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Editors’ Preface.

The volume called Higher Mathematics, the third edition of which was pub-
lished in 1900, contained eleven chapters by eleven authors, each chapter being
independent of the others, but all supposing the reader to have at least a math-
ematical training equivalent to that given in classical and engineering colleges.
The publication of that volume was discontinued in 1906, and the chapters have
since been issued in separate Monographs, they being generally enlarged by ad-
ditional articles or appendices which either amplify the former presentation or
record recent advances. This plan of publication was arranged in order to meet
the demand of teachers and the convenience of classes, and it was also thought
that it would prove advantageous to readers in special lines of mathematical
literature.

It is the intention of the publishers and editors to add other monographs to
the series from time to time, if the demand seems to warrant it. Among the
topics which are under consideration are those of elliptic functions, the theory
of quantics, the group theory, the calculus of variations, and non-Euclidean
geometry; possibly also monographs on branches of astronomy, mechanics, and
mathematical physics may be included. It is the hope of the editors that this
Series of Monographs may tend to promote mathematical study and research
over a wider field than that which the former volume has occupied.
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Preface

The purpose of this little book is to give the reader a convenient introduction to
the theory of numbers, one of the most extensive and most elegant disciplines in
the whole body of mathematics. The arrangement of the material is as follows:
The first five chapters are devoted to the development of those elements which
are essential to any study of the subject. The sixth and last chapter is intended
to give the reader some indication of the direction of further study with a brief
account of the nature of the material in each of the topics suggested. The
treatment throughout is made as brief as is possible consistent with clearness
and is confined entirely to fundamental matters. This is done because it is
believed that in this way the book may best be made to serve its purpose as an
introduction to the theory of numbers.

Numerous problems are supplied throughout the text. These have been
selected with great care so as to serve as excellent exercises for the student’s
introductory training in the methods of number theory and to afford at the
same time a further collection of useful results. The exercises marked with a
star are more difficult than the others; they will doubtless appeal to the best
students.

Finally, I should add that this book is made up from the material used by
me in lectures in Indiana University during the past two years; and the selection
of matter, especially of exercises, has been based on the experience gained in
this way.

R. D. Carmichael.
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Chapter 1

ELEMENTARY
PROPERTIES OF
INTEGERS

1.1 Fundamental Notions and Laws

In the present chapter we are concerned primarily with certain elementary prop-
erties of the positive integers 1, 2, 3, 4, . . . It will sometimes be convenient, when
no confusion can arise, to employ the word integer or the word number in the
sense of positive integer.

We shall suppose that the integers are already defined, either by the process
of counting or otherwise. We assume further that the meaning of the terms
greater, less, equal, sum, difference, product is known.

From the ideas and definitions thus assumed to be known follow immediately
the theorems:

I. The sum of any two integers is an integer.
II. The difference of any two integers is an integer.

III. The product of any two integers is an integer.

Other fundamental theorems, which we take without proof, are embodied in
the following formulas: Here a, b, c denote any positive integers.

IV. a+ b = b+ a.
V. a× b = b× a.

VI. (a+ b) + c = a+ (b+ c).
VII. (a× b)× c = a× (b× c).

VIII. a× (b+ c) = a× b+ a× c.

1



CHAPTER 1. ELEMENTARY PROPERTIES OF INTEGERS 2

These formulas are equivalent in order to the following five theorems: ad-
dition is commutative; multiplication is commutative; addition is associative;
multiplication is associative; multiplication is distributive with respect to addi-
tion.

EXERCISES

1. Prove the following relations:

1 + 2 + 3 . . .+ n =
n(n+ 1)

2

1 + 3 + 5 + . . .+ (2n− 1) = n2,

13 + 23 + 33 + . . .+ n3 =

(
n(n+ 1)

2

)2

= (1 + 2 + . . .+ n)2.

2. Find the sum of each of the following series:

12 + 22 + 32+ . . .+ n2,

12 + 32 + 52+ . . .+ (2n− 1)2,

13 + 33 + 53+ . . .+ (2n− 1)3.

3. Discover and establish the law suggested by the equations 12 = 0+1, 22 = 1+3,
32 = 3 + 6, 42 = 6 + 10, . . .; by the equations 1 = 13, 3 + 5 = 23, 7 + 9 + 11 = 33,
13 + 15 + 17 + 19 = 43, . . ..

1.2 Definition of Divisibility. The Unit

Definitions. An integer a is said to be divisible by an integer b if there exists
an integer c such that a = bc. It is clear from this definition that a is also
divisible by c. The integers b and c are said to be divisors or factors of a; and
a is said to be a multiple of b or of c. The process of finding two integers b and
c such that bc is equal to a given integer a is called the process of resolving a
into factors or of factoring a; and a is said to be resolved into factors or to be
factored.

We have the following fundamental theorems:

I. If b is a divisor of a and c is a divisor of b, then c is a divisor of a.
Since b is a divisor of a there exists an integer β such that a = bβ. Since c is

a divisor of b there exists an integer γ such that b = cγ. Substituting this value
of b in the equation a = bγ we have a = cγβ. But from theorem III of § 1.1 it
follows that γβ is an integer; hence, c is a divisor of a, as was to be proved.

II. If c is a divisor of both a and b, then c is a divisor of the sum of a and b.
From the hypothesis of the theorem it follows that integers α and β exist

such that

a = cα, b = cβ.
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Adding, we have

a+ b = cα+ cβ = c(α+ β) = cδ,

where δ is an integer. Hence, c is a divisor of a+ b.

III. If c is a divisor of both a and b, then c is a divisor of the difference of a
and b.

The proof is analogous to that of the preceding theorem.

Definitions. If a and b are both divisible by c, then c is said to be a
common divisor or a common factor of a and b. Every two integers have the
common factor 1. The greatest integer which divides both a and b is called the
greatest common divisor of a and b. More generally, we define in a similar way
a common divisor and the greatest common divisor of n integers a1, a2, . . ., an.

Definitions. If an integer a is a multiple of each of two or more integers it
is called a common multiple of these integers. The product of any set of integers
is a common multiple of the set. The least integer which is a multiple of each
of two or more integers is called their least common multiple.

It is evident that the integer 1 is a divisor of every integer and that it is the
only integer which has this property. It is called the unit.

Definition. Two or more integers which have no common factor except 1
are said to be prime to each other or to be relatively prime.

Definition. If a set of integers is such that no two of them have a common
divisor besides 1 they are said to be prime each to each.

EXERCISES

1. Prove that n3 − n is divisible by 6 for every positive integer n.

2. If the product of four consecutive integers is increased by 1 the result is a square
number.

3. Show that 24n+2 + 1 has a factor different from itself and 1 when n is a positive
integer.

1.3 Prime Numbers. The Sieve of Eratosthenes

Definition. If an integer p is different from 1 and has no divisor except itself
and 1 it is said to be a prime number or to be a prime.

Definition. An integer which has at least one divisor other than itself and
1 is said to be a composite number or to be composite.

All integers are thus divided into three classes:

1. The unit;
2. Prime numbers;
3. Composite numbers.
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We have seen that the first class contains only a single number. The third
class evidently contains an infinitude of numbers; for, it contains all the numbers
22, 23, 24, . . . In the next section we shall show that the second class also contains
an infinitude of numbers. We shall now show that every number of the third class
contains one of the second class as a factor, by proving the following theorem:

I. Every integer greater than 1 has a prime factor.
Let m be any integer which is greater than 1. We have to show that it has a

prime factor. If m is prime there is the prime factor m itself. If m is not prime
we have

m = m1m2

where m1 and m2 are positive integers both of which are less than m. If either
m1 or m2 is prime we have thus obtained a prime factor of m. If neither of
these numbers is prime, then write

m1 = m′1m
′
2, m′1 > 1,m′2 > 1.

Both m′1 and m′2 are factors of m and each of them is less than m1. Either we
have not found in m′1 or m′2 a prime factor of m or the process can be continued
by separating one of these numbers into factors. Since for any given m there is
evidently only a finite number of such steps possible, it is clear that we must
finally arrive at a prime factor of m. From this conclusion, the theorem follows
immediately.

Eratosthenes has given a useful means of finding the prime numbers which
are less than any given integer m. It may be described as follows:

Every prime except 2 is odd. Hence if we write down every odd number
from 3 up to m we shall have it the list every prime less than m except 2. Now
3 is prime. Leave it in the list; but beginning to count from 3 strike out every
third number in the list. Thus every number divisible by 3, except 3 itself,
is cancelled. Then begin from 5 and cancel every fifth number. Then begin
from from the next uncancelled number, namely 7, and strike out every seventh
number. Then begin from the next uncancelled number, namely 11, and strike
out every eleventh number. Proceed in this way up to m. The uncancelled
numbers remaining will be the odd primes not greater than m.

It is obvious that this process of cancellation need not be carried altogether
so far as indicated; for if p is a prime greater than

√
m, the cancellation of

any pth number from p will be merely a repetition of cancellations effected by
means of another factor smaller than p, as one my see by the use of the following
theorem.

II. An integer m is prime if it has no prime factor equal or less than I, where
I is the greatest integer whose square is equal to or less than m.

Since m has no prime factor less than I, it follows from theorem I that is has
no factor but unity less than I. Hence, if m is not prime it must be the product
of two numbers each greater than I; and hence it must be equal to or greater
than (I+1)2. This contradicts the hypothesis on I; and hence we conclude that
m is prime.
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EXERCISE

By means of the method of Eratosthenes determine the primes less than 200.

1.4 The Number of Primes is Infinite

I. The number of primes is infinite.
We shall prove this theorem by supposing that the number of primes is not

infinite and showing that this leads to a contradiction. If the number of primes
is not infinite there is a greatest prime number, which we shall denote by p.
Then form the number

N = 1 · 2 · 3 · . . . · p+ 1.

Now by theorem 1 of § 1.3 N has a prime divisor q. But every non-unit divisor
of N is obviously greater than p. Hence q is greater than p, in contradiction to
the conclusion that p is the greatest prime. Thus the proof of the theorem is
complete.

In a similar way we may prove the following theorem:

II. Among the integers of the arithmetic progression 5, 11, 17, 23, . . ., there
is an infinite number of primes.

If the number of primes in this sequence is not infinite there is a greatest
prime number in the sequence; supposing that this greatest prime number exists
we shall denote it by p. Then the number N ,

N = 1 · 2 · 3 · . . . · p− 1,

is not divisible by any number less than or equal to p. This number N , which
is of the form 6n− 1, has a prime factor. If this factor is of the form 6k − 1 we
have already reached a contradiction, and our theorem is proved. If the prime
is of the form 6k1 + 1 the complementary factor is of the form 6k2 − 1. Every
prime factor of 6k2− 1 is greater than p. Hence we may treat 6k2− 1 as we did
6n−1, and with a like result. Hence we must ultimately reach a prime factor of
the form 6k3−1; for, otherwise, we should have 6n−1 expressed as a product of
prime factors all of the form 6t+ 1—a result which is clearly impossible. Hence
we must in any case reach a contradiction of the hypothesis. Thus the theorem
is proved.

The preceding results are special cases of the following more general theorem:

III. Among the integers of the arithmetic progression a, a+d, a+2d, a+3d,
. . ., there is an infinite number of primes, provided that a and b are relatively
prime.

For the special case given in theorem II we have an elementary proof; but
for the general theorem the proof is difficult. We shall not give it here.

EXERCISES

1. Prove that there is an infinite number of primes of the form 4n− 1.
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2. Show that an odd prime number can be represented as the difference of two
squares in one and in only one way.

3. The expression mp − np, in which m and n are integers and p is a prime, is
either prime to p or is divisible by p2.

4. Prove that any prime number except 2 and 3 is of one of the forms 6n+1, 6n−1.

1.5 The Fundamental Theorem of Euclid

If a and b are any two positive integers there exist integers q and r, q
=
> 0, 0 5

r < b, such that
a = qb+ r.

If a is a multiple of b the theorem is at once verified, r being in this case
0. If a is not a multiple of b it must lie between two consecutive multiples of b;
that is, there exists a q such that

qb < a < (q + 1)b.

Hence there is an integer r, 0 < r < b, such that a = qb+ r. In case b is greater
than a it is evident that q = 0 and r = a. Thus the proof of the theorem is
complete.

1.6 Divisibility by a Prime Number

I. If p is a prime number and m is any integer, then m either is divisible by p
or is prime to p.

This theorem follows at once from the fact that the only divisors of p are 1
and p.

II. The product of two integers each less than a given prime number p is not
divisible by p.

Let a be a number which is less than p and suppose that b is a number less
than p such that ab is divisible by p, and let b be the least number for which ab
is so divisible. Evidently there exists an integer m such that

mb < p < (m+ 1)b.

Then p−mb < b. Since ab is divisible by p it is clear that mab is divisible by p;
so is ap also; and hence their difference ap −mab, = a(p −mb), is divisible by
p. That is, the product of a by an integer less than b is divisible by p, contrary
to the assumption that b is the least integer such that ab is divisible by p. The
assumption that the theorem is not true has thus led to a contradiction; and
thus the theorem is proved.

III. If neither of two integers is divisible by a given prime number p their
product is not divisible by p.
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Let a and b be two integers neither of which is divisible by the prime p.
According to the fundamental theorem of Euclid there exist integers m, n, α, β
such that

a = mp+ α, 0 < α < p,

b = np+ β, 0 < β < p.

Then
ab = (mp+ α)(np+ β) = (mnp+ α+ β)p+ αβ.

If now we suppose ab to be divisible by p we have αβ divisible by p. This
contradicts II, since α and β are less than p. Hence ab is not divisible by p.

By an application of this theorem to the continued product of several factors,
the following result is readily obtained:

IV. If no one of several integers is divisible by a given prime p their product
is not divisible by p.

1.7 The Unique Factorization Theorem

I. Every integer greater than unity can be represented in one and in only one
way as a product of prime numbers.

In the first place we shall show that it is always possible to resolve a given
integer m greater than unity into prime factors by a finite number of operations.
In the proof of theorem I, § 1.3, we showed how to find a prime factor p1 of m
by a finite number of operations. Let us write

m = p1m1.

If m1 is not unity we may now find a prime factor p2 of m1. Then we may write

m = p1m1 = p1p2m2.

If m2 is not unity we may apply to it the same process as that applied to m1

and thus obtain a third prime factor of m. Since m1 > m2 > m3 > . . . it is
clear that after a finite number of operations we shall arrive at a decomposition
of m into prime factors. Thus we shall have

m = p1p2 . . . pr

where p1, p2, . . ., pr are prime numbers. We have thus proved the first part
of our theorem, which says that the decomposition of an integer (greater than
unity) into prime factors is always possible.

Let us now suppose that we have also a decomposition of m into prime
factors as follows:

m = q1q2 . . . qs.
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Then we have

p1p2 . . . pr = q1q2 . . . qs.

Now p1 divides the first member of this equation. Hence it also divides the
second member of the equation. But p1 is prime; and therefore by theorem IV
of the preceding section we see that p1 divides some one of the factors q; we
suppose that p1 is a factor of q1. It must then be equal to q1. Hence we have

p2p3 . . . pr = q2q3 . . . qs.

By the same argument we prove that p2 is equal to some q, say q2. Then we
have

p3p4 . . . pr = q3q4 . . . qs.

Evidently the process may be continued until one side of the equation is reduced
to 1. The other side must also be reduced to 1 at the same time. Hence it follows
that the two decompositions of m are in fact identical.

This completes the proof of the theorem.

The result which we have thus demonstrated is easily the most important
theorem in the theory of integers. It can also be stated in a different form more
convenient for some purposes:

II. Every non-unit positive integer m can be represented in one and in only
one way in the form

m = pα1
1 pα2

2 . . . pαnn

where p1, p2, . . ., pn are different primes and α1, α2, . . ., αn are positive inte-
gers.

This comes immediately from the preceding representation of m in the form
m = p1p2 . . . pr by combining into a power of p1 all the primes which are equal
to p1.

Corollary 1. If a and b are relatively prime integers and c is divisible by
both a and b, then c is divisible by ab.

Corollary 2. If a and b are each prime to c then ab is prime to c.

Corollary 3. If a is prime to c and ab is divisible by c, then b is divisible
by c.

1.8 The Divisors of an Integer

The following theorem is an immediate corollary of the results in the preceding
section:

I. All the divisors of m,

m = pα1
1 pα2

2 . . . pαnn ,
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are of the form

pβ1

1 p
β2

2 . . . pβnn , 0 5 βi 5 αi;

and every such number is a divisor of m.
From this it is clear that every divisor of m is included once and only once

among the terms of the product

(1 + p1 + p21 + . . .+ pα1
1 )(1 + p2 + p22 + . . .+ pα2

2 ) . . .

(1 + pn + p2n + . . .+ pαnn ),

when this product is expanded by multiplication. It is obvious that the number
of terms in the expansion is (α1 + 1)(α2 + 1) . . . (αn + 1). Hence we have the
theorem:

II. The number of divisors of m is (α1 + 1)(α2 + 1) . . . (αn + 1).
Again we have∏

i

(1 + pi + p2i + . . .+ pαii ) =
∏
i

pαi+1
i − 1

pi − 1
.

Hence,

III. The sum of the divisors of m is

pα1+1
1 − 1

p1 − 1
· p

α2+1
2 − 1

p2 − 1
· . . . · p

αi+1
i − 1

pi − 1
.

In a similar manner we may prove the following theorem:

IV. The sum of the hth powers of the divisors of m is

p
h(α1+1)
1 − 1

ph1 − 1
· . . . · p

h(αn+1)
n − 1

phn − 1
.

EXERCISES

1. Find numbers x such that the sum of the divisors of x is a perfect square.

2. Show that the sum of the divisors of each of the following integers is twice the
integer itself: 6, 28, 496, 8128, 33550336. Find other integers x such that the
sum of the divisors of x is a multiple of x.

3. Prove that the sum of two odd squares cannot be a square.

4. Prove that the cube of any integer is the difference of the squares of two integers.

5. In order that a number shall be the sum of consecutive integers, it is necessary
and sufficient that it shall not be a power of 2.

6. Show that there exist no integers x and y (zero excluded) such that y2 = 2x2.
Hence, show that there does not exist a rational fraction whose square is 2.

7. The number m = pα1
1 pα2

2 · · · pαnn , where the p’s are different primes and the
α’s are positive integers, may be separated into relatively prime factors in 2n−1

different ways.

8. The product of the divisors of m is
√
mv where v is the number of divisors of

m.
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1.9 The Greatest Common Factor of Two or
More Integers

Let m and n be two positive integers such that m is greater than n. Then,
according to the fundamental theorem of Euclid, we can form the set of equations

m = qn+ n1, 0 < n1 < n,

n = q1n1 + n2, 0 < n2 < n1,

n1 = q2n2 + n3, 0 < n3 < n2,

...
...

...
...

nk−2 = qk−1nk−1 + nk, 0 < nk < nk−1,

nk−1 = qknk.

If m is a multiple of n we write n = n0, k = 0, in the above equations.

Definition. The process of reckoning involved in determining the above
set of equations is called the Euclidian Algorithm.

I. The number nk to which the Euclidian algorithm leads is the greatest
common divisor of m and n.

In order to prove this theorem we have to show two things:
1) That nk is a divisor of both m and n;
2) That the greatest common divisor d of m and n is a divisor of nk.
To prove the first statement we examine the above set of equations, working

from the last to the first. From the last equation we see that nk is a divisor
of nk−1. Using this result we see that the second member of next to the last
equation is divisible by nk Hence its first member nk−2 must be divisible by nk.
Proceeding in this way step by step we show that n2 and n1, and finally that n
and m, are divisible by nk.

For the second part of the proof we employ the same set of equations and
work from the first one to the last one. Let d be any common divisor of m and
n. From the first equation we see that d is a divisor of n1. Then from the second
equation it follows that d is a divisor of n2. Proceeding in this way we show
finally that d is a divisor of nk. Hence any common divisor, and in particular
the greatest common divisor, of m and n is a factor of nk.

This completes the proof of the theorem.

Corollary. Every common divisor of m and n is a factor of their greatest
common divisor.

II. Any number ni in the above set of equations is the difference of multiples
of m and n.

From the first equation we have

ni = m− qn

so that the theorem is true for i = 1. We shall suppose that the theorem is true
for every subscript up to i − 1 and prove it true for the subscript i. Thus by
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hypothesis we have1

ni−2 = ±(αi−2m− βi−2n),

ni−1 = ∓(αi−1m− βi−1n).

Substituting in the equation

ni = −qi−1nn−1 + ni−2

we have a result of the form

ni = ±(αim− βin).

From this we conclude at once to the truth of the theorem.
Since nk is the greatest common divisor of m and n, we have as a corollary

the following important theorem:

III. If d is the greatest common divisor of the positive integers m and n, then
there exist positive integers α and β such that

αm− βn = ±d.

If we consider the particular case in which m and n are relatively prime,
so that d = 1, we see that there exist positive integers α and β such that
αm − βn = ±1. Obviously, if m and n have a common divisor d, greater than
1, there do not exist integers α and β satisfying this relation; for, if so, d would
be a divisor of the first member of the equation and not of the second. Thus we
have the following theorem:

IV. A necessary and sufficient condition that m and n are relatively prime
is that there exist integers α and β such that αm− βn = ±1.

The theory of the greatest common divisor of three or more numbers is based
directly on that of the greatest common divisor of two numbers; consequently
it does not require to be developed in detail.

EXERCISES

1. If d is the greatest common divisor of m and n, then m/d and n/d are relatively
prime.

2. If d is the greatest common divisor of m and n and k is prime to n, then d is
the greatest common divisor of km and n.

3. The number of multiplies of 6 in the sequence a, 2a, 3a, · · · , ba is equal to the
greatest common divisor of a and b.

4. If the sum or the difference of two irreducible fractions is an integer, the denom-
inators of the fractions are equal.

5. The algebraic sum of any number of irreducible fractions, whose denominators
are prime each to each, cannot be an integer.

1If i = 2 we must replace ni−2 by n.
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6*. The number of divisions to be effected in finding the greatest common divisor of
two numbers by the Euclidian algorithm does not exceed five times the number
of digits in the smaller number (when this number is written in the usual scale
of 10).

1.10 The Least Common Multiple of Two or
More Integers

I. The common multiples of two or more numbers are the multiples of their least
common multiple.

This may be readily proved by means of the unique factorization theorem.
The method is obvious. We shall, however, give a proof independent of this
theorem.

Consider first the case of two numbers; denote them by m and n and their
greatest common divisor by d. Then we have

m = dµ, n = dν,

where µ and ν are relatively prime integers. The common multiples sought are
multiples of m and are all comprised in the numbers am = adµ, where a is
any integer whatever. In order that these numbers shall be multiples of n it is
necessary and sufficient that adµ shall be a multiple of dν; that is, that aµ shall
be a multiple of ν; that is, that a shall be a multiple of ν, since µ and ν are
relatively prime. Writing a = δν we have as the multiples in question the set
δdµν where δ is an arbitrary integer. This proves the theorem for the case of
two numbers; for dµν is evidently the least common multiple of m and n.

We shall now extend the proposition to any number of integers m,n, p, q, . . ..
The multiples in question must be common multiples of m and n and hence of
their least common multiple µ. Then the multiples must be multiples of µ
and p and hence of their least common multiple µ1. But µ1 is evidently the
least common multiple of m,n, p. Continuing in a similar manner we may show
that every multiple in question is a multiple of µ, the least common multiple
of m,n, p, q, . . .. And evidently every such number is a multiple of each of the
numbers m,n, p, q, . . ..

Thus the proof of the theorem is complete.
When the two integers m and n are relatively prime their greatest common

divisor is 1 and their least common multiple is their product. Again if p is prime
to both m and n it is prime to their product mn; and hence the least common
multiple of m,n, p is in this case mnp. Continuing in a similar manner we have
the theorem:

II. The least common multiple of several integers, prime each to each, is
equal to their product.



CHAPTER 1. ELEMENTARY PROPERTIES OF INTEGERS 13

EXERCISES

1. In order that a common multiple of n numbers shall be the least, it is necessary
and sufficient that the quotients obtained by dividing it successively by the
numbers shall be relatively prime.

2. The product of n numbers is equal to the product of their least common multiple
by the greatest common divisor of their products n− 1 at a time.

3. The least common multiple of n numbers is equal to any common multiple M
divided by the greatest common divisor of the quotients obtained on dividing
this common multiple by each of the numbers.

4. The product of n numbers is equal to the product of their greatest common
divisor by the least common multiple of the products of the numbers taken
n− 1 at a time.

1.11 Scales of Notation

I. If m and n are positive integers and n > 1, then m can be represented in
terms of n in one and in only one way in the form

m = a0n
h + a1n

h−1 + . . .+ ah−1n+ ah,

where

a0 6= 0, 0 5 ai < n, i = 0, 1, 2, . . . , h.

That such a representation of m exists is readily proved by means of the
fundamental theorem of Euclid. For we have

m = n0n+ ah, 0 5 ah < n,

n0 = n1n+ ah−1, 0 5 ah−1 < n,

n1 = n2n+ ah−2, 0 5 ah−2 < n,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nh−3 = nh−2n+ a2, 0 5 a2 < n,

nh−2 = nh−1n+ a1, 0 5 a1 < n,

nh−1 = a0, 0 < a0 < n.

If the value of nh−1 given in the last of these equations is substituted in the
second last we have

nh−2 = a0n+ a1.

This with the preceding gives

nh−3 = a0n
2 + a1n+ a2.

Substituting from this in the preceding and continuing the process we have
finally

m = a0n
h + a1n

h−1 + . . .+ ah−1n+ ah,
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a representation of m in the form specified in the theorem.
To prove that this representation is unique, we shall suppose that m has the

representation

m = b0n
k + b1n

k−1 + . . .+ bk−1n+ bk,

where

b0 6= 0, 0 < bi < n, i = 0, 1, 2, . . . , k,

and show that the two representations are identical. We have

a0n
h + . . .+ ah−1n+ ah = b0n

k + . . .+ bk−1n+ bk.

Then

a0n
h + . . .+ ah−1n− (b0n

k + . . .+ bk−1n) = bk − ah.

The first member is divisible by n. Hence the second is also. But the second
member is less than n in absolute value; and hence, in order to be divisible by
n, it must be zero. That is, bk = ah. Dividing the equation through by n and
transposing we have

a0n
h−1 + . . .+ ah−2n− (b0n

k−1 + . . .+ bk−2n) = bk−1 − ah−1.

It may now be seen that bk−1 = ah−1. It is evident that this process may be
continued until either the a’s are all eliminated from the equation or the b’s are
all eliminated. But it is obvious that when one of these sets is eliminated the
other is also. Hence, h = k. Also, every a equals the b which multiplies the
same power of n as the corresponding a. That is, the two representations of m
are identical. Hence the representation in the theorem is unique.

From this theorem it follows as a special case that any positive integer can
be represented in one and in only one way in the scale of 10; that is, in the
familiar Hindoo notation. It can also be represented in one and in only one way
in any other scale. Thus

120759 = 1 · 76 + 0 · 75 + 1 · 74 + 2 · 73 + 0 · 72 + 3 · 71 + 2.

Or, using a subscript to denote the scale of notation, this may be written

(120759)10 = (1012032)7.

For the case in which n (of theorem I) is equal to 2, the only possible values
for the a’s are 0 and 1. Hence we have at once the following theorem:

II. Any positive integer can be represented in one and in only one way as a
sum of different powers of 2.
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EXERCISES

1. Any positive integer can be represented as an aggregate of different powers of 3,
the terms in the aggregate being combined by the signs + and − appropriately
chosen.

2. Let m and n be two positive integers of which n is the smaller and suppose that
2k ≤ n < 2k+1. By means of the representation of m and n in the scale of 2
prove that the number of divisions to be effected in finding the greatest common
divisor of m and n by the Euclidian algorithm does not exceed 2k.

1.12 Highest Power of a Prime p Contained in
n!.

Let n be any positive integer and p any prime number not greater than n. We
inquire as to what is the highest power pν of the prime p contained in n!.

In solving this problem we shall find it convenient to employ the notation[r
s

]
to denote the greatest integer α such that αs ≤ r. With this notation it is
evident that we have 

[
n
p

]
p

 =

[
n

p2

]
; (1)

and more generally 
[
n
pi

]
pj

 =

[
n

pi+j

]
.

If now we use H{x} to denote the index of the highest power of p contained
in an integer x, it is clear that we have

H{n!} = H

{
p · 2p · 3p . . .

[
n

p

]
p

}
,

since only multiples of p contain the factor p. Hence

H{n!} =

[
n

p

]
+H

{
1 · 2 . . .

[
n

p

]}
.

Applying the same process to the H-function in the second member and remem-
bering relation (1) it is easy to see that we have

H{n!} =

[
n

p

]
+H

{
p · 2p · . . . ·

[
n

p2

]
p

}
=

[
n

p

]
+

[
n

p2

]
+H

{
·1 · 2 · 3 . . .

[
n

p2

]}
.
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Continuing the process we have finally

H{n1} =

[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ . . . ,

the series on the right containing evidently only a finite number of terms different
from zero. Thus we have the theorem:

I. The index of the highest power of a prime p contained in n! is[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ . . . .

The theorem just obtained may be written in a different form, more conve-
nient for certain of its applications. Let n be expressed in the scale of p in the
form

n = a0p
h + a1p

h−1 + . . .+ ah−1p+ ah,

where

a0 6= 0, 0 5 ai < p, i = 0, 1, 2, . . . , h.

Then evidently [
n

p

]
= a0p

h−1 + a1p
h−2 + . . .+ ah−2p+ ah−1,[

n

p2

]
= a0p

h−2 + a1p
h−3 + . . .+ ah−2,

. . . . . . . . . . . . . . . . . . . . . . . . .

Adding these equations member by member and combining the second members
in columns as written, we have[

n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ . . .

=

h∑
i=0

ai(p
h−i − 1)

p− 1

=
a0p

h + a1p
h−1 + . . .+ ah − (a0 + a1 + . . .+ ah)

p− 1

=
n− (a0 + a1 + . . .+ ah)

p− 1
.

Comparing this result with theorem I we have the following theorem:

II. If n is represented in the scale of p in the form

n = a0p
h + a1p

h−1 + . . .+ ah,
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where p is prime and

a0 6= 0, 0 5 ai < p, i = 0, 1, 2, . . . , h,

then the index of the highest power of p contained in n! is

n− (a0 + a1 + . . .+ ah)

p− 1
.

Note the simple form of the theorem for the case p = 2; in this case the
denominator p− 1 is unity.

We shall make a single application of these theorems by proving the following
theorem:

III. If n, α, β, . . ., λ are any positive integers such that n = α+ β+ . . .+λ,
then

n!

α!β! . . . λ!
(A)

is an integer.
Let p be any prime factor of the denominator of the fraction (A). To prove

the theorem it is sufficient to show that the index of the highest power of p
contained in the numerator is at least as great as the index of the highest power
of p contained in the denominator. This index for the denominator is the sum
of the expressions [

α

p

]
+

[
α

p2

]
+

[
α

p3

]
+ . . .[

β

p

]
+

[
β

p2

]
+

[
β

p3

]
+ . . .

...[
λ

p

]
+

[
λ

p2

]
+

[
λ

p3

]
+ . . .


(B)

The corresponding index for the numerator is[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ . . . (C)

But, since n = α+ β + . . .+ λ, it is evident that[
n

pr

]
=
>

[
α

pr

]
+

[
β

pr

]
+ . . .+

[
λ

pr

]
.

From this and the expressions in (B) and (C) it follows that the index of the
highest power of any prime p in the numerator of (A) is equal to or greater than
the index of the highest power of p contained in its denominator. The theorem
now follows at once.

Corollary. The product of n consecutive integers is divisible by n!.
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EXERCISES

1. Show that the highest power of 2 contained in 1000! is 2994; in 1900! is 21893.
Show that the highest power of 7 contained in 10000! is 71665.

2. Find the highest power of 72 contained in 1000!

3. Show that 1000! ends with 249 zeros.

4. Show that there is no number n such that 37 is the highest power of 3 contained
in n!.

5. Find the smallest number n such that the highest power of 5 contained in n! is
531. What other numbers have the same property?

6. If n = rs, r and s being positive integers, show that n! is divisible by (r!)s by
(s!)r; by the least common multiple of (r!)s and (s!)r.

7. If n = α + β + pq + rs, where α, β, p, q, r, s, are positive integers, then n! is
divisible by

α!β!(q!)p(s!)r.

8. When m and n are two relatively prime positive integers the quotient

Q =
(m+ n+ 1)!

m!n!

as an integer.

9*. If m and n are positive integers, then each of the quotients

Q =
(mn)!

n!(m!)n
, Q =

(2m)!(2n)!

m!n!(m+ n)!
,

is an integer. Generalize to k integers m,n, p, . . ..

10*. If n = α+β+pq+rs where α, β, p, q, r, s are positive integers, then n! is divisible
by

α!β!r!p!(q!)p(s!)r.

11*. Show that
(rst)!

t!(s!)t(r!)st
,

is an integer (r, s, t being positive integers). Generalize to the case of n integers
r, s, t, u, . . ..

1.13 Remarks Concerning Prime Numbers

We have seen that the number of primes is infinite. But the integers which have
actually been identified as prime are finite in number. Moreover, the question
as to whether a large number, as for instance 2257 − 1, is prime is in general
very difficult to answer. Among the large primes actually identified as such are
the following:

261 − 1, 275 · 5 + 1, 289 − 1, 2127 − 1.
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No analytical expression for the representation of prime numbers has yet
been discovered. Fermat believed, though he confessed that he was unable to
prove, that he had found such an analytical expression in

22
n

+ 1.

Euler showed the error of this opinion by finding that 641 is a factor of this
number for the case when n = 5.

The subject of prime numbers is in general one of exceeding difficulty. In
fact it is an easy matter to propose problems about prime numbers which no
one has been able to solve. Some of the simplest of these are the following:

1. Is there an infinite number of pairs of primes differing by 2?

2. Is every even number (other than 2) the sum of two primes or the sum of
a prime and the unit?

3. Is every even number the difference of two primes or the difference of 1
and a prime number?

4. To find a prime number greater than a given prime.

5. To find the prime number which follows a given prime.

6. To find the number of primes not greater than a given number.

7. To compute directly the nth prime number, when n is given.



Chapter 2

ON THE INDICATOR OF
AN INTEGER

2.1 Definition. Indicator of a Prime Power

Definition. If m is any given positive integer the number of positive integers
not greater than m and prime to it is called the indicator of m. It is usually
denoted by φ(m), and is sometimes called Euler’s φ-function of m. More rarely,
it has been given the name of totient of m.

As examples we have

φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2.

If p is a prime number it is obvious that

φ(p) = p− 1;

for each of the integers 1, 2, 3, . . ., p− 1 is prime to p.
Instead of taking m = p let us assume that m = pα, where α is a positive

integer, and seek the value of φ(pα). Obviously, every number of the set 1, 2,
3, . . ., pα either is divisible by p or is prime to pα. The number of integers in
the set divisible by p is pα−1. Hence pα − pα−1 of them are prime to p. Hence
φ(pα) = pα − pα−1. Therefore

If p is any prime number and α is any positive integer, then

φ(pα) = pα
(

1− 1

p

)
.

2.2 The Indicator of a Product

I. If µ and ν are any two relatively prime positive integers, then

φ(µν) = φ(µ)φ(ν).

20
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In order to prove this theorem let us write all the integers up to µν in a
rectangular array as follows:

1 2 3 . . . h . . . µ

µ+ 1 µ+ 2 µ+ 3 . . . µ+ h . . . 2µ

2µ+ 1 2µ+ 2 2µ+ 3 . . . 2µ+ h . . . 3µ

...
...

...
...

...

(ν − 1)µ+ 1 (ν − 1)µ+ 2 (ν − 1)µ+ 3 . . . (ν − 1)µ+ h . . . νµ


(A)

If a number h in the first line of this array has a factor in common with µ
then every number in the same column with h has a factor in common with µ.
On the other hand if h is prime to µ, so is every number in the column with
h at the top. But the number of integers in the first row prime to µ is φ(µ).
Hence the number of columns containing integers prime to µ is φ(µ) and every
integer in these columns is prime to µ.

Let us now consider what numbers in one of these columns are prime to ν;
for instance, the column with h at the top. We wish to determine how many
integers of the set

h, µ+ h, 2µ+ h, . . . , (ν − 1)µ+ h

are prime to ν. Write

sµ+ h = qsν + rs

where s ranges over the numbers s = 0, 1, 2, . . . , ν−1 and 0 5 rs < ν. Clearly
sµ+h is or is not prime to ν according as rs is or is not prime to ν. Our problem
is then reduced to that of determining how many of the quantities rs are prime
to ν.

First let us notice that all the numbers rs are different; for, if rs = rt then
from

sµ+ h = qsν + rs, tµ+ h = qtν + rt,

we have by subtraction that (s− t)µ is divisible by ν. But µ is prime to ν and s
and t are each less than ν. Hence (s− t)µ can be a multiple of ν only by being
zero; that is, s must equal t. Hence no two of the remainders rs can be equal.

Now the remainders rs are ν in number, are all zero or positive, each is less
than ν, and they are all distinct. Hence they are in some order the numbers 0,
1, 2, . . ., ν − 1. The number of integers in this set prime to ν is evidently φ(ν).

Hence it follows that in any column of the array (A) in which the numbers
are prime to µ there are just φ(ν) numbers which are prime to ν. That is, in
this column there are just φ(ν) numbers which are prime to µν. But there are
φ(µ) such columns. Hence the number of integers in the array (A) prime to µν
is φ(µ)φ(ν).

But from the definition of the φ-function it follows that the number of inte-
gers in the array (A) prime to µν is φ(µν). Hence,

φ(µν) = φ(µ)φ(ν),
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which is the theorem to be proved.

Corollary. In the series of n consecutive terms of an arithmetical progres-
sion the common difference of which is prime to n, the number of terms prime
to n is φ(n).

From theorem I we have readily the following more general result:

II. If m1,m2, . . . ,mk are k positive integers which are prime each to each,
then

φ(m1m2 . . .mk) = φ(m1)φ(m2) . . . φ(mk).

2.3 The Indicator of any Positive Integer

From the results of §§2.1 and 2.2 we have an immediate proof of the following
fundamental theorem:

If m = pα1
1 pα2

2 . . . pαnn where p1, p2, . . . , pn are different primes and α1, α2, . . . , αn
are positive integers, then

φ(m) = m

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pn

)
.

For,

φ(m) = φ(pα1
1 )φ(pα2

2 ) . . . φ(pαnn )

= pα1
1

(
1− 1

p1

)
pα2
2

(
1− 1

p2

)
. . . pαnn

(
1− 1

pn

)
= m

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pn

)
.

On account of the great importance of this theorem we shall give a second
demonstration of it.

It is clear that the number of integers less than m and divisible by p1 is

m

p1
.

The number of integers less than m and divisible by p2 is

m

p2
.

The number of integers less than m and divisible by p1p2 is

m

p1p2
.



CHAPTER 2. ON THE INDICATOR OF AN INTEGER 23

Hence the number of integers less than m and divisible by either p1 or p2 is

m

p1
+
m

p2
− m

p1p2
.

Hence the number of integers less than m and prime to p1p2 is

m− m

p1
− m

p2
+

m

p1p2
= m

(
1− 1

p1

)(
1− 1

p2

)
.

We shall now show that if the number of integers less than m and prime to
p1p2 . . . pi, where i is less than n, is

m

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pi

)
,

then the number of integers less than m and prime to p1p2 . . . pipi+1 is

m

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pi+1

)
.

From this our theorem will follow at once by induction.
From our hypothesis it follows that the number of integers less than m and

divisible by at least one of the primes p1, p2, . . ., pi is

m−m
(

1− 1

p1

)
. . .

(
1− 1

pi

)
,

or ∑ m

p1
−
∑ m

p1p2
+
∑ m

p1p2p3
− . . . , (A)

where the summation in each case runs over all numbers of the type indicated,
the subscripts of the p’s being equal to or less than i.

Let us consider the integers less than m and having the factor pi+1 but not
having any of the factors p1, p2, . . ., pi. Their number is

m

pi+1
− 1

pi+1

{∑ m

p1
−
∑ m

p1p2
+
∑ m

p1p2p3
− . . .

}
, (B)

where the summation signs have the same significance as before. For the number
in question is evidently m

pi+1
minus the number of integers not greater than m

pi+1

and divisible by at least one of the primes p1, p2, . . ., pi.
If we add (A) and (B) we have the number of integers less than m and

divisible by one at least of the numbers p1, p2, . . ., pi+1. Hence the number of
integers less than m and prime to p1, p2, . . ., pi+1 is

m−
∑ m

p1
+
∑ m

p1p2
−
∑ m

p1p2p3
+ . . . ,
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where now in the summations the subscripts run from 1 to i+ 1. This number
is clearly equal to

m

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pi+1

)
.

From this result, as we have seen above, our theorem follows at once by induc-
tion.

2.4 Sum of the Indicators of the Divisors of a
Number

We shall first prove the following lemma:

Lemma. If d is any divisor of m and m = nd, the number of integers not
greater than m which have with m the greatest common divisor d is φ(n).

Every integer not greater than m and having the divisor d is contained in
the set d, 2d, 3d, . . ., nd. The number of these integers which have with m the
greatest common divisor d is evidently the same as the number of integers of
the set 1, 2, . . ., n which are prime to m

d , or n; for αd and n have or have not the
greatest common divisor d according as α is or is not prime to m

d = n. Hence
the number in question is φ(n).

From this lemma follows readily the proof of the following theorem:

If d1, d2, . . ., dr are the different divisors of m, then

φ(d1) + φ(d2) + . . .+ φ(dr) = m.

Let us define integers m1, m2, . . ., mr by the relations

m = d1m1 = d2m2 = . . . = drmr.

Now consider the set of m positive integers not greater than m, and classify
them as follows into r classes. Place in the first class those integers of the set
which have with m the greatest common divisor m1; their number is φ(d1),
as may be seen from the lemma. Place in the second class those integers of
the set which have with m the greatest common divisor m2; their number is
φ(d2). Proceeding in this way throughout, we place finally in the last class
those integers of the set which have with m the greatest common divisor mr;
their number is φ(dr). It is evident that every integer in the set falls into one
and into just one of these r classes. Hence the total number m of integers in the
set is φ(d1) + φ(dr) + . . .+ φ(dr). From this the theorem follows immediately.

EXERCISES

1. Show that the indicator of any integer greater than 2 is even.

2. Prove that the number of irreducible fractions not greater than 1 and with
denominator equal to n is φ(n).
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3. Prove that the number of irreducible fractions not greater than 1 and with
denominators not greater than n is

φ(1) + φ(2) + φ(3) + . . .+ φ(n).

4. Show that the sum of the integers less than n and prime to n is 1
2
nφ(n) if n > 1.

5. Find ten values of x such that φ(x) = 24.

6. Find seventeen values of x such that φ(x) = 72.

7. Find three values of n for which there is no x satisfying the equation φ(x) = 2n.

8. Show that if the equation
φ(x) = n

has one solution it always has a second solution, n being given and x being the
unknown.

9. Prove that all the solutions of the equation

φ(x) = 4n− 2, n > 1,

are of the form pα and 2pα, where p is a prime of the form 4s− 1.

10. How many integers prime to n are there in the set

(a) 1 · 2, 2 · 3, 3 · 4, . . . , n(n+ 1)?

(b) 1 · 2 · 3, 2 · 3 · 4, 3 · 4 · 5, . . . , n(n+ 1)(n+ 2)?

(c) 1·2
2
, 2·3

2
, 3·4

2
, . . . , n(n+1)

2
?

(d) 1·2·3
6
, 2·3·4

6
, 3·4·5

6
, . . . , n(n+1)(n+2)

6
?

11*. Find a method for determining all the solutions of the equation

φ(x) = n,

where n is given and x is to be sought.

12*. A number theory function φ(n) is defined for every positive integer n; and for
every such number n it satisfies the relation

φ(d1) + φ(d2) + . . .+ φ(dr) = n,

where d1, d2, . . . , dr are the divisors of n. From this property alone show that

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pk

)
,

where p1, p2, . . . , pk are the different prime factors of n.



Chapter 3

ELEMENTARY
PROPERTIES OF
CONGRUENCES

3.1 Congruences Modulo m

Definitions. If a and b are any two integers, positive or zero or negative,
whose difference is divisible by m, a and b are said to be congruent modulo
m, or congruent for the modulus m, or congruent according to the modulus m.
Each of the numbers a and b is said to be a residue of the other.

To express the relation thus defined we may write

a = b+ cm,

where c is an integer (positive or zero or negative). It is more convenient,
however, to use a special notation due to Gauss, and to write

a ≡ b mod m,

an expression which is read a is congruent to b modulo m, or a is congruent
to b for the modulus m, or a is congruent to b according to the modulus m.
This notation has the advantage that it involves only the quantities which are
essential to the idea involved, whereas in the preceding expression we had the
irrelevant integer c. The Gaussian notation is of great value and convenience
in the study of the theory of divisibility. In the present chapter we develop
some of the fundamental elementary properties of congruences. It will be seen
that many theorems concerning equations are likewise true of congruences with
fixed modulus; and it is this analogy with equations which gives congruences
(as such) one of their chief claims to attention.

As immediate consequences of our definitions we have the following funda-
mental theorems:

26
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I. If a ≡ c mod m, b ≡ c mod m, then a ≡ b mod m; that is, for a given
modulus, numbers congruent to the same number are congruent to each other.

For, by hypothesis, a− c = c1m, b− c = c2m, where c1 and c2 are integers.
Then by subtraction we have a− b = (c1 − c2)m; whence a ≡ b mod m.

II. If a ≡ b mod m, α ≡ β mod m, then a ± α ≡ b ± β mod m; that
is, congruences with the same modulus may be added or subtracted member by
member.

For, by hypothesis, a− b = c1m, α − β = c2m; whence (a± α)− (b± β) =
(c1 ± c2)m. Hence a± α = b± β mod m.

III. If a = b mod m, then ca = cb mod m, c being any integer whatever.
The proof is obvious and need not be stated.

IV. If a ≡ b mod m, α ≡ β mod m, then aα ≡ bβ mod m; that is, two
congruences with the same modulus may be multiplied member by member.

For, we have a = b+c1m, α = β+c2m. Multiplying these equations member
by member we have aα = bβ +m(bc2 + βc1 + c1c2m). Hence aα ≡ bβ mod m.

A repeated use of this theorem gives the following result:

V. If a ≡ b mod m, then an ≡ bn mod m where n is any positive integer.

As a corollary of theorems II, III and V we have the following more general
result:

VI. If f(x) denotes any polynomial in x with coefficients which are integers
(positive or zero or negative) and if further a ≡ b mod m, then

f(a) ≡ f(b) mod m.

3.2 Solutions of Congruences by Trial

Let f(x) be any polynomial in x with coefficients which are integers (positive
or negative or zero). Then if x and c are any two integers it follows from the
last theorem of the preceding section that

f(x) ≡ f(x+ cm) mod m. (1)

Hence if a is any value of x for which the congruence

f(x) ≡ 0 mod m. (2)

is satisfied, then the congruence is also satisfied for x = α+ cm, where c is any
integer whatever. The numbers α + cm are said to form a solution (or to be
a root) of the congruence, c being a variable integer. Any one of the integers
α+ cm may be taken as the representative of the solution. We shall often speak
of one of these numbers as the solution itself.

Among the integers in a solution of the congruence (2) there is evidently one
which is positive and not greater than m. Hence all solutions of a congruence
of the type (2) may be found by trial, a substitution of each of the numbers
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1, 2, . . . ,m being made for x. It is clear also that m is the maximum number
of solutions which (2) can have whatever be the function f(x). By means of an
example it is easy to show that this maximum number of solutions is not always
possessed by a congruence; in fact, it is not even necessary that the congruence
have a solution at all.

This is illustrated by the example

x2 − 3 ≡ 0 mod 5.

In order to show that no solution is possible it is necessary to make trial only
of the values 1, 2, 3, 4, 5 for x. A direct substitution verifies the conclusion that
none of them satisfies the congruence; and hence that the congruence has no
solution at all.

On the other hand the congruence

x5 − x ≡ 0 mod 5

has the solutions x = 1, 2, 3, 4, 5 as one readily verifies; that is, this congruence
has five solutions—the maximum number possible in accordance with the results
obtained above.

EXERCISES

1. Show that (a+ b)p ≡ ap + bp mod p where a and b are any integers and p is any
prime.

2. From the preceding result prove that αp ≡ α mod p for every integer α.

3. Find all the solutions of each of the congruences x11 ≡ x mod 11, x10 ≡ 1 mod
11, x5 ≡ 1 mod 11.

3.3 Properties of Congruences Relative to Divi-
sion

The properties of congruences relative to addition, subtraction and multiplica-
tion are entirely analogous to the properties of algebraic equations. But the
properties relative to division are essentially different. These we shall now give.

I. If two numbers are congruent modulo m they are congruent modulo d,
where d is any divisor of m.

For, from a ≡ b mod m, we have a = b+ cm = b+ c′d. Hence a ≡ b mod d.

II. If two numbers are congruent for different moduli they are congruent for
a modulus which is the least common multiple of the given moduli.

The proof is obvious, since the difference of the given numbers is divisible
by each of the moduli.

III. When the two members of a congruence are multiples of an integer c
prime to the modulus, each member of the congruence may be divided by c.
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For, if ca ≡ cb mod m then ca− cb is divisible by m. Since c is prime to m
it follows that a− b is divisible by m. Hence a ≡ b mod m.

IV. If the two members of a congruence are divisible by an integer c, hav-
ing with the modulus the greatest common divisor δ, one obtains a congruence
equivalent to the given congruence by dividing the two members by c and the
modulus by δ.

By hypothesis ac ≡ bc mod m, c = δc1, m = δm1. Hence c(a − b) is
divisible by m. A necessary and sufficient condition for this is evidently that
c1(a− b) is divisible by m1. This leads at once to the desired result.

3.4 Congruences with a Prime Modulus

The congruence1

a0x
n + a1x

n−1 + . . .+ an ≡ 0 mod p, a0 6≡ 0 mod p

where p is a prime number and the a’s are any integers, has not more than n
solutions.

Denote the first member of this congruence by f(x) so that the congruence
may be written

f(x) ≡ 0 mod p (1)

Suppose that a is a root of the congruence, so that

f(a) ≡ 0 mod p.

Then we have

f(x) ≡ f(x)− f(a) mod p.

But, from algebra, f(x)− f(a) is divisible by x− a. Let (x− a)α be the highest
power of x− a contained in f(x)− f(a). Then we may write

f(x)− f(a) = (x− a)αf1(x), (2)

where f1(x) is evidently a polynomial with integral coefficients. Hence we have

f(x) ≡ (x− a)αf1(x) mod p. (3)

We shall say that a occurs α times as a solution of (1); or that the congruence
has α solutions each equal to a.

Now suppose that congruence (1) has a root b such that b 6≡ a mod p. Then
from (3) we have

f(b) ≡ (b− a)αf1(b) mod p.

1The sign 6≡ is read is not congruent to.
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But

f(b) ≡ 0 mod p, (b− a)α 6≡ 0 mod p.

Hence, since p is a prime number, we must have

f1(b) ≡ 0 mod p.

By an argument similar to that just used above, we may show that f1(x)−
f1(b) may be written in the form

f1(x)− f1(b) = (x− b)βf2(x),

where β is some positive integer. Then we have

f(x) ≡ (x− a)α(x− b)βf2(x) mod p.

Now this process can be continued until either all the solutions of (1) are
exhausted or the second member is a product of linear factors multiplied by the
integer a0. In the former case there will be fewer than n solutions of (1), so that
our theorem is true for this case. In the other case we have

f(x) ≡ a0(x− a)α(x− b)β . . . (x− l)λ mod p.

We have now n solutions of (1): a counted α times, b counted β times, . . . , l
counted λ times; α+ β + . . .+ λ = n.

Now let η be any solution of (1). Then

f(η) ≡ a0(η − a)α(η − b)β . . . (η − l)λ ≡ 0 mod p.

Since p is prime it follows now that some one of the factors η−a, η− b, . . . , η− l
is divisible by p. Hence η coincides with one of the solutions a, b, c, . . . , l. That
is, (1) can have only the n solutions already found.

This completes the proof of the theorem.

EXERCISES

1. Construct a congruence of the form

a0x
n + a1x

n−1 + . . .+ an ≡ 0 mod m, a0 6≡ 0 mod m,

having more than n solutions and thus show that the limitation to a prime
modulus in the theorem of this section is essential.

2. Prove that

x6 − 1 ≡ (x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6) mod 7

for every integer x.

3. How many solutions has the congruence x5 ≡ 1 mod 11? the congruence x5 ≡
2 mod 11?
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3.5 Linear Congruences

From the theorem of the preceding section it follows that the congruence

ax ≡ c mod p, a 6≡ 0 mod p,

where p is a prime number, has not more than one solution. In this section we
shall prove that it always has a solution. More generally, we shall consider the
congruence

ax ≡ c mod m

where m is any integer. The discussion will be broken up into parts for conve-
nience in the proofs.

I. The congruence
ax ≡ 1 mod m, (1)

in which a and m are relatively prime, has one and only one solution.
The question as to the existence and number of the solutions of (1) is equiva-

lent to the question as to the existence and number of integer pairs x, y satisfying
the equation,

ax−my = 1, (2)

the integers x being incongruent modulo m. Since a and m are relatively prime
it follows from theorem IV of § 1.9 that there exists a solution of equation (2).
Let x = α and y = β be a particular solution of (2) and let x = ᾱ and y = β̄ be
any solution of (2). Then we have

aα−mβ = 1,

aᾱ−mβ̄ = 1;

whence

a(α− ᾱ)−m(β − β̄) = 0.

Hence α−ᾱ is divisible by m, since a and m are relatively prime. That is, a ≡ ᾱ
mod m. Hence α and ᾱ are representatives of the same solution of (1). Hence
(1) has one and only one solution, as was to be proved.

II. The solution x = α of the congruence ax ≡ 1 mod m, in which a and m
are relatively prime, is prime to m.

For, if aα− 1 is divisible by m, α is divisible by no factor of m except 1.

III. The congruence
ax ≡ c mod m (3)

in which a and m and also c and m are relatively prime, has one and only one
solution.

Let x = γ be the unique solution of the congruence cx = 1 mod m. Then
we have aγx ≡ cγ ≡ 1 mod m. Now, by I we see that there is one and only one
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solution of the congruence aγx ≡ 1 mod m; and from this the theorem follows
at once.

Suppose now that a is prime tom but that c andm have the greatest common
divisor δ which is different from 1. Then it is easy to see that any solution x
of the congruence ax ≡ c mod m must be divisible by δ. The question of the
existence of solutions of the congruence ax ≡ c mod m is then equivalent to the
question of the existence of solutions of the congruence

a
x

δ
≡ c

δ
mod

m

δ
,

where x
δ is the unknown integer. From III it follows that this congruence has

a unique solution x
δ = α. Hence the congruence ax ≡ c mod m has the unique

solution x = δα. Thus we have the following theorem:

IV. The congruence ax ≡ c mod m, in which a and m are relatively prime,
has one and only one solution.

Corollary. The congruence ax ≡ c mod p, a 6≡ 0 mod p, where p is a
prime number, has one and only one solution.

It remains to examine the case of the congruence ax = c mod m in which a
and m have the greatest common divisor d. It is evident that there is no solution
unless c also contains this divisor d. Then let us suppose that a = αd, c = γd,
m = µd. Then for every x such that ax = c mod m we have αx = γ mod µ;
and conversely every x satisfying the latter congruence also satisfies the former.
Now αx = γ mod µ, has only one solution. Let β be a non-negative number less
than µ, which satisfies the congruence αx = γ mod µ. All integers which satisfy
this congruence are then of the form β + µν, where ν is an integer. Hence all
integers satisfying the congruence ax = c mod m are of the form β + µν; and
every such integer is a representative of a solution of this congruence. It is clear
that the numbers

β, β + µ, β + 2µ, . . . , β + (d− 1)µ (A)

are incongruent modulo m while every integer of the form β + µν is congruent
modulo m to a number of the set (A). Hence the congruence ax = c mod m has
the d solutions (A).

This leads us to an important theorem which includes all the other theorems
of this section as special cases. It may be stated as follows:

V. Let
ax ≡ c mod m

be any linear congruence and let a and m have the greatest common divisor
d(d ≥ 1). Then a necessary and sufficient condition for the existence of solutions
of the congruence is that c be divisible by d. If this condition is satisfied the
congruence has just d solutions, and all the solutions are congruent modulo
m/d.
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EXERCISES

1. Find the remainder when 240 is divided by 31; when 243 is divided by 31.

2. Show that 225 + 1 has the factor 641.

3. Prove that a number is a multiple of 9 if and only if the sum of its digits is a
multiple of 9.

4. Prove that a number is a multiple of 11 if and only if the sum of the digits in the
odd numbered places diminished by the sum of the digits in the even numbered
places is a multiple of 11.



Chapter 4

THE THEOREMS OF
FERMAT AND WILSON

4.1 Fermat’s General Theorem

Let m be any positive integer and let

a1, a2, . . . , aφ(m) (A)

be the set of φ(m) positive integers not greater than m and prime to m. Let a
be any integer prime to m and form the set of integers

aa1, aa2, . . . , aaφ(m) (B)

No number aai of the set (B) is congruent to a number aaj , unless j = i; for,
from

aai ≡ aaj mod m

we have ai ≡ aj mod m; whence ai = aj since both ai and aj are positive and
not greater than m. Therefore j = i. Furthermore, every number of the set (B)
is congruent to some number of the set (A). Hence we have congruences of the
form

aa1 ≡ ai1 mod m,

aa2 ≡ ai2 mod m,

...

aaφ(m) ≡ aiφ(m)
mod m.

No two numbers in the second members are equal, since aai 6≡ aaj unless i = j.
Hence the numbers ai1 , ai2 , . . . , aiφ(m)

are the numbers a1, a2, . . . , aφ(m) in
some order. Therefore, if we multiply the above system of congruences together

34
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member by member and divide each member of the resulting congruence by
a1 · a2 . . . aφ(m) (which is prime to m), we have

aφ(m) ≡ 1 mod m.

This result is known as Fermat’s general theorem. It may be stated as follows:
If m is any positive integer and a is any integer prime to m, then

aφ(m) ≡ 1 mod m.

Corollary 1. If a is any integer not divisible by a prime number p, then

ap−1 ≡ 1 mod p.

Corollary 2. If p is any prime number and a is any integer, then

ap ≡ a mod p.

4.2 Euler’s Proof of the Simple Fermat Theorem

The theorem of Cor. 1, § 4.1, is often spoken of as the simple Fermat theorem.
It was first announced by Fermat in 1679, but without proof. The first proof of
it was given by Euler in 1736. This proof may be stated as follows:

From the Binomial Theorem it follows readily that

(a+ 1)p ≡ ap + 1 mod p

since

p!

r!(p− r)!
, 0 < r < p,

is obviously divisible by p. Subtracting a + 1 from each side of the foregoing
congruence, we have

(a+ 1)p − (a+ 1) ≡ ap − a mod p.

Hence if ap − a is divisible by p, so is (a+ 1)p − (a+ 1). But 1p − 1 is divisible
by p. Hence 2p − 2 is divisible by p; and then 3p − 3; and so on. Therefore, in
general, we have

ap ≡ a mod p.

If a is prime to p this gives ap−1 ≡ 1 mod p, as was to be proved.
If instead of the Binomial Theorem one employs the Polynomial Theorem,

an even simpler proof is obtained. For, from the latter theorem, we have readily

(α1 + α2 + . . .+ αa)p ≡ αp1 + αp2 + . . .+ αpa mod p.

Putting α1 = α2 = . . . = αa = 1 we have

ap ≡ a mod p,

from which the theorem follows as before.
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4.3 Wilson’s Theorem

From the simple Fermat theorem it follows that the congruence

xp−1 ≡ 1 mod p

has the p − 1 solutions 1, 2, 3, . . ., p − 1. Hence from the discussion in §3.4 it
follows that

xp−1 ≡ (x− 1)(x− 2) . . . (x− p− 1) mod p,

this relation being satisfied for every value of x. Putting x = 0 we have

(−1) = (−1)p−1 · 1 · 2 · 3 . . . p− 1 mod p.

If p is an odd prime this leads to the congruence

1 · 2 · 3 . . . p− 1 + 1 = 0 mod p.

Now for p = 2 this congruence is evidently satisfied. Hence we have the Wilson
theorem:

Every prime number p satisfies the relation

1 · 2 · 3 . . . p+ 1 + 1 ≡ 0 mod p.

An interesting proof of this theorem on wholly different principles may be
given. Let p points be distributed at equal intervals on the circumference of a
circle. The whole number of p-gons which can be formed by joining up these p
points in every possible order is evidently

1

2p
p(p− 1)(p− 2) . . . 3 · 2 · 1;

for the first vertex can be chosen in p ways, the second in p − 1 ways, . . .,
the (p − 1)th in two ways, and the last in one way; and in counting up thus
we have evidently counted each polygon 2p times, once for each vertex and for
each direction from the vertex around the polygon. Of the total number of
polygons 1

2 (p− 1) are regular (convex or stellated) so that a revolution through
360◦

p brings each of these into coincidence with its former position. The number
of remaining p-gons must be divisible by p; for with each such p-gon we may
associate the p− 1 p-gons which can be obtained from it by rotating it through
successive angles of 360◦

p . That is,

1

2p
p(p− 1)(p− 2) . . . 3 · 2 · 1− 1

2
(p− 1) ≡ 0 mod p.

Hence

(p− 1)(p− 2) . . . 3 · 2 · 1− p+ 1 ≡ 0 mod p;
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and from this it follows that

1 · 2 . . . p− 1 + 1 ≡ 0 mod p,

as was to be proved.

4.4 The Converse of Wilson’s Theorem

Wilson’s theorem is noteworthy in that its converse is also true. The converse
may be stated as follows:

Every integer n such that the congruence

1 · 2 · 3 . . . n− 1 + 1 ≡ 0 mod n

is satisfied is a prime number.
For, if n is not prime, there is some divisor d of n different from 1 and less

than n. For such a d we have 1·2·3 . . . n− 1 ≡ 0 mod d; so that 1·2 . . . n− 1+1 6≡
0 mod d; and hence 1 · 2 . . . n− 1 + 1 ≡ 0 mod n. Since this contradicts our
hypothesis the truth of the theorem follows.

Wilson’s theorem and its converse may be combined into the following ele-
gant theorem:

A necessary and sufficient condition that an integer n is prime is that

1 · 2 · 3 . . . n− 1 + 1 ≡ 0 mod n.

Theoretically this furnishes a complete and elegant test as to whether a given
number is prime. But, practically, the labor of applying it is so great that it is
useless for verifying large primes.

4.5 Impossibility of 1 · 2 · 3 · · ·n− 1 + 1 = nk for
n > 5.

In this section we shall prove the following theorem:
There exists no integer k for which the equation

1 · 2 · 3 · · ·n− 1 + 1 = nk

is true when n is greater than 5.
If n contains a divisor d different from 1 and n, the equation is obviously

false; for the second member is divisible by d while the first is not. Hence we
need to prove the theorem only for primes n.

Transposing 1 to the second member and dividing by n− 1 we have

1 · 2 · 3 · · ·n− 2 = nk−1 + nk−2 + . . .+ n+ 1.
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If n > 5 the product on the left contains both the factor 2 and the factor 1
2 (n−1);

that is, the first member contains the factor n−1. But the second member does
not contain this factor, since for n = 1 the expression nk−1 + . . . n+ 1 is equal
to k 6= 0. Hence the theorem follows at once.

4.6 Extension of Fermat’s Theorem

The object of this section is to extend Fermat’s general theorem and incidentally
to give a new proof of it. We shall base this proof on the simple Fermat theorem,
of which we have already given a simple independent proof. This theorem asserts
that for every prime p and integer a not divisible by p, we have the congruence

ap−1 ≡ 1 mod p.

Then let us write

ap−1 = 1 + hp. (1)

Raising each member of this equation to the pth power we may write the result
in the form

ap(p−1) = 1 + h1p
2. (2)

where h1 is an integer. Hence

ap(p−1) ≡ 1 mod p2.

By raising each member of (2) to the pth power we can readily show that

ap
2(p−1) ≡ 1 mod p3.

It is now easy to see that we shall have in general

ap
α−1(p−1) ≡ 1 mod pα.

where α is a positive integer; that is,

aφ(p
α) ≡ 1 mod pα.

For the special case when p is 2 this result can be extended. For this case
(1) becomes

a = 1 + 2h.

Squaring we have

a2 = 1 + 4h(h+ 1).
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Hence,

a2 = 1 + 8h1, (3)

where h1 is an integer. Therefore

a2 ≡ 1 mod 23.

Squaring (3) we have

a2
2

= 1 + 24h2;

or

a2
2

≡ 1 mod 24.

It is now easy to see that we shall have in general

a2
α−2

≡ 1 mod 2α

if α > 2. That is,

a
1
2φ(2

α) ≡ 1 mod 2α if a > 2. (4.1)

Now in terms of the φ-function let us define a new function λ(m) as follows:

λ(2α) = φ(2α) if a = 0, 1, 2;

λ(2α) =
1

2
φ(2α) if a > 2;

λ(pα) = φ(pα) if p is an odd prime;

λ(2αpα1
1 pα2

2 · · · pαnn ) = M,

where M is the least common multiple of

λ(2α), λ(pα1
1 ), λ(pα2

2 ), . . . , λ(pαnn ),

2, p1, p2, . . . , pn being different primes.
Denote by m the number

m = 2αpα1
1 pα2

2 · · · pαnn .

Let a be any number prime to m. From our preceding results we have

aλ(2
α) ≡ 1 mod 2α,

aλ(p
α1
1 ) ≡ 1 mod pα1

1 ,

aλ(p
α2
2 ) ≡ 1 mod pα2

2 ,

. . .

aλ(p
αn
n ) ≡ 1 mod pαn2 .
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Now any one of these congruences remains true if both of its members are
raised to the same positive integral power, whatever that power may be. Then

let us raise both members of the first congruence to the power λ(m)
λ(2α) ; both

members of the second congruence to the power λ(m)

λ(p
α1
1 )

; . . .; both members of

the last congruence to the power λ(m)
λ(pαnn )

. Then we have

aλ(m) ≡ 1 mod 2α,

aλ(m) ≡ 1 mod pα1
1 ,

. . . . . .

aλ(m) ≡ 1 mod pαnn .

From these congruences we have immediately

aλ(m) ≡ 1 mod m.

We may state this result in full in the following theorem:

If a and m are any two relatively prime positive integers, the congruence

aλ(m) ≡ 1 mod m.

is satisfied.
As an excellent example to show the possible difference between the exponent

λ(m) in this theorem and the exponent φ(m) in Fermat’s general theorem, let
us take

m = 26 · 33 · 5 · 7 · 13 · 17 · 19 · 37 · 73.

Here

λ(m) = 24 · 32, φ(m) = 231 · 310.

In a later chapter we shall show that there is no exponent ν less than λ(m)
for which the congruence

aν = 1 mod m

is verified for every integer a prime to m.
From our theorem, as stated above, Fermat’s general theorem follows as a

corollary, since λ(m) is obviously a factor of φ(m),

φ(m) = φ(2α)φ(pα1
1 ) . . . φ(pαnn ).

EXERCISES

1. Show that a16 ≡ 1 mod 16320, for every a which is prime to 16320.

2. Show that a12 ≡ 1 mod 65520, for every a which is prime to 65520.

3*. Find one or more composite numbers P such that

aP−1 ≡ 1 mod P

for every a prime to P . (Compare this problem with the next section.)
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4.7 On the Converse of Fermat’s Simple Theo-
rem

The fact that the converse of Wilson’s theorem is a true proposition leads one
naturally to inquire whether the converse of Fermat’s simple theorem is true.
Thus, we may ask the question: Does the existence of the congruence 2n−1 ≡
1 mod n require that n be a prime number? The Chinese answered this question
in the affirmative and the answer passed unchallenged among them for many
years. An example is sufficient to show that the theorem is not true. We shall
show that

2340 ≡ 1 mod 341

although 341 = 11 · 31, is not a prime number. Now 210 − 1 = 3 · 11 · 31.
Hence 210 ≡ 1 mod 341. Hence 2340 ≡ 1 mod 341. From this it follows that
the direct converse of Fermat’s theorem is not true. The following theorem,
however, which is a converse with an extended hypothesis, is readily proved.

If there exists an integer a such that

an−1 ≡ 1 mod n

and if further there does not exist an integer ν less than n− 1 such that

aν ≡ 1 mod n,

then the integer n is a prime number.
For, if n is not prime, φ(n) < n−1. Then for ν = φ(n) we have aν ≡ 1 mod n,

contrary to the hypothesis of the theorem.

4.8 Application of Previous Results to Linear
Congruences

The theorems of the present chapter afford us a ready means of writing down a
solution of the congruence

ax ≡ c mod m. (1)

We shall consider only the case in which a and m are relatively prime, since the
general case is easily reducible to this one, as we saw in the preceding chapter.

Since a and m are relatively prime we have the congruences

aλ(m) ≡ 1, aφ(m) ≡ 1 mod m.

Hence either of the numbers x,

x = caλ(m)−1, x = caφ(m)−1,

is a representative of the solution of (1). Hence the following theorem:
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If

ax ≡ c mod m

is any linear congruence in which a and m are relatively prime, then either of
the numbers x,

x = caλ(m)−1, x = caφ(m)−1,

is a representative of the solution of the congruence.
The former representative of the solution is the more convenient of the two,

since the power of a is in general much less in this case than in the other.

EXERCISE

Find a solution of 7x ≡ 1 mod 26 · 3 · 5 · 17. Note the greater facility in applying
the first of the above representatives of the solution rather than the second.

4.9 Application of the Preceding Results to the
Theory of Quadratic Residues

In this section we shall apply the preceding results of this chapter to the problem
of finding the solutions of congruences of the form

αz2 + βz + γ ≡ 0 mod µ

where α, β, γ, µ are integers. These are called quadratic congruences.
The problem of the solution of the quadratic congruence (1) can be reduced

to that of the solution of a simpler form of congruence as follows: Congruence
(1) is evidently equivalent to the congruence

4α2z2 + 4αβz + 4αγ ≡ 0 mod 4αµ. (1)

But this may be written in the form

(2αz + β)2 ≡ β2 − 4αγ mod 4αµ.

Now if we put

2αz + β ≡ x mod 4αµ (2)

and

β2 − 4αγ = a, 4αµ = m,
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we have

x2 ≡ a mod m. (3)

We have thus reduced the problem of solving the general congruence (1) to
that of solving the binomial congruence (3) and the linear congruence (2). The
solution of the latter may be effected by means of the results of §4.8. We shall
therefore confine ourselves now to a study of congruence (3). We shall make
a further limitation by assuming that a and m are relatively prime, since it is
obvious that the more general case is readily reducible to this one.

The example
x2 ≡ 3 mod 5

shows at once that the congruence (3) does not always have a solution. First
of all, then, it is necessary to find out in what cases (3) has a solution. Before
taking up the question it will be convenient to introduce some definitions.

Definitions. An integer a is said to be a quadratic residue modulo m or a
quadratic non-residue modulo m according as the congruence

x2 = a mod m

has or has not a solution. We shall confine our attention to the case when
m > 2.

We shall now prove the following theorem:

I. If a and m are relatively prime integers, a necessary condition that a is a
quadratic residue modulo m is that

a
1
2λ(m) ≡ 1 mod m.

Suppose that the congruence x2 = a mod m has the solution x = α. Then
a2 ≡ a mod m. Hence

aλ(m) ≡ a 1
2λ(m) mod m.

Since a is prime to m it is clear from α2 ≡ a mod m that a is prime to m.
Hence αλ(m) ≡ 1 mod m. Therefore we have

1 ≡ a 1
2λ(m) mod m.

That is, this is a necessary condition in order that a shall be a quadratic residue
modulo m.

In a similar way one may prove the following theorem:

II. If a and m are relatively prime integers, a necessary condition that a is
a quadratic residue modulo m is that

a
1
2φ(m) ≡ 1 mod m.
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When m is a prime number p each of the above results takes the following
form: If a is prime to p and is a quadratic residue modulo p, then

a
1
2 (p−1) ≡ 1 mod p.

We shall now prove the following more complete theorem, without the use of I
or II.

III. If p is an odd prime number and a is an integer not divisible by p, then
a is a quadratic residue or a quadratic non-residue modulo p according as

a
1
2 (p−1) ≡ +1 or a

1
2 (p−1) ≡ −1 mod p.

This is called Euler’s criterion.
Given a number a, not divisible by p, we have to determine whether or not

the congruence

x2 ≡ a mod p

has a solution. Let r be any number of the set

1, 2, 3, . . . , p− 1 (A)

and consider the congruence

rx ≡ a mod p. (4.2)

This has always one and just one solution x equal to a number s of the set (A).
Two cases can arise: either for every r of the set (A) the corresponding s is
different from r or for some r of the set (A) the corresponding s is equal to r.
The former is the case when a is a quadratic non-residue modulo p; the latter
is the case when a is a quadratic residue modulo p. We consider the two cases
separately.

In the first case the numbers of the set (A) go in pairs such that the product
of the numbers in the pair is congruent to a modulo p. Hence, taking the product
of all 1

2 (p− 1) pairs, we have

1 · 2 · 3 . . . p− 1 ≡ +a
1
2 (p−1) mod p.

But

1 · 2 · 3 . . . p− 1 = −1 mod p.

Hence

a
1
2 (p−1) ≡ −1 mod p,
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whence the truth of one part of the theorem.
In the other case, namely that in which some r and corresponding s are

equal, we have for this r

r2 ≡ a mod p

and

(p− r)2 ≡ a mod p.

Since x2 ≡ a mod p has at most two solutions it follows that all the integers in
the set (A) except r and p− r fall in pairs such that the product of the numbers
in each pair is congruent to a modulo p. Hence, taking the product of all these
pairs, which are 1

2 (p− 1)− 1 in number, and multiplying by r(p− r) we have

1 · 2 · 3 · · · p− 1 ≡ (p− r)ra 1
2 (p−1)−1 mod p

≡ −r2a 1
2 (p−1)−1 mod p

≡ −aa 1
2 (p−1)−1 mod p

≡ −a 1
2 (p−1) mod p.

Since 1 · 2 · 3 · · · p− 1 ≡ modp we have

a
1
2 (p−1) ≡ +1 mod p

whence the truth of another part of the theorem.
Thus the proof of the entire theorem is complete.



Chapter 5

PRIMITIVE ROOTS
MODULO m.

5.1 Exponent of an Integer Modulo m

Let
a1, a2, · · · , aφ(m) (A)

be the set of φ(m) positive integers not greater than m and prime to m; and
let a denote any integer of the set (A). Now any positive integral power of a
is prime to m and hence is congruent modulo m to a number of the set (A).
Hence, among all the powers of a there must be two, say an and aν , n > ν,
which, are congruent to the same integer of the set (A). These two powers are
then congruent to each other; that is,

an ≡ aν mod m

Since aν is prime to m the members of this congruence may be divided by aν .
Thus we have

an−ν ≡ 1 mod m.

That is, among the powers of a there is one at least which is congruent to 1
modulo m.

Now, in the set of all powers of a which are congruent to 1 modulo m there is
one in which the exponent is less than in any other of the set. Let the exponent
of this power be d, so that ad is the lowest power of a such that

ad ≡ 1 mod m. (1)

We shall now show that if aα ≡ 1 mod m, then α is a multiple of d. Let us
write

α = dδ + β, 0 5 β < d.

46
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Then

aα ≡ 1 mod m, (2)

adδ ≡ 1 mod m, (3)

the last congruence being obtained by raising (1) to the power δ. From (3) we
have

adδ+β ≡ aβ mod m;

or

aβ ≡ 1 mod m.

Hence β = 0, for otherwise d is not the exponent of the lowest power of a which
is congruent to 1 modulo m. Hence d is a divisor of α.

These results may be stated as follows:

I. If m is any integer and a is any integer prime to m, then there exists an
integer d such that

ad ≡ 1 mod m

while there is no integer β less than d for which

aβ ≡ 1 mod m.

Further, a necessary and sufficient condition that

aν ≡ 1 mod m

is that ν is a multiple of d.

Definition. The integer d which is thus uniquely determined when the two
relatively prime integers a and m are given is called the exponent of a modulo
m. Also, d is said to be the exponent to which a belongs modulo m.

Now, in every case we have

aφ(m) ≡ 1, aλ(m) ≡ 1 mod m,

if a and m are relatively prime. Hence from the preceding theorem we have at
once the following:

II. The exponent d to which a belongs modulo m is a divisor of both φ(m)
and λ(m).
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5.2 Another Proof of Fermat’s General Theo-
rem

In this section we shall give an independent proof of the theorem that the
exponent d of a modulo m is a divisor of φ(m); from this result we have obviously
a new proof of Fermat’s theorem itself.

We retain the notation of the preceding section. We shall first prove the
following theorem:

I. The numbers
1, a, a2, . . . , aa−1 (A)

are incongruent each to each modulo m.
For, if aα ≡ aβ mod m, where 0 5 α < d and 0 5 β < d, α > β, we have

aα−β ≡ 1 mod m, so that d is not the exponent to which a belongs modulo m,
contrary to hypothesis.

Now any number of the set (A) is congruent to some number of the set

a1, a2, . . . , aφ(m). (B)

Let us undertake to separate the numbers (B) into classes after the following
manner: Let the first class consist of the numbers

α1, α2, . . . , αa−1, (I)

where αi is the number of the set (B) to which ai is congruent modulo m.
If the class (I) does not contain all the numbers of the set (B), let ai be

any number of the set (B) not contained in (I) and form the following set of
numbers:

α0ai, α1ai, α2ai, . . . , αd−1ai. (II’)

We shall now show that no number of this set is congruent to a number of class
(I). For, if so, we should have a congruence of the form

aiaj ≡ ak mod m;

hence

aia
j ≡ ak mod m,

so that

aia
d ≡ ak+d−j mod m;

or

ai ≡ ak+d−j mod m,
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so that ai would belong to the set (I) contrary to hypothesis.
Now the numbers of the set (II′) are all congruent to numbers of the set

(B); and no two are congruent to the same number of this set. For, if so, we
should have two numbers of (II’) congruent; that is, αkai ≡ αjai mod m, or
αk ≡ αj mod m; and this we have seen to be impossible.

Now let the numbers of the set (B) to which the numbers of the set (II’) are
congruent be in order the following:

β0, β1, β2, . . . , βd−1. (II)

These numbers constitute our class (II).
If classes (I) and (II) do not contain all the numbers of the set (B), let aj be

a number of the set (B) not contained in either of the classes (I) and (II): and
form the set of numbers

α0aj , α1aj , α2aj , . . . , αd−1aj . (III’)

Just as in the preceding case it may be shown that no number of this set is
congruent to a number of class (I) and that the numbers of (III’) are incongruent
each to each. We shall also show that no number of (III’) is congruent to
a number of class (II). For, if so, we should have akaj ≡ βl mod m. Hence
akaj ≡ alai mod m; or aj ≡ al+d−k mod m, from which it follows that aj is of
class (II), contrary to hypothesis.

Now let the numbers of the set (B) to which the numbers of the set (III’)
are congruent be in order the following:

γ0, γ1, γ2, . . . , γd−1. (III)

These numbers form our class (III).
It is now evident that the process may be continued until all the numbers

of the set (B) have been separated into classes, each class containing d integers,
thus:

(I) α0, α1, α2, . . . , αd−1,
(II) β0, β1, β2, . . . , βd−1,
(III) γ0, γ1, γ2, . . . , γd−1,

. . . . . . . . . . . . . . . . . . . . . . . . . . .
( ) λ0, λ1, λ2, . . . , λd−1.

The set (B), which consists of φ(m) integers, has thus been separated into
classes, each class containing d integers. Hence we conclude that d is a divisor
of φ(m). Thus we have a second proof of the theorem:

II. If a and m are any two relatively prime integers and d is the exponent to
which a belongs modulo m, then d is a divisor of φ(m).

In our classification of the numbers (B) into the rectangular array above we
have proved much more than theorem II; in fact, theorem II is to be regarded as
one only of the consequences of the more general result contained in the array.

If we raise each member of the congruence

ad ≡ 1 mod m
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to the (integral) power φ(m)/d, the preceding theorem leads immediately to an
independent proof of Fermat’s general theorem.

5.3 Definition of Primitive Roots

Definition. Let a and m be two relatively prime integers. If the exponent to
which a belongs modulo m is φ(m), a is said to be a primitive root modulo m
(or a primitive root of m).

In a previous chapter we saw that the congruence

aλ(m) ≡ 1 mod m

is verified by every pair of relatively prime integers a and m. Hence, primitive
roots can exist only for such a modulus m as satisfies the equation

φ(m) = λ(m). (1)

We shall show later that this is also sufficient for the existence of primitive roots.
From the relation which exists in general between the φ-function and the

λ-function in virtue of the definition of the latter, it follows that (1) can be
satisfied only when m is a prime power or is twice an odd prime power.

Suppose first that m is a power of 2, say m = 2α. Then (1) is satisfied only
if α = 0, 1, 2. For α = 0 or 1, 1 itself is a primitive root. For α = 2, 3 is a
primitive root. We have therefore left to examine only the cases

m = pα, m = 2pα

where p is an odd prime number. The detailed study of these cases follows in
the next sections.

5.4 Primitive roots modulo p.

We have seen that if p is a prime number and d is the exponent to which a
belongs modulo p, then d is a divisor of φ(p) = p− 1. Now, let

d1, d2, d3, . . . , dr

be all the divisors of p − 1 and let ψ(di) denote the number of integers of the
set

1, 2, 3, . . . , p− 1

which belong to the exponent di. If there is no integer of the set belonging to
this exponent, then ψ(di) = 0.

Evidently every integer of the set belongs to some one and only one of the
exponents d1, d2, . . . , dr. Hence we have the relation

ψ(d1) + ψ(d2) + . . .+ ψ(dr) = p− 1. (1)
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But

φ(d1) + φ(d2) + . . .+ φ(dr) = p− 1. (2)

If then we can show that

ψ(di) 5 φ(di) (3)

for i = 1, 2, . . . , r, it will follow from a comparison of (1) and (2) that

ψ(di) = φ(di).

Accordingly, we shall examine into the truth of (3).
Now the congruence

xdi ≡ 1 mod p (4)

has not more than di roots. If no root of this congruence belongs to the exponent
di, then if ψ(di) = 0 and therefore in this case we have ψ(di) < φ(di). On the
other hand if a is a root of (4) belonging to the exponent di, then

a, a2, a3, . . . , adi (5)

are a set of di incongruent roots of (4); and hence they are the complete set of
roots of (4).

But it is easy to see that ak does or does not belong to the exponent di
according as k is or is not prime to di; for, if ak belongs to the exponent t, then
t is the least integer such that kt is a multiple of di. Consequently the number
of roots in the set (5) belonging to the exponent di is φ(di). That is, in this
case ψ(di) = φ(di). Hence in general ψ(di) 5 φ(di) Therefore from (1) and (2)
we conclude that

ψ(di) = φ(di), i = 1, 2, . . . , r.

The result thus obtained may be stated in the form of the following theorem:

I. If p is a prime number and d is any divisor of p − 1, then the number of
integers belonging to the exponent d modulo p is φ(d).

In particular:

II. There exist primitive roots modulo p and their number is ψ(p− i).

5.5 Primitive Roots Modulo pα, p an Odd Prime

In proving that there exist primitive roots modulo pα, where p is an odd prime
and α > 1, we shall need the following theorem:

I. There always exists a primitive root γ modulo p for which γp−1 is not
divisible by p2.
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Let g be any primitive root modulo p. If gp−1 is not divisible by p2 our
theorem is verified. Then suppose that gp−1 − 1 is divisible by p2, so that we
have

gp−1 − 1 = kp2

where k is an integer. Then put

γ = g + xp

where x is an integer. Then γ = g mod p, and hence

γh ≡ gh mod p;

whence we conclude that γ is a primitive root modulo p. But

γp−1 − 1 = gp−1 − 1 +
p− 1

1!
gp−2xp+

(p− 1)(p− 2)

2!
gp−3x2p2 + . . .

= p

(
kp+

p− 1

1!
gp−2x+

(p− 1)(p− 2)

2!
gp−3x2p+ . . .

)
.

Hence
γp−1 − 1 ≡ p(−gp−2x) mod p2.

Therefore it is evident that x can be so chosen that γp−1 − 1 is not divisible by
p2. Hence there exists a primitive root γ modulo p such that γp−1 − 1 is not
divisible by p2. Q. E. D.

We shall now prove that this integer γ is a primitive root modulo pα, where
α is any positive integer.

If
γk ≡ 1 mod p.

then k is a multiple of p− 1, since γ is a primitive root modulo p. Hence, if

γk ≡ 1 mod pα,

then k is a multiple of p− 1.
Now, write

γp−1 = 1 + hp.

Since γp−1 is not divisible by p2, it follows that h is prime to p. If we raise each

member of this equation to the power βpα−2, α
=
> 2, we have

γβp
α−2(p−1) = 1 + βpα−1h+ pαI,

where I is an integer. Then if

γβp
α−2(p−1) ≡ 1 mod pα,
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β must be divisible by p. Therefore the exponent of the lowest power of γ
which is congruent to 1 modulo pα is divisible by pα−1. But we have seen that
this exponent is also divisible by p− 1. Hence the exponent of γ modulo pα is
pα−1(p − 1) since φ(pα) = pα−1(p − 1). That is, γ is a primitive root modulo
pα.

It is easy to see that no two numbers of the set

γ, γ2, γ3, . . . , γp
α−1(p−1) (A)

are congruent modulo pα; for, if so, γ would belong modulo pα to an exponent
less than pα−1(p − 1) and would therefore not be a primitive root modulo pα.
Now every number in the set (A) is prime to pα; their number is φ(pα) =
pα−1(p− 1). Hence the numbers of the set (A) are congruent in some order to
the numbers of the set (B):

a1, a2, a3, . . . , apα−1(p−1), (B)

where the integers (B) are the positive integers less than pα and prime to pα.
But any number of the set (B) is a solution of the congruence

xp
α−1(p−1) ≡ 1 mod pα. (1)

Further, every solution of this congruence is prime to pα. Hence the integers (B)
are a complete set of solutions of (1). Therefore the integers (A) are a complete
set of solutions of (1). But it is easy to see that an integer γk of the set (A)
is or is not a primitive root modulo pα according as k is or is not prime to
pα−1(p− 1). Hence the number of primitive roots modulo pα is φ{pα−1(p− 1)}.

The results thus obtained may be stated as follows:

II. If p is any odd prime number and α is any positive integer, then there
exist primitive roots modulo pα and their number is φ{φ(pα)}.

5.6 Primitive Roots Modulo 2pα, p an Odd Prime

In this section we shall prove the following theorem:
If p is any odd prime number and α is any positive integer, then there exist

primitive roots modulo 2pα and their number is φ{φ(2pα)}.
Since 2pα is even it follows that every primitive root modulo 2pα is an

odd number. Any odd primitive root modulo pα is obviously a primitive root
modulo 2pα. Again, if γ is an even primitive root modulo pα then γ + pα is a
primitive root modulo 2pα. It is evident that these two classes contain (without
repetition) all the primitive roots modulo 2pα. Hence the theorem follows as
stated above.

5.7 Recapitulation

The results which we have obtained in §§5.3–5.6 inclusive may be gathered into
the following theorem:
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In order that there shall exist primitive roots modulo m, it is necessary and
sufficient that m shall have one of the values

m = 1, 2, 4, pα, 2pα

where p is an odd prime and α is a positive integer.
If m has one of these values then the number of primitive roots modulo m is

φ{φ(m)}.

5.8 Primitive λ-roots

In the preceding sections of this chapter we have developed the theory of primi-
tive roots in the way in which it is usually presented. But if one approaches the
subject from a more general point of view the results which may be obtained
are more general and at the same time more elegant. It is our purpose in this
section to develop the more general theory.

We have seen that if a and m are any two relatively prime positive integers,
then

aλ(m) ≡ 1 mod m.

Consequently there is no integer belonging modulo m to an exponent greater
than λ(m). It is natural to enquire if there are any integers a which belong
to the exponent λ(m). It turns out that the question is to be answered in the
affirmative, as we shall show. Accordingly, we introduce the following definition:

Definition. If aλ(m) is the lowest power of a which is congruent to 1 modulo
m, a is said to be a primitive λ-root modulo m. We shall also say that it is a
primitive λ-root of the congruence xλ(m) = 1 mod m. To distinguish we may
speak of the usual primitive root as a primitive φ-root modulo m.

From the theory of primitive φ-roots already developed it follows that prim-
itive λ-roots always exist when m is a power of any odd prime, and also when
m = 1, 2, 4; for, for such values of m we have λ(m) = φ(m).

We shall next show that primitive λ-roots exist when m = 2α, a > 2, by
showing that 5 is such a root. It is necessary and sufficient to prove that 5
belongs modulo 2α to the exponent 2α−2 = λ(2α). Let d be the exponent to
which 5 belongs modulo 2α. Then from theorem II of §5.1 it follows that d is
a divisor of 2α−2 = λ(2α). Hence if d is different from 2α−2 it is 2α−3 or is a

divisor of 2α−3. Hence if we can show that 52
α−3

is not congruent to 1 modulo
2α we will have proved that 5 belongs to the exponent 2α−2. But, clearly,

52
α−3

= (1 + 22)2
α−3

= 1 + 2α−1 + I · 2α,

where I is an integer. Hence

52
α−3

6≡ 1 mod 2α.

Hence 5 belongs modulo 2α to the exponent λ(2α).
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By means of these special results we are now in position to prove readily the
following general theorem which includes them as special cases:

I. For every congruence of the form

xλ(m) ≡ 1 mod m

a solution g exists which is a primitive λ-root, and for any such solution g there
are φ{λ(m)} primitive roots congruent to powers of g.

If any primitive λ-root g exists, gν is or is not a primitive λ-root according
as ν is or is not prime to λ(m); and therefore the number of primitive λ-roots
which are congruent to powers of any such root g is φ{λ(m)}.

The existence of a primitive λ-root in every case may easily be shown by
induction. In case m is a power of a prime the theorem has already been
established. We will suppose that it is true when m is the product of powers of
r different primes and show that it is true when m is the product of powers of
r + 1 different primes; from this will follow the theorem in general.

Put m = pα1
1 pα2

2 . . . pαrr p
αr+1

r+1 , n = pα1
1 pα2

2 . . . pαrr , and let h be a primitive
λ-root of

xλ(n) ≡ 1 mod n. (1)

Then

h+ ny

is a form of the same root if y is an integer.
Likewise, if c is any primitive λ-root of

xλ(p
αr+1

r+1 ) ≡ 1 mod p
αr+1

r+1 (2)

a form of this root is
c+ p

αr+1

r+1 z

where z is any integer.
Now, if y and z can be chosen so that

h+ ny = c+ p
αr+1

r+1 z

the number in either member of this equation will be a common primitive λ-
root of congruences (1) and (2); that is, a common primitive λ-root of the two
congruences may always be obtained provided that the equation

pα1
1 . . . pαrr y − pαr+1

r+1 z = c− h

has always a solution in which y and z are integers. That this equation has such
a solution follows readily from theorem III of §1.9; for, if c − h is replaced by
1, the new equation has a solution ȳ, z̄; and therefore for y and z we may take
y = ȳ(c− h), z = z̄(c− h).
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Now let g be a common primitive λ-root of congruences (1) and (2) and
write

gν ≡ 1 mod m,

where ν is to be the smallest exponent for which the congruence is true. Since g
is a primitive λ-root of (1) ν is a multiple of λ(pα1

1 . . . pαrr ). Since g is a primitive
λ-root of (2) ν is a multiple of λ

(
p
αr+1

r+1

)
. Hence it is a multiple of λ(m). But

gλ(m) ≡ 1 mod m; therefore ν = λ(m). That is, g is a primitive λ-root modulo
m.

The theorem as stated now follows at once by induction.

There is nothing in the preceding argument to indicate that the primitive
λ-roots modulo m are all in a single set obtained by taking powers of some root
g; in fact it is not in general true when m contains more than one prime factor.

By taking powers of a primitive λ-root g modulo m one obtains φ{λ(m)}
different primitive λ-roots modulo m. It is evident that if γ is any one of these
primitive λ-roots, then the same set is obtained again by taking the powers of
γ. We may say then that the set thus obtained is the set belonging to g.

II. If λ(m) > 2 the product of the φ{λ(m)} primitive λ-roots in the set
belonging to any primitive λ-root g is congruent to 1 modulo m.

These primitive λ-roots are

g, gc1 , gc2 , . . . , gcµ

where

1, c1, c2, . . . , cµ

are the integers less than λ(m) and prime to λ(m). If any one of these is c
another is λ(m)− c, since λ(m) > 2. Hence

1 + c1 + c2 + . . .+ cµ ≡ 0 mod λ(m).

Therefore

g1+c1+c2+...+cµ ≡ 1 mod m.

From this the theorem follows.

Corollary.The product of all the primitive λ-roots modulo m is congruent
to 1 modulo m when λ(m) > 2.

EXERCISES

1. If x1 is the largest value of x satisfying the equation λ(x) = a, where a is a given
integer, then any solution x2 of the equation is a factor of x1.

2*. Obtain an effective rule for solving the equation λ(x) = a.
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3*. Obtain an effective rule for solving the equation φ(x) = a.

4. A necessary and sufficient condition that aP−1 ≡ 1 mod P for every integer a
prime to P is that P ≡ 1 mod λ(P ).

5. If aP−1 ≡ 1 mod P for every a prime to P , then (1) P does not contain a square
factor other than 1, (2) P either is prime or contains at least three different prime
factors.

6. Let p be a prime number. If a is a root of the congruence xq ≡ 1 mod p and α
is a root of the congruence xδ ≡ 1 mod p, then aα is a root of the congruence
xdδ ≡ 1 mod p. If a is a primitive root of the first congruence and α of the
second and if d and δ are relatively prime, then aα is a primitive root of the
congruence xdδ ≡ 1 mod p.



Chapter 6

OTHER TOPICS

6.1 Introduction

The theory of numbers is a vast discipline and no single volume can adequately
treat of it in all of its phases. A short book can serve only as an introduction;
but where the field is so vast such an introduction is much needed. That is the
end which the present volume is intended to serve; and it will best accomplish
this end if, in addition to the detailed theory already developed, some account
is given of the various directions in which the matter might be carried further.

To do even this properly it is necessary to limit the number of subjects con-
sidered. Consequently we shall at once lay aside many topics of interest which
would find a place in an exhaustive treatise. We shall say nothing, for instance,
about the vast domain of algebraic numbers, even though this is one of the most
fascinating subjects in the whole field of mathematics. Consequently, we shall
not refer to any of the extensive theory connected with the division of the circle
into equal parts. Again, we shall leave unmentioned many topics connected
with the theory of positive integers; such, for instance, is the frequency of prime
numbers in the ordered system of integers—a subject which contains in itself
an extensive and elegant theory.

In §§6.2–6.5 we shall speak briefly of each of the following topics: theory
of quadratic residues, Galois imaginaries, arithmetic forms, analytical theory of
numbers. Each of these alone would require a considerable volume for its proper
development. All that we can do is to indicate the nature of the problem in
each case and in some cases to give a few of the fundamental results.

In the remaining three sections we shall give a brief introduction to the theory
of Diophantine equations, developing some of the more elementary properties
of certain special cases. We shall carry this far enough to indicate the nature
of the problem connected with the now famous Last Theorem of Fermat. The
earlier sections of this chapter are not required as a preliminary to reading this
latter part.

58
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6.2 Theory of Quadratic Residues

Let a and m be any two relatively prime integers. In §4.9 we agreed to say
that a is a quadratic residue modulo m or a quadratic non-residue modulo m
according as the congruence

x2 ≡ a mod m

has or has not a solution. We saw that if m is chosen equal to an odd prime
number p, then a is a quadratic residue modulo p or a quadratic non-residue
modulo p according as

a
1
2 (p−1) ≡ 1 or a

1
2 (p−1) ≡ −1 mod p.

This is known as Euler’s criterion.
It is convenient to employ the Legendre symbol(

a

p

)
to denote the quadratic character of a with respect to p. This symbol is to have
the value +1 or the value −1 according as a is a quadratic residue modulo p
or a quadratic non-residue modulo p. We shall now derive some of the funda-
mental properties of this symbol, understanding always that the numbers in the
numerator and the denominator are relatively prime.

From the definition of quadratic residues and non-residues it is obvious that(
a

p

)
=

(
b

p

)
if a ≡ b mod p. (1)

It is easy to prove in general that(
a

p

)(
b

p

)
=

(
ab

p

)
. (2)

This comes readily from Euler’s criterion. We have to consider the three cases(
a

p

)
= +1,

(
b

p

)
= +1;

(
a

p

)
= +1,

(
b

p

)
= −1;(

a

p

)
= −1,

(
b

p

)
= −1.

The method will be sufficiently illustrated by the treatment of the last case.
Here we have

a
1
2 (p−1) ≡ −1 mod p, b

1
2 (p−1) ≡ −1 mod p.

Multiplying these two congruences together member by member we have

(ab)
1
2 (p−1) ≡ 1 mod p,
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whence (
ab

p

)
= 1 =

(
a

p

)(
b

p

)
,

as was to be proved.
If m is any number prime to p and we write m as the product of factors

m = ε · 2α · q′q′′q′′′ · · ·

where q′, q′′, q′′′, . . . are odd primes, α is zero or a positive integer and ε is +1
or −1 according as m is positive or negative, we have(

m

p

)
=

(
ε

p

)(
2

p

)α(
q′

p

)(
q′′

p

)(
q′′′

p

)
. . . , (3)

as one shows easily by repeated application of relation (2). Obviously,(
1

p

)
= 1.

Hence, it follows from (3) that we can readily determine the quadratic character
of m with respect to the odd prime p, that is, the value of(

m

p

)
,

provided that we know the value of each of the expressions(
−1

p

)
,

(
2

p

)
,

(
q

p

)
, (4)

where q is an odd prime.
The first of these can be evaluated at once by means of Euler’s criterion; for,

we have (
−1

p

)
≡ (−1)

1
2 (p−1) mod p

and hence (
−1

p

)
= (−1)

1
2 (p−1).

Thus we have the following result: The number −1 is a quadratic residue of
every prime number of the form 4k + 1 and a quadratic non-residue of every
prime number of the form 4k + 3.

The value of the second symbol in (4) is given by the formula(
2

p

)
= (−1)

1
8 (p

2−1).
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The theorem contained in this equation may be stated in the following words:
The number 2 is a quadratic residue of every prime number of either of the
forms 8k + 1, 8k + 7; it is a quadratic non-residue of every prime number of
either of the forms 8k + 3, 8k + 5.

The proof of this result is not so immediate as that of the preceding one.
To evaluate the third expression in (4) is still more difficult. We shall omit the
demonstration in both of these cases. For the latter we have the very elegant
relation (

p

q

)(
q

p

)
= (−1)

1
4 (p−1)(q−1).

This equation states the law which connects the quadratic character of q with
respect to p with the quadratic character of p with respect to q. It is known as
the Law of Quadratic Reciprocity. About fifty proofs of it have been given. Its
history has been a very interesting one; see Bachmann’s Niedere Zablentheorie,
Teil I, pp. 180–318, especially pp. 200–206.

For a further account of this beautiful and interesting subject we refer the
reader to Bachmann, loc. cit., and to the memoirs to which this author gives
reference.

6.3 Galois Imaginaries

If one is working in the domain of real numbers the equation

x2 + 1 = 0

has no solution; for there is no real number whose square is −1. If, however,
one enlarges the “number system” so as to include not only all real numbers but
all complex numbers as well, then it is true that every algebraic equation has a
root. It is on account of the existence of this theorem for the enlarged domain
that much of the general theory of algebra takes the elegant form in which we
know it.

The question naturally arises as to whether we can make a similar extension
in the case of congruences. The congruence

x2 = 3 mod 5

has no solution, if we employ the term solution in the sense in which we have so
far used it. But we may if we choose introduce an imaginary quantity, or mark,
j such that

j2 ≡ 3 mod 5,

just as in connection with the equation x2 + 1 = 0 we would introduce the
symbol i having the property expressed by the equation

i2 = −1.



CHAPTER 6. OTHER TOPICS 62

It is found to be possible to introduce in this way a general set of imaginaries
satisfying congruences with prime moduli; and the new quantities or marks have
the property of combining according to the laws of algebra.

The quantities so introduced are called Galois imaginaries.
We cannot go into a development of the important theory which is introduced

in this way. We shall be content with indicating two directions in which it leads.
In the first place there is the general Galois field theory which is of funda-

mental importance in the study of certain finite groups. It may be developed
from the point of view indicated here. An excellent exposition, along somewhat
different lines, is to be found in Dickson’s Linear Groups with an Exposition of
the Galois Field Theory.

Again, the whole matter may be looked upon from the geometric point
of view. In this way we are led to the general theory of finite geometries,
that is, geometries in which there is only a finite number of points. For a
development of the ideas which arise here see Veblen and Young’s Projective
Geometry and the memoir by Veblen and Bussey in the Transactions of the
American Mathematical Society, vol. 7, pp. 241–259.

6.4 Arithmetic Forms

The simplest arithmetic form is ax+ b where a and b are fixed integers different
from zero and x is a variable integer. By varying x in this case we have the terms
of an arithmetic progression. We have already referred to Dirichlet’s celebrated
theorem which asserts that the form ax + b has an infinite number of prime
values if only a and b are relatively prime. This is an illustration of one type of
theorem connected with arithmetic forms in general, namely, those in which it
is asserted that numbers of a given form have in addition a given property.

Another type of theorem is illustrated by a result stated in §6.2, provided
that we look at that result in the proper way. We saw that the number 2 is a
quadratic residue of every prime of either of the forms 8k + 1 and 8k + 7 and a
quadratic non-residue of every prime of either of the forms 8k+3 and 8k+5. We
may state that result as follows: A given prime number of either of the forms
8k+ 1 and 8k+ 7 is a divisor of some number of the form x2 − 2, where x is an
integer; no prime number of either of the forms 8k+ 3 and 8k+ 5 is a divisor of
a number of the form x2 − 2, where x is an integer.

The result just stated is a theorem in a discipline of vast extent, namely,
the theory of quadratic forms. Here a large number of questions arise among
which are the following: What numbers can be represented in a given form?
What is the character of the divisors of a given form? As a special case of the
first we have the question as to what numbers can be represented as the sum of
three squares. To this category belong also the following two theorems: Every
positive integer is the sum of four squares of integers; every prime number of
the form 4n + 1 may be represented (and in only one way) as the sum of two
squares.

For an extended development of the theory of quadratic forms we refer the
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reader to Bachmann’s Arithmetik der Quadratischen Formen of which the first
part has appeared in a volume of nearly seven hundred pages.

It is clear that one may further extend the theory of arithmetic forms by
investigating the properties of those of the third and higher degrees. Naturally
the development of this subject has not been carried so far as that of quadratic
forms; but there is a considerable number of memoirs devoted to various parts of
this extensive field, and especially to the consideration of various special forms.

Probably the most interesting of these special forms are the following:

αn + βn,
αn − βn

α− β
= αn−1 + αn−2β + · · ·+ βn−1,

where α and β are relatively prime integers, or, more generally, where α and
β are the roots of the quadratic equation x2 − ux + v = 0 where u and v are
relatively prime integers. A development of the theory of these forms has been
given by the present author in a memoir published in 1913 in the Annals of
Mathematics, vol. 13, pp. 30–70.

6.5 Analytical theory of numbers

Let us consider the function

P (x) =
1∏∞

k=0(1− x2k)
, |x| 5 ρ < 1.

It is clear that we have

P (x) =

∞∏
k=0

1

(1− x2k)
=

∞∏
k=0

(1 + x2k + x2·2
k

+ x3·2
k

+ · · · )

=

∞∑
s=0

G(s)xs,

where G(0) = 1 and G(s) (for s greater than 0) is the number of ways in which
the positive integer s may be separated into like or distinct summands each of
which is a power of 2.

We have readily

(1− x)

∞∑
s=0

G(s)xs = (1− x)P (x) = P (x2) =

∞∑
s=0

x2
s

;

whence
G(2s+ 1) = G(2s) = G(2s− 1) +G(s), (A)

as one readily verifies by equating coefficients of like powers of x. From this we
have in particular

G(0) = 1, G(1) = 1, G(2) = 2, G(3) = 2,

G(4) = 4, G(5) = 4, G(6) = 6, G(7) = 6.
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Thus in (A) we have recurrence relations by means of which we may readily
reckon out the values of the number theoretic function G(s). Thus we may
determine the number of ways in which a given positive integer s may be rep-
resented as a sum of powers of 2.

We have given this example as an elementary illustration of the analytical
theory of numbers, that is, of that part of the theory of numbers in which one
employs (as above) the theory of a continuous variable or some analogous theory
in order to derive properties of sets of integers. This general subject has been
developed in several directions. For a systematic account of it the reader is
referred to Bachmann’s Analytische Zahlentheorie.

6.6 Diophantine equations

If f(x, y, z, . . .) is a polynomial in the variables x, y, z, . . . with integral coeffi-
cients, then the equation

f(x, y, z, . . .) = 0

is called a Diophantine equation when we look at it from the point of view of
determining the integers (or the positive integers) x, y, z, . . . which satisfy it.
Similarly, if we have several such functions fi(x, y, z, . . .), in number less than
the number of variables x, y, z, . . ., then the set of equations

fi(x, y, z, . . .) = 0, i = i, 2, . . . ,

is said to be a Diophantine system of equations. Any set of integers x, y, z, . . .
which satisfies the equation [system] is said to be a solution of the equation
[system].

We may likewise define Diophantine inequalities by replacing the sign of
equality above by the sign of inequality. But little has been done toward devel-
oping a theory of Diophantine inequalities. Even for Diophantine equations the
theory is in a rather fragmentary state.

In the next two sections we shall illustrate the nature of the ideas and the
methods of the theory of Diophantine equations by developing some of the
results for two important special cases.

6.7 Pythagorean triangles

Definitions. If three positive integers x, y, z satisfy the relation

x2 + y2 = z2 (1)

they are said to form a Pythagorean triangle or a numerical right triangle; z is
called the hypotenuse of the triangle and x and y are called its legs. The area
of the triangle is said to be 1

2xy.
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We shall determine the general form of the integers x, y, z, such that equation
(1) may be satisfied. Let us denote by ν the greatest common divisor of x and
y in a particular solution of (1). Then ν is a divisor of z and we may write

x = νu, y = νv, z = νw.

Substituting these values in (1) and reducing we have

u2 + v2 = w2, (2)

where u, v, w are obviously prime each to each, since u and v have the greatest
common divisor 1.

Now an odd square is of the form 4k+ 1. Hence the sum of two odd squares
is divisible by 2 but not by 4; and therefore the sum of two odd squares cannot
be a square. Hence one of the numbers u, v is even. Suppose that u is even and
write equation (2) in the form

u2 = (w − v)(w + v). (3)

Every common divisor of w − v and w + v is a divisor of their difference 2v.
Therefore, since w and v are relatively prime, it follows that 2 is the greatest
common divisor of w − v and w + v. Then from (3) we see that each of these
numbers is twice a square, so that we may write

w − v = 2b2, w + v = 2a2

where a and b are relatively prime integers. From these two equations and
equation (3) we have

w = a2 + b2, v = a2 − b2, u = 2ab. (4)

Since u and v are relatively prime it is evident that one of the numbers a, b is
even and the other odd.

The forms of u, v, w given in (4) are necessary in order that (2) may be
satisfied. A direct substitution in (2) shows that this equation is indeed satisfied
by these values. Hence we have in (4) the general solution of (2) where u is
restricted to be even. A similar solution would be obtained if v were restricted
to be even. Therefore the general solution of (1) is

x = 2νab, y = ν(a2 − b2), z = ν(a2 + b2)

and

x = 2ν(a2 − b2), y = 2νab, z = ν(a2 + b2)

where a, b, ν are arbitrary integers except that a and b are relatively prime and
one of them is even and the other odd.

By means of this general solution of (1) we shall now prove the following
theorem:
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I. There do not exist integers m, n, p, q, all different from zero, such that

q2 + n2 = m2, m2 + n2 = p2. (5)

It is obvious that an equivalent theorem is the following:

II. There do not exist integers m, n, p, q, all different from zero such that

p2 + q2 = 2m2, p2 − q2 = 2n2. (6)

Obviously, we may without loss of generality take m, n, p, q to be positive;
and this we do.

The method of proof is to assume the existence of integers satisfying equa-
tions (5) and (6) and to show that we are thus led to a contradiction. The
argument we give is an illustration of Fermat’s famous method of “infinite de-
scent.”

If any two of the numbers p, q, m, n have a common prime factor t, it follows
at once from (5) and (6) that all four of them have this factor. For, consider
an equation in (5) or in (6) in which these two numbers occur; this equation
contains a third number, and it is readily seen that this third number is divisible
by t. Then from one of the equations containing the fourth number it follows
that this fourth number is divisible by t. Now let us divide each equation of
system (6) through by t2; the resulting system is of the same form as (6). If any
two numbers in this resulting system have a common prime factor t1, we may
divide through by t21; and so on. Hence if a pair of simultaneous equations (6)
exists then there exists a pair of equations of the same form in which no two of
the numbers m, n, p, q have a common factor other than unity. Let this system
of equations be

p21 + q21 = 2m2
1, p21 − q21 = 2n21. (7)

From the first equation in (7) it follows that p1 and q1 are both even or both
odd; and, since they are relatively prime, it follows that they are both odd.
Evidently p1 > q1. Then we may write

p1 = q1 + 2α,

where α is a positive integer. If we substitute this value of p1 in the first equation
of (7), the result may readily be put in the form

(q1 + α)2 + a2 = m2
1. (8)

Since q1 and m1 have no common prime factor it is easy to see from this equation
that α is prime to both q1 and m1, and hence that no two of the numbers
q1 + α, α,m1 have a common factor.

Now we have seen that if a, b, c are positive integers no two of which have
a common prime factor, while

a2 + b2 = c2,
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then there exist relatively prime integers r and s, r > s, such that

c = r2 + s2, a = 2rs, b = r2 − s2

or

c = r2 + s2, a = r2 − s2, b = 2rs.

Hence from (8) we see that we may write

q1 + α = 2rs, α = r2 − s2 (9)

or

q1 + α = r2 − s2, α = 2rs. (10)

In either case we have

p21 − q21 = (p1 − q1)(p1 + q1) = 2α · 2(q1 + α) = 8rs(r2 − s2).

If we substitute in the second equation of (7) and divide by 2 we have

4rs(r2 − s2) = n21.

From this equation and the fact that r and s are relatively prime it follows
at once that r, s, r2 − s2 are all square numbers; say,

r = u2, s = v2, r2 − s2 = w2.

Now r − s and r + s can have no common factor other than 1 or 2; hence from

w2 = (r2 − s2) = (r − s)(r + s) = (u2 − v2)(u2 + v2)

we see that either

u2 + v2 = 2w2
1, u2 − v2 = 2w2

2 (11)

or

u2 + v2 = w2
1, u2 − v2 = w2

2.

And if it is the latter case which arises, then

w2
1 + w2

2 = 2u2, w2
1 − w2

2 = 2v2. (12)
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Hence, assuming equations of the form (6) we are led either to equations (11) or
to equations (12); that is, we are led to new equations of the form with which
we started. Let us write the equations thus:

p22 + q22 = 2m2
2, p22 − q22 = 2n22; (13)

that is, system (13) is identical with that one of systems (11), (12) which actually
arises.

Now from (9) and (10) and the relations p1 = q1 + 2α, r > s, we see that

p1 = 2rs+ r2 − s2 > 2s2 + r2 − s2 = r2 + s2 = u4 + v4.

Hence u < p1. Also,

w2
1 5 w2 5 r + s < r2 + s2.

Hence w1 < p1. Since u and w1 are both less than p1 it follows that p2 is less
than p1. Hence, obviously, p2 < p. Moreover, it is clear that all the numbers
p2, q2,m2, n2 are different from zero.

From these results we have the following conclusion: If we assume a system
of the form (6) we are led to a new system (13) of the same form; and in the
new system p2 is less than p.

Now if we start with (13) and carry out a similar argument we shall be led
to a new system

p23 + q23 = 2m2
3, p23 − q23 = 2n23,

with the relation p3 < p2, starting from this last system we shall be led to a
new one of the same form, with a similar relation of inequality; and so on ad
infinitum. But, since there is only a finite number of positive integers less than
the given positive integer p this is impossible. We are thus led to a contradiction;
whence we conclude at once to the truth of II and likewise of I.

By means of theorems I and II we may readily prove the following theorem:

III. The area of a numerical right triangle is never a square number.
Let the sides and hypotenuse of a numerical right triangle be u, v, w, respec-

tively. The area of this triangle is 1
2uv. If we assume this to be a square number

t2 we shall have the following simultaneous Diophantine equations

u2 + v2 = w2, uv = 2t2. (14)

We shall prove our theorem by showing that the assumption of such a system
leads to a contradiction.

If any two of the numbers u, v, w have a common prime factor p then the
remaining one also has this factor, as one sees readily from the first equation
in (14). From the second equation in (14) it follows that t also has the same
factor. Then if we put u = pu1, v = pv1, w = pw1, t = pt1, we have

u21 + v21 = w2
1, u1v1 = 2t21,
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a system of the same form as (14). It is clear that we may start with this new
system and proceed in the same manner as before, and so on, until we arrive at
a system

ū2 + v̄2 = w̄2, ūv̄ = 2t̄2, (15)

where ū, v̄, w̄ are prime each to each.
Now the general solution of the first equation (15) may be written in one of

the forms

ū = 2ab, v̄ = a2 − b2, w̄ = a2 + b2

ū = a2b2, v̄ = 2ab, w̄ = a2 + b2.

Then from the second equation in (15) we have

t̄2 = ab(a2 − b2) = ab(a− b)(a+ b).

It is easy to see that no two of the numbers a, b, a− b, a+ b in the last member
of this equation have a common factor; for, if so, ū and v̄ would have a common
factor, contrary to hypothesis. Hence each of these four numbers is a square.
That is, we have equations of the form

a = m2, b = n2, a+ b = p2, a− b = q2;

whence

m2 − n2 = q2, m2 + n2 = p2.

But, according to theorem I, no such system of equations can exist. That is,
the assumption of equations (14) leads to a contradiction. Hence the theorem
follows as stated above.

6.8 The Equation xn + yn = zn.

The following theorem, which is commonly known as Fermat’s Last Theorem,
was stated without proof by Fermat in the seventeenth century:

If n is an integer greater than 2 there do not exist integers x, y, z, all different
from zero, such that

xn + yn = zn. (1)

No general proof of this theorem has yet been given. For various special
values of n the proof has been found; in particular, for every value of n not
greater than 100.

In the study of equation (1) it is convenient to make some preliminary re-
ductions. If there exists any particular solution of (1) there exists also a solution
in which x, y, z are prime each to each, as one may show readily by the method
employed in the first part of §6.7. Hence in proving the impossibility of equation
(1) it is sufficient to treat only the case in which x, y, z are prime each to each.
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Again, since n is greater than 2 it must contain the factor 4 or an odd prime
factor p. If n contains the factor p we write n = mp, whence we have

(xm)p + (ym)p = (zm)p).

If n contains the factor 4 we write n = 4m, whence we have

(xm)4 + (ym)4 = (zm)4.

From this we see that in order to prove the impossibility of (1) in general it is
sufficient to prove it for the special cases when n is 4 and when n is an odd
prime p. For the latter case the proof has not been found. For the former case
we give a proof below. The theorem may be stated as follows:

I. There are no integers x, y, z, all different from zero, such that

x4 + y4 = z4.

This is obviously a special case of the more general theorem:

II. There are no integers p, q, α, all different from zero, such that

p4 − q4 = α2. (2)

The latter theorem is readily proved by means of theorem III of §6.7. For,
if we assume an equation of the form (2), we have

(p4 − q4)p2q2 = p2q2α2. (3)

But, obviously,

(2p2q2)2 + (p4 − q4)2 = (p4 + q4)2. (4)

Now, from (3) we see that the numerical right triangle determined by (4) has its
area p2q2(p4 − q4) equal to the square number p2q2α2. But this is impossible.
Hence no equation of the form (2) exists.

EXERCISES

1. Show that the equation α4 + 4β4 = γ2 is impossible in integers α, β, γ all
of which are different from zero.

2. Show that the system p2− q2 = km2, p2 + q2 = kn2 impossible in integers
p, q, k, m, n, all of which are different from zero.

3*. Show that neither of the equations m4 − 4n4 = ±t2 is possible in integers
m, n, t, all of which are different from zero.

4*. Prove that the area of a numerical right triangle is not twice a square
number.
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5*. Prove that the equation m4 + n4 = α2 is not possible in integers m, n, α
all of which are different from zero.

6*. In the numerical right triangle a2 + b2 = c2, not more than one of the
numbers a, b, c is a square.

7. Prove that the equation x2k + y2k = z2k implies an equation of the form
mk + nk = 2k−2tk.

8. Find the general solution in integers of the equation x2 + 2y2 = t2.

9. Find the general solution in integers of the equation x2 + y2 = z4.

10. Obtain solutions of each of the following Diophantine equations:

x3 + y3 + z3 = 2t3,

x3 + 2y3 + 3z3 = t3,

x4 + y4 + 4z4 = t4,

x4 + y4 + z4 = 2t4.
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