′ be any three axes of the two boundary-curves AB
and A′B′; let their common length be x and let them intercept arcs s and
t on AB, s′ and t′ on A′B′.

When s = t, s′ = t′, and, in general,

s

t
=

s′

t′
,

as we prove, first when s and t are commensurable, and then by the method
of limits when they are incommensurable. The ratio s/s′ is, therefore, a
constant for the given value of x.

¶ Write s/s′ = f(x).

¶ From three boundary-curves having the same set of axes, we find

f(x + y) = f(x)f(y)
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This property is characteristic of the exponential function whose general
form is f(x) = eax.1 Therefore, s/s′ = eax, the value of a depending on
the unit of measure (see below p. 63).

3. Theorem. The area enclosed by two boundary-curves having the same axes
and by two of their common axes is proportional to the difference of the
intercepted arcs.

Proof. Let s and s′ be the lengths of the intercepted arcs, and l the
distance measured on an axis between them. Let t, t′, and k be the
corresponding quantities for a second figure constructed in the same way.

If the corresponding lines in the two figures are all equal, the areas are
equal, for they can be made to coincide. If only k = l, the areas are
to each other as corresponding arcs, say as s′ : t′, proved first when the
arcs are commensurable, and then by the method of limits when they are
incommensurable.

1Putting y = x, 2x, · · · (n− 1)x in succession, we find

f(nx) = [f(x)]n

for positive integer values of n, x being any positive quantity.
Now

f
� r

s
x
�

=
h
f
�x

s

�ir
,

and this is the rth power of the sth root of the first member of the equationh
f
�x

s

�is
= f(x); ∴ f

� r

s
x
�

= [f(x)]
r
s .

Thus, assuming that f(x) is a continuous function of x, we have proved that for all real
positive values of x and n

f(nx) = [f(x)]n,

and if we put x for n and 1 for x, we have

f(x) = [f(1)]x.

We will write f(1) = ea; then
f(x) = eax.
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When l and k are commensurable, suppose

l

m
=

k

n
= a.

We can draw a series of boundary-curves at distances equal to a on the
axes and divide the areas into m and n parts, respectively. If r is the ratio
of arcs corresponding to the distance a, these parts will be proportional
to the quantities

s′, s′r, s′r2, . . . s′rm−1;

t′, t′r, t′r2, . . . t′rn−1.

The two areas are then to each other in the ratio

s′
rm − 1
r − 1

: t′
rn − 1
r − 1

.

But
s′rm = s and t′rn = t,

so that this is the same as the ratio

s− s′ : t− t′.

When l and k are incommensurable, we proceed as in other similar demon-
strations.

This theorem is analogous to the one which we have proved about poly-
gons: the area is proportional to the amount of rotation in excess of four
right angles in going around the figure, for the rate of rotation in going
along a boundary-curve is constant.

The locus of points at a given distance from a straight line is a curve which
may be called an equidistant-curve. The perpendiculars from the different
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points of this curve upon the base line are equal and may be called axes
of the curve.

An equidistant-curve fits upon itself when revolved through two right an-
gles about one of its axes or when slid along upon itself. It has a constant
curvature.

It can be proved, exactly as in the case of two boundary-curves having
the same set of axes, that arcs on an equidistant-curve are proportional
to the segments cut off by the axes at their extremities on the base line or
on any other equidistant-curve having the same set of axes.

4. Theorem. The boundary-curve is a limiting curve between the circle and
the equidistant-curve; it may be regarded as a circle with infinitely large
radius, or as an equidistant-curve whose base line is infinitely distant.

Proof. Take a line of given length, AB = 2a say, making an angle, A,
with a fixed line, AC. Construct another angle at B equal to the angle A,
and draw a perpendicular to AB at its middle point, D.

If the angle at A is sufficiently small, we have an isosceles triangle with
AB for base, and its vertex at a point, F , on AC. With F as centre,
we can draw a circle through the points A and B. Now let the angle
at A gradually increase, the rest of the figure varying so as to keep the
construction. F will move off indefinitely, and when A = Π(a) the three
lines AF , BF , and DF will become parallel, and B will become a point
on the boundary-curve AB′, which has AC for axis.

On the other hand, if the angle at A were taken acute, but greater than
Π(a), we should have three lines, AE, BH, and DF , perpendicular to a
line, EH, the base line of an equidistant-curve through the points A and
B. Now let the angle A gradually decrease, the rest of the figure varying
so as to preserve the construction. The quadrilateral ADFE, having three
right angles and the fourth angle A decreasing, must increase in area. We
get this same movement if we think of AD and DF remaining fixed in the
plane while AE revolves about A, making the angle A decrease. Thus the
only way in which the area of the quadrilateral can increase is for EH to
move off along on AC and become more and more remote from A. When
A becomes equal to Π(a), BH and DF become parallel to AC, and B
falls on the boundary-curve AB′.
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Calling the radius of a circle axis, we find that circles, boundary-curves, and
equidistant-curves have many properties in common:

The perpendicular erected at the middle point of any chord is an axis. In
particular, a tangent is perpendicular to the axis drawn from its point of contact.
These are curves cutting at right angles a system of lines through a point, a
system of parallel lines, and the perpendiculars to a given line, respectively.

Two of these curves having the same set of axes cut off equal lengths on all
these axes, and the ratio of corresponding arcs on two such curves is a constant
depending only on the way in which they divide the axes.

Three points determine one of these curves; that is, through any three points
not in a straight line we can draw a curve which shall be either a circle, a
boundary-curve, or an equidistant-curve, and through any three points only
one such curve can be drawn. Any triangle may be inscribed in one and only
one of these curves.

Each of these curves can be moved on itself or revolved about any axis
through 180◦ into coincidence with itself.

A boundary-surface or orisphere is a surface generated by the revolution of
a boundary-curve about one of its axes.

5. Theorem. Any line parallel to the axis of a boundary-surface may be re-
garded as axis.

Let AA′ be the axis, meeting the surface at A, and BB′ a line parallel
to the axis through any other point, B, of the surface; to prove that BB′

may be regarded as axis.

Proof. Let C be a third point on the surface. Draw CC ′ through C,
and through D, E, and F , the middle points of the sides of the plane
triangle ABC, draw DD′, EE′, and FF ′ all parallel to AA′. Finally, let
OO′ be parallel to these lines and perpendicular to the plane ABC. The
projecting planes of the other parallels all pass through OO′ (see I, 9).
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Since AA′ is axis to the surface, EE′ and FF ′ are perpendicular to AC
and AB, respectively. Draw FK perpendicular to the plane ABC at F .
It will lie in the projecting plane OFF ′. AB, being perpendicular to FF ′

and to FK, is perpendicular to this plane, OFF ′, and therefore to OF .
In the same way we prove that AC is perpendicular to OE. Therefore,
BC is perpendicular to OD (Chap. I, I, 5). But OD is the intersection
of the plane ABC with the plane ODD′. Hence, BC is perpendicular to
this plane and to DD′ (Chap. I, II, 15).

DD′ being parallel to BB′ lies in the plane determined by BB′ and BC,
and in this plane only one perpendicular can be drawn to BC at its middle
point. Therefore, if we pass any plane through BB′ and from B draw a
chord to any other point, C, of its intersection with the surface, the per-
pendicular in this plane to BC, erected at the middle point of BC, will be
parallel to BB′. This proves that the section is a boundary-curve, having
BB′ for axis, and that the surface can be generated by the revolution of
such a boundary-curve around BB′.

Therefore, BB′ may be regarded as axis of the surface.

A plane passed through an axis of a boundary-surface is called a principal
plane. Every principal plane cuts the surface in a boundary-curve. Any other
plane cuts the surface in a circle; for the surface may be regarded as a surface
of revolution having for axis of revolution that axis which is perpendicular to
the plane. This perpendicular may be called the axis of the circle, and the
point where it meets the surface, the pole of the circle. The pole of a circle
on a boundary-surface is at the same distance from all the points of the circle,
distance being measured along boundary-lines on the surface.

Any two boundary-surfaces can be made to coincide, and a boundary-surface
can be moved upon itself, any point to the position of any other point, and any
boundary-curve through the first point to the position of any boundary-curve
through the second point. We may say that a boundary-surface has a constant
curvature, the same for all these surfaces. Figures on a boundary-surface can
be moved about or put upon any other boundary-surface without altering their
shape or size.

We can develop a Geometry on the boundary-surface. By line we mean the
boundary-curve in which the surface is cut by a principal plane. The angle
between two lines is the same as the diedral angle between the two principal
planes which cut out the lines on the surface.

6. Theorem. Geometry on the boundary-surface is the same as the ordinary
Euclidean Plane Geometry.

Proof. On two boundary-surfaces with the same system of parallel lines
for axes corresponding triangles are similar; that is, corresponding angles
are equal, having the same measures as the diedral angles which cut them
out, and corresponding lines are proportional by (2). But we can place
these figures on the same surface; therefore, on one boundary-surface we
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can have similar triangles. Thus, we can diminish the sides of a triangle
without altering their ratios or the angles. We can do this indefinitely;
for the ratio of corresponding lines on the two surfaces, being expressed
by the function eax of the distance between them, can be made as large
as we please by taking x sufficiently large. If we assume that figures on
the boundary-surface become more and more like plane figures when we
diminish indefinitely their size, it follows that a triangle on this surface
approaches more and more the form of an infinitesimal plane triangle,
for which the sum of the angles is two right angles, and the angles and
sides have the same relations as in the Euclidean Plane Geometry. All the
formulæ of Plane Trigonometry with which we are familiar hold, then, for
triangles on the boundary-surface.

On the boundary-surface we have the “hypothesis of the right angle”.
Rectangles can be formed, and the area of a rectangle is proportional to
the product of its base and altitude, while the area of a triangle is half of
the area of a rectangle having the same base and altitude.

An equidistant-surface is a surface generated by the revolution of an equidist-
ant-curve about one of its axes. It is the locus of points at a given perpendicular
distance from a plane. Any perpendicular to the plane may be regarded as
an axis, and the surface is a surface cutting at right angles a system of lines
perpendicular to the plane. The surface has a constant curvature, fitting upon
itself in any position.

3.3 Trigonometrical Formulæ

1. Let ABC be a plane right triangle. Erect AA′ perpendicular to its plane
and draw BB′ and CC ′ parallel to AA′. Draw a boundary-surface through
A, having these lines for axes and forming the boundary-surface triangle
AB′′C ′′. Also construct the spherical triangle about the point B.

The angle A is the same in the plane triangle and in the boundary-surface
triangle. The planes through AA′ are perpendicular to ABC. Hence,
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the spherical triangle has a right angle at the vertex which lies on c, and
BC being perpendicular to CA is perpendicular to the plane of CC ′ and
AA′. Therefore, the plane BCC ′ is perpendicular to the plane ACC ′, and
the diedral whose edge is BC has for plane angle the angle ACC ′ = Π(b).
Since the boundary-surface triangle is right-angled at C ′′, the angle B′′, or
what is the same thing, the diedral whose edge is BB′, is the complement
of the angle A.

In the spherical triangle the side opposite the right angle is Π(a), the two
sides about the right angle are Π(c) and B, and the opposite angles are
Π(b) and 90◦ −A.

Applying to these quantities the trigonometrical formulæ for spherical
right triangles, we get at once the relations that connect the sides and
angles of plane right triangles.

Produce to quadrants the two sides about the angle whose value is the
complement of A. We form in this way a spherical right triangle in which
the side opposite the right angle is the complement of Π(c), the two sides
about the right angle are the complements of Π(a) and Π(b), and their
opposite angles are the complements of B and A. From this triangle we
deduce the following rule for passing from the formulæ of spherical right
triangles to those of plane triangles:

Interchange the two angles (or the two sides) and everywhere use the com-
plementary function, tailing the corresponding angle of parallelism for the
sides.

The formulæ for spherical right triangles are

sinA =
sin a

sin c
. sinB =

sin b

sin c
.

cos A =
tan b

tan c
. cos B =

tan a

tan c
.

tanA =
tan a

sin b
. tanB =

tan b

sin a
.

sinA =
cos B

cos b
. sinB =

cos A

cos a
.

cos c = cos a · cos b

cos c = cotA · cot B
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From these, by the rule given on the previous page, we derive the following
formulæ for plane right triangles:

cos B =
cos Π(a)
cos Π(c)

. cos A =
cos Π(b)
cos Π(c)

.

sinB =
cot Π(b)
cot Π(c)

. sinA =
cot Π(a)
cot Π(c)

.

cot B =
cot Π(a)
cos Π(b)

. cot A =
cot Π(b)
cos Π(a)

.

cos B =
sinA

sinΠ(b)
. cos A =

sinB

sinΠ(a)
.

sinΠ(c) = sin Π(a) sinΠ(b).
sinΠ(c) = tanA tanB.2

We can obtain the formulæ for oblique plane triangles by dropping a per-
pendicular from one vertex upon the opposite side, thus forming two right
triangles.

2. Take the relation
sinΠ(a) =

sinB

cos A
.

Let p, q, and r be the sides of the triangle AB′′C ′′ of our last demonstra-
tion and p′, q′, and r the corresponding sides of the triangle formed in the
same way on a boundary-surface tangent to the plane ABC at B.

2We can arrange the parts of a right triangle so as to apply Napier’s rules; namely, the
arrangement would be
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sinB =
q′

r
,

cos A =
q

r
.

∴ sinΠ(a) =
q′

q
.

Now q and q′ are corresponding arcs on two boundary-curves which have
the same set of parallel lines as axes, and their distance apart, x, is the
distance from a boundary-curve of the extremity of a tangent of arbitrary
length, a. Thus, we have for corresponding arcs

s′

s
= sinΠ(a)
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3. To MN , a given straight line, erect a perpendicular at a point, O, and
on this perpendicular lay off OA = y below MN , and OB and BP each
equal to x above MN , x and y being any arbitrary lengths. At P draw
PR perpendicular to OP and extending towards the left, and through B
draw EF making with OP an angle Π(x), and therefore parallel on one
side to ON and on the other side to PR. Finally, draw AK and AH, the
two parallels to EF through A.

At the point A we have four angles of parallelism:

CAK = CAH = Π(AC),
OAK = Π(y),
PAH = Π(y + 2x).

Therefore,

Π(y) = Π(AC) + BAC,

and

Π(y + 2x) = Π(AC)−BAC.

Now in the right triangle ABC

cos Π(y + x) =
cos Π(AC)
cos BAC

or

1− cos Π(y + x)
1 + cos Π(y + x)

=
cos BAC − cos Π(AC)
cos BAC + cos Π(AC)

,

=
sin 1

2 [Π(AC) + BAC] sin 1
2 [Π(AC)−BAC]

cos 1
2 [Π(AC) + BAC] cos 1

2 [Π(AC)−BAC]
;
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whence,

tan2 1
2Π(y + x) = tan 1

2Π(y) tan 1
2Π(y + 2x)

¶ tan 1
2Π(x) is then a function of x, say f(x), satisfying the condition

[f(y + x)]2 = f(y)f(y + 2x)

or

f(y + x)
f(y)

=
f(y + 2x)
f(y + x)

and putting successively in this equation y +x, y +2x, etc., for y, we may
add

=
f(y + 3x)
f(y + 2x)

= · · · = f(y + nx)
f [y + (n− 1)x]

¶ Π(0) = π/2 and tan 1
2Π(0) = 1; therefore, putting y = 0 in the first and

last of all these fractions, we have

f(x) =
f(nx)

f [(n− 1)x]
,

or

f(nx) = f [(n− 1)x] f(x).
∴ f(nx) = [f(x)]n .

This equation is characteristic of the exponential function.3 Π(x) being
an acute angle, tan 1

2Π(x) < 1; therefore, we may write f(1) = e−a′
, so

that f(x) = e−a′x. a′ depends on the unit of measure; we will take the
unit so that a′ = 1. Finally, since Π(−x) = π −Π(x),

tan 1
2Π(−x) = cot 1

2Π(x) =
[
tan 1

2Π(x)
]−1

.

3See footnote, p. 37.
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That is, for all real values of x

tan 1
2Π(x) = e−x,

or

1− cos Π(x)
sinΠ(x)

= cos ix + i sin ix.4

4i stands for
√
−1. The best way to get the relations between the exponential and trigono-

metrical functions is by their developments in series:

ex = 1 + x +
x2

2!
+ · · ·+

xn

n!
+ · · · ,

cos x = 1−
x2

2!
+

x4

4!
− · · ·+ (−1)n x2n

2n!
+ · · · ,

sin x = x−
x3

3!
+

x5

5!
− · · ·+ (−1)n x2n+1

(2n + 1)!
+ · · · .

These series are convergent for all values of x.
Putting ix for x, we have

eix = 1 + ix−
x2

2!
−

ix3

3!
+ · · ·

= 1−
x2

2!
+

x4

4!
− · · ·+ i

�
x−

x3

3!
+

x5

5!
− · · ·

�
;

i.e., eix = cos x + i sin x.

Also e−ix = cos x− i sin x.

∴ cos x = 1
2

�
eix + e−ix

�
,

sin x = 1
2i

�
eix − e−ix

�
.

Again, putting ix for x, we have

ex = cos ix− i sin ix,

e−x = cos ix + i sin ix;

and

cos ix = 1
2

�
ex + e−x

�
,

sin ix = − 1
2i

�
e2 − e−x

�
.

cos ix = 1 +
x2

2!
+

x4

4!
+ · · · ,

sin ix = ix

�
1 +

x2

3!
+

x4

5!
+ · · ·

�
.

For real values of x, cos ix and
sin ix

ix
are real and positive, and vary from 1 to ∞ as x varies

from 0 to ∞.
In the equation cos2 ix + sin2 ix = 1, the first term is real and positive for real values of x,

the second term is real and negative; therefore, sin ix is in absolute value less than cos ix, and
tan ix is in absolute value less than 1. tan ix varies in absolute value from 0 to 1 as x varies
from 0 to ∞.
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¶ Changing the sign of x, we have

1 + cos Π(x)
sinΠ(x)

= cos ix− i sin ix,

and, adding and subtracting,

1
sinΠ(x)

= cos ix,

cot Π(x) = −i sin ix.

¶ The nature of the angle of parallelism is, therefore, expressed by the
equations

sinΠ(x) =
1

cos ix
,

tanΠ(x) =
i

sin ix
,

cos Π(x) =
tan ix

i
.

4. Substituting in the formulæ of plane right triangles, we find that they reduce
to those of spherical right triangles with ia, ib, and ic for a, b, and c,
respectively. The formulæ of oblique triangles are obtained from those of
right triangles in the same way as on the sphere, and thus all the formulæ
of Plane Trigonometry are obtained from those of Spherical Trigonometry
simply by making this change.

As fundamental formulæ for oblique triangles we write

sinA

sin ia
=

sinB

sin ib
=

sinC

sin ic
,

cos ia = cos ib cos ic + sin ib sin ic cos A,

cos A = − cos B cos C + sinB sinC cos ia.

In the notation of the Π-function, these are

sinA tanΠ(a) = sin B tanΠ(b) = sin C tanΠ(c),
sinΠ(b) sin Π(c)

sinΠ(a)
= 1− cos Π(b) cos Π(c) cos A,

cos A = − cos B cos C +
sinB sinC

sinΠ(a)
.

5. Since for very small values of x we have approximately

sin ix = ix,

cos ix = 1 +
x2

2
,

tan ix = ix,
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our formulæ for infinitesimal triangles reduce to

sinA

a
=

sinB

b
=

sinC

c
,

a2 = b2 + c2 − 2bc cos A,

cos A = − cos(B + C).

6. Triangles on an equidistant-surface are similar to their projections on the
base plane; that is, they have the same angles and their sides are propor-
tional. Thus the formulæ of Plane Trigonometry hold for any equidistant-
surface if with the letters representing the sides we put, besides i, a con-
stant factor depending on the distance of the surface from the plane.



Chapter 4

THE ELLIPTIC
GEOMETRY

In the hypothesis of the obtuse angle a straight line is of finite length and returns
into itself. This length is the same for all lines, since any two lines can be made
to coincide. Two straight lines always intersect, and two lines perpendicular to
a third intersect at a point whose distance from the third on either line is half
the entire length of a straight line.

1. A straight line does not divide the plane. Starting from the point of inter-
section of two lines and passing along one of them a certain finite distance,
we come to the intersection point again without having crossed the other
line. Thus, we can pass from one side of the line to the other without
having crossed it.

There is one point through which pass all the perpendiculars to a given
line. It is called the pole of that line, and the line is its polar. Its distance
from the line is half the entire length of a straight line, and the line is
the locus of points at this distance from its pole. Therefore, if the pole of
one line lies on another, the pole of the second lies on the first, and the
intersection of two lines is the pole of the line joining their poles.

51
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The locus of points at a given distance from a given line is a circle having
its centre at the pole of the line. The straight line is a limiting form of a
circle when the radius becomes equal to half the entire length of a line.

We can draw three lines, each perpendicular to the other two, forming a
trirectangular triangle. It is also a self-polar triangle; each vertex is the
pole of the opposite side.

2. All the perpendiculars to a plane in space meet at a point which is the pole
of the plane. It is the centre of a system of spheres of which the plane is
a limiting form when the radius becomes equal to half the entire length of
a straight line.

Figures on a plane can be projected from similar figures on any sphere
which has the pole of the plane for centre. That is, they have equal angles
and corresponding sides in a constant ratio that depends only on the radius
of the sphere. Two corresponding angles are equal, because they are the
same as the diedral angles formed by the two planes through the centre of
the sphere which cut the sphere and the plane in the sides of the angles.
Corresponding lines are proportional; for if two arcs on the sphere are
equal, their projections on the plane are equal; and that, in general, two
arcs have the same ratio as their projections on the plane is proved, first
when they are commensurable, and by the method of limits when they are
incommensurable.

Geometry on a plane is, therefore, like Spherical Geometry, but the plane
corresponds to only half a sphere, just as the diameters of a sphere cor-
respond to the points of half the surface. Indeed, the points and straight
lines of a plane correspond exactly to the lines and planes through a point,
but we can realize the correspondence better that compares the plane with
the surface of a sphere. If we can imagine that the points on the boundary
of a hemisphere at opposite extremities of diameters are coincident, the
hemisphere will correspond to the elliptic plane. There is no particular
line of the plane that plays the part of boundary. All lines of the plane
are alike; the plane is unbounded, but not infinite in extent.

The entire straight line corresponds to a semicircle. We will take such a
unit for measuring length that the entire length of a line shall be π; the
formulæ of Spherical Trigonometry will then apply without change to our
plane. Distances on a line will then have the same measure as the angles
which they subtend at the pole of the line, and the angle between two
lines will be equal to the distance between their poles. The distance from
any point to its polar, half the entire length of a straight line, may then
be called a quadrant.

We can form a self-polar tetraëdron by taking three mutually perpendicu-
lar planes and the plane which has their intersection for pole. The vertices
of this tetraëdron are the poles of the opposite faces. At each vertex is a
trirectangular triedral, and each face is a trirectangular triangle.
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3. Theorem. All the planes perpendicular to a fixed line intersect in another
fixed line, called its polar or conjugate. The relation is reciprocal, and all
the points of either line are at a quadrant’s distance, from all the points
of the other.

Proof. Let the two planes perpendicular to the line AB at H and K
intersect in CD. Pass a plane through AB and R, any point of CD. This
plane will intersect the two given planes in HR and KR. HR and KR
are perpendicular to AB; therefore, R is at a quadrant’s distance from H
and K. R is then the pole of AB in the plane determined by AR and
R, and is at a quadrant’s distance from every point of AB. But R is any
point of CD; therefore, any point of either line is at a quadrant’s distance
from each point of the other line, and a point which is at a quadrant’s
distance from one line lies in the other line. Again, any point, H, of
AB, being at a quadrant’s distance from all the points of CD, is the pole
of CD in the plane determined by it and CD. Thus, HR and KR are
both perpendicular to CD, and the plane determined by AB and R is
perpendicular to CD.

The opposite edges of a self-polar tetraëdron are polar lines.

All the lines which intersect a given line at right angles intersect its polar
at right angles. Therefore, the distances of any point from two polar
lines are measured on the same straight line and are together equal to a
quadrant. Two points which are equidistant from one line are equidistant
from its polar.

The locus of points which are at a given distance from a fixed line is a
surface of revolution having both this line and its polar as axes. We may
call it a surface of double revolution. The parallel circles about one axis
are meridian curves for the other axis. If a solid body, or, we may say, all
space, move along a straight line without rotating about it, it will rotate
about the conjugate line as an axis without sliding along it. A motion
along a straight line combined with a rotation about it is called a screw
motion. A screw motion may then be described as a rotation about each
of two conjugate lines or as a sliding along each of two conjugate lines.
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4. Theorem. In the elliptic geometry there are lines not in the same plane
which have an infinite number of common perpendiculars and are every-
where equidistant.

Given any two lines in the same plane and their common perpendicular.
If we go out on these lines in either direction from the perpendicular, they
approach each other. Now revolve one of them about this perpendicular
so that they are no longer in the same plane. After a certain amount of
rotation the lines will have an infinite number of common perpendiculars
and be equidistant throughout their entire length.

Proof. Let p be the length of the common perpendicular AC, and take
points B and D on the two lines on the same side of this perpendicular at
a distance, a.

BD < p, but if CD revolve about AC, BD will become longer than p by
the time CD is revolved through a right angle; for BCD will then be a
right triangle, with BD for hypothenuse and BC, the hypothenuse of the
triangle ABC, for one of its sides, so that we shall have BD > BC and
BC > AC.

Suppose, when CD has revolved through an angle, θ, BD becomes equal
to p and takes the position BD′. The triangles ABC and D′BC are
equal, having corresponding sides equal. Therefore, BD′ is perpendicular
to CD′. BD′ is also perpendicular to BA; for if we take the diedral
A − BC − D′ and place it upon itself so that the positions of B and
C shall be interchanged, A will fall on the position of D′, and D′ on the
position of A, and the angle D′BA must equal the angle ACD′. Therefore,
BD′ as well as CA is a common perpendicular to the lines AB and CD′.

Now at the point C we have a triedral whose three edges are CB, CD,
and CD′. Moreover, the diedral along the edge CD is a right diedral;
therefore, the three face angles of the triedral satisfy the same relations
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as do the three sides of a spherical right triangle; namely,

cos BCD′ = cos BCD cos DCD′

But

BCD =
π

2
−ACB and BCD′ = ABC.

Hence, this relation may be written

cos ABC = sinACB cos θ.

¶ Again, in the right triangle ABC

sinACB =
cos ABC

cos p

∴ cos θ = cos p,

or, since θ and p are less than π/2,

θ = p.

The angle θ, therefore, does not depend upon a. If we take any two lines
in a plane and turn one about their common perpendicular through an
angle equal in measure to the length of that perpendicular, the two lines
will then be everywhere equidistant.

As we have no parallel lines in the ordinary sense in this Geometry, the name
parallel has been applied to lines of this kind. They have many properties of
the parallel lines of Euclidean Geometry.

Through any point two lines can be drawn parallel to a given line. These
are of two kinds, sometimes distinguished as right-wound and left-wound. They
lie entirely on a surface of double revolution, having the given line as axis.
The surface is, therefore, a ruled surface and has on it two sets of rectilinear
generators like the hyperboloid of one sheet.



Chapter 5

ANALYTIC
NON-EUCLIDEAN
GEOMETRY

We shall use the ordinary polar coördinates, ρ and θ, and for the rectangular
coordinates, x and y, of a point, we shall use the intercepts on the axes made
by perpendiculars through the point to the axes. The formulæ depend upon
the trigonometrical relations, and in our two Geometries differ only in the use
of the imaginary factor i with lengths of lines.

5.1 Hyperbolic Analytic Geometry

1. The relations between polar and rectangular coördinates:

The angles at the origin which the radius vector makes with the axes are
complementary. From the two right triangles we have

56
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tan ix = cos θ tan iρ,

tan iy = sin θ tan iρ.

Therefore,

tan2 iρ = tan2 ix + tan2 iy,

tan θ =
tan iy

tan ix
.

2. The distance, δ, between two points:

cos iδ = cos iρ cos iρ′ + sin iρ sin iρ′ cos(θ′ − θ).

δ and one of the points being fixed, this may be regarded as the polar
equation of a circle.
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3. The equation of a line:

Let p be the length of the perpendicular from the origin upon the line,
and α the angle which the perpendicular makes with the axis of x. From
the right triangle formed with this perpendicular and ρ we have

tan iρ cos(θ − α) = tan ip.

This is the polar equation of the line. We get the equation in x and y by
expanding and substituting; namely,

cos α tan ix + sinα tan iy = tan ip.

¶ The equation a tan ix + b tan iy = i represents a line for which

a2 + b2 =
−1

tan2 ip
.

Now, for real values of p, − tan2 ip < 1 (see footnote, p. 48). The line is
therefore real if a and b are real, and if

a2 + b2 > 1.
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4. The distance, δ, of a point from a line:

Let the radius vector to the point intersect the line at A, and let ρ1 be the
radius vector to A. We have two right triangles with equal angles at A,
and from the expressions for the sines of these angles we get the equation

sin iδ

sin i(ρ− ρ1)
=

sin ip

sin iρ1
.

This equation holds for all points, x y, of the plane, δ being negative when
the point is on the same side of the line as the origin, and zero when the
point is on the line.

sin iδ =
sin ip

tan iρ1
sin iρ− sin ip cos iρ.

Now,

tan iρ1 =
tan ip

cos(θ − α)
.

∴
sin ip

tan iρ1
sin iρ = sin iρ cos ip cos(θ − α),

and

sin iδ = cos iρ cos ip [tan iρ cos(θ − α)− tan ip] .

δ being fixed, this may be regarded as the polar equation of an equidistant-
curve.
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5. The angle between two lines:

φ being the angle which a line makes with the radius vector at any point,
we have

cos φ = cos ip sin(θ − α),

sinφ =
sin ip

sin iρ
.

For two lines intersecting at this point,

sinφ1 sinφ2 =
sin ip1 sin ip2

sin2 iρ

= sin ip1 sin ip2 +
sin ip1 sin ip2

tan2 iρ
.

Now, from the equation of the line

sin ip1

tan iρ
= cos ip1 cos(θ − α1),

sin ip2

tan iρ
= cos ip2 cos(θ − α2);

so that

sinφ1 sinφ2 = sin ip1 sin ip2 + cos ip1 cos ip2 cos(θ − α1) cos(θ − α2).

Again,

cos φ1 cos φ2 = cos ip1 cos ip2 sin(θ − α1) sin(θ − α2).
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Adding these equations, we have

cos(φ2 − φ1) = sin ip1 sin ip2 + cos ip1 cos ip2 cos(α2 − α1).

¶ Two lines are perpendicular if

cos(α2 − α1) + tan ip1 tan ip2 = 0.

The lines

a tan ix + b tan iy = i,

a′ tan ix + b′ tan iy = i,

are perpendicular if

aa′ + bb′ = 1.

6. The equation of a circle in x and y:

sin iρ cos θ = cos iρ tan ix,

sin iρ cos θ = cos iρ tan iy;

also,

cos iρ =
1√

1 + tan2 iρ
=

1√
1 + tan2 ix + tan2 iy

.

The equation of a circle may, therefore, be written

(1 + tan2 ix + tan2 iy)(1 + tan2 ix′ + tan2 iy′) cos2 iδ

= (1 + tan ix tan ix′ + tan iy tan iy′)2.
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7. The equation of a boundary-curve:

Let the axis of the boundary-curve which passes through the origin make
an angle, α, with the axis of x, and let the point where the boundary-curve
cuts this axis be at a distance, k, from the origin, positive if the origin is
on the convex side of the curve, negative if the origin is on the concave
side of the curve. The boundary-curve is the limiting position of a circle
whose centre, on this axis, moves off indefinitely.

ρ′ being the radius vector to the centre, the radius of the circle is ρ′ − k,
and its equation may be written

cos i(ρ′ − k) = cos iρ cos iρ′ + sin iρ sin iρ′ cos(θ − α),

or, expanding and dividing by cos iρ′,

cos ik + tan iρ′ sin ik = cos iρ + sin iρ tan iρ′ cos(θ − α).

¶ Now, let ρ′ increase indefinitely. tan iρ′ tends to the limit i, so that the
limit of the first member of the equation is

cos ik + i sin ik, or e−k,

and the polar equation of the curve is

e−k = cos iρ [1 + i tan iρ cos(θ − α)] ;

or, in x y coördinates,

(1 + tan2 ix + tan2 iy)e−2k = (1 + i cos α tan ix + i sinα tan iy)2.
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Let k be negative and equal, say, to −b, and let α = 0; also, let a be the
ordinate of the point A where the curve cuts the axis of y.

Substituting in the equation, we find

eb = cos ia.

Through A draw a line parallel to the axis of x, and, therefore, making
an angle, Π(a), with the axis of y. If we draw a boundary-curve through
the origin having the same set of parallel lines for axes, so that the two
boundary-curves cut off a distance, b, on these axes, we know that the
ratio of corresponding arcs is

s′

s
= sinΠ(a) =

1
cos ia

; (See p. 45.)

therefore,

s′

s
= e−b. (See p. 36.)

8. The equation of an equidistant-curve:

The polar equation of (4) reduced to an equation in x and y takes the
form

(1 + tan2 ix + tan2 iy) sin2 iδ

= cos2 ip(cos α tan ix + sinα tan iy − tan ip)2.
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9. Comparison of the three equations:

The equation

(1 + tan2 ix + tan2 iy)c2 = −(i− a tan ix− b tan iy)2

represents a circle, a boundary-curve, or an equidistant-curve, according
as a2 + b2 < 1, = 1, > 1, respectively.

10. Differential formulæ:

Suppose we have an isosceles triangle in which the angle A at the vertex
diminishes indefinitely. In the formula

sinA

sin ia
=

sinC

sin ic

we may put for

sinA, sin ia, sinC;
A, ia, 1,

respectively. Therefore,
ia = sin ic ·A. (I.)

Corollary. In a circle of radius r, the ratio of any arc to the angle
subtended at the centre is sin ir.

Again, in the right triangle ABC, let the hypothenuse c revolve about the
vertex A. Differentiating the equation

sinA =
cos B

cos ib
,
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where b is constant, we have

cos Ad A = − sinB dB

cos ib
.

But

sinB =
cos A

cos ia
;

∴ dB = − cos ia cos ib dA,

or (II.)

dB = − cos ic dA.

¶ Now, using polar coördinates, we have an infinitesimal right triangle
whose hypothenuse, ds, makes an angle, say φ, with the radius vector (see
figure on page 65). The two sides about the right angle are dρ and sin iρ

i dθ;
therefore,

ds2 = dρ2 − sin2 iρ dθ2,

tanφ =
sin iρ

i

dθ

dρ
.

For two arcs cutting at right angles, let d′ denote differentiation along the
second arc:

sin iρ

i

dθ

ρ
= − i

sin iρ

d′ρ

d′θ
,

or

dρ

dθ

d′ρ

d′θ
= sin2 iρ.
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11. Area:

It equals ∫∫
sin iρ

i
dρ dθ.1

We will consider only the case where the origin is within the area to be
computed and where each radius vector meets the bounding curve once,
and only once.

Integrating with respect to ρ, from ρ = 0, we have∫ 2π

0

(cos iρ− 1)dθ,

or ∫ 2π

0

cos iρ dθ − 2π.

Suppose P and P ′ are two “consecutive” points on the curve, PM and
P ′M ′ the tangents at these points, and φ the angle which the tangent
makes with the radius vector. The angle MP ′M ′ indicates the amount of
turning or rotation at these points as we go around the curve.

¶ Now, by (II.),
MP ′M ′ = dφ + cos iρ dθ.

1The unit of area being so chosen that the area of an infinitesimal rectangle may be
expressed as the product of its base and altitude.
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¶ In going around the curve, φ may vary but finally returns to its original
value. That is, for our curve ∫

dφ = 0,

and the amount of rotation is∫ 2π

0

cos iρ dθ.

Hence, the area is equal to the excess over four right angles in the amount
of rotation as we go around the curve. This theorem can be extended to
any finite area.

12. A modified system of coördinates:

Our equations take simple forms if we write iu for tan ix, iv for tan iy, ir
for tan iρ, and so on for all lengths of lines.

Thus, we have

u2 + v2 = r2.2

The equation of a line is

au + bv = 1,

and the equation

(1− u2 − v2)c2 = (1− au− bv)2

represents a circle, a boundary-curve, or an equidistant-curve, according
as a2 + b2 < 1, = 1, > 1, respectively.

2If we draw a quadrilateral with three right angles and the diagonal to the acute angle,
and use a, b, and c in the same way that u, v, and r are used above, the five parts lettered in
the figure have the relations of a right triangle in the Euclidean Geometry; e.g.,

a2 + b2 = c2, sin A =
a

c
, etc.
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5.2 Elliptic Analytic Geometry

The Elliptic Analytic Geometry may be developed just as we have developed the
Hyperbolic Analytic Geometry, and the formulæ are the same with the omission
of the factor i. But these formulæ are also very easily obtained from the relation
of line and pole, and we shall produce them in this way.

The formulæ of Elliptic Plane Analytic Geometry may be applied to a sphere
in any of our three Geometries.

1. The relations between polar and rectangular coördinates:

tanx = cos θ tan ρ, tan y = sin θ tan ρ;

therefore,

tan2 ρ = tan2 x + tan2 y,

tan θ =
tan y

tanx
.3

3The line which has the origin for pole forms with the coördinate axes a trirectangular
triangle, and x, y, and θ may be regarded as representing the directions of the given point
from its three vertices.

On a sphere, if we take as origin the pole of the equator, ρ and θ are colatitude and longitude.
x and y, one with its sign changed, are the “bearings” of the point from two points 90◦ apart
on the equator.
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2. The distance, δ, between two points:

cos δ = cos ρ cos ρ′ + sin ρ sin ρ′ cos(θ′ − θ).

This may be regarded as the polar equation of a circle of radius δ, ρ′ and
θ′ being the polar coördinates of the centre.

Now,

sin ρ cos θ = cos ρ tanx,

sin ρ sin θ = cos ρ tan y;

also,

cos ρ =
1√

1 + tan2 ρ
=

1√
1 + tan2 x + tan2 y

The equation of a circle in rectangular coördinates may, therefore, be
written

(1 + tan2 x + tan2 y)(1 + tan2 x′ + tan2 y′) cos2 δ

= (1 + tan x tanx′ + tan y tan y′)2.



CHAPTER 5. ANALYTIC NON-EUCLIDEAN GEOMETRY 70

3. The equation of a line:

When δ = π/2, the circle becomes a straight line. For this we have, there-
fore, the equation

tanx tanx′ + tan y tan y′ + 1 = 0.

x′y′ is the pole of the line.

From the equation

tan ρ cos(θ − α) = tan p,

or

cos α tanx + sinα tan y = tan p,

we find

tanx′ = −cos α

tan p
,

tan y′ = − sinα

tan p
,

as can be shown geometrically, the polar coördinates of this point being

p +
π

2
, α.

The equation
a tanx + b tan y + 1 = 0

represents a real line for any real values of a and b.
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4. The distance, δ, of a point from a straight line:

This is the complement of the distance between the point and the pole of
the line; it is expressed by the equation

sin δ = − cos ρ sin p + sin ρ cos p cos(θ − α)
= cos ρ cos p [tan ρ cos(θ − α)− tan p] .

5. The angle, φ, between two lines:

This is equal to the distance between their poles; therefore,

cos φ = sin p sin p′ + cos p cos p′ cos(α′ − α).

The two lines

a tanx + b tan y + 1 = 0,

a′ tanx + b′ tan y + 1 = 0

are perpendicular if

aa′ + bb′ + 1 = 0.

6. Differential formulæ:

The formula
sinA

sin a
=

sinC

sin c

becomes, when A diminishes indefinitely,

a = sin c ·A. (I.)
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Corollary. In a circle of radius r, the ratio of any arc, to the angle
subtended at the centre is sin r.

From the right triangle ABC, if b remain fixed, we get, by differentiating
the equation

sinA =
cos B

cos b
,

dB = − cos c dA. (II.)
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Thus, we have for differential formulæ in polar coördinates

ds2 = dρ2 + sin2 ρ dθ2,

tanφ = sin ρ
dθ

dρ
; 4

and for two arcs cutting at right angles

dρ

dθ

d′ρ

d′θ
= − sin2 ρ.

The formula for area is5 ∫∫
sin ρ dρ dθ.

We integrate first with respect to ρ, and if the area contains the origin
and each radius vector meets the curve once, and only once, our expression
becomes

2π −
∫ 2π

0

cos ρ dθ.

The entire rotation in going around the curve is found as on page 66, and
is ∫ 2π

0

cos ρ dθ.

Thus the area is equal to the amount by which this rotation is less than
four right angles.

For example, the area of a circle of radius ρ is 2π(1 − cos ρ), and the
amount of turning in going around it is 2π cos ρ. The area of the entire
plane is 2π.

4If φ is constant, as in the logarithmic spiral of Euclidean Geometry, we can integrate this
equation; namely,

tan φ
dρ

sin ρ
= dθ.

∴ tan φ log tan
ρ

2
= θ + c,

or

tan
ρ

2
= e

θ+c
tan φ .

Writing c′ for e
c

tan φ , this is

tan
ρ

2
= c′e

θ
tan φ .

On the sphere this is the curve called the loxodrome.
5The unit of area being properly chosen.
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7. A modified system of coördinates:

Writing u for tan x, v for tan y, r for tan ρ, etc., we have

u2 + v2 = r2.6

The equation of a line then becomes

au + bv + 1 = 0,

and the equation of a circle

(1 + u2 + v2)c2 = (1 + au + bv)2.

5.3 Elliptic Solid Analytic Geometry

We will develop far enough to get the equation of the surface of double revolu-
tion.

1. Coördinates, lines, and planes:

Draw three planes through the point perpendicular to the axes. For co-
ördinates x, y, z, we take the intercepts which these planes make on the
axes.

6The footnote on page 67 applies here also.
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The lines of intersection of these three planes are perpendicular to the
coördinate planes (Chap. I, II, 16 and 17); in fact, all the face angles in
the figure are right angles except those at P and the three angles BA′C,
CB′A, and AC ′B, which are obtuse angles.

Let ρ be the radius vector to the point P , and α, β, and γ the three angles
which it makes with the three axes. Then

cos2 α + cos2 β + cos2 γ = 1,

cos α =
tanx

tan ρ
, etc.;

tan2 x + tan2 y + tan2 z = tan2 ρ.

For the angle between two lines intersecting at the origin

cos θ = cos α cos α′ + cos β cos β′ + cos γ cos γ′.

The angle subtended at the origin by the two points xyz and x′y′z′ is
given by the equation

cos θ =
tanx tanx′ + tan y tan y′ + tan z tan z′

tan ρ tan ρ′
.

For the distance between two points

cos δ = cos ρ cos ρ′ + sin ρ sin ρ′ cos θ.

This gives us the equation of a sphere, and for δ = π/2 the equation of a
plane. The latter in rectangular coördinates is

tanx tanx′ + tan y tan y′ + tan z tan z′ + 1 = 0.

Let p be the length of the perpendicular from the origin upon the plane,
and α, β, γ the angles which this perpendicular makes with the axes.
Then we have for its pole

ρ′ = p +
π

2
,

tanx′ = tan ρ′ cos α = − cos α

tan p
, etc.;

hence, the equation of the plane may be written

cos α tanx + cos β tan y + cos γ tan z = tan p.
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2. The surface of double revolution:

Take one of its axes for the axis of z, suppose k the distance of the surface
from this axis, and let θ denote the angle which the plane through the
point P and the axis of z makes with the plane of xz. We may call z and
θ latitude and longitude.

Produce OA and CB. They will meet at a distance, π/2, from the axis of
z in a point, O′, on the other axis of the surface, and there form an angle
that is equal in measure to z.

From the right triangle O′AB

cos z =
tanOA

tanO′B
.

But

tanO′A = cotx,

and

tanO′B = cotCB =
cot k

cos θ
.

Therefore,

cos z =
tan k cos θ

tanx
,

or

tanx =
tan k cos θ

cos z
.

Similarly,

tan y =
tan k sin θ

cos z
.

Squaring and adding, we have for the equation of the surface

tan2 x + tan2 y = tan2 k sec2 z.
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For the length of the chord joining two points on the surface, we have

cos δ = cos ρ cos ρ′(1 + tanx tanx′ + tan y tan y′ + tan z tan z′).

Now,

tan2 ρ = tan2 k sec2 z + tan2 z;

therefore,

sec2 ρ = sec2 k sec2 z,

or

cos ρ = cos k cos z.

That is, in terms of z, z′, θ, and θ′, we have

cos δ = cos2 k cos(z′ − z) + sin2 k cos(θ′ − θ).

From this we can get an expression for ds, the differential element of length
on the surface:

cos ds = cos2 k cos dz + sin2 k cos dθ,

or, since

cos ds = 1− ds2

2
, etc.,

ds2 = cos2 k dz2 + sin2 k dθ2.

z and θ are proportional to the distances measured along the two systems
of circles. These circles cut at right angles, and may be used to give us
a system of rectangular coördinates on the surface. The actual lengths
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along these two systems of circles are θ sin k and z cos k (see Cor. p. 72).
If, therefore, we write

α = θ sin k, β = z cos k,

we shall have a rectangular system on the surface where the coördinates
are the distances measured along these two systems of circles which cut
at right angles.

The formula now becomes

ds2 = dα2 + dβ2.

An equation of the first degree in α and β represents a curve which enjoys
on this surface all the properties of the straight line in the plane of the
Euclidean Geometry. Through any two points one, and only one, such
line can be drawn, because two sets of coördinates are just sufficient to
determine the coefficients of an equation of the first degree. The shortest
distance between two points on the surface is measured on such a line. For,
the distance between two points on a path represented by an equation in
α and β is the same as the distance between the corresponding points and
on the corresponding path in a Euclidean plane in which we take α and β
for rectangular coördinates. It must, therefore, be the shortest when the
path is represented by an equation of the first degree in α and β. Such
a line on a surface is called a geodesic line, or, so far as the surface is
concerned, a straight line. The distance between any two points measured
on one of these lines is expressed by the formula

d =
√

(α− α′)2 + (β − β′)2.

Triangles formed of these lines have all the properties of plane triangles
in the Euclidean Geometry: the sum of the angles is π, etc. In fact this
surface has the same relation to elliptic space that the boundary-surface
has to hyperbolic space.

The normal form of the equation of a line is

α cos ω + β sinω = p.

The rectilinear generators of the surface make a constant angle, ±k, with
all the circles drawn around the axis which is polar to the axis of z. These
generators are then “straight lines” on the surface, and their equation
takes the form

α cos k ± β sin k = p.
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HISTORICAL NOTE

The history of Non-Euclidean Geometry has been so well and so often written
that we will give only a brief outline.

There is one axiom of Euclid that is somewhat complicated in its expression
and does not seem to be, like the rest, a simple elementary fact. It is this:1

If two lines are cut by a third, and the sum of the interior angles
on the same side of the cutting line is less than two right angles, the
lines will meet on that side when sufficiently produced.

Attempts were made by many mathematicians, notably by Legendre, to give
a proof of this proposition; that is, to show that it is a necessary consequence of
the simpler axioms preceding it. Legendre proved that the sum of the angles of
a triangle can never exceed two right angles, and that if there is a single triangle
in which this sum is equal to two right angles, the same is true of all triangles.
This was, of course, on the supposition that a line is of infinite length. He could
not, however, prove that there exists a triangle the sum of whose angles is two
right angles.2

At last some mathematicians began to believe that this statement was not
capable of proof, that an equally consistent Geometry could be built up if we
suppose it not always true, and, finally, that all of the postulates of Euclid
were only hypotheses which our experience had led us to accept as true, but
which could be replaced by contrary statements in the development of a logical
Geometry.

The beginnings of this theory have sometimes been ascribed to Gauss, but
it is known now that a paper was written by Lambert,3 in 1766, in which he

1See article on the axioms of Euclid by Paul Tannery. Bulletin des Sciences Mathématiques,
1884.

2See, for example, the twelfth edition of his Éléments de Géométrie, Livre I, Proposi-
tion XIX, and Note II. See also a statement by Klein in an article on the Non-Euclidean
Geometry in the second volume of the first series of the Bulletin des Sciences Mathématiques.

3See American Mathematical Monthly, July–August, 1895.

79
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maintains that the parallel axiom needs proof, and gives some of the charac-
teristics of Geometries in which this axiom does not hold. Even as long ago as
1733 a book was published by an Italian, Saccheri, in which he gives a complete
system of Non-Euclidean Geometry, and then saves himself and his book by
asserting dogmatically that these other hypotheses are false. It is his method
of treatment that has been taken as the basis of the first chapter of this book.4

Gauss was seeking to prove the axiom of parallels for many years, and he
may have discovered some of the theorems which are consequences of the denial
of this axiom, but he never published anything on the subject.

Lobachevsky, in Russia, and Johann Bolyai, in Hungary, first asserted and
proved that the axiom of parallels is not necessarily true. They were entirely
independent of each other in their work, and each is entitled to the full credit
of this discovery. Their results were published about 1830.

It was a long time before these discoveries attracted much notice. Meanwhile,
other lines of investigation were carried on which were afterwards to throw much
light on our subject, not, indeed, as explanations, but by their striking analogies.

Thus, within a year or two of each other, in the same journal (Crelle) ap-
peared an article by Lobachevsky giving the results of his investigations, and a
memoir by Minding on surfaces on which he found that the formulæ of Spher-
ical Trigonometry hold if we put ia for a, etc. Yet these two papers had been
published thirty years before their connection was noticed (by Beltrami).

Again, Cayley, in 1859, in the Philosophical Transactions, published his Sixth
Memoir on Quantics, in which he developed a projective theory of measurement
and showed how metrical properties can be treated as projective by considering
the anharmonic relations of any figures with a certain special figure that he
called the absolute. In 1872 Klein took up this theory and showed that it gave
a perfect image of the Non-Euclidean Geometry.

It has also been shown that we can get our Non-Euclidean Geometries if we
think of a unit of measure varying according to a certain law as it moves about
in a plane or in space.

The older workers in these fields discovered only the Geometry in which
the hypothesis of the acute angle is assumed. It did not occur to them to
investigate the assumption that a line is of finite length. The Elliptic Geometry
was left to be discovered by Riemann, who, in 1854, took up a study of the
foundations of Geometry. He studied it from a very different point of view,
an abstract algebraic point of view, considering not our space and geometrical
figures, except by way of illustration, but a system of variables. He investigated
the question, What is the nature of a function of these variables which can
be called element of length or distance? and found that in the simplest cases
it must be the square root of a quadratic function of the differentials of the
variables whose coefficients may themselves be functions of the variables. By
taking different forms of the quadratic expressions we get an infinite number of
these different kinds of Geometry, but in most of them we lose the axiom that

4The translation of Saccheri by Halsted has been appearing in the American Mathematical
Monthly.
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bodies may be moved about without changing their size or shape.
Two more names should be included in this sketch,—Helmholtz and Clifford.

These did much to make the subject popular by articles in scientific journals. To
Clifford we owe the theory of parallels in elliptic space, as explained on page 55.
He showed that we can have in this Geometry a finite surface on which the
Euclidean Geometry holds true.5

The chief lesson of Non-Euclidean Geometry is that the axioms of Geometry
are only deductions from our experience, like the theories of physical science.
For the mathematician, they are hypotheses whose truth or falsity does not
concern him, but only the philosopher. He may take them in any form he
pleases and on them build his Geometry, and the Geometries so obtained have
their applications in other branches of mathematics.

The “axiom”, so far as this word is applied to these geometrical propositions,
is not “self-evident”, and is not necessarily true. If a certain statement can be
proved,—that is, if it is a necessary consequence of axioms already adopted,—
then it should not be called an axiom. When two or more mutually contradictory
statements are equally consistent with all the axioms that have already been
accepted, then we are at liberty to take either of them, and the statement which
we choose becomes for our Geometry an axiom. Our Geometry is a study of
the consequences of this axiom.

The assumptions which distinguish the three kinds of Geometry that we have
been studying may be expressed in different forms. We may say that one or two
or no parallels can be drawn through a point; or, that the sum of the angles
of a triangle is equal to, less than, or greater than two right angles; or, that a
straight line has two real points, one real point, or no real point at infinity; or,
that in a plane we can have similar figures or we cannot have similar figures,
and a straight line is of finite or infinite length, etc. But any of these forms
determines the nature of the Geometry, and the others are deducible from it.

5Some of the more interesting accounts of Non-Euclidean Geometry are: Encyclopedia Bri-
tannica, article “Measurement”, by Sir Robert Ball. Revue Générale des Sciences, 1891, “Les
Géométries Non-Euclidean,” by Poincaré. Bulletin of the American Mathematical Society,
May and June, 1900, “Lobachevsky’s Geometry”, by Frederick S. Woods. Mathematische
Annalen, Bd. xlix, p. 149, 1897, and Bulletin des Sciences Mathématiques, 1897, “Letters of
Gauss and Bolyai”; particularly interesting is one letter in which Gauss gives a formula for the
area of a triangle on the hypothesis that we can draw three mutually parallel lines enclosing a
finite area always the same. The last two articles refer to the publications of Professors Engel
and Stäckel, which give in German a full history of the theory of parallels and the writings
and lives of Lobachevsky and Bolyai. See also the translations by Prof. George Bruce Halsted
of Lobachevsky and Bolyai and of an address by Professor Vasiliev.
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